JP2011058709A - Magnetic temperature adjusting device - Google Patents

Magnetic temperature adjusting device Download PDF

Info

Publication number
JP2011058709A
JP2011058709A JP2009208130A JP2009208130A JP2011058709A JP 2011058709 A JP2011058709 A JP 2011058709A JP 2009208130 A JP2009208130 A JP 2009208130A JP 2009208130 A JP2009208130 A JP 2009208130A JP 2011058709 A JP2011058709 A JP 2011058709A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange tank
transfer medium
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009208130A
Other languages
Japanese (ja)
Inventor
Katsuyuki Soeda
勝之 添田
Kenichi Ito
賢一 伊藤
Tadahiro Nakayama
忠弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009208130A priority Critical patent/JP2011058709A/en
Publication of JP2011058709A publication Critical patent/JP2011058709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To configure a heat exchange part of a structure capable of improving heat exchange efficiency between a heat transfer medium, and a magnetic work substance filled in an interior of a heat exchange tank. <P>SOLUTION: A magnetic refrigerating device includes the heat exchange part 31 composed by including: the heat exchange tank 15 circulating a medium 20 in a state filled with the magnetic work substance 50 and applied with a magnetic field from an exterior; one or more partition plates 33 disposed along a circulating direction of the medium 20 in an interior of the heat exchange tank 15; and lead-in/lead-out parts 32 respectively disposed on both ends of the heat exchange tank 15, and leading in the medium 20 flowing in from a direction in parallel with an opening face of the heat exchange tank 15 in the heat exchange tank 15, or leading out the medium 20 having passed through the heat exchange tank 15 in an opposite direction of an inflow direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気作業物質が充填された状態で熱伝達媒体が流通されると共に、外部より磁界が印加される熱交換槽を備えた熱交換部を有する磁気温度調節装置に関する。   The present invention relates to a magnetic temperature control apparatus having a heat exchanging unit including a heat exchanging tank in which a heat transfer medium is circulated while being filled with a magnetic working substance and a magnetic field is applied from the outside.

例えば特許文献1には、磁気作業物質が充填された熱交換槽を複数備え、これらを連結して熱伝達媒体を循環させ、熱交換槽に外部より磁界(磁場)を印加したり、印加した磁界を取り去ったりすることで、磁気エントロピーを大きく変化させて磁気熱量効果を生じさせ、熱交換を行う装置が開示されている。   For example, Patent Document 1 includes a plurality of heat exchange tanks filled with a magnetic working substance, which are connected to circulate a heat transfer medium, and a magnetic field (magnetic field) is applied to the heat exchange tank from the outside. An apparatus has been disclosed in which the magnetic entropy is greatly changed by removing a magnetic field, thereby generating a magnetocaloric effect, and heat exchange is performed.

ところで、上記のように熱交換槽に熱伝達媒体を循環させる場合、その配管をコンパクトに配置することを想定すると、例えば図12に示すように、熱交換槽の上端側から熱伝達媒体を導入し、下端側から熱伝達媒体を導出させるようにして(導入,導出の上下は逆でも良い)、熱伝達媒体の流入,流出方向が熱交換槽の開口面と平行で且つ互いに逆方向にすることが考えられる。熱交換槽101は、上下が開口した直方体状であり、その内部には磁気作業物質102が充填されている。尚、図示の都合上磁気作業物質102は実際よりも拡大して示しており、実際の粒径は数μm程度である。   By the way, when the heat transfer medium is circulated in the heat exchange tank as described above, assuming that the piping is arranged in a compact manner, for example, as shown in FIG. 12, the heat transfer medium is introduced from the upper end side of the heat exchange tank. However, the heat transfer medium is led out from the lower end side (the upside and downside of the introduction and the outflow may be reversed), and the inflow and outflow directions of the heat transfer medium are parallel to the opening surface of the heat exchange tank and opposite to each other. It is possible. The heat exchange tank 101 has a rectangular parallelepiped shape that is open at the top and bottom, and is filled with a magnetic working substance 102. For the convenience of illustration, the magnetic working substance 102 is shown enlarged from the actual size, and the actual particle size is about several μm.

熱交換槽101の上端側には、矩形箱状の熱伝達媒体管103が接続されており、熱交換槽101の上端開口と連通している。そして、例えば図中右方向から圧力を加えられて送出された熱伝達媒体を、上端から熱交換槽101に導入する。また、熱交換槽101の下端側にも同様に、矩形箱状の熱伝達媒体管104が接続されており、熱交換槽101の下端開口と連通している。熱交換槽101の内部を流通して磁気作業物質102との間で熱交換を行った後の熱伝達媒体を、熱交換槽101の下端から図中左方向に導出させる。   A rectangular box-shaped heat transfer medium tube 103 is connected to the upper end side of the heat exchange tank 101 and communicates with the upper end opening of the heat exchange tank 101. Then, for example, the heat transfer medium sent out by applying pressure from the right direction in the figure is introduced into the heat exchange tank 101 from the upper end. Similarly, a rectangular box-shaped heat transfer medium tube 104 is connected to the lower end side of the heat exchange tank 101 and communicates with the lower end opening of the heat exchange tank 101. The heat transfer medium after flowing through the heat exchange tank 101 and exchanging heat with the magnetic working substance 102 is led out from the lower end of the heat exchange tank 101 in the left direction in the figure.

熱交換槽101に磁界が印加される過程で磁気作業物質102が発熱している場合、流出した熱伝達媒体は高温側(放熱側)に送出され、熱交換槽101に印加された磁界が除去される過程で磁気作業物質102が吸熱した場合は、流出した熱伝達媒体は低温側(吸熱側)に送出される。   When the magnetic working material 102 generates heat in the process of applying a magnetic field to the heat exchange tank 101, the heat transfer medium that has flowed out is sent to the high temperature side (heat radiation side), and the magnetic field applied to the heat exchange tank 101 is removed. When the magnetic working material 102 absorbs heat in the process, the flowed heat transfer medium is sent to the low temperature side (heat absorption side).

特開2006−308197号公報JP 2006-308197 A

しかしながら、図12のような構成では、熱伝達媒体が熱交換槽101の内部を流通する場合、流体抵抗が低い流路を優先して流通しようとするため、充填されている磁気作業物質102の全体に亘って熱交換が行われ難い状態となり、熱交換効率が低下することが問題となる。
本発明は上記事情に鑑みてなされたものであり、その目的は、熱伝達媒体と、熱交換槽の内部に充填されている磁気作業物質との間の熱交換効率を向上させることができる構造の熱交換部を有する磁気温度調節装置を提供することにある。
However, in the configuration shown in FIG. 12, when the heat transfer medium flows through the heat exchange tank 101, the flow of low fluid resistance is preferentially distributed, so There is a problem that heat exchange is difficult to be performed throughout, and heat exchange efficiency is lowered.
The present invention has been made in view of the above circumstances, and its purpose is a structure capable of improving the heat exchange efficiency between the heat transfer medium and the magnetic working material filled in the heat exchange tank. Another object of the present invention is to provide a magnetic temperature control device having a heat exchange unit.

上記目的を達成するため、請求項1記載の磁気温度調節装置は、磁気作業物質が充填された状態で熱伝達媒体が流通されると共に、外部より磁界が印加される熱交換槽と、
この熱交換槽の内部において、前記熱伝達媒体が流通する方向に沿って配置される1枚以上の仕切り板と、
前記熱交換槽の両端にそれぞれ配置され、前記熱交換槽の開口面と平行な方向より流入する熱伝達媒体を前記熱交換槽に導入するか、または前記熱交換槽を経由した熱伝達媒体を、前記流入方向と逆方向に導出する導入/導出部とを備えて構成される熱交換部を有することを特徴とする。
In order to achieve the above object, a magnetic temperature control apparatus according to claim 1 is a heat exchange tank in which a heat transfer medium is circulated in a state filled with a magnetic working substance and a magnetic field is applied from the outside,
In this heat exchange tank, one or more partition plates arranged along the direction in which the heat transfer medium flows;
A heat transfer medium that is arranged at both ends of the heat exchange tank and that flows in from a direction parallel to the opening surface of the heat exchange tank is introduced into the heat exchange tank, or a heat transfer medium that passes through the heat exchange tank And a heat exchanging unit configured to include an introduction / derivation unit that derives in a direction opposite to the inflow direction.

請求項1記載の磁気温度調節装置によれば、熱交換槽の内部に配置される仕切り板によって熱交換槽の空間が複数に分割され、それらの空間内を熱伝達媒体が分かれて流通するので、熱伝達媒体が槽内をより均一に流通するようになり、磁気作業物質との熱交換が効率的に行われるようになる。   According to the magnetic temperature control apparatus of the first aspect, the space of the heat exchange tank is divided into a plurality of parts by the partition plate arranged inside the heat exchange tank, and the heat transfer medium divides and circulates in these spaces. Thus, the heat transfer medium flows more uniformly in the tank, and heat exchange with the magnetic working substance is efficiently performed.

第1実施例であり、熱交換部の構成を、その一部を透過した状態で示す斜視図The perspective view which is 1st Example and shows the structure of the heat exchange part in the state which permeate | transmitted the part 横軸を寸法比A/Bとし、縦軸を流速均一性として実測した結果の一例を示す図The figure which shows an example of the result of having measured a horizontal axis as dimensional ratio A / B and making a vertical axis into flow velocity uniformity. 導入/導出部にR面取り加工を行わない状態で、熱交換部に媒体を送出した場合の気泡混入率をシミュレーションした結果を示す図The figure which shows the result of having simulated the bubble mixing rate at the time of sending a medium to a heat exchange part in the state which does not perform R chamfering in an introductory / outlet part (a)は磁気作業物質が仕切り板に固着した状態をモデル的に示す図、(b)は熱交換槽の内壁面をモデル的に示す図(A) is a figure which shows the state which the magnetic working substance adhered to the partition plate in model, (b) is a figure which shows in model the inner wall surface of a heat exchange tank. 磁気冷凍装置の内部構造の縦断正面を概略的に示す図The figure which shows roughly the longitudinal front of the internal structure of a magnetic refrigeration equipment 回動子とその周辺構造を概略的に示す横断面図Cross-sectional view schematically showing the rotor and its surrounding structure 回動子とその周辺構造を概略的に示す斜視図The perspective view which shows a rotor and its peripheral structure roughly 配管の接続形態を概略的に示す図Schematic diagram of piping connection 磁場の変化と温熱/冷熱の輸送等のタイミングを示すタイミングチャートTiming chart showing timing of change of magnetic field and transport of hot / cold heat 第2実施例であり、熱交換部の構成をモデル的に示す正面図The front view which is 2nd Example and shows the structure of a heat exchange part modelly (a)は第1実施例の熱交換部に媒体が流れた場合の気泡混入率のシミュレーション結果、(b)第2実施例の熱交換部についての同結果を示す図(A) is the simulation result of the bubble mixing rate when the medium flows into the heat exchange part of the first embodiment, and (b) is a diagram showing the result of the heat exchange part of the second embodiment. 従来技術を示す図1相当図1 equivalent diagram showing the prior art

(第1実施例)
以下、第1実施例について図1ないし図9を参照して説明する。図5は、磁気冷凍装置の内部構造の縦断正面図を概略的に示している。磁気冷凍装置(磁気温度調整装置)Aは、制御手段としての制御回路1と、円筒状のハウジング2内に取り付けられた回転駆動部としてのモータ3と、回動軸(回転軸)4と、熱交換器5と、回動子6と、ベアリング7とを備えている。
(First embodiment)
The first embodiment will be described below with reference to FIGS. FIG. 5 schematically shows a longitudinal front view of the internal structure of the magnetic refrigeration apparatus. A magnetic refrigeration apparatus (magnetic temperature adjustment apparatus) A includes a control circuit 1 as a control means, a motor 3 as a rotation drive unit mounted in a cylindrical housing 2, a rotation shaft (rotation shaft) 4, A heat exchanger 5, a rotor 6, and a bearing 7 are provided.

モータ3は、例えばギヤヘッド付きのステッピングモータにより構成され、制御回路1からの制御信号に基づいて回動制御可能に構成されている。尚、モータ3は、例えばブラシレスDCモータ等の永久磁石式モータで構成されていても良い。このモータ3の中心には回動軸4が挿通されており、当該回動軸4の周方向(Y軸周り)に回動可能に構成されている。ハウジング2にはベアリング7が固着されており、回動軸4はベアリング7に支承されている。モータ3は、回動軸4を介して回動子6に連結されており、回動子6が回動軸4の周方向に回動可能になっている。回動子6は、内側ヨーク8、内側磁石9、外側ヨーク10、外側磁石11が互いにハウジング12によって連結されて構成されている。   The motor 3 is constituted by, for example, a stepping motor with a gear head, and is configured to be capable of rotation control based on a control signal from the control circuit 1. The motor 3 may be constituted by a permanent magnet motor such as a brushless DC motor. A rotation shaft 4 is inserted through the center of the motor 3 and is configured to be rotatable in the circumferential direction of the rotation shaft 4 (around the Y axis). A bearing 7 is fixed to the housing 2, and the rotating shaft 4 is supported by the bearing 7. The motor 3 is connected to the rotator 6 via the rotation shaft 4, and the rotator 6 is rotatable in the circumferential direction of the rotation shaft 4. The rotor 6 includes an inner yoke 8, an inner magnet 9, an outer yoke 10, and an outer magnet 11 that are connected to each other by a housing 12.

図6は、回動子6の構造およびそのX方向に沿う周辺の配設構造を概略的に示す横断面図である。また、図7は、図5に示すハウジング2内を下側からみたモータ、回動子およびその周辺の具体的構造と、それらの配設位置関係を概略的に示す斜視図である。
図7に示すように、回動子6の内側ヨーク8は回動軸4に連接して構成されている。図6に示すように、内側ヨーク8および内側磁石9は、回動軸4の中心側に内側ヨーク8を配設すると共にその外側に内側磁石9を配設して連結されている。内側磁石9は偶数個(4つ)であり、回動軸4を中心として中央から放射状をなすと共に、周方向に所定間隔ずつ離間して突設されている。尚、内側磁石9の数は偶数であれば良く、4つに限ることはない。
また、これらの内側磁石9の外方に離間して、外側磁石11および外側ヨーク10がそれぞれ配置されている。複数の外側磁石11は中心側に配設され、その外側に外側ヨーク10が配設されて外側磁石11を回動軸4の周方向に沿って連結することで、これらは回動軸4の軸中心方向に向けて突設されている。
FIG. 6 is a cross-sectional view schematically showing the structure of the rotor 6 and the surrounding arrangement structure along the X direction. FIG. 7 is a perspective view schematically showing a specific structure of the motor, the rotor, and the periphery thereof when the inside of the housing 2 shown in FIG.
As shown in FIG. 7, the inner yoke 8 of the rotor 6 is configured to be connected to the rotating shaft 4. As shown in FIG. 6, the inner yoke 8 and the inner magnet 9 are connected by disposing the inner yoke 8 on the center side of the rotating shaft 4 and the inner magnet 9 on the outer side thereof. The number of the inner magnets 9 is an even number (four). The inner magnets 9 have a radial shape from the center with the rotation shaft 4 as the center, and are projected at a predetermined interval in the circumferential direction. In addition, the number of the inner magnets 9 should just be an even number, and is not restricted to four.
In addition, an outer magnet 11 and an outer yoke 10 are disposed apart from the inner magnet 9. The plurality of outer magnets 11 are disposed on the center side, and an outer yoke 10 is disposed on the outer side of the plurality of outer magnets 11. The outer magnets 11 are connected along the circumferential direction of the rotating shaft 4. Projecting toward the axial center direction.

複数の内側磁石9の外方突設端と、複数の外側磁石11の内方突設端とはそれぞれが互いに異極側を臨ませて対向しており、それらの間にはそれぞれギャップ13が設けられている。これらの内側磁石9、外側磁石11は何れも永久磁石であり、それぞれ回動軸4を中心とした所謂円孤状に形成配置されている。尚、回動軸4の周方向に離間して隣り合う内側磁石9、9によってギャップ13側に臨む磁極は互いに異極に設定されており、周方向に隣り合う外側磁石11、11によってギャップ13側に臨む磁極も互いに異極に設定されている。   The outward projecting ends of the plurality of inner magnets 9 and the inward projecting ends of the plurality of outer magnets 11 face each other with their opposite polarities facing each other, and a gap 13 is formed between them. Is provided. The inner magnet 9 and the outer magnet 11 are both permanent magnets, and are formed and arranged in a so-called circular arc shape around the rotation shaft 4. Note that the magnetic poles facing the gap 13 by the inner magnets 9, 9 adjacent to each other in the circumferential direction of the rotating shaft 4 are set to be different from each other, and the gap 13 is formed by the outer magnets 11, 11 adjacent in the circumferential direction. The magnetic poles facing the side are also set to be different from each other.

複数のギャップ13間は、図示しないフレームにより連結されていると共に、フレームの内側に設けられる連通孔14により回動軸4の周方向に沿って連通されている。この連通孔14内には、熱交換槽15と補助磁性体16とが、それぞれ、例えば内側磁石9及び外側磁石11の個数に対応して設けられている。連通孔14内では、回動軸4の周方向に沿って、熱交換槽15と補助磁性体16とが交互に配設されている。これらの熱交換槽15と補助磁性体16との間は、連通孔14の一部となる空間14aが存在可能になっており、補助磁性体16は、複数のギャップ13間を渡るフレームに沿って連通孔14の内部を移動自在に構成されている。   The gaps 13 are connected by a frame (not shown) and are communicated along the circumferential direction of the rotating shaft 4 by a communication hole 14 provided inside the frame. In this communication hole 14, the heat exchange tank 15 and the auxiliary | assistant magnetic body 16 are provided corresponding to the number of the inner magnets 9 and the outer magnets 11, respectively, for example. In the communication hole 14, the heat exchange tank 15 and the auxiliary magnetic body 16 are alternately arranged along the circumferential direction of the rotation shaft 4. Between the heat exchange tank 15 and the auxiliary magnetic body 16, a space 14 a that is a part of the communication hole 14 can exist, and the auxiliary magnetic body 16 extends along a frame that extends between the gaps 13. Thus, the inside of the communication hole 14 is configured to be movable.

複数の熱交換槽15は、それぞれの内部に例えばガドリニウム(Gd)強磁性体、もしくは、ランタン−鉄−シリコン(La−Fe−Si)系等の磁性体により磁気熱量効果を奏する磁気作業物質50が充填されている。磁気作業物質50は、例えば球状粒子、細粒子により構成されている。尚、複数の熱交換槽15はそれぞれハウジング2に固定設置形態で設けられている。
補助磁性体16は、磁気通過物質、磁気保持物質として機能するもので、磁気特性が例えば磁気作業物質50と同一であるような、上述した磁性材料で構成されていることが望ましい。補助磁性体16は、その回動軸4の周方向長さに対応した円孤角度が、ギャップ13の周方向長さに対応した円孤角度(例えば30°)と同一に設定されている。
The plurality of heat exchange tanks 15 each have a magnetic working material 50 that exhibits a magnetocaloric effect by a gadolinium (Gd) ferromagnetic material or a magnetic material such as a lanthanum-iron-silicon (La-Fe-Si) system. Is filled. The magnetic working substance 50 is composed of, for example, spherical particles and fine particles. The plurality of heat exchange tanks 15 are provided in the housing 2 in a fixed installation form.
The auxiliary magnetic body 16 functions as a magnetically permeable substance and a magnetic retentive substance, and is preferably made of the above-described magnetic material having the same magnetic characteristics as the magnetic working substance 50, for example. In the auxiliary magnetic body 16, the arc angle corresponding to the circumferential length of the rotating shaft 4 is set to be the same as the arc angle (for example, 30 °) corresponding to the circumferential length of the gap 13.

再び図1を参照する。熱交換器5は、熱交換槽15、ポンプ17、配管18、19、媒体(熱伝達媒体)20、排熱部21、冷熱部22を備えて構成されている。ポンプ17はハウジング2内に配設されており、回動軸4に取り付けられている。尚、ポンプ17はハウジング2外に設置されていても良い。   Refer to FIG. 1 again. The heat exchanger 5 includes a heat exchange tank 15, a pump 17, pipes 18 and 19, a medium (heat transfer medium) 20, an exhaust heat unit 21, and a cooling / heating unit 22. The pump 17 is disposed in the housing 2 and is attached to the rotating shaft 4. The pump 17 may be installed outside the housing 2.

モータ3は、回動軸4を介してポンプ17に連結されており、当該ポンプ17を駆動する。これにより、ハウジング2の外部に他のポンプ17の駆動源を設ける構成に比較して小型化できる。ポンプ17には配管18が接続されており、配管18は熱交換槽15の上部に接続されており、ポンプ17の作用により、配管18を通じて媒体20が熱交換槽15の内外に流動(流入/流出)可能となるように構成されている。媒体20は、例えば水などの液体である。
また、配管19は、熱交換槽15の下部に接続されており、ポンプ17の作用により、配管19を通じて媒体20が熱交換槽15の内外に流動(流入/流出)可能となるように構成されている。媒体20が熱交換槽15内に流入して磁気作業物質50に接すると、磁気作業物質50への磁気印加状態に応じて媒体20が加熱されたり(温熱状態)、冷却されたり(冷熱状態)する。
The motor 3 is connected to the pump 17 via the rotating shaft 4 and drives the pump 17. Thereby, it can reduce in size compared with the structure which provides the drive source of the other pump 17 in the exterior of the housing 2. FIG. A pipe 18 is connected to the pump 17, and the pipe 18 is connected to an upper portion of the heat exchange tank 15. By the action of the pump 17, the medium 20 flows into and out of the heat exchange tank 15 through the pipe 18 (inflow / inflow). Outflow). The medium 20 is a liquid such as water.
The pipe 19 is connected to the lower part of the heat exchange tank 15, and is configured so that the medium 20 can flow (inflow / outflow) into and out of the heat exchange tank 15 through the pipe 19 by the action of the pump 17. ing. When the medium 20 flows into the heat exchange tank 15 and comes into contact with the magnetic working material 50, the medium 20 is heated (hot state) or cooled (cold state) according to the state of magnetism applied to the magnetic working material 50. To do.

配管18は弁(図示せず)を介して排熱部21に接続されており、配管19は弁(図示せず)を介して冷熱部22に接続されている。排熱部21および冷熱部22は互いに離間してハウジング2の外部に配設され、冷熱部22は冷熱を蓄積し、排熱部21からは温熱を排熱するように構成されている。すなわち、熱交換器5は、ポンプ17の作用により、媒体20が温熱を蓄熱したタイミングで、配管18を通じて媒体20の温熱を排熱部21において排熱させ、媒体20が冷熱を蓄熱したタイミングで配管19を通じて媒体20の冷熱を冷熱部22に蓄積させることで熱交換を行う。
図8は、熱交換器の配管の接続形態を概略的に示すもので、ポンプ17と複数の熱交換槽15との間を配管18,19により直列に接続している。媒体20は、熱交換槽15の内部を図示Y方向(XZ方向と直交方向)に流動可能になっている。
The piping 18 is connected to the exhaust heat unit 21 via a valve (not shown), and the piping 19 is connected to the cooling unit 22 via a valve (not shown). The exhaust heat section 21 and the cool heat section 22 are arranged outside the housing 2 so as to be separated from each other, and the cool heat section 22 is configured to accumulate cold heat and exhaust the warm heat from the exhaust heat section 21. In other words, the heat exchanger 5 causes the heat of the medium 20 to be exhausted in the exhaust heat unit 21 through the pipe 18 at the timing when the medium 20 stores the warm heat by the action of the pump 17, and at the timing when the medium 20 stores the cold. Heat is exchanged by accumulating the cold energy of the medium 20 in the cold heat part 22 through the pipe 19.
FIG. 8 schematically shows the connection form of the pipes of the heat exchanger, and the pump 17 and the plurality of heat exchange tanks 15 are connected in series by pipes 18 and 19. The medium 20 can flow in the Y direction (direction orthogonal to the XZ direction) in the heat exchange tank 15.

図9は、熱交換時の熱交換槽15(磁気作業物質50)への磁界印加タイミングと熱輸送タイミングの具体例を概略的に示している。熱交換槽15内の磁気作業物質50に強い磁束密度(例えば、1.2T)で磁界が印加されると、その過程で磁気作業物質50は発熱する(図9の(1))。制御回路1は、この状態でモータ3を駆動制御することでポンプ17を駆動し熱交換槽15の外壁材15b内に媒体20を通過させて温熱を排熱部21に輸送する(図9の(2))。
また、熱交換槽15内の磁気作業物質50に印加された磁束密度が低減されると、その過程で磁気作業物質50は吸熱する(図9の(3))。制御回路1は、この状態でモータ3を駆動制御することでポンプ17を駆動し熱交換槽15内に媒体20を通過させて冷熱を冷熱部22に輸送する(図9の(4))。このような熱輸送サイクル、熱交換サイクルを繰り返すことで冷熱を冷熱部22に蓄積することができる。
FIG. 9 schematically shows a specific example of magnetic field application timing and heat transport timing to the heat exchange tank 15 (magnetic working material 50) during heat exchange. When a magnetic field is applied to the magnetic working material 50 in the heat exchange tank 15 with a strong magnetic flux density (for example, 1.2 T), the magnetic working material 50 generates heat in the process ((1) in FIG. 9). In this state, the control circuit 1 drives and controls the motor 3 to drive the pump 17 and pass the medium 20 through the outer wall material 15b of the heat exchange tank 15 to transport the heat to the exhaust heat unit 21 (see FIG. 9). (2)).
When the magnetic flux density applied to the magnetic working material 50 in the heat exchange tank 15 is reduced, the magnetic working material 50 absorbs heat in the process ((3) in FIG. 9). In this state, the control circuit 1 drives and controls the motor 3 to drive the pump 17 to pass the medium 20 through the heat exchange tank 15 and transport the cold to the cold heat unit 22 ((4) in FIG. 9). By repeating such a heat transport cycle and a heat exchange cycle, cold heat can be accumulated in the cold heat unit 22.

図1は、1つの熱交換槽15を中心とする熱交換部31の構成を、その一部を透過した状態で詳細に示す斜視図である。熱交換部31は、熱交換槽15と、その図中上方側を配管18に接続するための導入/導出部32Uと、熱交換槽15の図中下方側を配管19に接続するための導入/導出部32Dとを有している。導入/導出部32Uについては、配管18が接続されている側に対向する面側がR面取り加工されており、曲面32Uaとなっている。導入/導出部32Dについても同様に、配管19が接続されている側に対向する面側がR面取り加工されて、曲面32Daとなっている。   FIG. 1 is a perspective view showing in detail the configuration of the heat exchanging section 31 centered on one heat exchanging tank 15 in a state where a part of the heat exchanging section 31 is transmitted. The heat exchanging unit 31 is connected to the heat exchange tank 15, an introduction / derivation unit 32 </ b> U for connecting the upper side in the drawing to the pipe 18, and an introduction for connecting the lower side of the heat exchange tank 15 in the figure to the pipe 19. / Deriving unit 32D. About the introduction / derivation | leading-out part 32U, the surface side which opposes the side to which the piping 18 is connected is R chamfered, and becomes the curved surface 32Ua. Similarly, for the introduction / derivation portion 32D, the surface facing the side to which the pipe 19 is connected is R-chamfered to form a curved surface 32Da.

また、図5〜図8では図示を省略しているが、熱交換槽15の内部には、予め複数枚の仕切り板33が互いに平行となるように、且つ、熱交換槽15の外壁面との間隔も含めそれらの配置間隔が一定値Bとなるように、図中上下方向に沿って配置されている。そして、磁気作業物質50は、複数枚の仕切り板33によって仕切られた複数の空間内にそれぞれ充填されている。   Although not shown in FIGS. 5 to 8, inside the heat exchange tank 15, a plurality of partition plates 33 are arranged in parallel with each other in advance, and the outer wall surface of the heat exchange tank 15 These are arranged along the vertical direction in the figure so that the arrangement interval including the interval is a constant value B. The magnetic working material 50 is filled in a plurality of spaces partitioned by a plurality of partition plates 33.

図8に示したように、複数の熱交換槽15を直列に連結した構成は、上記のように構成されている熱交換部31を、隣り合うものにおける上端側の導入/導出部32U同士,下端側の導入/導出部32U同士をそれぞれ連結して構成されたものとなっている。   As shown in FIG. 8, the configuration in which a plurality of heat exchange tanks 15 are connected in series is configured such that the heat exchanging units 31 configured as described above are introduced / derived units 32U on the upper end side in adjacent ones, The inlet / outlet portions 32U on the lower end side are connected to each other.

ここで、熱交換槽15の図中上下方向の長さをAとし、熱交換槽15内に配置する仕切り板33の配置間隔をBとする。熱交換槽15内に配置する仕切り板33の枚数を増やして行くと、寸法比A/Bは大きくなる。この時の熱交換槽15の幅方向における媒体20の流通速度のばらつきは流体解析によって得ることができ(流速の最大値と最小値との差を、流速の平均値で除したもの)、そのバラツキ値の逆数が流通速度の均一性(流速均一性)を示すことになる。   Here, the length of the heat exchange tank 15 in the vertical direction in the figure is A, and the arrangement interval of the partition plates 33 arranged in the heat exchange tank 15 is B. As the number of partition plates 33 arranged in the heat exchange tank 15 increases, the dimensional ratio A / B increases. The dispersion of the flow rate of the medium 20 in the width direction of the heat exchange tank 15 at this time can be obtained by fluid analysis (the difference between the maximum value and the minimum value of the flow rate divided by the average value of the flow rate) The reciprocal of the variation value indicates the uniformity of the flow rate (flow rate uniformity).

図2は、横軸をA/Bとし、縦軸を流速均一性として実測した結果の一例を示している。尚、流速均一性については、上限値が「1」となるように規格化した値となっている。プロットされたサンプル数が少ないため、6次多項式により近似した曲線も併せて図示している。この結果より、流速均一性が良好となる条件は、およそ
2.9≦A/B≦3.6 …(1)
であると言える。
FIG. 2 shows an example of the result of actual measurement with the horizontal axis being A / B and the vertical axis being the flow velocity uniformity. The flow velocity uniformity is a value normalized so that the upper limit value is “1”. Since the number of plotted samples is small, a curve approximated by a sixth-order polynomial is also shown. From this result, the conditions for good flow rate uniformity are approximately
2.9 ≦ A / B ≦ 3.6 (1)
It can be said that.

ただし、(1)式には、導入/導出部32の影響が考慮されていないので、以下の条件を追加する。導入/導出部32の上下方向寸法をC,図中左右方向寸法をDとする。図2より、寸法比A/Bが「2.0〜3.6」の範囲では、概ね
(流速均一性)∝A/B …(2)
とみなすことができる。また、流速均一性は、流路抵抗にも依存するので、
(流速均一性)∝C/D …(3)
も成り立つ。したがって、(2),(3)式より、
(流速均一性)∝(A/B)×(C/D)…(4)
と表すことができる。(4)式の両辺にD/Cを乗じると、
(流速均一性)×(D/C)∝(A/B)…(5)
となるから、関係式
A/B∝D/C …(6)
が得られる。故に、寸法比A/Bを決定する範囲に、導入/導出部32の寸法比D/Cが反映されなければならない。
However, since the influence of the introduction / derivation unit 32 is not considered in the expression (1), the following condition is added. The vertical dimension of the introduction / derivation unit 32 is C, and the horizontal dimension in the drawing is D. From FIG. 2, in the range where the dimensional ratio A / B is in the range of “2.0 to 3.6”, the (flow velocity uniformity) ∝A / B (2)
Can be considered. Also, since the flow rate uniformity depends on the flow path resistance,
(Flow rate uniformity) ∝ C / D (3)
Also holds. Therefore, from equations (2) and (3),
(Flow rate uniformity) ∝ (A / B) x (C / D) (4)
It can be expressed as. Multiplying both sides of equation (4) by D / C,
(Uniformity of flow rate) x (D / C) ∝ (A / B) (5)
Therefore, the relational expression
A / B∝D / C (6)
Is obtained. Therefore, the dimension ratio D / C of the introduction / derivation part 32 must be reflected in the range in which the dimension ratio A / B is determined.

図2の測定を行った際の寸法比D/Cは「5」であった。したがって(1)式より、
0.58D/C≦A/B≦0.72D/C …(7)
が得られ、(7)式を満たす範囲で寸法比A/Bを決定すれば、流速均一性を良好に確保することができる。また、両端に位置する仕切り板33と熱交換槽15の外壁面との間隔もBとするには、条件D=n・B(nは3以上の自然数)も満たす必要がある。すると(7)式は、
0.58n・B/C≦A/B≦0.72n・B/C …(8)
となる。
The dimension ratio D / C when the measurement of FIG. 2 was performed was “5”. Therefore, from equation (1)
0.58D / C ≦ A / B ≦ 0.72D / C (7)
If the dimensional ratio A / B is determined within a range satisfying the expression (7), the flow velocity uniformity can be ensured satisfactorily. In order to set the distance between the partition plates 33 located at both ends and the outer wall surface of the heat exchange tank 15 to B, the condition D = n · B (n is a natural number of 3 or more) needs to be satisfied. Then equation (7) becomes
0.58n · B / C ≦ A / B ≦ 0.72n · B / C (8)
It becomes.

尚、発明者が実際に試作した熱交換部31の各寸法A〜Dの比率は、寸法Cを基準(=1)として、A/B=3,D=3Bとした結果、
A:B:C:D=5:1.7:1:5 …(9)
となっている。これにより、熱交換槽15を2枚の仕切り板33により仕切った場合の流速均一性を良好に確保できる。
In addition, the ratio of each dimension AD of the heat exchange part 31 which the inventor actually produced as a result of A / B = 3 and D = 3B with the dimension C as a reference (= 1),
A: B: C: D = 5: 1.7: 1: 5 (9)
It has become. Thereby, the flow rate uniformity when the heat exchange tank 15 is partitioned by the two partition plates 33 can be secured satisfactorily.

また、図3は、導入/導出部32についてR面取り加工を行わず、すなわち曲面32aを形成しない状態で、熱交換部31に配管18側から媒体20を送出した場合の気泡混入率をシミュレーションした結果を示す。この場合、ポンプ17が媒体20を送出することで、媒体20が上方の導入/導出部32Uから熱交換槽15に導入され、熱交換槽15内を上方から下方側に流通し、下方の導入/導出部32Dから配管19側に導出される。尚、ポンプ17が媒体20を吸引した場合は上記の流れが逆(導入/導出が逆)になる。   Further, FIG. 3 simulates the bubble mixing rate when the medium 20 is sent from the pipe 18 side to the heat exchanging unit 31 without performing the R chamfering process on the introduction / derivation unit 32, that is, without forming the curved surface 32a. Results are shown. In this case, when the pump 17 sends out the medium 20, the medium 20 is introduced into the heat exchange tank 15 from the upper inlet / outlet part 32U, flows through the heat exchange tank 15 from the upper side to the lower side, and is introduced below. / Derived from the lead-out portion 32D to the pipe 19 side. When the pump 17 sucks the medium 20, the above flow is reversed (introduction / extraction is reversed).

実際の気泡混入率はカラーで表示されているため分かりにくいが、寒色傾向が強く、色が濃く表示されている部分の混入率は低く、逆に暖色傾向が強く色が薄く表示されている部分の混入率は高い。そして、図中に丸で囲んだ、導入/導出部32Dの角部分(配管19に連通する側と逆側)では、気泡混入率が特に高くなっている。したがって、図1に示すようにR面取り加工を行うことで、気泡混入率が高くなる部分が削除される結果、媒体20はより均一に流れるようになる。   The actual air bubble mixture rate is difficult to understand because it is displayed in color, but the cold color tendency is strong, the dark color is displayed in the part where the mixture rate is low, and conversely the warm color tendency is strong and the color is displayed in light color The contamination rate is high. In addition, the bubble mixture rate is particularly high in the corner portion of the introduction / derivation portion 32D (the side opposite to the side communicating with the pipe 19) circled in the drawing. Accordingly, by performing the R chamfering process as shown in FIG. 1, the portion where the bubble mixing rate becomes high is deleted, and as a result, the medium 20 flows more uniformly.

また、図4(a)は、磁気作業物質50が仕切り板33に固着した状態をモデル的に示したものである。尚、仕切り板33には、上流側と下流側との温度差を極力維持するため、例えばポリアセタール(POM)などの樹脂系の断熱材を用いるのが好ましい。(a)では、仕切り板33を、磁気作業物質50の粒径とほぼ同寸法の格子間隔を有するメッシュ状に形成することで、それらの格子の間に磁気作業物質50が充填された状態を示している。   FIG. 4A schematically shows a state in which the magnetic working material 50 is fixed to the partition plate 33. For the partition plate 33, it is preferable to use a resin-based heat insulating material such as polyacetal (POM) in order to maintain the temperature difference between the upstream side and the downstream side as much as possible. In (a), the partition plate 33 is formed in a mesh shape having a lattice interval of approximately the same size as the particle size of the magnetic working material 50, so that the magnetic working material 50 is filled between the lattices. Show.

一方、図4(b)は、熱交換槽15の内壁面15aをモデル的に示したものである。熱交換槽15の内壁面15aに、その硬度が磁気作業物質50よりも低い材質を選択することで、磁気作業物質50が充填された場合に、その内壁面15aに埋め込ませた状態を示している。これらのように構成することで、熱交換槽15への磁気作業物質50の充填密度をより高めて、熱交換効率を向上させることができる。   On the other hand, FIG. 4B shows an inner wall surface 15a of the heat exchange tank 15 as a model. By selecting a material whose hardness is lower than that of the magnetic working material 50 on the inner wall surface 15a of the heat exchange tank 15, when the magnetic working material 50 is filled, a state in which the inner wall surface 15a is embedded in the inner working wall 15a is shown. Yes. By configuring as above, the packing density of the magnetic working substance 50 in the heat exchange tank 15 can be further increased, and the heat exchange efficiency can be improved.

以上のように本実施例によれば、磁気冷凍装置Aに、磁気作業物質50が充填された状態で媒体20が流通されると共に、外部より磁界が印加される熱交換槽15と、熱交換槽15の内部において、媒体20が流通する方向に沿って配置される複数枚の仕切り板33と、熱交換槽15の両端にそれぞれ配置され、熱交換槽15の開口面と平行な方向より流入する媒体20を熱交換槽15に導入するか、または熱交換槽15を経由した媒体20を、流入方向と逆方向に導出する導入/導出部32とを備えて構成される熱交換部31を備えた。したがって、熱交換槽15の内部に配置される仕切り板33によって、媒体20が分かれて槽内をより均一に流通するようになり、磁気作業物質50との熱交換が効率的に行われるようになる。   As described above, according to this embodiment, the medium 20 is circulated in the magnetic refrigeration apparatus A in a state where the magnetic working substance 50 is filled, and the heat exchange tank 15 to which a magnetic field is applied from the outside, and the heat exchange. Inside the tank 15, a plurality of partition plates 33 arranged along the direction in which the medium 20 circulates, and arranged at both ends of the heat exchange tank 15, flow in from a direction parallel to the opening surface of the heat exchange tank 15. A heat exchanging unit 31 configured to include the introduction / derivation unit 32 that introduces the medium 20 to be introduced into the heat exchange tank 15 or derives the medium 20 that has passed through the heat exchange tank 15 in the direction opposite to the inflow direction. Prepared. Therefore, the partition plate 33 disposed inside the heat exchange tank 15 divides the medium 20 and circulates the tank more uniformly, so that heat exchange with the magnetic working substance 50 is performed efficiently. Become.

そして、熱交換槽15及び仕切り板33について媒体20が流通する方向の長さをA,仕切り板33の配置間隔をB,導入/導出部32について、前記Aと同方向の長さをC,熱交換槽15の開口面における媒体20の流入,流出方向長さをDとすると、D=n・Bの関係を満たしたうえで、上記A〜Dの関係が(8)式を満たすように設定したので、熱交換槽15内を流れる媒体20の流速均一性を良好に確保できる。更に、導入/導出部32において、流入した媒体20が突き当る部分の形状をR面取り加工して曲面32aを形成したので、媒体20が流通する際に気泡混入率が高くなる部位をなくすことができ、媒体20を一層均一に流通させることができる。   The length of the heat exchange tank 15 and the partition plate 33 in the direction in which the medium 20 flows is A, the arrangement interval of the partition plates 33 is B, and the introduction / lead-out portion 32 is C in the same direction as A. Assuming that the length of the inflow / outflow direction of the medium 20 at the opening surface of the heat exchange tank 15 is D, the relationship of A to D satisfies the equation (8) after satisfying the relationship of D = n · B. Since it is set, the flow velocity uniformity of the medium 20 flowing in the heat exchange tank 15 can be ensured satisfactorily. Furthermore, since the curved surface 32a is formed by R-chamfering the shape of the portion where the inflowing medium 20 abuts in the introduction / derivation unit 32, it is possible to eliminate the part where the bubble mixing rate increases when the medium 20 flows. The medium 20 can be distributed more uniformly.

加えて、仕切り板33を断熱材で構成したので、熱交換槽15内に媒体20を流通させて熱交換を行う際に、上流側と下流側とに生じる温度差を極力維持することができ、熱交換効率を向上させることができる。
また、仕切り板33を、磁気作業物質50の粒径と同程度の格子間隔を有するメッシュ状に構成し、且つ熱交換槽15を、少なくとも内面側が、磁気作業物質50よりも硬度が低い材質で構成したので、熱交換槽15への磁気作業物質50の充填密度をより高めて、熱交換効率を向上させることができる。
In addition, since the partition plate 33 is made of a heat insulating material, the temperature difference generated between the upstream side and the downstream side can be maintained as much as possible when the medium 20 is circulated in the heat exchange tank 15 to perform heat exchange. The heat exchange efficiency can be improved.
Further, the partition plate 33 is configured in a mesh shape having a lattice interval similar to the particle size of the magnetic working material 50, and the heat exchange tank 15 is made of a material whose hardness is lower than that of the magnetic working material 50 at least on the inner surface side. Since it comprised, the filling density of the magnetic working substance 50 to the heat exchange tank 15 can be raised more, and heat exchange efficiency can be improved.

(第2実施例)
図10及び図11は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図10は、第2実施例における熱交換部41の構成をモデル的に示した正面図である。第1実施例の熱交換部31は、熱交換槽15の上端側,下端側を平行に流れる媒体20に対して、熱交換槽15は媒体20を垂直に流通させる構成であったが、第2実施例の熱交換部41では、熱交換槽42が傾斜した状態で、上端側の導入/導出部32Uと、下端側の導入/導出部32Dとを接続している。
(Second embodiment)
10 and 11 show a second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted. Hereinafter, different parts will be described. FIG. 10 is a front view schematically showing the configuration of the heat exchange unit 41 in the second embodiment. The heat exchanging unit 31 of the first embodiment is configured to allow the medium 20 to flow vertically with respect to the medium 20 flowing in parallel at the upper end side and the lower end side of the heat exchange tank 15, In the heat exchanging unit 41 of the second embodiment, the introduction / derivation unit 32U on the upper end side and the introduction / derivation unit 32D on the lower end side are connected with the heat exchange tank 42 inclined.

すなわち、媒体20が導入/導出部32Uを介して流入する方向に対し、熱交換槽42に媒体20が導入される方向が鋭角をなすと共に、熱交換槽42より媒体20を導出する方向に対し、媒体20が導入/導出部32Dを介して流出する方向が鋭角をなすように傾きを有した形状となっている。   That is, the direction in which the medium 20 is introduced into the heat exchange tank 42 forms an acute angle with respect to the direction in which the medium 20 flows through the introduction / derivation unit 32U, and the direction in which the medium 20 is led out from the heat exchange tank 42. The direction in which the medium 20 flows out through the introduction / derivation unit 32D is inclined so that an acute angle is formed.

これは、以下の理由による。図11(a)は、第1実施例の熱交換部31のように、上端側の導入/導出部32Uと熱交換槽15とが直交し、流路が直角に曲がる部分について、媒体20が流れた場合の気泡混入率のシミュレーション結果を示している。色が濃い部分の気泡混入率は低く、色が薄い部分の気泡混入率は高い。媒体20が直角に曲がって流れる部分で気泡混入率が増大している。これに対して、図11(b)は、熱交換部41について、同様のシミュレーション結果を示したもので、図11(a)のように気泡混入率が増大する部分がなくなっており、媒体20が均一に流れることを示している。尚、熱交換槽42の傾斜角は、例えば45度くらいが好ましい。   This is due to the following reason. FIG. 11 (a) shows a case where the medium 20 is in a portion where the inlet / outlet portion 32U on the upper end side is orthogonal to the heat exchange tank 15 and the flow path is bent at a right angle, like the heat exchange portion 31 of the first embodiment. The simulation result of the bubble mixing rate in the case of flowing is shown. The bubble mixing rate in dark portions is low, and the bubble mixing rate in light portions is high. The bubble mixing rate is increased at the portion where the medium 20 bends and flows at a right angle. On the other hand, FIG. 11B shows a similar simulation result for the heat exchanging portion 41, and there is no portion where the bubble mixing rate increases as shown in FIG. Shows a uniform flow. The inclination angle of the heat exchange tank 42 is preferably about 45 degrees, for example.

以上のように構成される第2実施例によれば、媒体20が流入する方向に対し、熱交換槽42に媒体20が導入される方向が鋭角をなすと共に、熱交換槽42より媒体20を導出する方向に対しても、媒体20の流出方向が鋭角をなすように傾きを有した形状として熱交換部41を構成したので、媒体20が熱交換槽42を流通する際に気泡が混入することがなく、均一に流通させることができる。   According to the second embodiment configured as described above, the direction in which the medium 20 is introduced into the heat exchange tank 42 forms an acute angle with respect to the direction in which the medium 20 flows, and the medium 20 is removed from the heat exchange tank 42. Since the heat exchanging portion 41 is configured to have an inclination so that the outflow direction of the medium 20 forms an acute angle with respect to the direction to be led out, bubbles are mixed when the medium 20 flows through the heat exchanging tank 42. And can be distributed uniformly.

本発明は上記し又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
熱交換槽15に仕切り板33を何枚挿入するかは、1枚以上で適宜設定すれば良い。
また、必ずしも(7),(8)式の関係を満たすように設定する必要はなく、単に仕切り板33を1枚以上挿入するだけで、挿入しない場合に比較して流速均一性を向上させる効果は得られる。
磁気作業物質は、例示したものに限らず、磁気熱量効果が得られるものであれば適宜選択して使用すれば良い。
導入/導出部32のR面取り加工は、必要に応じて行えば良い。
The present invention is not limited to the embodiments described above or shown in the drawings, and the following modifications or expansions are possible.
What is necessary is just to set suitably how many pieces of the partition plates 33 are inserted in the heat exchange tank 15 with one or more sheets.
In addition, it is not always necessary to set so as to satisfy the relationship of the expressions (7) and (8). The effect of improving the flow velocity uniformity by simply inserting one or more partition plates 33 as compared with the case of not inserting them. Is obtained.
The magnetic working substance is not limited to those exemplified, and may be appropriately selected and used as long as the magnetocaloric effect can be obtained.
The chamfering process of the introduction / derivation unit 32 may be performed as necessary.

仕切り板33は、必ずしも断熱材で構成する必要はない。また、必ずしもメッシュ状にする必要はなく、板状であっても良い。
熱交換槽の内壁面を、磁気作業物質よりも硬度が低い材質にする必要はなく、硬度が同程度又はより高い材質であっても良い。例えば、磁気作業物質よりも硬度が低い材質を熱交換槽の内壁面に貼り付けても良い。
磁気温度調整装置の構成は、例示したものに限ることはない。
The partition plate 33 is not necessarily composed of a heat insulating material. Moreover, it does not necessarily need to be mesh shape, and plate shape may be sufficient.
The inner wall surface of the heat exchange tank need not be made of a material having a hardness lower than that of the magnetic working substance, and may be made of a material having the same or higher hardness. For example, a material having a lower hardness than the magnetic working substance may be attached to the inner wall surface of the heat exchange tank.
The configuration of the magnetic temperature adjusting device is not limited to that illustrated.

図面中、15は熱交換槽、18,19は配管、20は媒体(熱伝達媒体)、31は熱交換部、32は導入/導出部、33は仕切り板、41は熱交換部、42は熱交換槽、50は磁気作業物質、Aは磁気冷凍装置(磁気温度調整装置)を示す。   In the drawing, 15 is a heat exchange tank, 18 and 19 are pipes, 20 is a medium (heat transfer medium), 31 is a heat exchange part, 32 is an introduction / outlet part, 33 is a partition plate, 41 is a heat exchange part, and 42 is A heat exchange tank, 50 is a magnetic working substance, and A is a magnetic refrigeration apparatus (magnetic temperature adjusting apparatus).

Claims (5)

磁気作業物質が充填された状態で熱伝達媒体が流通されると共に、外部より磁界が印加される熱交換槽と、
この熱交換槽の内部において、前記熱伝達媒体が流通する方向に沿って配置される1枚以上の仕切り板と、
前記熱交換槽の両端にそれぞれ配置され、前記熱交換槽の開口面と平行な方向より流入する熱伝達媒体を前記熱交換槽に導入するか、または前記熱交換槽を経由した熱伝達媒体を、前記流入方向と逆方向に導出する導入/導出部とを備えて構成される熱交換部を有することを特徴とする磁気温度調節装置。
A heat exchange medium in which a heat transfer medium is circulated in a state of being filled with a magnetic working substance and a magnetic field is applied from the outside; and
In this heat exchange tank, one or more partition plates arranged along the direction in which the heat transfer medium flows;
A heat transfer medium that is arranged at both ends of the heat exchange tank and that flows in from a direction parallel to the opening surface of the heat exchange tank is introduced into the heat exchange tank, or a heat transfer medium that passes through the heat exchange tank A magnetic temperature control device comprising: a heat exchanging unit configured to include an introduction / derivation unit that derives in a direction opposite to the inflow direction.
前記仕切り板が2枚以上配置される場合、
前記熱交換槽及び前記仕切り板について前記熱伝達媒体が流通する方向の長さをA,
前記仕切り板の配置間隔をB,
前記導入/導出部について、前記Aと同方向の長さをC,
前記熱交換槽の開口面における前記熱伝達媒体の流入,流出方向長さをDとすると、
D=n・B(nは3以上の自然数)の関係を満たすと共に、上記A〜Dの関係が、
0.58D/C≦A/B≦0.72D/C
の範囲に設定されていることを特徴とする請求項1記載の磁気温度調節装置。
When two or more of the partition plates are arranged,
A length of the heat transfer medium and the partition plate in the direction in which the heat transfer medium flows is A,
The arrangement interval of the partition plates is B,
For the introduction / derivation unit, the length in the same direction as A is C,
When the length of the inflow and outflow direction of the heat transfer medium at the opening surface of the heat exchange tank is D,
While satisfying the relationship of D = n · B (n is a natural number of 3 or more), the relationships A to D are
0.58D / C ≦ A / B ≦ 0.72D / C
The magnetic temperature control device according to claim 1, wherein the magnetic temperature control device is set within a range.
前記導入/導出部において、流入した熱伝達媒体が突き当る部分の形状が、R面取り加工されていることを特徴とする請求項1又は2記載の磁気温度調節装置。   The magnetic temperature control device according to claim 1 or 2, wherein a shape of a portion where the inflowing heat transfer medium abuts in the introduction / extraction portion is R-chamfered. 前記仕切り板は、前記磁気作業物質の粒径と同程度の格子間隔を有するメッシュ状に構成されていることを特徴とする請求項1ないし3の何れかに記載の磁気温度調節装置。   The magnetic temperature control device according to any one of claims 1 to 3, wherein the partition plate is configured in a mesh shape having a lattice interval approximately equal to a particle size of the magnetic working substance. 前記熱交換槽は、前記熱伝達媒体が前記導入/導出部を介して流入する方向に対し、前記熱伝達媒体が導入される方向が鋭角をなすと共に、前記熱伝達媒体を導出する方向に対し、前記熱伝達媒体が前記導入/導出部を介して流出する方向が鋭角をなすように傾きを有した形状であることを特徴とする請求項1ないし4の何れかに記載の磁気温度調節装置。   In the heat exchange tank, the direction in which the heat transfer medium is introduced forms an acute angle with respect to the direction in which the heat transfer medium flows through the introduction / derivation unit, and the direction in which the heat transfer medium is derived. 5. The magnetic temperature control device according to claim 1, wherein the heat transfer medium has a shape with an inclination so that a direction in which the heat transfer medium flows out through the introduction / extraction unit forms an acute angle. .
JP2009208130A 2009-09-09 2009-09-09 Magnetic temperature adjusting device Pending JP2011058709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208130A JP2011058709A (en) 2009-09-09 2009-09-09 Magnetic temperature adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208130A JP2011058709A (en) 2009-09-09 2009-09-09 Magnetic temperature adjusting device

Publications (1)

Publication Number Publication Date
JP2011058709A true JP2011058709A (en) 2011-03-24

Family

ID=43946555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208130A Pending JP2011058709A (en) 2009-09-09 2009-09-09 Magnetic temperature adjusting device

Country Status (1)

Country Link
JP (1) JP2011058709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245879A (en) * 2012-05-25 2013-12-09 Denso Corp Magnetic heat pump system and air conditioning device using the same
JP2017009164A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
JP2017009165A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
CN109539625A (en) * 2018-12-06 2019-03-29 天津商业大学 A kind of adjustable type magnetic refrigeration apparatus based on pulsed magnetic field
JP2019086261A (en) * 2017-11-09 2019-06-06 株式会社デンソー Magnetic heat cycle device and its operation method
JP6899981B1 (en) * 2020-05-14 2021-07-07 三菱電機株式会社 Magnetic refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245879A (en) * 2012-05-25 2013-12-09 Denso Corp Magnetic heat pump system and air conditioning device using the same
JP2017009164A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
JP2017009165A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
JP2019086261A (en) * 2017-11-09 2019-06-06 株式会社デンソー Magnetic heat cycle device and its operation method
CN109539625A (en) * 2018-12-06 2019-03-29 天津商业大学 A kind of adjustable type magnetic refrigeration apparatus based on pulsed magnetic field
JP6899981B1 (en) * 2020-05-14 2021-07-07 三菱電機株式会社 Magnetic refrigerator
WO2021229767A1 (en) * 2020-05-14 2021-11-18 三菱電機株式会社 Magnetic refrigerator
CN115516258A (en) * 2020-05-14 2022-12-23 三菱电机株式会社 Magnetic refrigerator
US11747054B2 (en) 2020-05-14 2023-09-05 Mitsubishi Electric Corporation Magnetic refrigerator

Similar Documents

Publication Publication Date Title
JP2011058709A (en) Magnetic temperature adjusting device
JP5338889B2 (en) Magnetic heat pump system and air conditioner using the system
JP2010112606A (en) Magnetic temperature regulator
CN104930749B (en) Magnetic regenerator unit and magnetic cooling system having the same
KR100962136B1 (en) Air Conditioning System
Eriksen et al. Design and experimental tests of a rotary active magnetic regenerator prototype
JP2018533717A (en) Magnetic calorie heat pump, cooling device and operation method thereof
WO2017171076A1 (en) Heat exchanger and magnetic heat pump device
BR102014014519A2 (en) exhaust gas chiller
JP6268750B2 (en) Rotating electric machine
WO2007055506A1 (en) Magnetic refrigerator
JP2005077032A (en) Heat exchanger device
WO2017171077A1 (en) Heat exchanger and magnetic heat pump device
CN110392810A (en) Magnetic work package and the magnetic heat pump assembly for using the magnetic work package
JP2004254437A (en) Cooling device employing magnetic fluid
WO2018088168A1 (en) Magnetic heat pump device
CN104682623A (en) Series motor
JP5253883B2 (en) Magnetic refrigeration equipment
JP2009097363A (en) Combustion improvement device
JP2011069508A (en) Magnetic temperature adjustment device
JP2018059484A (en) Magnetic fluid drive device and magnetic fluid drive method
JP2017096528A (en) Heat exchanger and magnetic heat pump device
JP2006112709A (en) Magnetic refrigerating device
JP2020038026A (en) Magnetic refrigeration device
WO2022224305A1 (en) Magnetic heat exchanger and air conditioning ventilation system