JP2006112709A - Magnetic refrigerating device - Google Patents

Magnetic refrigerating device Download PDF

Info

Publication number
JP2006112709A
JP2006112709A JP2004300366A JP2004300366A JP2006112709A JP 2006112709 A JP2006112709 A JP 2006112709A JP 2004300366 A JP2004300366 A JP 2004300366A JP 2004300366 A JP2004300366 A JP 2004300366A JP 2006112709 A JP2006112709 A JP 2006112709A
Authority
JP
Japan
Prior art keywords
heat medium
heat
magnetic
magnetic field
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300366A
Other languages
Japanese (ja)
Inventor
Kazuya Hirata
和也 平田
Masanori Goto
正典 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004300366A priority Critical patent/JP2006112709A/en
Publication of JP2006112709A publication Critical patent/JP2006112709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic refrigerating device easy to control during operation with a simplified structure. <P>SOLUTION: In this magnetic refrigerating device 100, a magnetic work material 2 is put in and out of a magnetic field formed by a magnetic field generating means 1 by rotating a drum 3 containing the material 2, and a heat medium 6 is carried in a heat medium passage 7 contacting with the material 2 by use of centrifugal force, the heat medium 6 raised in temperature by heat exchange with the material 2 raised in temperature by magnetization is passed through a heat exhausting-side heat exchanger 12-1 to exhaust the heat, and the heat medium 6 reduced in temperature by heat-exchange with the material 2 reduced in temperature by demagnetization is passed through a cooling-side heat exchanger 12-2 to cool a heat-exchange object. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気冷凍装置に関する。詳しくは、磁気熱量効果により温度変化した磁性体と熱交換した熱媒体を介して、冷凍を行う磁気冷凍装置に関する。   The present invention relates to a magnetic refrigeration apparatus. More specifically, the present invention relates to a magnetic refrigeration apparatus that performs refrigeration via a heat medium that exchanges heat with a magnetic body that has changed in temperature due to the magnetocaloric effect.

ある種の磁気作業物質は磁化或いは消磁の際に大きな温度変化を示す。これは磁気熱量効果と呼ばれており、物理的には磁性体内部の磁気スピンの自由度が磁場によって影響を受け、その結果生じる磁気系のエントロピー変化に起因するものである。これを利用した冷凍機を磁気冷凍装置と呼ぶ。   Certain magnetic working materials exhibit large temperature changes upon magnetization or demagnetization. This is called the magnetocaloric effect. Physically, the degree of freedom of the magnetic spin inside the magnetic material is affected by the magnetic field, and is caused by the entropy change of the magnetic system as a result. A refrigerator using this is called a magnetic refrigeration apparatus.

図13に、磁気冷凍の原理について説明するための図を示す。図13では磁気冷凍の原理を一般的な気体冷凍と比較して示す。図13に磁気冷凍のサイクルをステップa〜dで示し、気体冷凍のサイクルをステップe〜hで示す。気体冷凍のサイクルでは、断熱圧縮された際には温度が上昇し(ステップe)、排熱し(ステップf)、断熱膨張した際には温度が降下し(ステップg)、吸熱して熱交換対象物を冷却する(ステップh)。磁気冷凍のサイクルにおいて、磁気熱量効果を示す磁気作業物質は、断熱磁化された際には温度が上昇し(ステップa)、排熱し(ステップb)、断熱消磁された際には温度が降下し(ステップc)、吸熱して熱交換対象物を冷却する(ステップd)。このように、気体冷凍では圧縮による温度上昇と膨張による温度降下を利用して、熱の授受を行うことにより冷凍サイクルを形成するのに対し、磁気冷凍では、磁気作業物質を磁化することによる温度上昇、消磁することによる温度降下を利用して、熱の授受を行うことにより冷凍サイクルを形成する。   FIG. 13 is a diagram for explaining the principle of magnetic refrigeration. FIG. 13 shows the principle of magnetic refrigeration in comparison with general gas refrigeration. FIG. 13 shows a magnetic refrigeration cycle by steps a to d, and a gas refrigeration cycle by steps e to h. In the gas refrigeration cycle, when adiabatic compression is performed, the temperature rises (step e), heat is exhausted (step f), and when adiabatic expansion occurs, the temperature falls (step g), and the heat is absorbed to be heat exchange target. The object is cooled (step h). In a magnetic refrigeration cycle, a magnetic working material exhibiting a magnetocaloric effect increases in temperature when adiabatically magnetized (step a), exhausts heat (step b), and decreases in temperature when adiabatic demagnetization is performed. (Step c), the heat exchange object is cooled by absorbing heat (Step d). As described above, in gas refrigeration, a refrigeration cycle is formed by transferring heat using the temperature rise due to compression and the temperature drop due to expansion, whereas in magnetic refrigeration, the temperature due to magnetizing the magnetic working substance A refrigeration cycle is formed by exchanging heat by using a temperature drop caused by rising and demagnetizing.

磁気冷凍装置と気体冷凍装置とを比較した場合、その違いとしては気体冷凍装置では冷凍サイクルを圧力と体積によってコントロールしているのに対し、磁気冷凍装置では磁場で制御していること、気体冷凍装置では冷媒がフロン等のガスであるのに対して、磁気冷凍装置では冷媒の代わりに固体である磁気作業物質を使うことが挙げられる。   When comparing a magnetic refrigeration device and a gas refrigeration device, the difference is that the refrigeration cycle is controlled by pressure and volume in the gas refrigeration device, whereas the magnetic refrigeration device is controlled by a magnetic field. In the apparatus, the refrigerant is a gas such as chlorofluorocarbon, whereas in the magnetic refrigeration apparatus, a solid magnetic working substance is used instead of the refrigerant.

磁気作業物質が固体であることにより、磁気作業物質内部の温度は一様に、かつほぼ同時に変化する。また気体冷凍装置に対してエントロピー密度が高くなる。このため磁気冷凍装置の特徴としては、(1)効率が高い、(2)フロンを用いない、(3)圧縮機を用いないので騒音振動が少ないなどの特徴がある。他方、(1)磁気作業物質に蓄えられた高密度の熱量を外部に取り出すための熱交換機構の工夫が必要であり、(2)大きな冷凍能力を得るためには現状の磁気作業物質では超電導磁石による高磁場が必要になる等の短所がある。しかしながら地球温暖化防止のために、フロンを用いない新しい冷凍技術の開発に期待が高まってきた。   Because the magnetic working material is solid, the temperature inside the magnetic working material changes uniformly and almost simultaneously. Further, the entropy density is higher than that of the gas refrigeration apparatus. For this reason, the characteristics of the magnetic refrigeration apparatus include (1) high efficiency, (2) no use of chlorofluorocarbon, and (3) no noise vibration because no compressor is used. On the other hand, (1) it is necessary to devise a heat exchange mechanism for extracting the high-density heat stored in the magnetic working material to the outside. (2) To obtain a large refrigeration capacity, the current magnetic working material is superconducting. There are disadvantages such as the need for a high magnetic field by magnets. However, in order to prevent global warming, there has been increasing expectation for the development of a new refrigeration technology that does not use CFCs.

図14に、従来の磁気冷凍装置130の構成例を示す。図14に示す磁気冷凍装置130は、4段階の動作によって冷凍サイクルを形成する。なお、冷凍機内部を循環し、熱の伝達を目的として用いる流体を熱媒体と称する。   FIG. 14 shows a configuration example of a conventional magnetic refrigeration apparatus 130. The magnetic refrigeration apparatus 130 shown in FIG. 14 forms a refrigeration cycle by a four-stage operation. A fluid that circulates inside the refrigerator and is used for heat transfer is referred to as a heat medium.

第1段階では、熱媒体31の流れを止め、上下に配置された磁気作業物質対32、33を上昇させ(第1段階の図に移動方向を矢印で示す)、磁場発生手段34により発生した磁場の中へ下側の磁気作業物質33を近づけて磁化し、上側の磁気作業物質32を遠ざけて消磁する。この結果、下側の磁気作業物質33は磁化されて温度が上昇し、上側の磁気作業物質32は消磁されて温度が降下する。   In the first stage, the flow of the heat medium 31 is stopped, and the magnetic working substance pairs 32 and 33 arranged above and below are raised (the moving direction is indicated by an arrow in the first stage figure) and generated by the magnetic field generating means 34. The lower magnetic working material 33 is magnetized by bringing it closer to the magnetic field, and the upper magnetic working material 32 is moved away and demagnetized. As a result, the lower magnetic working material 33 is magnetized and the temperature rises, and the upper magnetic working material 32 is demagnetized and the temperature falls.

第2段階では、ポンプ35を運転し、かつ流路操作弁36を調節し、熱媒体31の流れの方向(第2段階の図に矢印で示す)を、排熱部37から消磁されて温度降下した上側の磁気作業物質32へ、冷却部38から磁化されて温度上昇した下側の磁気作業物質33へとし、熱媒体31と磁気作業物質32、33で熱の授受を行う。また、上側の磁気作業物質32で熱交換して温度降下した熱媒体31は冷却部38へ流れて熱交換対象39を冷却し、下側の磁気作業物質33で熱交換して温度上昇した熱媒体31は排熱部へ流れて排熱される。   In the second stage, the pump 35 is operated and the flow path control valve 36 is adjusted, and the direction of flow of the heat medium 31 (indicated by the arrow in the second stage diagram) is demagnetized from the heat exhausting section 37 to the temperature. Heat is transferred between the heat medium 31 and the magnetic working materials 32 and 33 by moving the lower magnetic working material 32 to the lower magnetic working material 33 that has been magnetized from the cooling unit 38 and has risen in temperature. In addition, the heat medium 31 whose temperature has been lowered by exchanging heat with the upper magnetic working material 32 flows to the cooling unit 38 to cool the heat exchange object 39, and heat with the lower magnetic working material 33 exchanging heat has increased in temperature. The medium 31 flows to the exhaust heat unit and is exhausted.

第3段階では,再び熱媒体31の流れを止め、第1段階とは逆に磁気作業物質対32、33を下降させ(第3段階の図に移動方向を矢印で示す)、磁場発生手段34により発生した磁場の中へ上側の磁気作業物質32を近づけて磁化し、下側の磁気作業物質33を遠ざけて消磁する。この結果、上側の磁気作業物質32は磁化されて温度が上昇し、下側の磁気作業物質33は消磁されて温度が降下する。   In the third stage, the flow of the heat medium 31 is stopped again, and the magnetic working material pairs 32 and 33 are lowered in the opposite direction to the first stage (the moving direction is indicated by an arrow in the third stage diagram), and the magnetic field generating means 34 The upper magnetic working material 32 is magnetized by bringing it closer to the magnetic field generated by, and the lower magnetic working material 33 is moved away from the magnetic field. As a result, the upper magnetic working material 32 is magnetized and its temperature rises, and the lower magnetic working material 33 is demagnetized and its temperature falls.

第4段階では、ポンプ35を運転し,かつ流路操作弁36を調節し、熱媒体31の流れの方向(第4段階の図に矢印で示す)を、第2段階とは逆にして、排熱部37から消磁されて温度降下した下側の磁気作業物質33へ、また冷却部38から磁化されて温度上昇した上側の磁気作業物質32へとし、熱媒体31と磁気作業物質32、33で熱の授受を行う。また、下側の磁気作業物質33で熱交換して温度降下した熱媒体31は冷却部38へ流れて熱交換対象39を冷却し、上側の磁気作業物質32で熱交換して温度上昇した熱媒体31は排熱部へ流れて排熱される。   In the fourth stage, the pump 35 is operated and the flow control valve 36 is adjusted, and the direction of the flow of the heat medium 31 (indicated by an arrow in the fourth stage diagram) is reversed from the second stage, The heat medium 31 and the magnetic working materials 32, 33 are changed to the lower magnetic working material 33 that has been demagnetized from the exhaust heat unit 37 and to the lower magnetic working material 32 that has been magnetized from the cooling unit 38 and has increased in temperature. Give and receive heat. In addition, the heat medium 31 whose temperature has dropped due to heat exchange with the lower magnetic working material 33 flows to the cooling unit 38 to cool the heat exchange object 39, and heat exchanged with the upper magnetic working material 32 raises the temperature. The medium 31 flows to the exhaust heat unit and is exhausted.

これら4段階の作業を1サイクルとして、冷凍サイクルが繰り返される(例えば特許文献1参照)。   The refrigeration cycle is repeated with these four steps as one cycle (see, for example, Patent Document 1).

この例では、磁気作業物質を磁化、消磁するために磁気作業物質を上下に移動させる機構を使用し、さらに、磁気作業物質内を流れる熱媒体の流れの方向を変える流路切替弁を用いている。この他に、磁気作業物質を磁化、消磁するために磁場発生手段を往復運動させ、さらに、磁気作業物質内を流れる熱媒体の流れの方向を変える流路切替弁を用いる磁気冷凍装置や、磁気作業物質を磁化、消磁するために磁場発生手段をオンオフ制御させ、熱媒体を磁気作業物質内で往復運動させるディスプレーサーを用いて熱交換させる磁気冷凍装置などがあった。   In this example, a mechanism for moving the magnetic working material up and down to magnetize and demagnetize the magnetic working material is used, and a flow path switching valve that changes the direction of the flow of the heat medium flowing in the magnetic working material is used. Yes. In addition to this, a magnetic refrigeration apparatus using a flow path switching valve that reciprocates the magnetic field generating means to magnetize and demagnetize the magnetic working material, and further changes the flow direction of the heat medium flowing in the magnetic working material, In order to magnetize and demagnetize the work substance, there has been a magnetic refrigeration apparatus in which the magnetic field generating means is controlled to be turned on and off, and the heat medium is exchanged using a displacer that reciprocates in the magnetic work substance.

特開2002−106999号公報(段落0027〜0060、図1、3など)JP 2002-106999 A (paragraphs 0027 to 0060, FIGS. 1, 3 and the like)

しかしながら、従来の磁気冷凍装置では、磁気作業物質内を流れる熱媒体の流れの方向を変える流路切替弁や、磁気作業物質を磁化、消磁するために磁気作業物質を上下に移動させる機構或は磁場発生手段を往復運動させる機構、又は熱媒体を磁気作業物質内で往復運動させるディスプレーサーや磁場発生手段のオンオフの制御などが必要であったため、従来の磁気冷凍装置は、いずれも大掛かりな構成及び複雑な制御技術を必要とし、簡便でコンパクトな構成で、運転中の制御を容易に行える磁気冷凍装置は見当たらない。   However, in the conventional magnetic refrigeration apparatus, a flow path switching valve that changes the flow direction of the heat medium flowing in the magnetic working material, a mechanism that moves the magnetic working material up and down to magnetize and demagnetize the magnetic working material, or Since a mechanism for reciprocating the magnetic field generation means, or a displacer for reciprocating the heat medium in the magnetic working material and on / off control of the magnetic field generation means, etc. were required, all of the conventional magnetic refrigeration apparatuses have a large configuration. In addition, there is no magnetic refrigeration apparatus that requires complicated control technology, can be easily controlled during operation, and can be easily controlled.

本発明は、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、及びディスプレーサーや磁場発生手段のオンオフの制御を無くすことにより、簡素でコンパクトな構成で、運転中の制御も容易な磁気冷凍装置を提供することを目的とする。   The present invention eliminates the flow path switching valve, the mechanism for reciprocating the magnetic working substance, the mechanism for reciprocating the magnetic field generating means, and the on / off control of the displacer and the magnetic field generating means, thereby providing a simple and compact configuration. An object of the present invention is to provide a magnetic refrigeration apparatus that can be easily controlled during operation.

上述した課題を解決し,目的を達成するため,請求項1に記載の磁気冷凍装置は、例えば図1に示すように、磁場を発生する磁場発生手段1と、磁場の増減に応じて温度が変化する磁気作業物質2と、磁気作業物質2を担持し、かつ磁気作業物質2を回転させて、磁場発生手段1により形成される磁場中へ出入させる回転手段3と、磁気作業物質2と熱交換を行う熱媒体6と、磁気作業物質2と熱媒体6とが磁気作業物質2の回転中に熱交換するように配置された熱媒体用流路7と、熱媒体用流路7に接続されて熱媒体6と熱交換対象との間で熱交換を行う熱交換器12(12−1、12−2)とを備える。   In order to solve the above-described problems and achieve the object, the magnetic refrigeration apparatus according to claim 1 includes, as shown in FIG. 1, for example, a magnetic field generating means 1 for generating a magnetic field and a temperature corresponding to the increase or decrease of the magnetic field. The magnetic working material 2 that changes, the rotating means 3 that carries the magnetic working material 2 and rotates the magnetic working material 2 to enter and exit the magnetic field formed by the magnetic field generating means 1, the magnetic working material 2 and the heat The heat medium 6 to be exchanged, the magnetic working material 2 and the heat medium 6 are arranged so as to exchange heat while the magnetic working material 2 is rotating, and connected to the heat medium flow channel 7. And a heat exchanger 12 (12-1, 12-2) that performs heat exchange between the heat medium 6 and the heat exchange target.

このように構成すると、所定の位置に担持された磁気作業物質を回転運動させて、磁場中に出入させて磁気作業物質の温度を変化させることにより、また、熱媒体用流路の回転運動により熱媒体の循環を生じさせることにより、従来の磁気冷凍装置では必要であった、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、及びディスプレーサーを不要とし、また、磁場発生手段のオンオフ制御を無くしたことにより、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   With this configuration, the magnetic working material carried at a predetermined position is rotated and moved in and out of the magnetic field to change the temperature of the magnetic working material, and the rotational movement of the heat medium channel is also performed. By causing the heat medium to circulate, the flow path switching valve, the mechanism for reciprocating the magnetic working substance, the mechanism for reciprocating the magnetic field generating means, and the displacer, which are necessary in the conventional magnetic refrigeration apparatus, are eliminated. In addition, by eliminating the on / off control of the magnetic field generating means, it is possible to provide a low-cost magnetic refrigeration apparatus with a simple and compact configuration that is easy to control during operation.

また、請求項2に記載の発明は、請求項1に記載の磁気冷凍装置において、例えば図3に示すように、熱媒体用流路7は回転の中心4に対して半径方向成分を持ち、前記磁気作業物質2と共に回転運動すると共に、熱媒体6が熱媒体用流路7内を半径方向外側へ流れるように構成される。このように構成すると、回転による遠心力を利用して半径方向外側へ流れる熱媒体6の流れを作ることができ、熱媒体を流動させるためのポンプなどの必要ない簡便な構成の磁気冷凍装置を提供できる。   Further, the invention according to claim 2 is the magnetic refrigeration apparatus according to claim 1, for example, as shown in FIG. 3, the heat medium flow path 7 has a radial component with respect to the center 4 of rotation, The magnetic medium 2 is configured to rotate together with the magnetic working substance 2 and the heat medium 6 flows radially outward in the heat medium flow path 7. If comprised in this way, the flow of the heat medium 6 which flows to the radial direction outer side can be made using the centrifugal force by rotation, and the magnetic refrigeration apparatus of the simple structure which does not need a pump etc. for making a heat medium flow is produced. Can be provided.

また、請求項3に記載の発明は、請求項2に記載の磁気冷凍装置において、例えば図3に示すように、回転手段は、磁気作業物質2及び熱媒体用流路7を搭載する容器3であって、容器3を回転することにより、磁気作業物質2及び熱媒体用流路7が回転するように構成され、容器3中に、回転の中心4から複数個の磁気作業物質2が放射状に配置され、複数個の熱媒体用流路7は、それぞれ磁気作業物質2に接して形成され、回転による遠心力を利用して、熱媒体6が熱媒体用流路7内を磁気作業物質2と接触して流れる。なお、熱媒体用流路が磁気作業物質に接して形成される構成は、熱媒体用流路が磁気作業物質を挟んで形成されても良く、磁気作業物質を内包して形成されても良く、磁気作業物質の内部を貫通して形成されても良い。このように構成すると、熱媒体が磁気作業物質に接触しながら流れ、磁気作業物質と熱媒体間で効率の良い熱交換ができる磁気冷凍装置を提供できる。   Further, the invention according to claim 3 is the magnetic refrigeration apparatus according to claim 2, wherein, for example, as shown in FIG. 3, the rotating means is a container 3 in which the magnetic working substance 2 and the heat medium flow path 7 are mounted. In this case, by rotating the container 3, the magnetic working substance 2 and the heat medium flow path 7 are configured to rotate. In the container 3, a plurality of magnetic working substances 2 are radially formed from the center 4 of the rotation. The plurality of heat medium flow paths 7 are respectively formed in contact with the magnetic working material 2, and the heat medium 6 passes through the heat medium flow path 7 using the centrifugal force by rotation. Flows in contact with 2. The configuration in which the heat medium flow path is formed in contact with the magnetic working material may be formed by sandwiching the magnetic working material, or may be formed by including the magnetic working material. Alternatively, the magnetic working material may be formed through the inside. If comprised in this way, a heat carrier can flow while contacting a magnetic working material, and the magnetic refrigeration apparatus which can perform efficient heat exchange between a magnetic working material and a heat medium can be provided.

また、請求項4に記載の発明は、請求項3に記載の磁気冷凍装置において、例えば図1に示すように、熱交換器12として第1の熱交換器12−1と第2の熱交換器12−2を有し、容器3に近接して設けられ、第1の熱交換器12−1に連なり熱媒体6が流れる第1の流入路13−1の入口15−1と第1の流出路14−1の出口16−1を有する第1の当て板11−1を定位置に備え(図4参照)、第1の流入路13−1の入口15−1と第1の流出路14−1の出口16−1が磁場中に設けられ、容器3の回転中に、磁場中にあるいずれかの熱媒体用流路7−1(以下、第1の熱媒体用流路という。)の熱媒体出口10と熱媒体入口9がそれぞれ第1の流入路13−1の入口15−1と第1の流出路14−1の出口16−1に重なったときに、第1の熱媒体用流路7−1、第1の流入路13−1、第1の熱交換器12−1と第1の流出路14−1を熱媒体6が循環する第1の熱媒体循環路が形成され、容器3に近接して設けられ、第2の熱交換器12−2に連なり熱媒体6が流れる第2の流入路13−2の入口15−2と第2の流出路14−2の出口16−2を有する第2の当て板11−2を定位置に備え、第2の流入路13−2の入口15−2と第2の流出路14−2の出口16−2が磁場外に設けられ、容器3の回転中に、磁場外にあるいずれかの熱媒体用流路7−2(以下、第2の熱媒体用流路という。)の熱媒体出口10と熱媒体入口9(図3参照)がそれぞれ第2の流入路13−2の入口15−2と第2の流出路14−2の出口16−2に重なったときに、第2の熱媒体用流路7−2、第2の流入路13−2、第2の熱交換器12−2と第2の流出路14−2を熱媒体6が循環する第2の熱媒体循環路が形成される。このように構成すると、熱媒体用流路7と熱交換器12を連ねる熱媒体6の循環路で、周期的に定量ずつ熱媒体6を循環させる循環路を実現できる。   Further, the invention according to claim 4 is the magnetic refrigeration apparatus according to claim 3, in which, for example, as shown in FIG. 1, the first heat exchanger 12-1 and the second heat exchange as the heat exchanger 12. The inlet 15-1 of the first inlet 13-1 and the first inlet 13-1 are connected to the first heat exchanger 12-1 and through which the heat medium 6 flows. The first contact plate 11-1 having the outlet 16-1 of the outflow passage 14-1 is provided at a fixed position (see FIG. 4), and the inlet 15-1 and the first outflow passage of the first inflow passage 13-1. The outlet 16-1 of 14-1 is provided in the magnetic field, and any one of the heat medium channels 7-1 (hereinafter referred to as a first heat medium channel) in the magnetic field while the container 3 is rotating. The heat medium outlet 10 and the heat medium inlet 9 in FIG. 1 overlap the inlet 15-1 of the first inflow path 13-1 and the outlet 16-1 of the first outflow path 14-1, respectively. When the heat medium 6 circulates through the first heat medium flow path 7-1, the first inflow path 13-1, the first heat exchanger 12-1, and the first outflow path 14-1. 1 heat medium circulation path is formed, provided close to the container 3, and connected to the second heat exchanger 12-2 and the inlet 15-2 of the second inflow path 13-2 through which the heat medium 6 flows. The second contact plate 11-2 having the outlet 16-2 of the second outflow passage 14-2 is provided at a fixed position, and the inlet 15-2 of the second inflow passage 13-2 and the second outflow passage 14-2 are provided. The outlet 16-2 is provided outside the magnetic field, and the heat of one of the heat medium flow paths 7-2 (hereinafter referred to as the second heat medium flow path) outside the magnetic field during the rotation of the container 3. When the medium outlet 10 and the heat medium inlet 9 (see FIG. 3) overlap the inlet 15-2 of the second inlet 13-2 and the outlet 16-2 of the second outlet 14-2, respectively, the second of A second heat medium circulation path through which the heat medium 6 circulates through the medium flow path 7-2, the second inflow path 13-2, the second heat exchanger 12-2, and the second outflow path 14-2. It is formed. If comprised in this way, in the circulation path of the heat medium 6 which connects the flow path 7 for heat media and the heat exchanger 12, the circulation path which circulates the heat medium 6 by fixed quantity periodically is realizable.

また、請求項5に記載発明は、請求項3に記載の磁気冷凍装置において、例えば図6に示すように、熱交換器12として第1の熱交換器12−1と第2の熱交換器12−2を有し、容器3の回転中に、磁場中にあるいずれかの熱媒体用流路7−3(以下、第3の熱媒体用流路という。)から、容器3の外周から溢れた熱媒体6を回収する第1の受皿17−1を定位置に備え、第1の熱交換器12−1に連なり熱媒体6が流れる第1の流入路13−1の入口15−1と第1の流出路14−1の出口16−1を磁場中に設け、第3の熱媒体用流路7−3、第1の受皿17−1、第1の流入路13−1、第1の熱交換器12−1と第1の流出路14−1を熱媒体6が循環する第3の熱媒体循環路が形成され、容器3の回転中に、磁場外にあるいずれかの熱媒体用流路7−4(以下、第4の熱媒体用流路という。)から、容器3の外周から溢れた熱媒体6を回収する第2の受皿17−2を定位置に備え、第2の熱交換器12−2に連なり熱媒体6が流れる第2の流入路13−2の入口15−2と第2の流出路14−2の出口16−2を磁場外に設け、第4の熱媒体用流路7−4、第2の受皿17−2、第2の流入路13−2、第2の熱交換器12−2と第2の流出路14−2を熱媒体6が循環する第4の熱媒体循環路が形成される。このように構成すると、熱媒体用流路7と熱交換器12を連ねる熱媒体6の循環路で、連続的に循環できる循環路を実現できる。   Further, the invention according to claim 5 is the magnetic refrigeration apparatus according to claim 3, for example, as shown in FIG. 6, the first heat exchanger 12-1 and the second heat exchanger as the heat exchanger 12. 12-2, and from the outer periphery of the container 3 from any one of the heat medium flow paths 7-3 (hereinafter referred to as a third heat medium flow path) in the magnetic field during the rotation of the container 3. A first tray 17-1 for collecting the overflowing heat medium 6 is provided at a fixed position, and the inlet 15-1 of the first inflow path 13-1 through which the heat medium 6 flows is connected to the first heat exchanger 12-1. And the outlet 16-1 of the first outflow path 14-1 are provided in the magnetic field, the third heat medium flow path 7-3, the first tray 17-1, the first inflow path 13-1, the first A third heat medium circulation path through which the heat medium 6 circulates through one heat exchanger 12-1 and the first outflow path 14-1 is formed, and any one outside the magnetic field during the rotation of the container 3. A second tray 17-2 for recovering the heat medium 6 overflowing from the outer periphery of the container 3 from the heat medium flow path 7-4 (hereinafter referred to as a fourth heat medium flow path). The inlet 15-2 of the second inlet 13-2 and the outlet 16-2 of the second outlet 14-2 through which the heat medium 6 flows through the second heat exchanger 12-2 are provided outside the magnetic field, The fourth heat medium flow path 7-4, the second tray 17-2, the second inflow path 13-2, the second heat exchanger 12-2, and the second outflow path 14-2 are heated. A fourth heat medium circulation path through which 6 circulates is formed. If comprised in this way, the circulation path which can be continuously circulated in the circulation path of the heat medium 6 which connects the flow path 7 for heat media and the heat exchanger 12 is realizable.

また、請求項6に記載の発明は、請求項1に記載の磁気冷凍装置において、例えば図7に示すように、熱交換器12として第1の熱交換器12−1と第2の熱交換器12−2を有し、熱媒体用流路として第1の熱交換手段26−1と第2の熱交換手段26−2とを有し、第1の熱交換手段26−1は容器3の周囲の磁場中にある定位置に配置されて、第1の熱交換手段26−1の熱媒体出口10は第1の熱交換器12−1の第1の流入路13−1の入口15−1と接続され、第1の熱交換手段26−1の熱媒体入口9は第2の熱交換器12−2の第2の流出路14−2の出口16−2と接続され、第2の熱交換手段26−2は容器3の周囲の磁場外にある定位置に配置されて、第2の熱交換手段26−2の熱媒体出口10は第2の熱交換器12−2の第2の流入路13−2の入口15−2と接続され、第2の熱交換手段26−2の熱媒体入口9は第1の熱交換器12−1の第1の流出路14−1の出口16−1と接続され、第1の熱交換手段26−1、第1の熱交換器12−1、第2の熱交換手段26−2と第2の熱交換器12−2とを熱媒体6が循環する第5の熱媒体循環路が形成される。このように構成すると熱媒体用流路と熱交換器12を連ねる熱媒体6の循環路で、ポンプ19を用いて、効率よく連続的に循環できる循環路を実現できる。   Moreover, the invention according to claim 6 is the magnetic refrigeration apparatus according to claim 1, for example, as shown in FIG. 7, the first heat exchanger 12-1 and the second heat exchange as the heat exchanger 12. 12-2, the first heat exchanging means 26-1 and the second heat exchanging means 26-2 as the heat medium flow path, and the first heat exchanging means 26-1 is the container 3 The heat medium outlet 10 of the first heat exchanging means 26-1 is arranged at a fixed position in the magnetic field around the inlet 15 of the first inflow path 13-1 of the first heat exchanger 12-1. -1 and the heat medium inlet 9 of the first heat exchange means 26-1 is connected to the outlet 16-2 of the second outflow passage 14-2 of the second heat exchanger 12-2, and the second The heat exchange means 26-2 is disposed at a fixed position outside the magnetic field around the container 3, and the heat medium outlet 10 of the second heat exchange means 26-2 is connected to the second heat exchanger 1. -2 is connected to the inlet 15-2 of the second inflow path 13-2, and the heat medium inlet 9 of the second heat exchange means 26-2 is the first outflow path of the first heat exchanger 12-1. The first heat exchange means 26-1, the first heat exchanger 12-1, the second heat exchange means 26-2 and the second heat exchanger 12- are connected to the outlet 16-1 of 14-1. 5, a fifth heat medium circulation path through which the heat medium 6 circulates is formed. If comprised in this way, in the circulation path of the heat medium 6 which connects the flow path for heat medium and the heat exchanger 12, the circulation path which can circulate efficiently and continuously using the pump 19 is realizable.

また、請求項7に記載の磁気冷凍装置は、例えば図1に示すように、磁場を発生する磁場発生手段1と、磁場の増減に応じて温度が変化する磁気作業物質2と、磁気作業物質2に印加される磁場を増減させる磁場増減手段と、磁気作業物質2と熱交換を行う熱媒体6と、磁気作業物質2と熱媒体6との間で熱交換するように設けられた熱媒体用流路7と、熱媒体用流路7に接続されて熱媒体6と熱交換対象との間で熱交換を行う熱交換器12(12−1、12−2)とを備え、熱媒体用流路7における熱媒体6の流動方向が一方向である。ここにおいて、流動方向が一方向とは、逆方向の流れがないことをいい、間歇的に一方向に流れる場合を含むものとする。このように構成すると、熱媒体6の流動方向を一方向にしているので、流路切替弁や流路切替スイッチを不要とし、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   In addition, as shown in FIG. 1, for example, the magnetic refrigeration apparatus according to claim 7 includes a magnetic field generating means 1 that generates a magnetic field, a magnetic working material 2 that changes in temperature according to an increase or decrease of the magnetic field, and a magnetic working material. Magnetic field increasing / decreasing means for increasing / decreasing the magnetic field applied to 2, a heat medium 6 for exchanging heat with the magnetic working material 2, and a heat medium provided for exchanging heat between the magnetic working material 2 and the heat medium 6 And a heat exchanger 12 (12-1, 12-2) that is connected to the heat medium flow path 7 and exchanges heat between the heat medium 6 and the heat exchange target. The flow direction of the heat medium 6 in the flow path 7 is one direction. Here, the direction of flow is unidirectional means that there is no flow in the reverse direction, and includes a case where it flows intermittently in one direction. With this configuration, since the flow direction of the heat medium 6 is unidirectional, a flow path switching valve and a flow path switching switch are not required, and the control during operation is easy and low cost with a simple and compact configuration. Can be provided.

また、請求項8に記載の発明は、請求項7に記載の磁気冷凍装置において、例えば図1に示すように、磁場発生手段1は定位置に固定され、磁場増減手段は磁気作業物質2を回転させることにより磁場発生手段1により形成される磁場中に出入りさせる機構である。このように構成すると、磁気作業物質2の回転手段3をもって磁気作業物質2を磁場中に出入りさせる機構として機能させることにより、断熱磁化、断熱消磁でき、磁気冷凍装置を小型軽量にできる。   Further, the invention according to claim 8 is the magnetic refrigeration apparatus according to claim 7, in which, for example, as shown in FIG. This is a mechanism for moving in and out of the magnetic field formed by the magnetic field generating means 1 by rotating. If comprised in this way, by making the rotation means 3 of the magnetic working material 2 function as a mechanism for moving the magnetic working material 2 in and out of the magnetic field, adiabatic magnetization and adiabatic demagnetization can be achieved, and the magnetic refrigeration apparatus can be reduced in size and weight.

また、請求項9に記載の発明は、請求項8に記載の磁気冷凍装置において、例えば図3に示すように、熱媒体用流路7は回転の中心4に対して半径方向成分を持ち、磁気作業物質2と共に回転する。このように構成すると、回転を利用して半径方向外側へ流れる熱媒体6の流れを形成でき、熱媒体を流動させるためのポンプなどの必要ない簡便な構成の磁気冷凍装置を提供できる。   Further, the invention according to claim 9 is the magnetic refrigeration apparatus according to claim 8, wherein, for example, as shown in FIG. 3, the heat medium flow path 7 has a radial component with respect to the center 4 of rotation, Rotates with magnetic working material 2 If comprised in this way, the flow of the heat medium 6 which flows to radial direction outer side can be formed using rotation, and the magnetic refrigeration apparatus of the simple structure which does not require the pump etc. for making a heat medium flow can be provided.

また、請求項10に記載の発明は、請求項9に記載の磁気冷凍装置において、例えば図3、図4に示すように、磁気作業物質2および熱媒体用流路7は自身の中心を軸4として回転する容器3中に収容され、熱媒体6が磁気作業物質2に接触しながら流れるように共に容器3の中心から放射状に複数形成され、複数の熱媒体用流路7はそれぞれ容器3の半径方向に相互に距離を隔てて開口部として熱媒体出口10と熱媒体入口9を備え、熱交換器12の熱媒体用流路7との接続部として流入路入口15(15−1、15−2)と流出路出口16(16−1、16−2)は容器3と摺動し且つ容器3の回転により開口部に一致する位置に設けられている。このように構成すると、熱媒体用流路7と熱交換器12を連ねる熱媒体6の循環路で、周期的に定量ずつ熱媒体6を循環させる循環路を実現できる。   Further, the invention according to claim 10 is the magnetic refrigeration apparatus according to claim 9, in which, for example, as shown in FIGS. 3 and 4, the magnetic working substance 2 and the heat medium flow path 7 are centered on their centers. A plurality of heat medium flow paths 7 are respectively formed radially from the center of the container 3 so that the heat medium 6 flows while contacting the magnetic working material 2. Are provided with a heat medium outlet 10 and a heat medium inlet 9 as openings at a distance from each other in the radial direction, and an inflow path inlet 15 (15-1, 15) as a connection portion with the heat medium flow path 7 of the heat exchanger 12. 15-2) and the outflow passage outlet 16 (16-1, 16-2) are provided at positions that slide with the container 3 and coincide with the opening due to the rotation of the container 3. If comprised in this way, in the circulation path of the heat medium 6 which connects the flow path 7 for heat media and the heat exchanger 12, the circulation path which circulates the heat medium 6 by fixed quantity periodically is realizable.

本発明によれば、磁気作業物質を回転運動させて、磁場中を出入させることにより、従来の磁気冷凍装置では必要であった、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、及びディスプレーサーを不要とし、また、磁場発生手段のオンオフ制御を無くしたことにより、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   According to the present invention, by rotating and moving the magnetic working material in and out of the magnetic field, the flow path switching valve, the mechanism for reciprocating the magnetic working material, the magnetic field generation, which is necessary in the conventional magnetic refrigeration apparatus A mechanism for reciprocating the means and a displacer is not required, and the on / off control of the magnetic field generating means is eliminated, so that a low-cost magnetic refrigeration apparatus can be easily controlled during operation with a simple and compact configuration. Can be provided.

以下に図面に基き、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に本発明の第1の実施の形態における磁気冷凍装置100の構成例を示す。図1(a)は全体図、図1(b)は熱媒体流路の部分拡大図である。図において、1は磁場を発生する磁場発生手段であり、例えば、永久磁石、電磁石、超電導マグネットなどの強力な磁場を発生する磁石が使用され、定位置に固定されている。2は磁気作業物質((b)参照)で、磁場の増減に応じて温度が変化する。すなわち、磁気作業物質は磁気熱量効果を示し、磁化した際には温度が上昇し、消磁した際には温度が降下する。3は磁気作業物質を搭載する容器としての磁気作業物質ドラム(以下、ドラムという。)である。ドラム3は、この場合磁気作業物質2を担持しかつ磁気作業物質2を回転させて、磁場発生手段1により形成される磁場中へ出入りさせる回転手段として機能する。磁気作業物質2としては、例えばガドリニウム系磁性材料が用いられる。ドラム3は例えば非磁性であって熱伝導性が低い金属やプラスチックなどの非磁性材料で製作される。なお、容器の形状は円筒型に限られず、例えば円盤型であっても良い。図1(b)は熱媒体流路7内を、熱媒体6が磁気作業物質2に接して矢印の向きに(ドラム3の半径方向に)流れる様子を示す。   FIG. 1 shows a configuration example of a magnetic refrigeration apparatus 100 according to the first embodiment of the present invention. FIG. 1A is an overall view, and FIG. 1B is a partially enlarged view of a heat medium flow path. In the figure, reference numeral 1 denotes a magnetic field generating means for generating a magnetic field. For example, a magnet that generates a strong magnetic field such as a permanent magnet, an electromagnet, or a superconducting magnet is used and fixed at a fixed position. Reference numeral 2 denotes a magnetic working substance (see (b)), and the temperature changes according to the increase or decrease of the magnetic field. That is, the magnetic working material exhibits a magnetocaloric effect, with the temperature increasing when magnetized and the temperature decreasing when demagnetized. Reference numeral 3 denotes a magnetic working material drum (hereinafter referred to as a drum) as a container for mounting the magnetic working material. In this case, the drum 3 functions as a rotating means that carries the magnetic working substance 2 and rotates the magnetic working substance 2 to enter and exit the magnetic field formed by the magnetic field generating means 1. For example, a gadolinium-based magnetic material is used as the magnetic working substance 2. The drum 3 is made of, for example, a nonmagnetic material such as metal or plastic that is nonmagnetic and has low thermal conductivity. The shape of the container is not limited to a cylindrical shape, and may be a disk shape, for example. FIG. 1B shows a state in which the heat medium 6 flows in the direction of the arrow (in the radial direction of the drum 3) in contact with the magnetic working material 2 in the heat medium flow path 7.

図2にドラム3内の磁気作業物質2の配置例を示す。図2(a1)、(a2)には支持部材5を用いる場合のドラム3の上面側から見た配置と、そのA−A断面を、図2(b1)、(b2)には支持部材5を用いない場合のドラム3の上面側から見た配置と、そのB−B断面を示す。ドラム3は、図示しない原動機等により駆動され、ドラム3の中心に位置する回転軸4の周りに回転可能に形成されている。ドラム3内部には、ドラム3の中心から複数の板状の磁気作業物質2が半径方向に放射状に配設されている。図2(b1)、(b2)に示すように、磁気作業物質2を回転軸4に接触させて配設しても良く、図2(a1)、(a2)に示すように、回転軸4と磁気作業物質2の間に、磁気作業物質2を支持する支持部材5を介在させて配設しても良い。磁気作業物質2はドラム3に固定され、ドラム3と共に回転する。なお、複数の磁気作業物質2は相互に熱的に絶縁されていることが望ましいが、図2(b1)、(b2)に示すように、隣接した磁気作業物質2同士が軸への取付け部でも接触しない程度の太さを回転軸4に持たせることで、隣接した磁気作業物質2間の熱伝導による熱損失を防ぐことができる。また、原動機等としては、例えば、3相誘導電動機や直流ブラシレス電動機等を使用できる。   FIG. 2 shows an arrangement example of the magnetic working substance 2 in the drum 3. 2 (a1) and 2 (a2) show the arrangement viewed from the upper surface side of the drum 3 when the support member 5 is used, and the AA cross section. FIGS. 2 (b1) and 2 (b2) show the support member 5. The arrangement | positioning seen from the upper surface side of the drum 3 when not using is shown, and the BB cross section. The drum 3 is driven by a not-shown prime mover or the like, and is formed to be rotatable around a rotation shaft 4 positioned at the center of the drum 3. Inside the drum 3, a plurality of plate-like magnetic working materials 2 are radially arranged from the center of the drum 3 in the radial direction. As shown in FIGS. 2 (b1) and 2 (b2), the magnetic working substance 2 may be disposed in contact with the rotary shaft 4, and as shown in FIGS. 2 (a1) and (a2), the rotary shaft 4 A support member 5 that supports the magnetic working material 2 may be interposed between the magnetic working material 2 and the magnetic working material 2. The magnetic working material 2 is fixed to the drum 3 and rotates together with the drum 3. The plurality of magnetic working materials 2 are preferably thermally insulated from each other. However, as shown in FIGS. 2B1 and 2B2, adjacent magnetic working materials 2 are attached to the shaft. However, by providing the rotating shaft 4 with a thickness that does not allow contact, heat loss due to heat conduction between the adjacent magnetic working materials 2 can be prevented. Further, as the prime mover, for example, a three-phase induction motor, a DC brushless motor, or the like can be used.

ここで図1に戻り、磁気冷凍装置100の説明を続ける。磁場発生手段1の磁極は、ドラム3のおよそ手前側半分を挟むように定位置に固定され、磁場発生手段1が発生する磁場は、ドラム3のほぼ手前側半分に印加される。すなわち、ドラム3のほぼ手前側半分が磁場中にあり、ほぼ奥側半分が磁場外にある。例えば、ドラム3は矢印の向き(反時計回り)に回転すると、磁場外にある磁気作業物質2a、2b、…、2n(図2参照)は、順次磁場中に入り、さらに回転すると、順次磁場外に出て来る。磁気作業物質2a、2b、…、2nは磁場中に入ったときに断熱磁化されて温度上昇し、磁場外に出たときに断熱消磁されて温度降下する。回転を継続することにより、磁気作業物質2a、2b、…、2nは、磁場発生手段1が発生する磁場に周期的に出入りし、温度上昇と温度降下を繰り返す。
このように、磁気作業物質2に印加される磁場を増減させる磁場増減手段は、磁気作業物質2を回転させて磁場発生手段1により形成される磁場中へ出入させる機構であり、回転手段であるドラム3とドラム3を駆動する図示しない原動機とにより構成される。
Here, returning to FIG. 1, the description of the magnetic refrigeration apparatus 100 will be continued. The magnetic pole of the magnetic field generator 1 is fixed at a fixed position so as to sandwich the front half of the drum 3, and the magnetic field generated by the magnetic field generator 1 is applied to the front half of the drum 3. That is, the front half of the drum 3 is in the magnetic field, and the rear half is outside the magnetic field. For example, when the drum 3 rotates in the direction of the arrow (counterclockwise), the magnetic working materials 2a, 2b,..., 2n (see FIG. 2) outside the magnetic field sequentially enter the magnetic field. Come out. The magnetic working materials 2a, 2b,..., 2n are adiabatically magnetized when they enter the magnetic field and rise in temperature, and when they go out of the magnetic field, they are adiabatically demagnetized and drop in temperature. By continuing the rotation, the magnetic working materials 2a, 2b,..., 2n periodically enter and exit the magnetic field generated by the magnetic field generating means 1, and repeat the temperature rise and temperature drop.
Thus, the magnetic field increasing / decreasing means for increasing / decreasing the magnetic field applied to the magnetic working material 2 is a mechanism for rotating the magnetic working material 2 into and out of the magnetic field formed by the magnetic field generating means 1, and is a rotating means. It comprises a drum 3 and a prime mover (not shown) that drives the drum 3.

図3はドラム3内の構成を概念的に示す図である。板状の磁気作業物質2は、ドラム3に固定され、回転軸4の回りに回転可能である。磁気作業物質2に接触して熱媒体6が流れる熱媒体用流路7が形成され、ドラム3が回転すると、遠心力によりドラム3の中心から外周方向へ、熱媒体6が熱媒体用流路7内を磁気作業物質2の両側を、磁気作業物質2に接触して流れ、磁気作業物質2と熱媒体6が熱交換する。すなわち遠心作用によりドラム3の外周側の熱媒体の静圧が,中心側よりも高くなる現象を熱媒体6の移送の手段として用いている。ここにおいて、熱媒体用流路7は回転の中心4に対して半径方向成分を持ち、磁気作業物質2と共に回転運動すると共に、熱媒体6が熱媒体用流路7内を半径方向外側へ流れるように構成されている。また、熱媒体6としては熱伝達係数の大きい媒体が好ましい。水、アルコール系などの液体が好ましいが、遠心力が利用できる程度の密度を有する気体であっても良い。   FIG. 3 is a diagram conceptually showing the configuration in the drum 3. The plate-like magnetic working substance 2 is fixed to the drum 3 and can rotate around the rotation shaft 4. A heat medium flow path 7 through which the heat medium 6 flows in contact with the magnetic working substance 2 is formed, and when the drum 3 rotates, the heat medium 6 flows from the center of the drum 3 toward the outer periphery by centrifugal force. 7, the magnetic working material 2 flows on both sides of the magnetic working material 2 in contact with the magnetic working material 2, and the magnetic working material 2 and the heat medium 6 exchange heat. That is, the phenomenon that the static pressure of the heat medium on the outer peripheral side of the drum 3 is higher than that of the center side due to the centrifugal action is used as means for transferring the heat medium 6. Here, the heat medium flow path 7 has a radial component with respect to the center 4 of rotation, and rotates with the magnetic working material 2, and the heat medium 6 flows in the heat medium flow path 7 radially outward. It is configured as follows. The heat medium 6 is preferably a medium having a large heat transfer coefficient. A liquid such as water or alcohol is preferable, but it may be a gas having such a density that centrifugal force can be used.

図3は、ドラム3内に板状の磁気作業物質2が4枚中心軸に対象に配置されている例を示す。磁気作業物質2に接触する4本の熱媒体用流路7(1枚の磁気作業物質2を2個の熱媒体用流路7で挟んだ構成としてもよいが、本実施の形態では便宜上、1枚の磁気作業物質2に対応した熱媒体流路7をまとめて1本と数える。また、図3において簡略のため、破断面下の3つの熱媒体用流路7は、磁気作業物質2、熱媒体6とまとめて表示する。)が形成されており、ドラム3の上下両面8において、各熱媒体用流路7の半径方向両端、すなわち中心側の端と外周側の端に当たる位置に開口部として熱媒体入口9と熱媒体出口10が設けられている。これらの熱媒体入口9、熱媒体出口10も磁気ドラム3と共に、回転軸4の回りに回転する。熱媒体用流路7が磁気作業物質2に接して形成される構成は、熱媒体用流路7が磁気作業物質2を挟んで形成されても良く、磁気作業物質2を内包して形成されても良く、磁気作業物質2の内部を貫通して形成されても良い。熱媒体6が磁気作業物質2に接触しながら流れることにより、磁気作業物質2と熱媒体6間で効率の良い熱交換ができる。また、磁気作業物質2の形状は、板状矩形に限られず、固体であれば、中心側で薄く外周側で厚い扇型であっても良く、多孔質にして孔中を熱媒体が流れるようにしても良い。   FIG. 3 shows an example in which four plate-like magnetic working substances 2 are arranged on the central axis in the drum 3. Four heating medium channels 7 in contact with the magnetic working substance 2 (one magnetic working substance 2 may be sandwiched between two heating medium channels 7, but in this embodiment, for convenience, One heat medium flow path 7 corresponding to one magnetic working material 2 is collectively counted as one, and for the sake of simplicity in FIG. Are formed together with the heat medium 6) and are formed on the upper and lower surfaces 8 of the drum 3 at positions corresponding to both ends in the radial direction of the respective heat medium flow paths 7, that is, the end on the center side and the end on the outer peripheral side. A heat medium inlet 9 and a heat medium outlet 10 are provided as openings. These heat medium inlet 9 and heat medium outlet 10 also rotate around the rotating shaft 4 together with the magnetic drum 3. The configuration in which the heat medium flow path 7 is formed in contact with the magnetic working material 2 may be formed such that the heat medium flow path 7 sandwiches the magnetic working material 2 and includes the magnetic working material 2. Alternatively, it may be formed through the inside of the magnetic working substance 2. When the heat medium 6 flows while contacting the magnetic working material 2, efficient heat exchange can be performed between the magnetic working material 2 and the heat medium 6. Further, the shape of the magnetic working substance 2 is not limited to a plate-like rectangle, and if it is solid, the magnetic working substance 2 may be a fan shape that is thin on the center side and thick on the outer periphery side, so that the heat medium flows through the pores. Anyway.

図4にドラム3への熱交換器12の配置例を示す。ドラム3内には、図3に示す各熱媒体用流路7が設けられている。ドラム3の上下両面8に近接して当て板11(11−1、11−2)が定位置に設けられ、当て板11−1には、熱交換器12−1の熱媒体用流路7に対する接続部として、熱交換器12−1に連なる熱媒体6の流入路13−1の入口15−1と流出路14−1の出口16−1が形成されている。また、当て板11−2には、熱交換器12−2の熱媒体用流路7に対する接続部として、熱交換器12−2に連なる熱媒体6の流入路13−2の入口15−2と流出路14−2の出口16−2が形成されている(図4では記載を省略)。なお、当て板11の素材は非磁性であって熱伝導性が低いものが望ましく、非磁性の金属の他、非磁性のプラスチックなどでも良い。ここに近接とは、ドラム3が固定された当て板11の近くでスムースに回転し、かつ熱媒体6がドラム3と当て板11の隙間から外部に漏れないように、または、複数の熱媒体流路7間を熱媒体6が移動しないようにドラムの上下面8や熱媒体入口9、熱媒体出口10、又は当て板11などを構成可能な距離を言う。また、当て板11とドラムの上下両面8との間の熱媒体入口9、熱媒体出口10の周囲に、例えば、ゴム等の弾性材料を用いて摺動させることにより熱媒体6の漏洩防止構造を構成しても良い。   FIG. 4 shows an arrangement example of the heat exchanger 12 on the drum 3. In the drum 3, each heat medium flow path 7 shown in FIG. 3 is provided. A contact plate 11 (11-1, 11-2) is provided at a fixed position in proximity to the upper and lower surfaces 8 of the drum 3, and the heat medium flow path 7 of the heat exchanger 12-1 is provided on the contact plate 11-1. As the connection part, the inlet 15-1 of the inflow path 13-1 and the outlet 16-1 of the outflow path 14-1 of the heat medium 6 connected to the heat exchanger 12-1 are formed. Moreover, the inlet 15-2 of the inflow path 13-2 of the heat medium 6 connected to the heat exchanger 12-2 is connected to the contact plate 11-2 as a connection portion to the heat medium flow path 7 of the heat exchanger 12-2. And an outlet 16-2 of the outflow passage 14-2 is formed (not shown in FIG. 4). The material of the contact plate 11 is preferably non-magnetic and low in thermal conductivity, and may be non-magnetic metal, non-magnetic plastic, or the like. Here, the proximity means that the drum 3 rotates smoothly near the base plate 11 to which the drum 3 is fixed, and the heat medium 6 does not leak outside through the gap between the drum 3 and the base plate 11, or a plurality of heat media. It means the distance at which the upper and lower surfaces 8 of the drum, the heat medium inlet 9, the heat medium outlet 10, or the contact plate 11 can be configured so that the heat medium 6 does not move between the flow paths 7. Further, a structure for preventing leakage of the heat medium 6 by sliding it around the heat medium inlet 9 and the heat medium outlet 10 between the backing plate 11 and the upper and lower surfaces 8 of the drum using an elastic material such as rubber, for example. May be configured.

当て板11は定位置に固定されており、したがって流入路の入口15(15−1,15−2)、流出路の出口16(16−1,16−2)は定位置にある。他方、熱媒体用流路7がドラム3の回転に伴って円周方向に移動するとき、熱媒体入口9、熱媒体出口10も同時に円周方向に移動する。そして、熱媒体入口9と流出路の出口16の位置及び開口部の開口寸法が合致し、熱媒体出口10と流入路の入口15の位置及び開口部の開口寸法が合致するように、また、回転中に、熱媒体入口9と流出路の出口16の位置が合致したときに、同時に、熱媒体出口10と流入路の入口15の位置も合致するように、当て板11に流入路の入口15と流出路の出口16が形成される。なお、各入口と出口の開口部の開口寸法が完全に合致しなくても良く、例えば、流出路の出口16や流入路の入口15がそれぞれ熱媒体入口9、熱媒体出口10よりも円周方向寸法が長くても良く、熱媒体入口9と流出路の出口16間及び熱媒体出口10と流入路の入口15間で開口部の位置が合致し、熱媒体6が同時に流れる流路ができれば良い。   The contact plate 11 is fixed at a fixed position, and therefore the inlet 15 (15-1, 15-2) of the inflow passage and the outlet 16 (16-1, 16-2) of the outflow passage are at the fixed positions. On the other hand, when the heat medium flow path 7 moves in the circumferential direction as the drum 3 rotates, the heat medium inlet 9 and the heat medium outlet 10 also move in the circumferential direction at the same time. Then, the position of the heat medium inlet 9 and the outlet 16 of the outflow passage and the opening size of the opening match, and the position of the heat medium outlet 10 and the inlet 15 of the inflow passage and the opening size of the opening match, During rotation, when the positions of the heat medium inlet 9 and the outlet 16 of the outflow passage coincide with each other, at the same time, the positions of the heat medium outlet 10 and the inlet 15 of the inflow passage coincide with each other. 15 and the outlet 16 of the outflow channel are formed. It should be noted that the opening dimensions of the inlet and outlet openings do not have to match completely. For example, the outlet 16 of the outflow passage and the inlet 15 of the inflow passage are more circumferential than the heat medium inlet 9 and the heat medium outlet 10, respectively. The direction dimension may be long, and if the position of the opening matches between the heat medium inlet 9 and the outlet 16 of the outflow path and between the heat medium outlet 10 and the inlet 15 of the inflow path, a flow path through which the heat medium 6 flows can be formed. good.

そして、ドラム3の回転中に、熱媒体入口9と流出路の出口16(16−1,16−2)の位置が合致し、熱媒体出口10と流入路の入口15(15−1,15−2)の位置が合致したときに、熱媒体用流路7−熱媒体出口10−流入路の入口15−流入路13(13−1,13−2)―熱交換器12(12−1,12−2)−流出路14(14−1,14−2)−流出路の出口16−熱媒体入口9−熱媒体用流路7からなる熱媒体6の循環路が形成され、熱媒体6は回転による遠心力の作用により、上記の順序で循環路中を循環する。   During the rotation of the drum 3, the positions of the heat medium inlet 9 and the outlet 16 (16-1, 16-2) of the outflow passage match, and the heat medium outlet 10 and the inlet 15 of the inflow passage (15-1, 15). -2) when the positions match, the heat medium flow path 7-the heat medium outlet 10-the inlet 15 of the inflow path-the inflow path 13 (13-1, 13-2)-the heat exchanger 12 (12-1) 12-2) -outlet passage 14 (14-1, 14-2) -outlet passage outlet 16-heat medium inlet 9-heat medium flow passage 7 is formed as a heat medium 6 circulation path. 6 circulates in the circulation path in the above order by the action of centrifugal force by rotation.

図3のように熱媒体用流路7が4本あれば、1回転中に4回循環路が形成され、熱媒体用流路7がN本あれば、1回転中にN回循環路が形成されることになる。   As shown in FIG. 3, if there are four heat medium flow paths 7, four circulation paths are formed during one rotation, and if there are N heat medium flow paths 7, N circulation circuits are formed during one rotation. Will be formed.

ここで、再度、図1を参照する。磁場発生手段1は磁気作業物質2を搭載したドラム3を挟んで設けられ、ドラム3のほぼ手前側半分に磁場が印加される。すなわち、ドラム3のほぼ手前側半分が磁場中に入り、磁気作業物質2が磁化される。この領域を磁化側M1ということとする。また、ドラム3のほぼ奥側半分が磁場外になり、磁気作業物質2が消磁される。この領域を消磁側M2ということとする。   Here, referring to FIG. 1 again. The magnetic field generating means 1 is provided with a drum 3 on which the magnetic working material 2 is mounted, and a magnetic field is applied to the front half of the drum 3. That is, almost the front half of the drum 3 enters the magnetic field, and the magnetic working material 2 is magnetized. This region is referred to as the magnetization side M1. In addition, almost half of the drum 3 is out of the magnetic field, and the magnetic working material 2 is demagnetized. This region is referred to as the demagnetizing side M2.

本実施の形態による磁気冷凍装置100は、第1の熱交換器12−1としての排熱側熱交換器、第2の熱交換器12−2としての冷却側熱交換器と2つの熱交換器12を備える。これらの熱交換器として、例えばフィンチューブ式、シェルチューブ式、プレート式の熱交換器を使用できる。   The magnetic refrigeration apparatus 100 according to the present embodiment includes an exhaust heat side heat exchanger as the first heat exchanger 12-1, a cooling side heat exchanger as the second heat exchanger 12-2, and two heat exchanges. A container 12 is provided. As these heat exchangers, for example, fin tube type, shell tube type, and plate type heat exchangers can be used.

排熱側熱交換器12−1は、第1の流入路13−1と第1の流出路14−1を介して第1の当て板11−1に接続される。第1の流入路の入口15−1及び第1の流出路の出口16−1は磁場中、すなわち磁化側M1にある。   The exhaust heat side heat exchanger 12-1 is connected to the 1st contact plate 11-1 via the 1st inflow path 13-1 and the 1st outflow path 14-1. The inlet 15-1 of the first inlet channel and the outlet 16-1 of the first outlet channel are in the magnetic field, that is, on the magnetization side M1.

ドラム3の回転中に、熱媒体入口9と第1の流出路の出口16−1の位置が合致し、熱媒体出口10と第1の流入路の入口15−1の位置も合致したときに、熱媒体用流路7−第1の流入路の入口15−1−第1の流入路13−1−排熱側熱交換器(第1の熱交換器)12−1―第1の流出路14−1−第1の流出路の出口16−1−熱媒体用流路7からなる第1の熱媒体循環路としての排熱用循環路が形成され、このとき、熱媒体用流路7及び磁気作業物質2は磁場中にあるので、磁気作業物質2の温度は上昇しており、熱媒体用流路7内で熱媒体6は磁気作業物質2により温度上昇し、この温度上昇した熱媒体6が排熱側熱交換器12−1に導かれて、第1の熱交換対象を暖める。第1の熱交換対象は、例えば他の熱媒体でも良く、空気であって、実質的には空中に排熱されても良い。   During the rotation of the drum 3, when the position of the heat medium inlet 9 and the outlet 16-1 of the first outflow path match, and the positions of the heat medium outlet 10 and the inlet 15-1 of the first inflow path also match , Heat medium flow path 7-first inflow path inlet 15-1-first inflow path 13-1-exhaust heat side heat exchanger (first heat exchanger) 12-1-first outflow The exhaust heat circulation path is formed as a first heat medium circulation path including the path 14-1—the outlet 16-1 of the first outflow path—the heat medium flow path 7. At this time, the heat medium flow path 7 and the magnetic working material 2 are in a magnetic field, the temperature of the magnetic working material 2 is increased, and the temperature of the heat medium 6 is increased by the magnetic working material 2 in the heat medium flow path 7, and this temperature is increased. The heat medium 6 is guided to the exhaust heat side heat exchanger 12-1 to warm the first heat exchange target. The first heat exchange target may be another heat medium, for example, air, and may be substantially exhausted into the air.

他方、冷却側熱交換器12−2は、第2の流入路13−2と第2の流出路14−2を介して第2の当て板11−2に接続される。第2の流入路の入口15−2及び第2の流出路の出口16−2は磁場外、すなわち消磁側M2にある。   On the other hand, the cooling side heat exchanger 12-2 is connected to the second contact plate 11-2 via the second inflow path 13-2 and the second outflow path 14-2. The inlet 15-2 of the second inlet channel and the outlet 16-2 of the second outlet channel are outside the magnetic field, that is, on the demagnetization side M2.

ドラム3の回転中に、熱媒体入口9と第2の流出路の出口16−2の位置が合致し、熱媒体出口10と第2の流入路の入口15−2の位置も合致したときに、熱媒体用流路7−第2の流入路の入口15−2−第2の流入路13−2−冷却側熱交換器(第2の熱交換器)12−2−第2の流出路14−2−第2の流出路の出口16−2−熱媒体用流路7からなる第2の熱媒体循環路としての冷却用循環路が形成され、このとき、熱媒体用流路7及び磁気作業物質2は磁場外にあるので、磁気作業物質2の温度は降下しており、熱媒体用流路7内で熱媒体6は磁気作業物質2により温度降下し、この温度降下した熱媒体6が冷却側熱交換器12−2に導かれて、第2の熱交換対象を冷却する。第2の熱交換対象は、例えば他の熱媒体でも良く、食品などの冷却対象物でも良い。   During the rotation of the drum 3, when the position of the heat medium inlet 9 and the outlet 16-2 of the second outflow path match, and the positions of the heat medium outlet 10 and the inlet 15-2 of the second inflow path also match , Heat medium flow path 7-second inflow path inlet 15-2-second inflow path 13-2-cooling side heat exchanger (second heat exchanger) 12-2-second outflow path 14-2-Second Outlet Channel Outlet 16-2- A cooling circuit as a second heat medium circuit formed of the heat medium circuit 7 is formed. At this time, the heat medium channel 7 and Since the magnetic working material 2 is outside the magnetic field, the temperature of the magnetic working material 2 is lowered, and the heat medium 6 is lowered in temperature by the magnetic working material 2 in the heat medium flow path 7, and the heat medium in which the temperature has dropped. 6 is led to the cooling side heat exchanger 12-2 to cool the second heat exchange object. The second heat exchange target may be, for example, another heat medium or a cooling target such as food.

図1では、当て板11−1と当て板11−2とは、ドラム3の反対側の側面に近接して設けられ(図4参照)、排熱側熱交換器12−1の第1の流入路の入口15−1、第1の流出路の出口16−1は冷却側熱交換器12−2の第2の流入路の入口15−2、第2の流出路の出口16−2と回転軸4に対して対象位置に設けられている。したがって、1つの熱媒体用通路7に関しては、排熱用循環路が形成されてから、ドラム3が180度回転すると冷却用循環路が形成され、さらに180度回転すると排熱用循環路が形成され、このように180度回転する毎に、排熱用循環路と冷却用循環路が交互に形成される。   In FIG. 1, the contact plate 11-1 and the contact plate 11-2 are provided close to the opposite side surface of the drum 3 (see FIG. 4), and the first heat exchanger 12-1 of the exhaust heat side heat exchanger 12-1. The inlet 15-1 of the inlet and the outlet 16-1 of the first outlet are the second inlet 15-2 of the cooling side heat exchanger 12-2, the outlet 16-2 of the second outlet, It is provided at a target position with respect to the rotating shaft 4. Accordingly, with respect to one heat medium passage 7, after the exhaust heat circulation path is formed, a cooling circulation path is formed when the drum 3 is rotated 180 degrees, and an exhaust heat circulation path is formed when the drum 3 is further rotated 180 degrees. Thus, every time it rotates 180 degrees, the exhaust heat circulation path and the cooling circulation path are alternately formed.

他方、1つの熱媒体用通路7−1について排熱用循環路が形成されているとき、当該熱媒体用通路7−1に関して回転軸4に対して対象位置に設けられている他の熱媒体通路7−2については冷却用循環路が形成されており、したがって、排熱側熱交換器12−1で第1の熱交換対象を暖める熱交換と冷却側熱交換器12−2で第2の熱交換対象を冷却する熱交換が同時に行なわれる。   On the other hand, when the exhaust heat circulation path is formed for one heat medium passage 7-1, the other heat medium provided at the target position with respect to the rotation shaft 4 with respect to the heat medium passage 7-1. A cooling circuit is formed for the passage 7-2. Therefore, the heat exchange for heating the first heat exchange object in the exhaust heat side heat exchanger 12-1 and the second in the cooling side heat exchanger 12-2. The heat exchange for cooling the heat exchange object is simultaneously performed.

熱媒体用通路7がN本ある場合には、ドラム3が1回転する間に排熱用循環路及び冷却用循環路がそれぞれN回形成され、排熱側熱交換器12−1及び冷却側熱交換器12−2にそれぞれN回新たに温度上昇した熱媒体6、温度降下した熱媒体6が送り込まれる。   When there are N heat medium passages 7, the exhaust heat circulation path and the cooling circulation path are formed N times during one rotation of the drum 3, and the exhaust heat side heat exchanger 12-1 and the cooling side are formed. The heat medium 6 whose temperature has been newly increased N times and the heat medium 6 whose temperature has been decreased are sent to the heat exchanger 12-2.

図5にドラム3内の構成例を示す。(a)は排熱側(排熱用交換器12−1が接続される第1の当て板11−1がある側)から見た図、(b)は中心軸を通る断面図、(c)は冷却側(冷却用交換器12−2が接続される第2の当て板11−2がある側)から見た図を示す。図5(a)、(c)では4本の熱媒体用流路7a〜7dが設けられており、排熱側から見ると、ドラム3は回転軸4の回りに矢印のように反時計方向に回転し、冷却側から見ると、ドラム3は矢印のように時計方向に回転している。熱媒体用流路7a、7bは消磁側M2にあるが、順次磁化側M1に入り、次いで、順次消磁側M2に入り、これを繰り返す。熱媒体用流路7c、7dは磁化側M1にあるが、順次消磁側M2に入り、次いで、順次磁化側M1に入り、これを繰り返す。   FIG. 5 shows a configuration example in the drum 3. (A) is the figure seen from the exhaust heat side (the side with the 1st contact plate 11-1 to which the exhaust heat exchanger 12-1 is connected), (b) is sectional drawing which passes along a central axis, (c) ) Shows a view seen from the cooling side (the side with the second caul plate 11-2 to which the cooling exchanger 12-2 is connected). 5A and 5C, four heat medium flow paths 7a to 7d are provided. When viewed from the exhaust heat side, the drum 3 rotates counterclockwise as indicated by an arrow around the rotation shaft 4. When viewed from the cooling side, the drum 3 rotates clockwise as indicated by an arrow. The heat medium flow paths 7a and 7b are on the demagnetization side M2, but sequentially enter the magnetization side M1, and then sequentially enter the demagnetization side M2, and this is repeated. The heat medium flow paths 7c and 7d are on the magnetization side M1, but sequentially enter the demagnetization side M2, and then enter the magnetization side M1 sequentially, and this is repeated.

図5(a)では、磁場中にある各熱媒体用流路7−1(7c,7d)において、回転軸4とドラム3の半径方向内側に示した破線の間に熱媒体入口9が設けられ、ドラム3の筒部内壁とドラム3の半径方向外側に示した破線の間に熱媒体出口10が設けられている。そして、排熱側の第1の当て板11−1には、例えば熱媒体用流路7−1(7c)のある位置で、熱媒体出口10に合致する位置に第1の流入路の入口15−1が設けられ、熱媒体入口9に合致する位置に第1の流出路の出口16−1が設けられており(図4参照)、熱媒体用流路7−1(7c)−第1の流入路の入口15−1−第1の流入路13−1−排熱側熱交換器(第1の熱交換器)12−1―第1の流出路14−1−第1の流出路の出口16−1−熱媒体用流路7−1(7c)からなる第1の熱媒体循環路としての排熱用循環路が形成され、熱媒体6が循環する。このとき、遠心力の作用により、熱媒体用流路7−1(7c)内では図5(b)の下半分の矢印のように熱媒体6が流れる。
ドラム3の回転と共に、第1の熱媒体循環路を構成する熱媒体用流路7−1は順次入れ替わる。図では、7c→7d→7a→7b→7cのようにサイクリックに入れ替わる。
In FIG. 5A, in each heat medium flow path 7-1 (7c, 7d) in a magnetic field, a heat medium inlet 9 is provided between the rotating shaft 4 and the broken line shown on the inner side in the radial direction of the drum 3. The heat medium outlet 10 is provided between the inner wall of the cylindrical portion of the drum 3 and the broken line shown on the outer side in the radial direction of the drum 3. Then, the first heat sink side first contact plate 11-1 has, for example, a position where the heat medium flow path 7-1 (7 c) is located at a position matching the heat medium outlet 10 at the inlet of the first inflow path. 15-1 is provided, and the outlet 16-1 of the first outflow passage is provided at a position matching the heat medium inlet 9 (see FIG. 4), and the heat medium flow path 7-1 (7c) -second 1 inflow path inlet 15-1-first inflow path 13-1-exhaust heat side heat exchanger (first heat exchanger) 12-1-first outflow path 14-1-first outflow A waste heat circulation path is formed as a first heat medium circulation path including a path outlet 16-1-heat medium flow path 7-1 (7 c), and the heat medium 6 circulates. At this time, the heat medium 6 flows in the heat medium flow path 7-1 (7c) as indicated by the arrow in the lower half of FIG.
With the rotation of the drum 3, the heat medium flow path 7-1 constituting the first heat medium circulation path is sequentially replaced. In the figure, they are cyclically changed as 7c → 7d → 7a → 7b → 7c.

図5(c)でも、磁場外にある各熱媒体用流路7−2(7a,7b)において、回転軸4とドラム3の半径内側に示した破線の間に熱媒体入口9が設けられ、ドラム3の筒部内壁とドラム3の半径外側に示した破線の間に熱媒体出口10が設けられている。そして、冷却側の第2の当て板11−2には、例えば熱媒体用流路7−2(7a)のある位置で、熱媒体出口10に合致する位置に第2の流入路の入口15−2が設けられ、熱媒体入口9に合致する位置に第2の流出路の出口16−2が設けられており、熱媒体用流路7−2(7a)−第2の流入路の入口15−2−第2の流入路13−2−冷却側熱交換器(第2の熱交換器)12−2―第2の流出路14−2―第2の流出路の出口16−2−熱媒体用流路7−2(7a)からなる第2の熱媒体循環路としての冷却用循環路が形成され、熱媒体6が循環する。このとき、遠心力の作用により、熱媒体用流路7−2内では図5(b)の上半分の矢印のように熱媒体6が流れる。
ドラム3の回転と共に、第2の熱媒体循環路を構成する熱媒体用流路7−2は順次入れ替わる。図では、7a→7b→7c→7d→7aのようにサイクリックに入れ替わる。
Also in FIG. 5C, in each heat medium flow path 7-2 (7a, 7b) outside the magnetic field, a heat medium inlet 9 is provided between the rotating shaft 4 and the broken line shown inside the radius of the drum 3. A heat medium outlet 10 is provided between the inner wall of the cylindrical portion of the drum 3 and the broken line shown outside the radius of the drum 3. Then, in the second contact plate 11-2 on the cooling side, for example, at the position where the flow path 7-2 (7a) for the heat medium is present, the inlet 15 of the second inflow path is located at a position matching the heat medium outlet 10. -2 is provided, and the outlet 16-2 of the second outflow path is provided at a position matching the inlet of the heat medium 9, and the heat medium flow path 7-2 (7a)-the inlet of the second inflow path 15-2-second inflow path 13-2-cooling side heat exchanger (second heat exchanger) 12-2-second outflow path 14-2-second outflow path outlet 16-2- A cooling circulation path as a second heat medium circulation path composed of the heat medium flow path 7-2 (7a) is formed, and the heat medium 6 circulates. At this time, due to the action of the centrifugal force, the heat medium 6 flows in the heat medium flow path 7-2 as indicated by the arrow in the upper half of FIG.
Along with the rotation of the drum 3, the heat medium flow path 7-2 constituting the second heat medium circulation path is sequentially switched. In the figure, they are cyclically changed as 7a → 7b → 7c → 7d → 7a.

ドラム3の外周部(円筒部)は隙間なく非磁性金属などで一体的に形成され、上下面において、各熱媒体用流路7a〜7dの熱媒体入口9と熱媒体出口10を除いては当て板11−1又は11−2との間は、例えばゴム等の弾性材料を用いて全面がシールされている。或いはドラム3の上下面は、各熱媒体用流路7a〜7dの熱媒体入口9と熱媒体出口10を除いて非磁性金属などで一体的に成形され、さらに熱媒体入口9と熱媒体出口10の周辺部のみにゴム等の弾性部材が取り付けられてシールされ、これらいずれのケースにおいても熱媒体6が漏洩しないように形成されている。   The outer peripheral portion (cylindrical portion) of the drum 3 is integrally formed with a nonmagnetic metal or the like without a gap. Except for the heat medium inlet 9 and the heat medium outlet 10 of the heat medium flow paths 7a to 7d on the upper and lower surfaces. The entire surface of the contact plate 11-1 or 11-2 is sealed using an elastic material such as rubber. Alternatively, the upper and lower surfaces of the drum 3 are integrally formed of a nonmagnetic metal or the like except for the heat medium inlet 9 and the heat medium outlet 10 of each of the heat medium channels 7a to 7d, and further the heat medium inlet 9 and the heat medium outlet. An elastic member such as rubber is attached and sealed only to the peripheral portion of 10 and formed so that the heat medium 6 does not leak in any of these cases.

このように、本実施の形態における磁気冷凍装置100は、主として、磁場発生手段1、磁気作業物質2、ドラム3、原動機(図示しない)、熱媒体6、熱媒体用流路7、熱交換器12とで構成される。磁場発生手段1、原動機及び2つの熱交換器12、すなわち排熱側熱交換器12−1及び冷却側熱交換器12−2は定位置に固定されている。磁気作業物質2に印加される磁場を増減する磁場増減手段は、ドラム3を原動機を用いて回転することにより磁場を増減するようにして構成される。   Thus, the magnetic refrigeration apparatus 100 in the present embodiment mainly includes the magnetic field generating means 1, the magnetic working material 2, the drum 3, the prime mover (not shown), the heat medium 6, the heat medium flow path 7, and the heat exchanger. 12. The magnetic field generating means 1, the prime mover, and the two heat exchangers 12, that is, the exhaust heat side heat exchanger 12-1 and the cooling side heat exchanger 12-2 are fixed at fixed positions. The magnetic field increasing / decreasing means for increasing / decreasing the magnetic field applied to the magnetic working material 2 is configured to increase / decrease the magnetic field by rotating the drum 3 using a prime mover.

磁気作業物質2、熱媒体用流路7、熱媒体用流路7を流れる熱媒体6は、ドラム3と共に回転して、熱媒体用流路7内で回転による磁場への出入りにより温度変化した磁気作業物質2と熱媒体6との熱交換が行われ、熱媒体用流路7は熱交換手段としての機能を有する。熱媒体用流路7の熱媒体入口9(中心側)、熱媒体出口10(外周側)が、ドラム3の側面の固定位置に設けられた当て板11に開口された流出路の出口16、流入路の入口15と合致したときに、2つの熱媒体循環路、すなわち排熱用熱媒体循環路と冷却用熱媒体循環路とが形成され、排熱側熱交換器12−1及び冷却側熱交換器12−2で他の熱媒体と熱交換が行われる。   The magnetic working material 2, the heat medium flow path 7, and the heat medium 6 flowing through the heat medium flow path 7 rotate together with the drum 3, and the temperature thereof changes in the heat medium flow path 7 by entering and exiting the magnetic field by rotation. Heat exchange between the magnetic working substance 2 and the heat medium 6 is performed, and the heat medium flow path 7 has a function as a heat exchange means. A heat medium inlet 9 (center side) and a heat medium outlet 10 (outer peripheral side) of the heat medium flow path 7 are outlet 16 of the outflow passage opened in the contact plate 11 provided at a fixed position on the side surface of the drum 3; When matched with the inlet 15 of the inflow path, two heat medium circulation paths, namely, a heat medium circulation path for exhaust heat and a heat medium circulation path for cooling are formed, and the heat exhaust side heat exchanger 12-1 and the cooling side The heat exchanger 12-2 exchanges heat with another heat medium.

磁気作業物質2は、ドラム3中に回転中心から複数本が放射状に配置され、熱媒体用流路7は磁気作業物質2の両側に接触して形成され、熱媒体6は回転運動による遠心力を利用して、熱媒体循環路が形成されたときに、熱媒体用流路7内を磁気作業物質2と接触しながら、回転中心から外周側へ流れる。ここで、熱媒体用流路7は直線状に限られず、回転の中心4に対して半径方向外向成分を有する部分が回転中心から外周側に連続して形成されても良く、断続的に形成されても良い(即ち熱媒体用流路7が回転中心側から外周側に至る流路の途中において流路の方向が周方向にだけ向いている部分があっても良い)。また、流路の方向が半径方向外向き成分を有する部分の形状は、例えば渦巻き状でも、放物線状でも良い。このように構成すると、ポンプなどの移送手段を用いなくても遠心力を利用して熱媒体6を熱媒体用流路7内を半径方向外側へ流すことができる。   A plurality of magnetic working materials 2 are arranged radially from the center of rotation in the drum 3, the heat medium flow path 7 is formed in contact with both sides of the magnetic working material 2, and the heat medium 6 is a centrifugal force due to rotational motion. When the heat medium circulation path is formed using the above, the heat medium flows in the heat medium flow path 7 from the rotation center to the outer peripheral side while being in contact with the magnetic working material 2. Here, the heat medium flow path 7 is not limited to a linear shape, and a portion having a radially outward component with respect to the center 4 of rotation may be formed continuously from the center of rotation to the outer peripheral side, or intermittently formed. (That is, there may be a portion in which the direction of the flow path is directed only in the circumferential direction in the middle of the flow path from the rotation center side to the outer periphery side). Further, the shape of the portion in which the direction of the flow path has a radially outward component may be, for example, a spiral shape or a parabolic shape. If comprised in this way, even if it does not use transfer means, such as a pump, the inside of the flow path 7 for heat media can be made to flow to the radial direction outer side using the centrifugal force.

次ぎに、本実施の形態における磁気冷凍装置100の運転中における、各部の様子を説明する。   Next, the state of each part during operation of the magnetic refrigeration apparatus 100 in the present embodiment will be described.

熱媒体用流路7内の熱媒体6は、図示しない原動機等によりドラム3が回転されることで回転軸4のまわりに回転される。先ず排熱側について見ると、開口部(各熱媒体用流路7の熱媒体入口9及び熱媒体出口10)の位置が第1の当て板11−1の第1の流入路の入口15−1又は第1の流出路の出口16−1と合致した時に、熱媒体6は回転軸4のまわりに回転運動しているドラム3の遠心作用により、熱媒体用流路7の半径方向外周側の熱媒体出口10より排熱側熱交換器(第1の熱交換器)12−1へ流出すると共に、排熱側熱交換器12−1内からは熱媒体6がドラム3内の熱媒体用流路7中へ半径方向中心側の熱媒体入口10から流入する。その際磁気作業物質2に接するように設けられた熱媒体用流路7の寸法や、ドラム3の回転速度等に応じて、熱媒体用流路7内の熱媒体6と、排熱側熱交換器12−1、第1の流入路13−1及び第1の流出路14−1内の熱媒体6とが、ちょうど入替わってしまうように、第1の当て板11−1の開口部の寸法及び形状を調整することが望ましい。   The heat medium 6 in the heat medium flow path 7 is rotated around the rotation shaft 4 when the drum 3 is rotated by a motor or the like (not shown). First, looking at the exhaust heat side, the positions of the openings (the heat medium inlet 9 and the heat medium outlet 10 of each heat medium flow path 7) are the inlets 15- of the first inflow path of the first contact plate 11-1. When the heat medium 6 coincides with the outlet 16-1 of the first or first outflow passage, the heat medium 6 is centrifugally moved by the drum 3 rotating around the rotating shaft 4, so that the heat medium flow path 7 has a radially outer peripheral side. The heat medium 6 flows out from the heat medium outlet 10 to the exhaust heat side heat exchanger (first heat exchanger) 12-1, and the heat medium 6 from the exhaust heat side heat exchanger 12-1 is the heat medium in the drum 3. It flows into the working flow path 7 from the heat medium inlet 10 on the center side in the radial direction. At this time, the heat medium 6 in the heat medium flow path 7 and the exhaust heat side heat are changed according to the dimensions of the heat medium flow path 7 provided so as to be in contact with the magnetic working substance 2 and the rotational speed of the drum 3. The opening portion of the first contact plate 11-1 so that the heat medium 6 in the exchanger 12-1, the first inflow passage 13-1, and the first outflow passage 14-1 is just replaced. It is desirable to adjust the size and shape of the.

また、ドラム3において、開口部以外の上下両面はシールされているため、また、開口部の位置が第1の当て板11−1の第1の流入路の入口15−1又は第1の流出路の出口16−1と合致していない熱媒体用流路7は、第1の当て板11−1で開口部が塞がれるため、これらの位置にある熱媒体用流路7内の熱媒体6は、磁気作業物質2と共にドラム3の回転運動により消磁側M2へ移動する。   In addition, since the upper and lower surfaces of the drum 3 other than the opening are sealed, the position of the opening is the inlet 15-1 of the first inflow passage of the first abutting plate 11-1 or the first outflow. Since the opening of the heat medium flow path 7 that does not match the path outlet 16-1 is blocked by the first contact plate 11-1, the heat in the heat medium flow path 7 at these positions is blocked. The medium 6 moves to the demagnetization side M <b> 2 by the rotational movement of the drum 3 together with the magnetic working material 2.

そして、消磁側M2へ移動した熱媒体6は、消磁側M2において消磁されて温度降下した磁気作業物質2と熱の授受を行い温度が降下する。その後、開口部(各熱媒体用流路7の熱媒体入口9及び熱媒体出口10)の位置が第2の当て板11−2の第2の流入路の入口15−2又は第2の流出路の出口16−2と合致した時に、熱媒体6はドラム3の遠心作用により、熱媒体用流路7の半径方向外周側の熱媒体出口10より冷却側熱交換器(第2の熱交換器)12−2へ流出すると共に、冷却側熱交換器12−2内からは熱媒体6がドラム3内の熱媒体用流路7中へ半径方向中心側の熱媒体入口9から流入する。冷却側の第2の当て板11−2の開口部の寸法・形状については排熱側と同様に、熱媒体用流路7の寸法や、ドラム3の回転速度等に応じて、熱媒体用流路7内の熱媒体6と冷却側熱交換器12−2、第2の流入路13−2及び第2の流出路14−2内の熱媒体6とが、ちょうど入替わってしまうように調整することが望ましい。   The heat medium 6 moved to the demagnetization side M2 transfers heat with the magnetic working material 2 demagnetized on the demagnetization side M2 and drops in temperature, and the temperature drops. After that, the positions of the openings (the heat medium inlet 9 and the heat medium outlet 10 of each heat medium channel 7) are the inlet 15-2 or the second outflow of the second inflow path of the second contact plate 11-2. When matched with the outlet 16-2 of the passage, the heat medium 6 is cooled by the centrifugal action of the drum 3 from the heat medium outlet 10 on the radially outer peripheral side of the heat medium flow path 7 (second heat exchange). The heat medium 6 flows out from the cooling side heat exchanger 12-2 into the heat medium flow path 7 in the drum 3 from the heat medium inlet 9 on the center side in the radial direction. As with the exhaust heat side, the size and shape of the opening portion of the cooling-side second contact plate 11-2 depend on the size of the heat medium flow path 7, the rotational speed of the drum 3, etc. The heat medium 6 in the flow path 7 and the heat medium 6 in the cooling side heat exchanger 12-2, the second inflow path 13-2, and the second outflow path 14-2 are just interchanged. It is desirable to adjust.

ドラム3において開口部以外の上下両面はシールされているため、また、開口部の位置が第2の当て板11−2の第2の流入路の入口15−2又は第2の流出路の出口16−2と合致していない熱媒体用流路7は、第2の当て板11−2で開口部が塞がれるため、これらの位置にある熱媒体用流路7内の熱媒体6は、磁気作業物質2と共にドラム3の回転運動により磁化側M1へ移動する。   Since both the upper and lower surfaces of the drum 3 other than the opening are sealed, the position of the opening is the inlet 15-2 of the second inflow passage of the second contact plate 11-2 or the outlet of the second outflow passage. Since the opening of the heat medium flow path 7 that does not match 16-2 is blocked by the second contact plate 11-2, the heat medium 6 in the heat medium flow path 7 at these positions is The magnetic working material 2 moves to the magnetization side M1 by the rotational movement of the drum 3.

そして、磁化側M1へ移動した熱媒体6は、磁化側M1において磁化されて温度上昇した磁気作業物質2と熱の授受を行い温度が上昇する。その後、開口部(各熱媒体用流路7の熱媒体入口9及び熱媒体出口10)の位置が第1の当て板11−1の第1の流入路の入口15−1又は第1の流出路の出口16−1と合致した時に、熱媒体6はドラム3の遠心作用により、熱媒体用流路7の半径方向外周側の熱媒体出口10より排熱側熱交換器(第1の熱交換器)12−1へ流出すると共に、排熱側熱交換器12−1内からは熱媒体6がドラム3内の熱媒体用流路7中へ半径方向中心側の熱媒体入口9から流入する。   Then, the heat medium 6 moved to the magnetization side M1 transfers heat with the magnetic working material 2 that has been magnetized on the magnetization side M1 and has increased in temperature, and the temperature increases. Thereafter, the positions of the openings (the heat medium inlet 9 and the heat medium outlet 10 of each heat medium flow path 7) are the inlet 15-1 or the first outflow of the first inflow passage of the first contact plate 11-1. When matched with the outlet 16-1 of the passage, the heat medium 6 is subjected to the centrifugal action of the drum 3, and the exhaust heat side heat exchanger (first heat source) from the heat medium outlet 10 on the radially outer peripheral side of the heat medium flow path 7. The heat medium 6 flows out into the heat medium flow path 7 in the drum 3 from the heat medium inlet 9 on the center side in the radial direction from the exhaust heat side heat exchanger 12-1. To do.

このように、ドラム3の回転に伴って形成される第1の熱媒体循環路としての排熱用熱媒体循環路を通って、ドラム3の熱媒体用流路7内の熱媒体6と、排熱側熱交換器12−1、第1の流入路13−1及び第1の流出路14−1内の熱媒体6とが入れ替わる。また、ドラム3の回転に伴って形成される第2の熱媒体循環路としての冷却用熱媒体循環路を通って、ドラム3の熱媒体用流路7内の熱媒体6と、冷却側熱交換器12−2、第2の流入路13−2及び流出路14−2内の熱媒体6とが入れ替わる。   In this way, the heat medium 6 in the heat medium flow path 7 of the drum 3 passes through the heat medium circulation path for exhaust heat as the first heat medium circuit formed as the drum 3 rotates, The heat medium 6 in the exhaust heat side heat exchanger 12-1, the first inflow path 13-1, and the first outflow path 14-1 is replaced. Further, the heat medium 6 in the heat medium flow path 7 of the drum 3 and the cooling side heat are passed through the cooling heat medium circulation path as the second heat medium circulation path formed along with the rotation of the drum 3. The heat exchanger 6 in the exchanger 12-2, the second inflow path 13-2, and the outflow path 14-2 is switched.

このように本実施の形態では,ドラム3の回転中に、熱媒体用流路7の熱媒体入口9、熱媒体出口10の位置が、それぞれ熱交換器12の流入路出口16、流出路入口15の位置と合致し、熱媒体用流路7と熱交換器12とが互いに連通するある一定の時間のみ間歇的に熱媒体6の移送が行われる。   As described above, in the present embodiment, during the rotation of the drum 3, the positions of the heat medium inlet 9 and the heat medium outlet 10 of the heat medium flow path 7 are respectively set to the inflow path outlet 16 and the outflow path inlet of the heat exchanger 12. The heat medium 6 is intermittently transferred only for a certain time when the heat medium flow path 7 and the heat exchanger 12 communicate with each other.

本実施の形態における磁気冷凍装置は、熱媒体6の移送にドラム3の回転に基く遠心力を利用しているので、従来の磁気冷凍装置と比較して、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、ディスプレーサー等の磁気作業物質内を流れる熱媒体の流れの方向を変える手段、及びポンプ等の熱媒体移送手段を使用しない。また、磁場発生手段のオンオフ制御手段などを必要としない。また、磁気冷凍装置の運転中に駆動される部分がドラム3のみであり、簡素な構造にでき、ドラム3は定常で一方向に回転運動をしており、さらに熱媒体の流れ方向が一方向である。なお、流動方向が一方向とは、逆方向の流れがないことをいい、間歇的に一方向に流れる場合を含むものとする。これらのことより、複雑な制御を一切必要としない。このため、磁気冷凍装置全体の簡素化、低コスト化、及び運転時における操作の簡略化を図ることが可能になる。すなわち、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   Since the magnetic refrigeration apparatus in the present embodiment uses a centrifugal force based on the rotation of the drum 3 for transferring the heat medium 6, compared with the conventional magnetic refrigeration apparatus, the flow path switching valve and the magnetic work substance are A mechanism for reciprocating, a mechanism for reciprocating the magnetic field generating means, a means for changing the flow direction of the heat medium flowing in the magnetic working material such as a displacer, and a heat medium transferring means such as a pump are not used. Further, no on / off control means for the magnetic field generating means is required. Further, only the drum 3 is driven during the operation of the magnetic refrigeration apparatus, so that the structure can be simplified, the drum 3 is rotating in one direction in a steady state, and the flow direction of the heat medium is one direction. It is. Note that the direction of flow is unidirectional means that there is no flow in the reverse direction, and includes a case where the flow direction is intermittently unidirectional. Therefore, no complicated control is required. For this reason, it becomes possible to simplify the whole magnetic refrigeration apparatus, reduce the cost, and simplify the operation during operation. That is, a simple and compact configuration, easy control during operation, and a low-cost magnetic refrigeration apparatus can be provided.

図6に本発明の第2の実施に形態における磁気冷凍装置110の構成例を示す。図6において、第1の実施の形態と同じ機能を呈する部分には同一の符号を付して説明を省略する。磁場発生手段1、磁気作業物質2、原動機等(図示しない)、熱媒体6、熱交換器12は第1の実施の形態と同じである。図6(a)は装置構成の概略を示す断面図、図6(b)は上から見た熱媒体用流路7(7−3,7−4)の配置を示す図である。   FIG. 6 shows a configuration example of the magnetic refrigeration apparatus 110 according to the second embodiment of the present invention. In FIG. 6, parts having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The magnetic field generating means 1, the magnetic working material 2, the prime mover, etc. (not shown), the heat medium 6, and the heat exchanger 12 are the same as those in the first embodiment. FIG. 6A is a cross-sectional view showing the outline of the device configuration, and FIG. 6B is a view showing the arrangement of the heat medium flow path 7 (7-3, 7-4) as seen from above.

図6(a)に示すように、ドラム3、熱媒体用流路7の熱媒体入口9及び熱媒体出口10が第1の実施の形態と異なる。当て板11は存在せず、ドラム3の上面8に熱媒体入口9及び熱媒体出口10が設けられ(下面には設けられない)、ドラム3の下に熱媒体出口10から溢出する熱媒体6を受ける受皿17(17−1,17−2)が設けられる。受皿17は定位置に固定して設けられる。ドラム3の外周側の上側が開けられ、ドラム3の回転運動による遠心力の作用により、熱媒体6が熱媒体用流路7内を中心側から外周側に流れ、外周側から熱媒体6が溢れ出るように構成されている。   As shown in FIG. 6A, the drum 3, the heat medium inlet 9 and the heat medium outlet 10 of the heat medium flow path 7 are different from those of the first embodiment. There is no backing plate 11, the heat medium inlet 9 and the heat medium outlet 10 are provided on the upper surface 8 of the drum 3 (not provided on the lower surface), and the heat medium 6 overflows from the heat medium outlet 10 below the drum 3. A receiving pan 17 (17-1, 17-2) is provided. The tray 17 is fixedly provided at a fixed position. The upper side on the outer peripheral side of the drum 3 is opened, and the heat medium 6 flows in the heat medium flow path 7 from the center side to the outer peripheral side by the action of the centrifugal force due to the rotational movement of the drum 3, and the heat medium 6 flows from the outer peripheral side. It is configured to overflow.

図6(b)に示すように、回転中心側では、例えば、隣接する熱媒体流路7間を仕切り、かつ隣接する熱媒体流路7間に隙間ができないように熱媒体流路7を並べて配置し、磁化側M1及び消磁側M2において、それぞれ熱交換器12を通って戻った熱媒体6が、複数の熱媒体流路7に注がれるように構成される。熱媒体流路7において、戻った熱媒体6が熱媒体流路7に注がれる部分が熱媒体入口9に該当し、熱媒体6が外周側から溢れ出る部分が熱媒体出口10に該当する。   As shown in FIG. 6B, on the rotation center side, for example, the adjacent heat medium flow paths 7 are partitioned, and the heat medium flow paths 7 are arranged so that there is no gap between the adjacent heat medium flow paths 7. The heat medium 6 arranged and returned through the heat exchanger 12 on each of the magnetization side M1 and the demagnetization side M2 is configured to be poured into the plurality of heat medium flow paths 7. In the heat medium flow path 7, a portion where the returned heat medium 6 is poured into the heat medium flow path 7 corresponds to the heat medium inlet 9, and a portion where the heat medium 6 overflows from the outer peripheral side corresponds to the heat medium outlet 10. .

磁化側M1にある第3の熱媒体用流路7−3において、磁化されて温度上昇した磁気作業物質2と熱の伝授を行い温度が上昇した熱媒体6は、ドラム3の磁化側M1の熱媒体出口10から溢出し、磁化側M1の定位置にある第1の受皿17−1に収納される。また、消磁側M2にある第4の熱媒体用流路7−4において、消磁されて温度降下した磁気作業物質2と熱の伝授を行い温度が降下した熱媒体6は、消磁側M2の熱媒体出口10から溢出し、消磁側M2の定位置にある第2の受皿17−2に収納される。第1の受皿17−1に収納された熱媒体6は、第1の流入路13−1から排熱側熱交換器(第1の熱交換器)12−1に送られ、第1の熱交換対象を暖め、第1の流出路14−1から熱媒体入口9を介して、磁化側M1にある第3の熱媒体用流路7−3に戻される。また、冷却側受皿17−2に収納された熱媒体6は、第2の流入路13−2から冷却側熱交換器(第2の熱交換器)12−2に送られ、第2の熱交換対象を冷却し、第2の流出路14−2から熱媒体入口9を介して、消磁側M2にある第4の熱媒体用流路7−4に戻される。なお、図6において、15−1、15−2はそれぞれ磁化側M1、消磁側M2にある第1の流入路の入口、第2の流入路の入口としての受皿17−1、17−2のドレインであり、16−1、16−2はそれぞれ磁化側M1、消磁側M2にある第1の流出路の出口、第2の流出路の出口としての熱媒体6の注ぎ口である。なお、ドラム3の外周部において、第1の受皿17−1と第2の受皿17−2の間の隙間では、熱媒体6が熱媒体出口10から溢出しないように、ドラム3の上に閉止カバー18が固定されている。   In the third heat medium flow path 7-3 on the magnetization side M1, the heat transfer medium 6 that has been heated to transfer heat to the magnetic working material 2 that has been magnetized to increase the temperature is heated on the magnetization side M1 of the drum 3. It overflows from the heat medium outlet 10 and is stored in the first tray 17-1 at a fixed position on the magnetization side M1. In addition, in the fourth heat medium flow path 7-4 on the demagnetization side M2, the heat medium 6 that has been demagnetized to transfer the heat to the magnetic working material 2 that has fallen in temperature and the temperature has dropped is the heat of the demagnetization side M2. It overflows from the medium outlet 10 and is stored in the second tray 17-2 at a fixed position on the demagnetizing side M2. The heat medium 6 accommodated in the first tray 17-1 is sent from the first inflow path 13-1 to the exhaust heat side heat exchanger (first heat exchanger) 12-1, and the first heat is received. The object to be exchanged is warmed and returned to the third heat medium flow path 7-3 on the magnetization side M1 from the first outflow path 14-1 through the heat medium inlet 9. Moreover, the heat medium 6 accommodated in the cooling side tray 17-2 is sent to the cooling side heat exchanger (second heat exchanger) 12-2 from the second inflow path 13-2, and the second heat The object to be exchanged is cooled and returned from the second outflow path 14-2 to the fourth heat medium flow path 7-4 on the demagnetization side M2 through the heat medium inlet 9. In FIG. 6, 15-1 and 15-2 denote the trays 17-1 and 17-2 as the inlets of the first inlet and the second inlet in the magnetization side M <b> 1 and the demagnetization side M <b> 2, respectively. Drains 16-1 and 16-2 are outlets of the heat medium 6 serving as outlets of the first and second outflow paths on the magnetization side M1 and the demagnetization side M2, respectively. In the outer periphery of the drum 3, the heat medium 6 is closed on the drum 3 so that the heat medium 6 does not overflow from the heat medium outlet 10 in the gap between the first tray 17-1 and the second tray 17-2. The cover 18 is fixed.

また、磁化側M1にある複数本の流路が第3の熱媒体用流路7−3に該当し、これら複数本の流路7−3の熱媒体出口10から溢出した熱媒体6が第1の受皿17−1に収容され、排熱側熱交換器12−1を通った後、磁化側M1にある第1の流出路の出口16−1から、これら複数本の流路7−3に熱媒体入口9を通して注がれる。また、消磁側M2にある複数本の流路が第4の熱媒体用流路7−4に該当し、これら複数本の流路7−4の熱媒体出口10から溢出した熱媒体6が第2の受皿17−2に収容され、冷却側熱交換器12−2を通った後、消磁側M2にある第2の流出路の出口16−2から、これら複数本の流路7−4に熱媒体入口9を通して注がれる。   Further, the plurality of flow paths on the magnetization side M1 correspond to the third heat medium flow path 7-3, and the heat medium 6 overflowing from the heat medium outlet 10 of the plurality of flow paths 7-3 is the first heat medium flow path 7-3. The plurality of flow paths 7-3 from the outlet 16-1 of the first outflow path on the magnetization side M1 after being accommodated in one tray 17-1 and passing through the exhaust heat side heat exchanger 12-1. Through the heat medium inlet 9. Further, the plurality of flow paths on the demagnetization side M2 correspond to the fourth heat medium flow path 7-4, and the heat medium 6 overflowing from the heat medium outlet 10 of the plurality of flow paths 7-4 is the first. 2 through the cooling side heat exchanger 12-2, and then from the outlet 16-2 of the second outflow path on the demagnetization side M2 to the plurality of flow paths 7-4. It is poured through the heat medium inlet 9.

これにより、第3の熱媒体用流路7−3−熱媒体出口10−第1の受皿17−1−第1の流入路の入口15−1−第1の流入路13−1−第1の熱交換器12−1−第1の流出路14−1−第1の流出路の出口16−1−熱媒体入口9−第3の熱媒体用流路7−3を熱媒体6が循環する第3の熱媒体循環路が形成され、第4の熱媒体用流路7−4−熱媒体出口10−第2の受皿17−2−第1の流入路の入口15−2−第2の流入路13−2−第2の熱交換器12−2−第2の流出路14−2−第2の流出路の出口16−2−熱媒体入口9−第4の熱媒体用流路7−4を熱媒体6が循環する第4の熱媒体循環路が形成される。なお、熱媒体6を熱交換器12(12−1,12−2)に送り、熱媒体用流路7(7−3,7−4)に戻すためにポンプ等の移送手段(図示しない)を用いても良い。   Accordingly, the third heat medium flow path 7-3-the heat medium outlet 10-the first tray 17-1-first inlet path 15-1-first inlet path 13-1-first. Heat exchanger 12-1-first outflow path 14-1-first outflow path outlet 16-1-heat medium inlet 9-third heat medium flow path 7-3 circulates through the heat medium 6 A third heat medium circulation path is formed, and a fourth heat medium flow path 7-4-heat medium outlet 10-second tray 17-2-first inlet path 15-2-second Inlet passage 13-2-second heat exchanger 12-2-second outlet passage 14-2-second outlet outlet 16-2-heat medium inlet 9-fourth heating medium passage A fourth heat medium circulation path through which the heat medium 6 circulates through 7-4 is formed. Transfer means (not shown) such as a pump for sending the heat medium 6 to the heat exchanger 12 (12-1, 12-2) and returning it to the heat medium flow path 7 (7-3, 7-4). May be used.

本実施の形態における磁気冷凍装置110は、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、ディスプレーサー等の磁気作業物質内を流れる熱媒体の流れの方向を変える手段、磁場発生手段のオンオフ制御手段などを必要としない。また、磁気冷凍装置の運転中に駆動される部分がドラム3のみであり、簡素な構造にでき、ドラム3は定常で一方向に回転運動をしており、さらに流体の流れ方向が一方向である。これらのことより、複雑な制御を一切必要としない。このため、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   The magnetic refrigeration apparatus 110 in the present embodiment includes a flow path switching valve, a mechanism for reciprocating the magnetic working material, a mechanism for reciprocating the magnetic field generating means, and the direction of the flow of the heat medium flowing in the magnetic working material such as a displacer. There is no need for a means for changing the magnetic field, an on / off control means for the magnetic field generating means, or the like. Further, only the drum 3 is driven during the operation of the magnetic refrigeration apparatus, and the drum 3 can have a simple structure. The drum 3 is steadily rotating in one direction, and the fluid flow direction is one direction. is there. Therefore, no complicated control is required. For this reason, it is possible to provide a low-cost magnetic refrigeration apparatus with a simple and compact configuration that is easy to control during operation.

図7に本発明の第3の実施の形態における磁気冷凍装置120の構成例を示す。図7において、第1の実施の形態と同じ機能を呈する部分には同一の符号を付して説明を省略する。磁場発生手段1、磁気作業物質2、原動機等(図示しない)、熱媒体6、熱交換器12は第1の実施の形態と同じである。ドラム3、熱交換手段(第1の実施の形態では熱媒体用流路7に該当)が第1の実施の形態と異なる。また、ドラム3に熱媒体6が出入する開口部がなく、当て板11も存在しない。   FIG. 7 shows a configuration example of the magnetic refrigeration apparatus 120 according to the third embodiment of the present invention. In FIG. 7, portions having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The magnetic field generating means 1, the magnetic working material 2, the prime mover, etc. (not shown), the heat medium 6, and the heat exchanger 12 are the same as those in the first embodiment. The drum 3 and the heat exchange means (corresponding to the heat medium flow path 7 in the first embodiment) are different from those in the first embodiment. Further, there is no opening through which the heat medium 6 enters and exits the drum 3, and there is no backing plate 11.

本実施の形態では、ドラム3の外周部(円筒部)において、ドラム3の外周部に接し、かつ相対的に摺動可能なように周辺固定部分21(21−1,21−2)が定位置に固定して配置され、この周辺固定部分21に固定されて熱媒体用流路7としての熱交換手段26(26−1,26−2)が固定配管され、その配管中を熱媒体6が流れる。熱交換器12として第1の熱交換器12−1と第2の熱交換器12−2を有し、熱交換手段26として第1の熱交換手段26−1と第2の熱交換手段26−2とを有する。   In the present embodiment, the peripheral fixing portion 21 (21-1, 21-2) is fixed at the outer peripheral portion (cylindrical portion) of the drum 3 so as to be in contact with the outer peripheral portion of the drum 3 and to be relatively slidable. The heat exchanging means 26 (26-1, 26-2) as the heat medium flow path 7 is fixed to the peripheral fixed portion 21 and fixed to the peripheral fixing portion 21, and the heat medium 6 passes through the pipe. Flows. The heat exchanger 12 has a first heat exchanger 12-1 and a second heat exchanger 12-2, and the heat exchange means 26 is a first heat exchange means 26-1 and a second heat exchange means 26. -2.

排熱側熱交換器(第1の熱交換器)12−1への第1の流入路13−1がドラム3の磁化側M1にある第1の周辺固定部分21−1に配管された第1の熱交換手段26−1の熱媒体出口10に、排熱側熱交換器12−1からの第1の流出路14−1がドラム3の消磁側M2にある第2の周辺固定部分21−2に配管された第2の熱交換手段26−2の熱媒体入口9(図の裏側)に接続され、冷却用熱交換器(第2の熱交換器)12−2への第2の流入路13−2がドラム3の消磁側M2にある第2の周辺固定部分21−2に配管された冷却側熱交換手段26−2の熱媒体出口10に、冷却側熱交換器12−2からの第2の流出路14−2がドラム3の磁化側M1にある第1の周辺固定部分21−1に配管された排熱側熱交換手段26−1の熱媒体入口9(図の裏側)に接続される。   The first inflow path 13-1 to the exhaust heat side heat exchanger (first heat exchanger) 12-1 is piped to the first peripheral fixed portion 21-1 on the magnetization side M1 of the drum 3. The second peripheral fixed portion 21 in which the first outflow path 14-1 from the exhaust heat side heat exchanger 12-1 is located on the demagnetization side M2 of the drum 3 at the heat medium outlet 10 of the first heat exchange means 26-1. -2 is connected to the heat medium inlet 9 (the back side in the figure) of the second heat exchange means 26-2 piped to -2, and is connected to the cooling heat exchanger (second heat exchanger) 12-2. The cooling side heat exchanger 12-2 is connected to the heat medium outlet 10 of the cooling side heat exchange means 26-2 in which the inflow path 13-2 is piped to the second peripheral fixed portion 21-2 on the demagnetization side M2 of the drum 3. The heat of exhaust heat side heat exchange means 26-1 piped to the first peripheral fixed portion 21-1 where the second outflow passage 14-2 from the first peripheral fixed portion 21-1 on the magnetization side M1 of the drum 3 is provided. Body inlet 9 is connected to (the back side in the figure).

これにより、排熱側熱交換器(第1の熱交換器)12−1−第1の流出路14−1−熱媒体入口9−第2の熱交換手段26−2−熱媒体出口10−第2の流入路13−2−冷却側熱交換器(第2の熱交換器)12−2−第2の流出路14−2−熱媒体入口9−第1の熱交換手段26−1−熱媒体出口10−第1の流入路13−1−排熱側熱交換器(第1の熱交換器)12−1からなる第5の熱媒体循環路が形成される。第5の熱媒体循環路は定位置にある。また、ポンプ等の熱媒体移送手段19が排熱側熱交換器12−1への流入路13−1の途中に挿入される。なお熱媒体移送手段19は、上記の位置に限られず、排熱側熱交換器12−1、第2の熱交換手段26−2、冷却側熱交換器12−2、第1の熱交換手段26−1を連結する第5の熱媒体循環路のどこに挿入しても良い。   Thus, the exhaust heat side heat exchanger (first heat exchanger) 12-1-first outlet path 14-1-heat medium inlet 9-second heat exchange means 26-2-heat medium outlet 10- Second inflow path 13-2-cooling side heat exchanger (second heat exchanger) 12-2-second outflow path 14-2-heat medium inlet 9-first heat exchanging means 26-1- A fifth heat medium circulation path composed of the heat medium outlet 10-the first inflow path 13-1 -the exhaust heat side heat exchanger (first heat exchanger) 12-1 is formed. The fifth heat medium circuit is in a fixed position. Further, a heat medium transfer means 19 such as a pump is inserted in the middle of the inflow path 13-1 to the exhaust heat side heat exchanger 12-1. The heat transfer means 19 is not limited to the above position, and the exhaust heat side heat exchanger 12-1, the second heat exchange means 26-2, the cooling side heat exchanger 12-2, the first heat exchange means. It may be inserted anywhere in the fifth heat medium circuit connecting 26-1.

ドラム3内の磁気作業物質2は回転運動をすることにより,周期的に消磁側M2と磁化側M1の移動を繰り返すため,常に消磁側M2の磁気作業物質2は低温になり、磁化側M1の磁気作業物質2は高温になる。熱媒体6は、排熱側熱交換器12−1から、第2の熱交換手段26−2に入り、消磁されて温度降下した磁気作業物質2と熱の授受を行い温度が降下する。次に、熱媒体6は冷却側熱交換器12−2を通過し、このとき熱交換対象を冷却した後、第1の熱交換手段26−1に入り、磁化されて温度上昇した磁気作業物質2と熱の授受を行い温度が上昇する。そして再び排熱側熱交換器12−1に入り、このとき熱交換対象を暖める。以上の動作が繰り返され、磁気冷凍が行われる。ここで熱媒体6と磁気作業物質2との熱の授受は、第1の熱交換手段26−1及び第2の熱交換手段26−2において熱伝導又は/及び熱輻射により行なわれる。   Since the magnetic working material 2 in the drum 3 rotates and periodically moves between the demagnetization side M2 and the magnetization side M1, the magnetic working material 2 on the demagnetization side M2 always becomes a low temperature, and the magnetization side M1 The magnetic working material 2 becomes hot. The heat medium 6 enters the second heat exchanging means 26-2 from the exhaust heat side heat exchanger 12-1, transfers heat to and from the magnetic working material 2 that has been demagnetized and drops in temperature, and the temperature drops. Next, the heat medium 6 passes through the cooling side heat exchanger 12-2. At this time, after the heat exchange object is cooled, the heat medium 6 enters the first heat exchange means 26-1, and is magnetized to increase the temperature of the magnetic working material. Heat is exchanged with 2 and the temperature rises. And it enters into the exhaust heat side heat exchanger 12-1 again, and heats the heat exchange object at this time. The above operation is repeated and magnetic refrigeration is performed. Here, transfer of heat between the heat medium 6 and the magnetic working material 2 is performed by heat conduction and / or heat radiation in the first heat exchanging means 26-1 and the second heat exchanging means 26-2.

また、周辺固定部分21(21−1,21−2)に熱交換手段26(26−1,26−2)が取り付けられる場合には、熱媒体6と磁気作業物質2との熱の授受は両者の間にドラム3の外周部と周辺固定部分21を介したうえで、熱交換手段26により行われる。前述のように熱交換手段26は周辺固定部分21に固定されて配管されており、ドラム3は回転するのであるから、ドラム3の外周部と熱交換手段26、周辺固定部分21とは相対的に摺動することになり、この摺動面を介してドラム3中の磁気作業物質2と熱媒体6とが熱伝導又は/及び熱輻射により熱交換するのである。また、熱交換手段26と周辺固定部分21が一体的に構成される場合には、熱交換手段26が直接にドラム3の表面と接触し、摺動する。なお、第1の実施の形態のように遠心力を利用していないので、熱媒体6の循環の駆動はポンプ19によって行われる。   When the heat exchanging means 26 (26-1, 26-2) is attached to the peripheral fixed portion 21 (21-1, 21-2), the heat transfer between the heat medium 6 and the magnetic working material 2 is not performed. It is performed by the heat exchange means 26 through the outer peripheral portion of the drum 3 and the peripheral fixing portion 21 between them. As described above, the heat exchanging means 26 is fixed to the peripheral fixing portion 21 and is piped, and the drum 3 rotates. Therefore, the outer peripheral portion of the drum 3 and the heat exchanging means 26 and the peripheral fixing portion 21 are relative to each other. The magnetic working material 2 and the heat medium 6 in the drum 3 exchange heat through heat conduction or / and heat radiation through the sliding surface. Further, when the heat exchanging means 26 and the peripheral fixed portion 21 are integrally formed, the heat exchanging means 26 directly contacts the surface of the drum 3 and slides. Since the centrifugal force is not used as in the first embodiment, the circulation of the heat medium 6 is driven by the pump 19.

図8及び図9に第3の実施の形態における具体的な配管位置の例を示す。図8(a1)、(b1)、図9(c1)、(d1)にドラム3の上面側から見た配管位置を、図8(a2)、(b2)、図9(c2)、(d2)にそれぞれの断面(A−A〜D−D断面)を示す。図8(a1)、(a2)の例では、ドラム3の上下両面が周辺固定部分22(22−1,22−2)であり、磁化側M1に配置された第1の熱交換手段27−1、消磁側M2に配置された第2の熱交換手段27−2が共に、上面及び下面にまたがって、磁化側M1の第1の固定部分22−1、消磁側M2の第2の固定部分22−2に外接して配管されている。配管は平行する複数の直線配管を端部で接続して形成される(端部の接続部分は省略して図示している)。なお、この場合、ドラム3の上下面8と固定部分22とは互に摺動することになる。   FIG. 8 and FIG. 9 show examples of specific piping positions in the third embodiment. 8 (a1), (b1), FIG. 9 (c1), and (d1), the piping positions viewed from the upper surface side of the drum 3 are shown in FIGS. 8 (a2), (b2), FIG. 9 (c2), and (d2). ) Shows the respective cross sections (AA to DD cross sections). In the example of FIGS. 8A1 and 8A2, the upper and lower surfaces of the drum 3 are the peripheral fixed portions 22 (22-1 and 22-2), and the first heat exchange means 27- disposed on the magnetization side M1. 1. The second heat exchanging means 27-2 disposed on the demagnetization side M2 extends across the upper surface and the lower surface, and the first fixed portion 22-1 on the magnetization side M1 and the second fixed portion on the demagnetization side M2. The pipe is circumscribed to 22-2. The pipe is formed by connecting a plurality of parallel straight pipes at the end (the connecting portion of the end is omitted). In this case, the upper and lower surfaces 8 of the drum 3 and the fixed portion 22 slide with each other.

図8(b1)、(b2)の例では、ドラム3の外周部(円筒部)に周辺固定部分23(23−1,23−2)があり、磁化側M1に配置された第1の熱交換手段28−1、消磁側M2に配置された第2の熱交換手段28−2が共に、磁化側M1の第1の固定部分23−1、消磁側M2の第2の固定部分23−2に外接して配管されている。配管は例えば図7のように同じ半径の複数の半円配管を端部で接続して形成される(図8においては端部の接続部分は省略して図示している)。なお、この場合、ドラム3の外周部(円筒面)と固定部分23とは互に摺動することになる。   In the example of FIGS. 8B1 and 8B2, the peripheral fixing portion 23 (23-1, 23-2) is provided on the outer peripheral portion (cylindrical portion) of the drum 3, and the first heat disposed on the magnetization side M1. The exchange means 28-1 and the second heat exchange means 28-2 disposed on the demagnetization side M2 are both the first fixed part 23-1 on the magnetization side M1 and the second fixed part 23-2 on the demagnetization side M2. The pipe is circumscribed by the pipe. For example, the pipe is formed by connecting a plurality of semicircular pipes having the same radius at the end as shown in FIG. 7 (in FIG. 8, the connecting portion of the end is omitted). In this case, the outer peripheral portion (cylindrical surface) of the drum 3 and the fixed portion 23 slide with each other.

図9(c1)、(c2)の例では、回転手段としての、磁気作業物質を搭載するドラムは存在せず、回転軸4及び回転軸4に取り付けられて磁気作業物質2を支持する支持部材5(図示されない)が回転手段として機能する。ドラムの上下両面に代わってその位置に周辺固定部分24(24−1,24−2)が固定的に配置され、磁化側M1に配置された第1の熱交換手段29−1、消磁側M2に配置された第2の熱交換手段29−2が共に、上面側及び下面側にまたがって、磁化側M1の第1の固定部分24−1、消磁側M2の第2の固定部分24−2に内接して配管されている。配管は複数の同心の半円配管を端部で接続して形成される(端部の接続部分は省略して図示している)。なお、この場合、磁気作業物質2と固定部分24、熱交換手段29(29−1,29−2)とは互に摺動することになる。また磁気作業物質2と熱媒体6との間の熱の授受は、主として磁気作業物質2と熱交換手段29との接触を介して行われる。   In the example of FIGS. 9C1 and 9C2, there is no drum on which the magnetic working material is mounted as rotating means, and the rotating shaft 4 and the supporting member that is attached to the rotating shaft 4 and supports the magnetic working material 2. 5 (not shown) functions as a rotating means. In place of the upper and lower surfaces of the drum, the peripheral fixed portions 24 (24-1, 24-2) are fixedly disposed at the positions, and the first heat exchange means 29-1 and the demagnetizing side M2 disposed on the magnetization side M1. The second heat exchanging means 29-2 disposed on the upper side and the lower side of the second heat exchanging means 29-2 both extend over the first fixed portion 24-1 on the magnetization side M1 and the second fixed portion 24-2 on the demagnetization side M2. It is inscribed in the pipe. The pipe is formed by connecting a plurality of concentric semicircular pipes at the end (the connecting portion of the end is omitted). In this case, the magnetic working material 2, the fixed portion 24, and the heat exchanging means 29 (29-1, 29-2) slide with each other. The transfer of heat between the magnetic working material 2 and the heat medium 6 is performed mainly through contact between the magnetic working material 2 and the heat exchange means 29.

図9(d1)、(d2)の例では、回転手段としての、磁気作業物質を搭載するドラムは存在せず、回転軸4及び回転軸4に取り付けられて磁気作業物質2を支持する支持部材5(図示されない)が回転手段として機能する。ドラムの外周部(円筒部)に代わってその位置に周辺固定部分25(25−1,25−2)が固定的に配置され、磁化側M1に配置された第1の熱交換手段30−1、消磁側M2に配置された第2の熱交換手段30−2がそれぞれ、磁化側M1の第1の固定部分25−1、消磁側M2の第2の固定部分25−2に内接して配管されている。配管は例えば図7のように同じ半径の複数の半円配管を端部で接続して形成される(図9においては端部の接続部分は省略して図示している)。なお、この場合、磁気作業物質2と固定部分25、熱交換手段30(30−1,30−2)とは互に摺動することになる。また磁気作業物質2と熱媒体6との間の熱の授受は、主として磁気作業物質2と熱交換手段30との接触を介して行われる。これらの例のように、熱媒体6の流路でもある熱交換手段26〜30は、固定部分21〜25に外接して配管されていても、内接して配管されていても良い。   In the example of FIGS. 9D1 and 9D2, there is no drum on which the magnetic working material is mounted as the rotating means, and the rotating shaft 4 and the supporting member attached to the rotating shaft 4 and supporting the magnetic working material 2 are supported. 5 (not shown) functions as a rotating means. Instead of the outer peripheral portion (cylindrical portion) of the drum, the peripheral fixing portion 25 (25-1, 25-2) is fixedly arranged at that position, and the first heat exchanging means 30-1 is arranged on the magnetization side M1. The second heat exchanging means 30-2 arranged on the demagnetization side M2 are inscribed in the first fixed portion 25-1 on the magnetization side M1 and the second fixed portion 25-2 on the demagnetization side M2, respectively. Has been. For example, the pipe is formed by connecting a plurality of semicircular pipes having the same radius at the end as shown in FIG. 7 (in FIG. 9, the connecting portion of the end is omitted). In this case, the magnetic working material 2, the fixed portion 25, and the heat exchanging means 30 (30-1, 30-2) slide with each other. Heat transfer between the magnetic working material 2 and the heat medium 6 is performed mainly through contact between the magnetic working material 2 and the heat exchange means 30. As in these examples, the heat exchanging means 26 to 30 that are also the flow paths of the heat medium 6 may be circumscribed or fixedly connected to the fixed portions 21 to 25.

また、ドラム3内の板状の磁気作業物質2は、できるだけ多く熱交換手段29〜30の配管に接触するように、例えば、配管の凹凸と同じ切り欠きを入れる、中心部で薄く外周側で厚い扇型にするなどの工夫をすることが望ましい。なお、図7、図8、図9に関して、以上の説明では周辺固定部分21〜25が存在する場合について説明したが、熱交換手段26〜30自体で定位置を保つことができれば周辺固定部分21〜25は無くても良い。また、以上の説明では支持部材5で磁気作業物質2を支持する場合を説明したが、回転軸4が磁気作業物質2を支持しても良い。   Further, the plate-like magnetic working substance 2 in the drum 3 is thinned at the outer peripheral side, for example, by making the same notch as the concave and convex portions of the pipe so as to contact as much as possible with the pipe of the heat exchange means 29-30. It is desirable to devise a thick fan shape. 7, 8, and 9, the above description has been made on the case where the peripheral fixing portions 21 to 25 exist, but if the heat exchange means 26 to 30 itself can maintain a fixed position, the peripheral fixing portion 21 is provided. ~ 25 may be omitted. In the above description, the case where the magnetic working material 2 is supported by the support member 5 has been described. However, the rotating shaft 4 may support the magnetic working material 2.

本実施の形態では、熱媒体移送手段19を用いて熱媒体6の移送は連続的に行われる。なお図7においてはドラム3に近接して配置された熱交換手段26の位置は、ドラム3とは独立して定位置に固定されている。また本実施の形態では、磁場増減はドラム3等の回転手段の回転によって行っており、回転手段及び回転手段を回転する図示しない原動機等が磁場増減手段を兼ねている。   In the present embodiment, the heat medium 6 is continuously transferred using the heat medium transfer means 19. In FIG. 7, the position of the heat exchanging means 26 arranged close to the drum 3 is fixed at a fixed position independently of the drum 3. Further, in the present embodiment, the magnetic field increase / decrease is performed by the rotation of the rotating means such as the drum 3, and the rotating means and the motor (not shown) that rotates the rotating means also serve as the magnetic field increasing / decreasing means.

本実施の形態における磁気冷凍装置は、流路切替弁、磁気作業物質を往復運動させる機構、磁場発生手段を往復運動させる機構、ディスプレーサー等の磁気作業物質内を流れる熱媒体の流れの方向を変える手段及び磁場発生手段のオンオフ制御手段などを必要としない。また、磁気冷凍装置の運転中に駆動される部分がドラム3及び熱媒体移送手段19のみであり、簡素な構造にでき、ドラム3は定常で一方向に回転運動をしており、さらに流体の流れ方向が一方向である。これらのことより、複雑な制御を一切必要としない。このため、簡素でコンパクトな構成で、運転中の制御も容易で、低コストの磁気冷凍装置を提供できる。   The magnetic refrigeration apparatus in the present embodiment includes a flow path switching valve, a mechanism for reciprocating the magnetic working material, a mechanism for reciprocating the magnetic field generating means, and a flow direction of the heat medium flowing in the magnetic working material such as a displacer. There is no need for means for changing and means for controlling on / off of the magnetic field generating means. Further, only the drum 3 and the heat medium transfer means 19 are driven during the operation of the magnetic refrigeration apparatus, so that the structure can be simplified, and the drum 3 is steadily rotating in one direction. The flow direction is one direction. Therefore, no complicated control is required. For this reason, it is possible to provide a low-cost magnetic refrigeration apparatus with a simple and compact configuration that is easy to control during operation.

次に本発明による磁気冷凍装置を冷蔵庫に応用した例を説明する。第4の実施の形態として、本発明の第3の実施形態の磁気冷凍装置120を用いた冷蔵庫の例を説明する。   Next, an example in which the magnetic refrigeration apparatus according to the present invention is applied to a refrigerator will be described. As a fourth embodiment, an example of a refrigerator using the magnetic refrigeration apparatus 120 according to the third embodiment of the present invention will be described.

図10に本発明の第4の実施形態における冷蔵庫の例の斜視図を示す。この冷蔵庫51は外形が直方体状に形成されており、内部に冷蔵室62と機械室59を有する(図11参照)。52は冷蔵室扉、60は機械室扉であり、78−1、78−2はそれぞれ冷蔵室扉52の取っ手、機械室扉60の取っ手である。57は排熱窓、77は吸気窓である。   FIG. 10 shows a perspective view of an example of a refrigerator in the fourth embodiment of the present invention. The refrigerator 51 has a rectangular parallelepiped shape and includes a refrigerator room 62 and a machine room 59 inside (see FIG. 11). 52 is a refrigerator compartment door, 60 is a machine room door, 78-1 and 78-2 are a handle of the refrigerator compartment door 52, and a handle of the machine room door 60, respectively. 57 is an exhaust heat window, and 77 is an intake window.

図11は、図10の冷蔵庫51の内部構成の例を示す斜視図である。図11(a)は全体図、図11(b)は外壁の部分拡大図である。冷蔵室62と機械室59とは仕切壁58によって区画され、それぞれの室には手前に冷蔵室扉52、機械室扉60を有する(図10参照)。また外部は外装板53により覆われている。冷蔵室62は周囲を内装板54により囲まれると共に断熱材55を内装板54と外装板53の間に有し、外部との熱の授受を防止している。また冷蔵庫51の底面にはベースプレート61を有している。本冷蔵庫51では電動機71,ポンプ67(図7の熱媒体移送手段19に相当)、送風ファン74などの駆動部は図示しない商用電源をエネルギー源としている。   FIG. 11 is a perspective view showing an example of the internal configuration of the refrigerator 51 of FIG. FIG. 11A is an overall view, and FIG. 11B is a partially enlarged view of the outer wall. The refrigerating room 62 and the machine room 59 are partitioned by a partition wall 58, and each room has a refrigerating room door 52 and a machine room door 60 in front (see FIG. 10). The exterior is covered with an exterior plate 53. The refrigerator compartment 62 is surrounded by the interior plate 54 and has a heat insulating material 55 between the interior plate 54 and the exterior plate 53 to prevent heat from being exchanged with the outside. A base plate 61 is provided on the bottom surface of the refrigerator 51. In the refrigerator 51, driving units such as an electric motor 71, a pump 67 (corresponding to the heat medium transfer means 19 in FIG. 7), and a blower fan 74 use a commercial power source (not shown) as an energy source.

なお冷蔵庫51で、機械室59の外気と接する側面には外装板53に開口部として排熱窓57と吸気窓77とを有する。機械室59内で排熱窓57の近傍には後述する排熱用熱交換器68(図7の12−1相当)を設置する。吸気窓77と排熱窓57とにより外気を機械室59内に流通させることにより、冷蔵室62内へ侵入した熱を冷蔵庫51の外部へ、ファン74を用いて又は外気の循環により排出させる。この冷蔵庫51では、冷蔵室62の冷却手段として本発明の磁気冷凍装置120(第3の実施形態)を用いているので、図7も参照しながら説明する。磁場発生手段1に相当する構成として、略直方体形状の2個一対の永久磁石70が磁気作業物質ドラム3の両面に近接し、且つドラム3の両面及び2個の永久磁石70のドラム3に対向する両面がそれぞれ平行になるように配設されている。2個一対の永久磁石70は磁石固定架台75により定位置に固定され磁石固定架台75は冷蔵庫機械室59の側板に固定される。   The refrigerator 51 has a heat exhaust window 57 and an intake window 77 as openings in the exterior plate 53 on the side of the machine room 59 in contact with the outside air. An exhaust heat exchanger 68 (corresponding to 12-1 in FIG. 7) described later is installed in the vicinity of the exhaust heat window 57 in the machine room 59. By circulating the outside air into the machine room 59 through the intake window 77 and the exhaust heat window 57, the heat that has entered the refrigerating room 62 is discharged to the outside of the refrigerator 51 using the fan 74 or by circulation of the outside air. In this refrigerator 51, since the magnetic refrigeration apparatus 120 (3rd Embodiment) of this invention is used as a cooling means of the refrigerator compartment 62, it demonstrates, also referring FIG. As a configuration corresponding to the magnetic field generating means 1, two pairs of substantially rectangular parallelepiped permanent magnets 70 are close to both surfaces of the magnetic working material drum 3 and face both surfaces of the drum 3 and the two permanent magnets 70. The two surfaces are arranged in parallel to each other. The pair of two permanent magnets 70 are fixed at a fixed position by a magnet fixing base 75, and the magnet fixing base 75 is fixed to a side plate of the refrigerator machine room 59.

永久磁石70の取り付け位置は例えばシムなどを利用することで微調整が可能である。前記ドラム3は、回転軸4をカップリング72により可変速電動機71の駆動軸と連結されて回転駆動される。可変速電動機71は電動機取付架台73によりベースプレート61に固定されている。冷蔵庫51においては、ドラム3及び熱交換手段28(28−1,28−2)として、図8(b1)及び(b2)に示す形態のものが用いられている。即ち、ドラム3内の磁気作業物質2の配置及び熱媒体6と磁気作業物質2との間の熱交換手段28の態様は、図8(b1)及び(b2)で示すとおりであって、熱交換手段28として示されている複数の配管は、(図示しないが)それらの端部において相互に接続され、熱交換手段28への熱媒体6の流入部及び熱交換手段28からの熱媒体6の流出部においては、それぞれ一本の配管に統合され、熱媒体配管66に接続されている。熱媒体配管66は図7の流入路13−1,13−2及び流出路14−1,14−2に相当するものであり、熱媒体配管66中を熱媒体6が流れる。
熱媒体移送用ポンプ67は図7の熱媒体移送手段19に相当するもので、遠心羽根車とそれを回転駆動する可変速電動機を有する構造を備え、例えばボルト等によりベースプレート61に固定される。
The attachment position of the permanent magnet 70 can be finely adjusted by using a shim or the like, for example. The drum 3 is rotationally driven by connecting the rotary shaft 4 to the drive shaft of the variable speed electric motor 71 by a coupling 72. The variable speed motor 71 is fixed to the base plate 61 by a motor mounting base 73. In the refrigerator 51, as the drum 3 and the heat exchange means 28 (28-1, 28-2), those shown in FIGS. 8B1 and 8B2 are used. That is, the arrangement of the magnetic working material 2 in the drum 3 and the mode of the heat exchange means 28 between the heat medium 6 and the magnetic working material 2 are as shown in FIGS. 8 (b1) and (b2). A plurality of pipes shown as the exchange means 28 are connected to each other at their ends (not shown), and the inflow portion of the heat medium 6 to the heat exchange means 28 and the heat medium 6 from the heat exchange means 28 are connected. Each outflow portion is integrated into one pipe and connected to the heat medium pipe 66. The heat medium pipe 66 corresponds to the inflow paths 13-1 and 13-2 and the outflow paths 14-1 and 14-2 in FIG. 7, and the heat medium 6 flows through the heat medium pipe 66.
The heat medium transfer pump 67 corresponds to the heat medium transfer means 19 shown in FIG. 7, and includes a structure having a centrifugal impeller and a variable speed electric motor that rotationally drives the centrifugal impeller, and is fixed to the base plate 61 by bolts or the like.

排熱用熱交換器68及び冷却用熱交換器69(それぞれ図7の12−1及び12−2に相当)は、フィン・チューブ式熱交換器であり、それぞれ送風ファン74を備えて、熱媒体6と外気並びに熱媒体6と冷蔵室62内空気との熱交換を促進するようにしている。
またこの冷蔵庫51は、冷蔵室62内部にその室内温度を検出する温度センサ76を有している。温度センサ76により検出された温度の信号は図示しない信号ケーブルを経由して、図示しない温度コントローラへ伝達される。温度コントローラには予め目標とすべき冷蔵室室内温度指令値が入力されており、温度コントローラ内部で検出された温度の信号値と比較され、その偏差量に基づいて温度コントローラは磁気冷凍装置120の冷凍能力を調整する。
The heat exchanger for exhaust heat 68 and the heat exchanger for cooling 69 (corresponding to 12-1 and 12-2 in FIG. 7 respectively) are fin-and-tube heat exchangers, each having a blower fan 74, and heat Heat exchange between the medium 6 and the outside air and between the heat medium 6 and the air in the refrigerator compartment 62 is promoted.
The refrigerator 51 has a temperature sensor 76 for detecting the room temperature inside the refrigerator compartment 62. A temperature signal detected by the temperature sensor 76 is transmitted to a temperature controller (not shown) via a signal cable (not shown). The refrigeration room indoor temperature command value to be targeted is input to the temperature controller in advance, and is compared with the signal value of the temperature detected inside the temperature controller. Based on the deviation amount, the temperature controller determines the temperature of the magnetic refrigeration apparatus 120. Adjust the freezing capacity.

例えば、現在の運転状態よりも冷凍能力の増大が必要な場合は、温度コントローラは可変速電動機71及び熱媒体移送用ポンプ67に対して回転速度を上昇するような信号をそれぞれ独立に出力する。これによりドラム3の回転速度が上昇するから、磁気作業物質2の単位時間あたりの磁化、消磁回数が増加するので冷凍能力が増大する。そしてドラム3で増加した冷凍能力を適切に冷凍負荷において作用させる即ち冷凍能力の増大効果を発揮させるため、熱媒体6の単位時間あたりの循環量を増大するように構成している。またこの場合、排熱用熱交換器68及び冷却用熱交換器69において、共に伝熱負荷が増大するため、これらの熱交換器68,69における伝熱量を増大(伝熱を促進)させるように、それぞれの熱交換器68,69の送風ファン74の回転速度を増加させ風量の増大を図ることが好ましい。   For example, when it is necessary to increase the refrigerating capacity as compared with the current operation state, the temperature controller independently outputs a signal for increasing the rotation speed to the variable speed electric motor 71 and the heat medium transfer pump 67. As a result, the rotational speed of the drum 3 is increased, so that the number of times of magnetization and demagnetization per unit time of the magnetic working material 2 is increased, so that the refrigerating capacity is increased. And in order to make the refrigeration capacity increased by the drum 3 act appropriately in the refrigeration load, that is, to exhibit the effect of increasing the refrigeration capacity, the circulation amount of the heat medium 6 per unit time is increased. In this case, since the heat transfer load increases in both the heat exchanger 68 for exhaust heat and the heat exchanger 69 for cooling, the amount of heat transfer in these heat exchangers 68 and 69 is increased (heat transfer is promoted). In addition, it is preferable to increase the air volume by increasing the rotational speed of the blower fan 74 of each of the heat exchangers 68 and 69.

なお上記においては、磁場発生手段lに相当する構成として、2個一対の永久磁石70を用いた場合において冷凍能力の増大が必要となった場合の対応について説明した。この場合は永久磁石70によって形成される磁場の強さ(磁束密度)が一定であるため、磁気作業物質2が磁場に出入りすることにより発生する温度差は一定である。よって、熱媒体6が熱交換手段28−1及び28−2を通過する間に変化する温度差(熱交換手段28−1及び28−2の入口と出口との間での熱媒体6の温度の差)には自ずと限界があるので冷凍能力の増大の要求に対しては、ドラム3の回転速度の上昇並びに熱媒体6の流量増加によって対応した例を示したが、別の例として、磁場発生手段1を電磁石で構成した場合を考えると、磁場の強さ(磁束密度)は電磁石に印加する電圧を上昇することで増強することが出来、結果として磁気作業物質2が磁場へ出入りすることにより発生する温度差を増大できる。従って熱交換手段28−1及び28−2の出入口における熱媒体6の温度差も増大できる。このため排熱用熱交換器68においては、外気と熱媒体6との温度差が大きくなるので、ドラム3の回転速度が一定であり、熱媒体6の単位時間あたりの循環量が一定であっても外気への放熱量を増大でき、一方冷却用熱交換器69においては冷蔵室62内空気と熱媒体6との温度差が大きくなるので、ドラム3の回転速度が一定であり熱媒体6の単位時間あたりの循環量が一定であっても冷蔵室62内空気からの吸熱量を増大できる。従ってこの方法を用いればドラム3の回転速度及び熱媒体6の単位時間あたりの循環量をそれぞれ一定としても熱媒体の温度差を大とすることにより熱負荷側にいっそう多量の熱の移送ができることとなるので、ドラム3の回転速度や熱媒体6の循環量を増加する必要はない。なおこの場合であっても、それぞれの熱交換器68,69の送風ファン74の回転速度は上昇させるほうが好ましい。   In the above description, the case where an increase in the refrigerating capacity is required in the case where two pairs of permanent magnets 70 are used as the configuration corresponding to the magnetic field generation means 1 has been described. In this case, since the strength (magnetic flux density) of the magnetic field formed by the permanent magnet 70 is constant, the temperature difference generated when the magnetic working material 2 enters and exits the magnetic field is constant. Therefore, the temperature difference that changes while the heat medium 6 passes through the heat exchange means 28-1 and 28-2 (the temperature of the heat medium 6 between the inlet and the outlet of the heat exchange means 28-1 and 28-2). However, as an example, the increase in the refrigerating capacity is indicated by the increase in the rotation speed of the drum 3 and the increase in the flow rate of the heat medium 6. Considering the case where the generating means 1 is composed of an electromagnet, the magnetic field strength (magnetic flux density) can be increased by increasing the voltage applied to the electromagnet, and as a result, the magnetic working substance 2 enters and exits the magnetic field. This can increase the temperature difference generated. Therefore, the temperature difference of the heat medium 6 at the entrance / exit of the heat exchange means 28-1 and 28-2 can also be increased. For this reason, in the heat exchanger for exhaust heat 68, the temperature difference between the outside air and the heat medium 6 becomes large, so that the rotation speed of the drum 3 is constant and the circulation amount of the heat medium 6 per unit time is constant. However, the amount of heat released to the outside air can be increased, and in the cooling heat exchanger 69, the temperature difference between the air in the refrigerator compartment 62 and the heat medium 6 becomes large, so that the rotation speed of the drum 3 is constant and the heat medium 6 Even if the amount of circulation per unit time is constant, the amount of heat absorbed from the air in the refrigerator compartment 62 can be increased. Therefore, if this method is used, even if the rotational speed of the drum 3 and the circulation amount of the heat medium 6 per unit time are constant, a larger amount of heat can be transferred to the heat load side by increasing the temperature difference of the heat medium. Therefore, there is no need to increase the rotational speed of the drum 3 or the circulation amount of the heat medium 6. Even in this case, it is preferable to increase the rotational speed of the blower fan 74 of each of the heat exchangers 68 and 69.

次に熱媒体6の循環経路内における動きを追いながら、熱媒体の作用を温度変化も含めて説明する。   Next, the action of the heat medium including temperature change will be described while following the movement of the heat medium 6 in the circulation path.

図12は熱媒体6の温度変化の様子を、その存在する場所に対して模式的に表わした図である。熱媒体6は、磁化側(Ml側)に配置された熱交換手段28−1を通過して熱媒体移送用ポンプ67に流入し、そして熱媒体移送用ポンプ67から吐出される熱媒体6は磁化により温度上昇した磁気作業物質2により加熱され、温度が高い状態にあり、そのまま熱媒体用配管66を通って排熱用熱交換器68に至る((イ)の状態)。排熱用熱交換器68を通過する間に熱媒体6は、外気により冷却されて熱交換器68出口に至る((ロ)の状態)。次に熱媒体用配管66を経由して消磁側(M2側)熱交換手段28−2人口に至る((ハ)の状態)。ここで熱媒体6は消磁され温度の低下した磁気作業物質2と熱交換し、温度が低下して該熱交換手段28−2出口に至る((ニ)の状態)。次にまた熱媒体用配管66を経由して冷却用熱交換器69の入口に至る((ホ)の状態)。熱交換器69内で熱媒体6は冷蔵室62内の空気を冷却し、即ち冷蔵室62内の空気により暖められ熱交換器69の出口に至る((ヘ)の状態)。   FIG. 12 is a diagram schematically showing the temperature change of the heat medium 6 with respect to the place where the heat medium 6 exists. The heat medium 6 passes through the heat exchanging means 28-1 arranged on the magnetization side (Ml side), flows into the heat medium transfer pump 67, and the heat medium 6 discharged from the heat medium transfer pump 67 is It is heated by the magnetic working substance 2 whose temperature has increased due to magnetization and is in a high temperature state, and reaches the heat exchanger 68 for exhaust heat through the heat medium pipe 66 as it is (state (A)). While passing through the heat exchanger 68 for exhaust heat, the heat medium 6 is cooled by the outside air and reaches the outlet of the heat exchanger 68 (state (B)). Next, the demagnetization side (M2 side) heat exchange means 28-2 reaches the population via the heat medium pipe 66 (state (C)). Here, the heat medium 6 is demagnetized and exchanges heat with the magnetic working material 2 whose temperature is lowered, and the temperature is lowered and reaches the outlet of the heat exchange means 28-2 (state (d)). Next, the refrigerant reaches the inlet of the cooling heat exchanger 69 via the heat medium pipe 66 (state (e)). In the heat exchanger 69, the heat medium 6 cools the air in the refrigerator compartment 62, that is, is heated by the air in the refrigerator compartment 62 and reaches the outlet of the heat exchanger 69 (state (f)).

熱媒体6は再び熱媒体用配管66を経由して、ドラム3の磁化側(Ml側)熱交換手段28−1の入口に至る((ト)の状態)。熱交換手段28−1に入った熱媒体6は、磁化により温度上昇した磁気作業物質2と熱交換することにより加熱され前記熱交換手段28−1の出口に至る((チ)の状態)。ここから熱媒体6は再び熱媒体用通路66を通って熱媒体移送用ポンプ67に流入し、ポンプ67から吐出されて排熱側熱交換器68の入口に至る。このときの熱媒体6の温度は図12の(イ)の状態である。以降同様にサイクルを繰り返す事により、低温度の冷蔵室62内の熱を高温度の外気に汲み上げ放熱することにより、冷蔵室62内を低温度に保持する。なお、本実施の形態における熱交換器68、69の入口、出口は図7における熱交換器12(12−1、12−2)と流入路13(13−1、13−2)、流出路14(14−1、14−2)の接続部に相当する。   The heat medium 6 again reaches the inlet of the magnetization side (Ml side) heat exchange means 28-1 of the drum 3 via the heat medium pipe 66 (state (G)). The heat medium 6 that has entered the heat exchanging means 28-1 is heated by exchanging heat with the magnetic working substance 2 whose temperature has increased due to magnetization, and reaches the outlet of the heat exchanging means 28-1 (state (H)). From here, the heat medium 6 again flows into the heat medium transfer pump 67 through the heat medium passage 66 and is discharged from the pump 67 to the inlet of the exhaust heat side heat exchanger 68. The temperature of the heat medium 6 at this time is in the state shown in FIG. Thereafter, by repeating the cycle in the same manner, the inside of the refrigerator compartment 62 is kept at a low temperature by pumping the heat in the refrigerator compartment 62 at a low temperature to the outside air at a high temperature and radiating it. In addition, the inlets and outlets of the heat exchangers 68 and 69 in the present embodiment are the heat exchangers 12 (12-1 and 12-2), the inflow path 13 (13-1 and 13-2), and the outflow path in FIG. 14 (14-1, 14-2).

以上、本発明の実施の形態について説明したが、本発明は以上の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、実施の形態に種々の変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made to the embodiments without departing from the spirit of the present invention. Is obvious.

例えば、第1の実施の形態では、排熱側熱交換器と冷却側熱交換器への流入路の入口及び流出路の出口は異なる当て板(11−1及び11−2)に形成したが、同じ当て板に形成しても良い。即ち排熱側熱交換器及び冷却側熱交換器への流入路及び流出路を共に同一の当て板に配設しても良い。また、当て板はドラムの上下面でなく、外周部に設けても良い。また、第3の実施の形態では、熱媒体循環路が1つの場合を説明したが、排熱側と冷却側に分けて2つの熱媒体循環路を設けても良い。また、例えば、本実施の形態では、磁気作業物質を収納する回転手段としての容器としてドラムを使用する例を説明したが、容器の形状は円筒状に限定されず、例えば円盤状でも、角柱状でも良い。また、回転手段は容器に限られず、磁気作業物質を担持して回転させ、磁場中へ出入させるものであれば良い。また、磁気作業物質に接するように形成する熱媒体用流路の形状も矩形に限定されず、扇型でも良い。また、本明細書では磁気冷凍装置について冷凍機能を重視して説明したが、これらの磁気冷凍装置の排熱を暖房その他加熱用途に利用することも可能である。   For example, in the first embodiment, the inlet of the inflow path and the outlet of the outflow path to the exhaust heat side heat exchanger and the cooling side heat exchanger are formed on different contact plates (11-1 and 11-2). Alternatively, they may be formed on the same backing plate. That is, both the inflow path and the outflow path to the exhaust heat side heat exchanger and the cooling side heat exchanger may be disposed on the same backing plate. Further, the contact plate may be provided on the outer peripheral portion instead of the upper and lower surfaces of the drum. In the third embodiment, the case where there is one heat medium circulation path has been described. However, two heat medium circulation paths may be provided separately for the exhaust heat side and the cooling side. In addition, for example, in the present embodiment, an example in which a drum is used as a container as a rotating unit that stores a magnetic working substance has been described. But it ’s okay. Further, the rotating means is not limited to the container, and any means may be used as long as it supports the magnetic working substance, rotates it, and moves it in and out of the magnetic field. Further, the shape of the flow path for the heat medium formed so as to be in contact with the magnetic working substance is not limited to a rectangle, and may be a fan shape. In the present specification, the magnetic refrigeration apparatus has been described with emphasis on the refrigeration function, but the exhaust heat of these magnetic refrigeration apparatuses can be used for heating and other heating applications.

本発明は、構成が簡素で運転中の制御も容易な磁気冷凍装置を提供できるので、例えば冷蔵庫、冷凍庫、エアコンディショナーなどへの応用ができる。   Since the present invention can provide a magnetic refrigeration apparatus having a simple configuration and easy control during operation, it can be applied to a refrigerator, a freezer, an air conditioner, and the like.

本発明の第1の実施の形態における磁気冷凍装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic refrigeration apparatus in the 1st Embodiment of this invention. ドラム内の磁気作業物質の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the magnetic working substance in a drum. ドラム内の構成を概念的に示す図である。It is a figure which shows notionally the structure in a drum. ドラムへの熱交換器の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the heat exchanger to a drum. ドラム内の構成例を示す図である。It is a figure which shows the structural example in a drum. 本発明の第2の実施の形態における磁気冷凍装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic refrigeration apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における磁気冷凍装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic refrigeration apparatus in the 3rd Embodiment of this invention. 第3の実施の形態における具体的な配管位置の例を示す図である。It is a figure which shows the example of the concrete piping position in 3rd Embodiment. 第3の実施の形態における具体的な配管位置の例を示す図である。It is a figure which shows the example of the concrete piping position in 3rd Embodiment. 本発明の第4の実施形態における冷蔵庫の斜視図である。It is a perspective view of the refrigerator in the 4th Embodiment of this invention. 図10の冷蔵庫の内部構成を示す斜視図である。It is a perspective view which shows the internal structure of the refrigerator of FIG. 熱媒体の温度変化を存在場所に対して模式的に表わした図である。It is the figure which represented typically the temperature change of a heat carrier with respect to the location. 磁気冷凍の原理を説明するための図である。It is a figure for demonstrating the principle of magnetic refrigeration. 従来の磁気冷凍装置の構成例を示す図である。It is a figure which shows the structural example of the conventional magnetic refrigeration apparatus.

符号の説明Explanation of symbols

1 磁場発生手段
2、2a〜2n 磁気作業物質
3 磁気作業物質ドラム(回転手段、容器)
4 回転軸
5 支持部材
6 熱媒体
7、7−1〜7−4、7a〜7d 熱媒体用流路
8 ドラムの上面、下面
9 熱媒体入口
10 熱媒体出口
11、11−1、11−2 当て板
12、12−1、12−2 熱交換器
13、13−1、13−2 流入路
14、14−1、14−2 流出路
15、15−1、15−2 流入路の入口
16、16−1、16−2 流出路の出口
17、17−1、17−2 受皿
18 閉止カバー
19 熱媒体移送手段
21〜25、21−1〜25−1、21−2〜25−2 ドラムの周辺固定部分
26〜30、26−1〜30−1、26−2〜30−2 熱交換手段
31 熱媒体
32、33 磁気作業物質
34 磁場発生手段
35 ポンプ
36 流路操作弁
37 排熱部
38 冷却部
39 熱交換対象
51 冷蔵庫
52 冷蔵室扉
53 外装板
54 内装板
55 断熱材
57 排熱窓
58 仕切壁
59 機械室
60 機械室扉
61 ベースプレート
62 冷蔵室
66 熱媒体配管(13−1,13−2,14−1,14−2に相当)
67 熱媒体移送用ポンプ(19に相当)
68 排熱用熱交換器(12−1に相当)
69 冷却用熱交換器(12−2に相当)
70 永久磁石(1に相当)
71 可変速電動機(ドラム回転駆動用)
72 カップリング
73 電動機取付架台
74 送風ファン
75 磁石固定架台
76 温度センサ
77 吸気窓
78−1、78−2 取っ手(把手)
100、110、120、130 磁気冷凍装置
M1 磁化側
M2 消磁側
DESCRIPTION OF SYMBOLS 1 Magnetic field generating means 2, 2a-2n Magnetic working material 3 Magnetic working material drum (rotating means, container)
4 Rotating shaft 5 Support member 6 Heat medium 7, 7-1 to 7-4, 7a to 7d Heat medium flow path 8 Drum upper surface, lower surface 9 Heat medium inlet 10 Heat medium outlet 11, 11-1, 11-2 Plate 12, 12-1, 12-2 Heat exchanger 13, 13-1, 13-2 Inflow channel 14, 14-1, 14-2 Outlet channel 15, 15-1, 15-2 Inlet channel inlet 16 , 16-1, 16-2 Outlet of outlet 17, 17-1, 17-2 Receptacle 18 Closure cover 19 Heat medium transfer means 21-25, 21-1-25-1, 21-2-25-2 Drum Peripheral fixed parts 26-30, 26-1-30-1, 26-2-30-2 Heat exchange means 31 Heat medium 32, 33 Magnetic working substance 34 Magnetic field generation means 35 Pump 36 Flow path operation valve 37 Heat exhaust part 38 Cooling part 39 Heat exchange object 51 Refrigerator 52 Refrigeration room door 53 Exterior plate 54 Interior plate 5 insulation material 57 Hainetsumado 58 partition wall 59 machine room 60 machine compartment door 61 the base plate 62 refrigerating compartment 66 heat medium pipe (corresponding to 13-1,13-2,14-1,14-2)
67 Heat transfer pump (equivalent to 19)
68 Heat exchanger for exhaust heat (equivalent to 12-1)
69 Heat exchanger for cooling (equivalent to 12-2)
70 Permanent magnet (equivalent to 1)
71 Variable speed motor (for drum rotation drive)
72 Coupling 73 Motor mounting base 74 Blower fan 75 Magnet fixing base 76 Temperature sensor 77 Air intake windows 78-1 and 78-2 Handles (grips)
100, 110, 120, 130 Magnetic refrigeration apparatus M1 Magnetization side M2 Demagnetization side

Claims (10)

磁場を発生する磁場発生手段と;
磁場の増減に応じて温度が変化する磁気作業物質と;
前記磁気作業物質を担持し、かつ前記磁気作業物質を回転させて、前記磁場発生手段により形成される磁場中へ出入させる回転手段と;
前記磁気作業物質と熱交換を行う熱媒体と;
前記磁気作業物質と前記熱媒体とが前記磁気作業物質の回転中に熱交換するように配置された熱媒体用流路と;
前記熱媒体用流路に接続されて前記熱媒体と熱交換対象との間で熱交換を行う熱交換器とを備える;
磁気冷凍装置。
Magnetic field generating means for generating a magnetic field;
A magnetic working material whose temperature changes as the magnetic field increases or decreases;
Rotating means for carrying the magnetic working material and rotating the magnetic working material into and out of a magnetic field formed by the magnetic field generating means;
A heat medium that exchanges heat with the magnetic working material;
A heat medium flow path arranged to exchange heat between the magnetic working material and the heat medium during rotation of the magnetic working material;
A heat exchanger connected to the heat medium flow path and performing heat exchange between the heat medium and a heat exchange target;
Magnetic refrigeration equipment.
前記熱媒体用流路は前記回転の中心に対して半径方向成分を持ち、前記磁気作業物質と共に回転運動すると共に、前記熱媒体が前記熱媒体用流路内を半径方向外側へ流れるように構成される;
請求項1に記載の磁気冷凍装置。
The heat medium flow path has a radial component with respect to the center of rotation, and rotates with the magnetic working material, and the heat medium flows in the heat medium flow path radially outward. Done;
The magnetic refrigeration apparatus according to claim 1.
前記回転手段は、前記磁気作業物質及び前記熱媒体用流路を搭載する容器であって、前記容器を回転することにより、前記磁気作業物質及び前記熱媒体用流路が回転するように構成され;
前記容器中に、前記回転の中心から複数個の前記磁気作業物質が放射状に配置され;
複数個の前記熱媒体用流路は、それぞれ前記磁気作業物質に接して形成され;
前記回転による遠心力を利用して、前記熱媒体が前記熱媒体用流路内を前記磁気作業物質と接触して流れる;
請求項2に記載の磁気冷凍装置。
The rotating means is a container on which the magnetic working substance and the heat medium flow path are mounted, and is configured to rotate the magnetic working substance and the heat medium flow path by rotating the container. ;
A plurality of the magnetic working materials are radially disposed in the container from the center of rotation;
A plurality of heat medium flow paths are formed in contact with the magnetic working material;
Using the centrifugal force of the rotation, the heat medium flows through the heat medium flow path in contact with the magnetic working substance;
The magnetic refrigeration apparatus according to claim 2.
前記熱交換器として第1の熱交換器と第2の熱交換器を有し;
前記容器に近接して設けられ、前記第1の熱交換器に連なり前記熱媒体が流れる第1の流入路の入口と第1の流出路の出口を有する第1の当て板を定位置に備え;
前記第1の流入路の入口と前記第1の流出路の出口が前記磁場中に設けられ;
前記容器の回転中に、前記磁場中にあるいずれかの前記熱媒体用流路(本請求項において、以下、第1の熱媒体用流路という。)の熱媒体出口と熱媒体入口がそれぞれ前記第1の流入路の入口と前記第1の流出路の出口に重なったときに、前記第1の熱媒体用流路、前記第1の流入路、前記第1の熱交換器と前記第1の流出路を前記熱媒体が循環する第1の熱媒体循環路が形成され;
前記容器に近接して設けられ、前記第2の熱交換器に連なり前記熱媒体が流れる第2の流入路の入口と第2の流出路の出口を有する第2の当て板を定位置に備え;
前記第2の流入路の入口と前記第2の流出路の出口が前記磁場外に設けられ;
前記容器の回転中に、前記磁場外にあるいずれかの前記熱媒体用流路(本請求項において、以下、第2の熱媒体用流路という。)の熱媒体出口と熱媒体入口がそれぞれ前記第2の流入路の入口と前記第2の流出路の出口に重なったときに、前記第2の熱媒体用流路、前記第2の流入路、前記第2の熱交換器と前記第2の流出路を前記熱媒体が循環する第2の熱媒体循環路が形成される;
請求項3に記載の磁気冷凍装置。
A first heat exchanger and a second heat exchanger as the heat exchanger;
A first caulking plate provided in the vicinity of the container and connected to the first heat exchanger and having a first inflow passage inlet and a first outflow passage outlet through which the heat medium flows is provided at a fixed position. ;
An inlet of the first inlet channel and an outlet of the first outlet channel are provided in the magnetic field;
During the rotation of the container, the heat medium outlet and the heat medium inlet of each of the heat medium flow paths (hereinafter referred to as the first heat medium flow path in the present claims) in the magnetic field respectively. The first heat medium flow path, the first inflow path, the first heat exchanger and the first heat medium when the first inflow path overlaps with the first outflow path outlet. A first heat medium circulation path is formed in which the heat medium circulates through one outflow path;
A second contact plate provided in the vicinity of the container and having a second inflow path inlet and a second outflow path outlet connected to the second heat exchanger and through which the heat medium flows is provided at a fixed position. ;
An inlet of the second inlet channel and an outlet of the second outlet channel are provided outside the magnetic field;
During the rotation of the container, a heat medium outlet and a heat medium inlet of any one of the heat medium flow paths outside the magnetic field (hereinafter referred to as a second heat medium flow path in the present claims) are respectively provided. The second heat medium flow path, the second inflow path, the second heat exchanger, and the first when the second inflow path overlaps with the second outflow path outlet A second heat medium circulation path is formed in which the heat medium circulates through two outflow paths;
The magnetic refrigeration apparatus according to claim 3.
前記熱交換器として第1の熱交換器と第2の熱交換器を有し;
前記容器の回転中に、前記磁場中にあるいずれかの前記熱媒体用流路(本請求項において、以下、第3の熱媒体用流路という。)から、前記容器の外周から溢れた熱媒体を回収する第1の受皿を定位置に備え;
前記第1の熱交換器に連なり前記熱媒体が流れる第1の流入路の入口と第1の流出路の出口を前記磁場中に設け;
前記第3の熱媒体用流路、前記第1の受皿、前記第1の流入路、前記第1の熱交換器と前記第1の流出路を前記熱媒体が循環する第3の熱媒体循環路が形成され;
前記容器の回転中に、前記磁場外にあるいずれかの前記熱媒体用流路(本請求項において、以下、第4の熱媒体用流路という。)から、前記容器の外周から溢れた熱媒体を回収する第2の受皿を定位置に備え;
前記第2の熱交換器に連なり前記熱媒体が流れる第2の流入路の入口と第2の流出路の出口を前記磁場外に設け;
前記第4の熱媒体用流路、前記第2の受皿、前記第2の流入路、前記第2の熱交換器と前記第2の流出路を前記熱媒体が循環する第4の熱媒体循環路が形成される;
請求項3に記載の磁気冷凍装置。
A first heat exchanger and a second heat exchanger as the heat exchanger;
During the rotation of the container, heat overflowing from the outer periphery of the container from any one of the heat medium flow paths (hereinafter referred to as a third heat medium flow path in the present claims) in the magnetic field. A first pan for collecting the medium in place;
An inlet of a first inflow passage and an outlet of a first outflow passage which are connected to the first heat exchanger and through which the heat medium flows are provided in the magnetic field;
Third heat medium circulation in which the heat medium circulates through the third heat medium flow path, the first tray, the first inflow path, the first heat exchanger, and the first outflow path. A path is formed;
During the rotation of the container, heat overflowing from the outer periphery of the container from any one of the heat medium flow paths outside the magnetic field (hereinafter referred to as a fourth heat medium flow path in the present claims). With a second pan in place to collect the medium;
An inlet of a second inflow passage and an outlet of a second outflow passage that are connected to the second heat exchanger and through which the heat medium flows are provided outside the magnetic field;
Fourth heat medium circulation in which the heat medium circulates through the fourth heat medium flow path, the second tray, the second inflow path, the second heat exchanger, and the second outflow path. A path is formed;
The magnetic refrigeration apparatus according to claim 3.
前記熱交換器として第1の熱交換器と第2の熱交換器を有し;
前記熱媒体用流路として第1の熱交換手段と第2の熱交換手段とを有し;
前記第1の熱交換手段は前記容器の周囲の前記磁場中にある定位置に配置されて、前記第1の熱交換手段の熱媒体出口は前記第1の熱交換器の第1の流入路の入口と接続され、前記第1の熱交換手段の熱媒体入口は前記第2の熱交換器の第2の流出路の出口と接続され;
前記第2の熱交換手段は前記容器の周囲の前記磁場外にある定位置に配置されて、前記第2の熱交換手段の熱媒体出口は前記第2の熱交換器の第2の流入路の入口と接続され、前記第2の熱交換手段の熱媒体入口は前記第1の熱交換器の第1の流出路の出口と接続され;
前記第1の熱交換手段、前記第1の熱交換器、前記第2の熱交換手段と前記第2の熱交換器とを前記熱媒体が循環する第5の熱媒体循環路が形成される;
請求項1に記載の磁気冷凍装置。
A first heat exchanger and a second heat exchanger as the heat exchanger;
A first heat exchange means and a second heat exchange means as the heat medium flow path;
The first heat exchange means is disposed at a fixed position in the magnetic field around the container, and a heat medium outlet of the first heat exchange means is a first inflow path of the first heat exchanger. And the heat medium inlet of the first heat exchange means is connected to the outlet of the second outlet of the second heat exchanger;
The second heat exchange means is disposed at a fixed position outside the magnetic field around the container, and a heat medium outlet of the second heat exchange means is a second inflow path of the second heat exchanger. A heat medium inlet of the second heat exchange means is connected to an outlet of the first outlet of the first heat exchanger;
A fifth heat medium circulation path is formed through which the heat medium circulates through the first heat exchange means, the first heat exchanger, the second heat exchange means, and the second heat exchanger. ;
The magnetic refrigeration apparatus according to claim 1.
磁場を発生する磁場発生手段と;
磁場の増減に応じて温度が変化する磁気作業物質と;
前記磁気作業物質に印加される磁場を増減させる磁場増減手段と;
前記磁気作業物質と熱交換を行う熱媒体と;
前記磁気作業物質と前記熱媒体との間で熱交換するように設けられた熱媒体用流路と;
前記熱媒体用流路に接続されて前記熱媒体と熱交換対象との間で熱交換を行う熱交換器とを備え、
前記熱媒体用流路における熱媒体の流動方向が一方向である;
磁気冷凍装置。
Magnetic field generating means for generating a magnetic field;
A magnetic working material whose temperature changes as the magnetic field increases or decreases;
Magnetic field increasing / decreasing means for increasing / decreasing the magnetic field applied to the magnetic working substance;
A heat medium that exchanges heat with the magnetic working material;
A heat medium flow path provided to exchange heat between the magnetic working material and the heat medium;
A heat exchanger connected to the heat medium flow path and performing heat exchange between the heat medium and a heat exchange target,
The flow direction of the heat medium in the heat medium flow path is one direction;
Magnetic refrigeration equipment.
前記磁場発生手段は定位置に固定され;
前記磁場増減手段は前記磁気作業物質を回転させることにより前記磁場発生手段により形成される磁場中に出入りさせる機構である;
請求項7に記載の磁気冷凍装置。
Said magnetic field generating means is fixed in place;
The magnetic field increasing / decreasing means is a mechanism for rotating the magnetic working substance into and out of a magnetic field formed by the magnetic field generating means;
The magnetic refrigeration apparatus according to claim 7.
前記熱媒体用流路は前記回転の中心に対して半径方向成分を持ち、前記磁気作業物質と共に回転する;
請求項8に記載の磁気冷凍装置。
The heating medium flow path has a radial component relative to the center of rotation and rotates with the magnetic working material;
The magnetic refrigeration apparatus according to claim 8.
前記磁気作業物質および前記熱媒体用流路は自身の中心を軸として回転する容器中に収容され、前記熱媒体が前記磁気作業物質に接触しながら流れるように共に前記容器の中心から放射状に複数形成され;
前記複数の熱媒体用流路はそれぞれ前記容器の半径方向に相互に距離を隔てて開口部として熱媒体出口と熱媒体入口を備え;
前記熱交換器の前記熱媒体用流路との接続部としての第1の流入路入口と第1の流出路出口は前記容器と摺動し且つ前記容器の回転により前記開口部に一致する位置に設けられている;
請求項9に記載の磁気冷凍装置

The magnetic working material and the heating medium flow path are accommodated in a container rotating about its center, and a plurality of the heating medium and the heating medium flow radially from the center of the container so that the heating medium flows while contacting the magnetic working material. Formed;
Each of the plurality of heat medium flow paths includes a heat medium outlet and a heat medium inlet as openings spaced apart from each other in the radial direction of the container;
A position where the first inflow passage inlet and the first outflow passage outlet as the connection portion of the heat exchanger with the heat medium flow path slide with the container and coincide with the opening by the rotation of the container. Provided in;
The magnetic refrigeration apparatus according to claim 9.

JP2004300366A 2004-10-14 2004-10-14 Magnetic refrigerating device Pending JP2006112709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300366A JP2006112709A (en) 2004-10-14 2004-10-14 Magnetic refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300366A JP2006112709A (en) 2004-10-14 2004-10-14 Magnetic refrigerating device

Publications (1)

Publication Number Publication Date
JP2006112709A true JP2006112709A (en) 2006-04-27

Family

ID=36381367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300366A Pending JP2006112709A (en) 2004-10-14 2004-10-14 Magnetic refrigerating device

Country Status (1)

Country Link
JP (1) JP2006112709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562658A (en) * 2011-01-27 2014-02-05 株式会社电装 Magnetic refrigeration system, and air conditioning system for automobiles
CN106481842A (en) * 2016-01-18 2017-03-08 包头稀土研究院 A kind of combined type room temperature magnetic refrigeration system and its directional control valve
JP2017508940A (en) * 2013-12-27 2017-03-30 クールテック・アプリケーションズ Magnetocaloric heat generator and method for cooling a fluid called secondary fluid by a magnetocaloric heat generator
JP2019032116A (en) * 2017-08-08 2019-02-28 株式会社Nttファシリティーズ Thermal transfer equipment
JP2019032115A (en) * 2017-08-08 2019-02-28 株式会社Nttファシリティーズ Thermal transfer equipment
WO2021240751A1 (en) * 2020-05-28 2021-12-02 三菱電機株式会社 Magnetic heat pump and magnetic refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113355A (en) * 1977-03-10 1978-10-03 Us Energy Magnetic refrigerator
JPS58184469A (en) * 1982-04-23 1983-10-27 株式会社日立製作所 Rotary type magnetic refrigerator
JPS62153662A (en) * 1985-11-08 1987-07-08 ドイチェ フォルシュングスアンシュタルト フュア ルフトーウント ラウムファールト エー.ファウ Magneto-caloric type cooling device
JPH0370944A (en) * 1989-08-08 1991-03-26 Matsushita Electric Ind Co Ltd Air conditioner using magnetic refrigerator
JP2002106999A (en) * 2000-10-02 2002-04-10 Toshiba Corp Magnetic refrigerating device
WO2003050456A1 (en) * 2001-12-12 2003-06-19 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
WO2004059221A1 (en) * 2002-12-24 2004-07-15 Ecole D'ingenieurs Du Canton De Vaud Method and device for continuous generation of cold and heat by means of the magneto-calorific effect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113355A (en) * 1977-03-10 1978-10-03 Us Energy Magnetic refrigerator
JPS58184469A (en) * 1982-04-23 1983-10-27 株式会社日立製作所 Rotary type magnetic refrigerator
JPS62153662A (en) * 1985-11-08 1987-07-08 ドイチェ フォルシュングスアンシュタルト フュア ルフトーウント ラウムファールト エー.ファウ Magneto-caloric type cooling device
JPH0370944A (en) * 1989-08-08 1991-03-26 Matsushita Electric Ind Co Ltd Air conditioner using magnetic refrigerator
JP2002106999A (en) * 2000-10-02 2002-04-10 Toshiba Corp Magnetic refrigerating device
WO2003050456A1 (en) * 2001-12-12 2003-06-19 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
WO2004059221A1 (en) * 2002-12-24 2004-07-15 Ecole D'ingenieurs Du Canton De Vaud Method and device for continuous generation of cold and heat by means of the magneto-calorific effect

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562658A (en) * 2011-01-27 2014-02-05 株式会社电装 Magnetic refrigeration system, and air conditioning system for automobiles
CN103562658B (en) * 2011-01-27 2015-08-26 株式会社电装 Magnetic refrigeration system and vehicle air-conditioning apparatus
JP2017508940A (en) * 2013-12-27 2017-03-30 クールテック・アプリケーションズ Magnetocaloric heat generator and method for cooling a fluid called secondary fluid by a magnetocaloric heat generator
CN106481842A (en) * 2016-01-18 2017-03-08 包头稀土研究院 A kind of combined type room temperature magnetic refrigeration system and its directional control valve
CN106481842B (en) * 2016-01-18 2019-06-04 包头稀土研究院 A kind of combined type room temperature magnetic refrigeration system and its directional control valve
JP2019032116A (en) * 2017-08-08 2019-02-28 株式会社Nttファシリティーズ Thermal transfer equipment
JP2019032115A (en) * 2017-08-08 2019-02-28 株式会社Nttファシリティーズ Thermal transfer equipment
WO2021240751A1 (en) * 2020-05-28 2021-12-02 三菱電機株式会社 Magnetic heat pump and magnetic refrigeration cycle device
JP7399282B2 (en) 2020-05-28 2023-12-15 三菱電機株式会社 Magnetic heat pump and magnetic refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
US8191375B2 (en) Device for generating cold and heat by a magneto-calorific effect
JP4557874B2 (en) Magnetic refrigerator
US9784482B2 (en) Magnetic cooling apparatus and method of controlling the same
JP2007147136A (en) Magnetic refrigerating machine
US9927155B2 (en) Magnetic refrigeration system with unequal blows
US6474073B1 (en) Thermoelectric device and thermoelectric manifold
US7481064B2 (en) Method and device for continuous generation of cold and heat by means of the magneto-calorific effect
CN100507406C (en) Rotating magnet magnetic refrigerator
EA011049B1 (en) Device for generating a thermal flux with magneto-caloric material
US20120272665A1 (en) Magnetic heat pump apparatus
US3696634A (en) Demountable heat pump with hermetically sealed circuit
JP2009507168A (en) Thermoelectric generator with magneto-thermal conversion material
CA2611992A1 (en) Continuously rotary magnetic refrigerator or heat pump
JP5724603B2 (en) Magnetic refrigeration system and air conditioner using the magnetic refrigeration system
JP2006112709A (en) Magnetic refrigerating device
JP5641002B2 (en) Magnetic heat pump device
JPH0814779A (en) Heat pipe
JP4921890B2 (en) Magnetic refrigeration equipment
JP6365173B2 (en) Magnetic heat pump device
JP5857554B2 (en) Magnetic air conditioner
EP1847788A1 (en) Rotating magnet magnetic refrigerator
JP6361413B2 (en) Magnetic heat pump device
JP5817353B2 (en) Magnetic air conditioner
KR101398458B1 (en) Electric motor and electric vehicle having the same
JP6601300B2 (en) Thermomagnetic cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706