JPH0370944A - Air conditioner using magnetic refrigerator - Google Patents

Air conditioner using magnetic refrigerator

Info

Publication number
JPH0370944A
JPH0370944A JP20533989A JP20533989A JPH0370944A JP H0370944 A JPH0370944 A JP H0370944A JP 20533989 A JP20533989 A JP 20533989A JP 20533989 A JP20533989 A JP 20533989A JP H0370944 A JPH0370944 A JP H0370944A
Authority
JP
Japan
Prior art keywords
cold storage
magnetic
temperature
insulating container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20533989A
Other languages
Japanese (ja)
Inventor
Yuji Sakata
坂田 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20533989A priority Critical patent/JPH0370944A/en
Publication of JPH0370944A publication Critical patent/JPH0370944A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet

Abstract

PURPOSE:To obtain an air conditioner capable of starting quickly by providing a temperature difference between a higher temperature cold storage material and a lower temperature cold storage material in advance prior to the start of a magnetic refrigerating cycle. CONSTITUTION:Prior to the start of operation, an attempt must be made to drive a circulation device 8 for a cold storage liquid on the indoor side and a circulation device 9 for a cold storage liquid on the indoor side, and circulate the cold storage liquid which has passed through an indoor side heat exchanger 2 on the lower temperature side and the cold storage liquid which has passed through the outdoor side on the higher temperature side, and keep the liquid at low temperature on the heat absorption side and the liquid at high temperature on the discharge side. In this case, the cold storage liquid on the higher temperature side is heated with a heater or a similar device so as to produce a temperature difference between the lower temperature side and the higher temperature side. The liquid on the lower temperature side may be cooled with cold water. Cooling operation is started by a reciprocating motion of a magnetic work substance 6. In this manner, the temperature difference provided in advance inside the device makes it possible to increase the entropy of magnetic refrigeration and perform an effective magnetic refrigeration cycle from the starting point of operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気冷凍機を用いた空気調和装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air conditioner using a magnetic refrigerator.

従来の技術 室温付近で動作する磁気冷凍機としてブラウンの磁気冷
凍機がある。以下、第4図〜第6図に基づきブラウンの
磁気冷凍機について説明する。
BACKGROUND OF THE INVENTION A Braun magnetic refrigerator is a magnetic refrigerator that operates near room temperature. Hereinafter, the Braun magnetic refrigerator will be explained based on FIGS. 4 to 6.

′M4図にかいて、51は蓄冷液が充填された円筒状の
断熱容器で、その内部には常温付近で強磁性へと転移す
る磁気作業物質52が挿入配・置されている。また、こ
の磁9cfi:業物質52に対応するM熱容器51の外
周には、断熱容器51の軸心に沿った方向に磁場を発生
させることのできる電磁石53が備えられてお少、さら
に上記断熱容器51はその軸心方向で昇降自在に設けら
れている。
In Figure M4, reference numeral 51 denotes a cylindrical heat-insulating container filled with cold storage liquid, into which a magnetic working substance 52 that transforms into ferromagnetism at around room temperature is inserted and arranged. Further, an electromagnet 53 capable of generating a magnetic field in a direction along the axis of the heat insulating container 51 is provided on the outer periphery of the M heat container 51 corresponding to the magnetic material 52. The heat insulating container 51 is provided so as to be movable up and down in its axial direction.

以上のように構成された磁気冷凍機について、以下その
動作について説明する。
The operation of the magnetic refrigerator configured as described above will be explained below.

まず、第4図(alに示すように、断熱容器51を下げ
た状態で、電磁石53によ少B=7Tなる外磁場を与え
る。ここで磁気作業物質52の磁気エントロピー変化を
△5J(T1.7)とすると、この過程で磁9C作業物
質52はΔQ1=TOI△5J(TI 、 7) lの
発熱をする。
First, as shown in FIG. 4 (al), with the heat insulating container 51 lowered, an external magnetic field of a small amount B=7T is applied to the electromagnet 53. Here, the magnetic entropy change of the magnetic working material 52 is Δ5J (T1 .7), the magnetic 9C working material 52 generates heat of ΔQ1=TOIΔ5J(TI, 7) l in this process.

この発熱は磁気作業物質52カよび磁9cf1f業物質
52付近の蓄冷液の温度を上昇させる。この過程を磁気
作業物質52のS−T線図で表わすと、第6図に示すS
T平面上のA−B過程として表わされる。次に、第4図
(blに示すように、7Tの磁場を加えたま′ま断熱容
器51.をゆっ〈少上昇させる。このとき、磁気作業物
質52の温度は中部および下部の温度よう高くなってい
るので、磁気作業物質52は蓄冷液に放熱しながらこの
過程を終える。第4図(c3に示す最終状態では、磁気
作業物質52の温度はほぼ室温近くまで低下する。した
がって、この過程を第6図のST平面上で示すと、B−
Cとして表わされる。
This heat generation increases the temperature of the cold storage liquid near the magnetic working material 52 and the magnetic working material 52. When this process is represented by an ST diagram of the magnetic working material 52, the S shown in FIG.
It is expressed as an AB process on the T plane. Next, as shown in FIG. 4 (bl), the heat insulating container 51 is slowly raised while applying a 7T magnetic field. At this time, the temperature of the magnetic working material 52 becomes higher as the temperature in the middle and lower part Therefore, the magnetic working material 52 completes this process while dissipating heat to the cold storage liquid. In the final state shown in FIG. 4 (c3), the temperature of the magnetic working material 52 drops to almost room temperature. When shown on the ST plane in FIG. 6, B-
Denoted as C.

さらに、この状態で磁場を消磁する。すなわち、B=O
とする。これによシ、磁気作業物質52は△Q2=TO
・1△5J(TO,7)lの吸熱を行い、周囲の蓄冷液
を冷却する。この過程を第6図のST平面上で示すと、
C−Dとして表わされる。最後に磁場零(B=0)の状
態で、第4図id)から(arc示すように、断熱容器
5#−1:元の位置まで下降される。これはさきに述べ
たB−C過程の逆過程になう、今度は磁9PC作業物質
52が蓄冷液から熱を奪いながら、この過程が終る。最
終状態では、磁気作業物質52の温度は室温よシ高い温
度になシ、第6図のST平面上ではE点として表わされ
る。
Furthermore, the magnetic field is demagnetized in this state. That is, B=O
shall be. Accordingly, the magnetic working material 52 is △Q2=TO
- Absorbs heat of 1△5J(TO, 7)l to cool the surrounding cold storage liquid. If this process is shown on the ST plane in Figure 6,
Represented as CD. Finally, in the state of zero magnetic field (B=0), the insulation container 5#-1 is lowered to its original position as shown in FIG. The process is reversed, and this process ends as the magnetic 9PC working material 52 takes heat from the cold storage liquid.In the final state, the temperature of the magnetic working material 52 is higher than room temperature. It is represented as point E on the ST plane in the figure.

以下、このサイクルはE 、F 、G 、H・・・・と
続き、断熱容器中の温度勾配は回を重ねるごとに大きく
なっていく(橋本著「磁気冷凍と磁性材料の応用」春 株式会社工業調す行P212〜214参照)。なか、第
5図に、第4図(a)〜(d)に対応する磁場の印加状
態を示す。
Thereafter, this cycle continues as E, F, G, H, etc., and the temperature gradient in the insulated container becomes larger each time (Hashimoto, "Magnetic Refrigeration and Applications of Magnetic Materials", Haru Co., Ltd. (Refer to Industrial Research Line P212-214). Among them, FIG. 5 shows the applied state of the magnetic field corresponding to FIGS. 4(a) to 4(d).

発明が解決しようとする課題 しかしながら、上記の磁気冷凍機を空気調和装置に使用
する場合、初期温度TOからサイクルを重ねる毎に蓄冷
液の温度差が大きくなるように動作するため、蓄冷液に
温度差を発生させるためのサイクルを要する問題点を有
していた。
Problems to be Solved by the Invention However, when the magnetic refrigerator described above is used in an air conditioner, the temperature difference in the cool storage liquid increases with each cycle from the initial temperature TO, so the temperature difference in the cool storage liquid increases. This method had the problem of requiring a cycle to generate the difference.

と そこで本発明は、空気調へ行なう際に、あらかしめ蓄冷
液に放熱側では高温に、吸熱側では低温になるよう温度
差を設け、磁気冷凍機を使用した場合でも、立ち上がシ
の早い空気調和装置を提供することを目的とする。
Therefore, in the present invention, when performing air conditioning, a temperature difference is created in the cold storage liquid so that the heat radiation side is high temperature and the heat absorption side is low temperature. The purpose is to provide a quick air conditioner.

課題を解決するための手段 上記課題を解決するため、本発明の第1の手段は、筒状
の断熱容器内に、磁気作業物質を断熱容器の軸心方向で
移動自在に配置するとともに、断熱容器の外周部に電磁
石を配置し、上記断熱容器内に蓄冷材を充填し、上記断
熱容器の一端側を室内熱交換器側の蓄冷材循環配管途中
に介装するとともに、断熱容器の他端側を室外熱交換器
側の蓄冷材循環配管途中に介装し、かつ磁気冷凍サイク
ルの開t!hItIに、高温側蓄冷材と低温側蓄冷材と
の間に温度差を設けるようにした磁気冷凍機を使用した
空気調和装置である。
Means for Solving the Problems In order to solve the above-mentioned problems, a first means of the present invention is to dispose a magnetic working substance in a cylindrical heat-insulating container so as to be movable in the axial direction of the heat-insulating container. An electromagnet is placed on the outer periphery of the container, a cold storage material is filled in the heat insulating container, one end of the heat insulating container is interposed in the middle of the cold storage material circulation piping on the indoor heat exchanger side, and the other end of the heat insulating container is The side is interposed in the middle of the cold storage material circulation piping on the outdoor heat exchanger side, and the magnetic refrigeration cycle is opened! This is an air conditioner using a magnetic refrigerator in which a temperature difference is provided between a high-temperature side cold storage material and a low-temperature side cold storage material.

また、上記課題を解決するため、本発明の第2の手段は
、円筒状の断熱容器内部を断熱壁にょシ2分割するとと
もに、この断熱容器内に断熱壁を貫通する環状の磁気作
業物質を回転自在に配置し、上記断熱壁の両側の所定範
囲に亘って磁気作業物質に磁界を印加する電磁石を配置
し、上記断熱壁によって分割された断熱容器の一方側を
室内熱交換器側の蓄冷材循環配管途中に介装するととも
に、断熱容器の他端側を室外熱交換器側の蓄冷材循環配
管途中に介装し、かつ磁気冷凍サイクルの開始前に、高
温側蓄冷材と低温側蓄冷材との間に温度差を設けるよう
にした磁気冷凍機を使用した空気調和装置である。
In addition, in order to solve the above problems, the second means of the present invention is to divide the inside of a cylindrical heat-insulating container into two by a heat-insulating wall, and to insert an annular magnetic working material inside the heat-insulating container that penetrates the heat-insulating wall. An electromagnet is arranged so as to be rotatable and applies a magnetic field to the magnetic work substance over a predetermined range on both sides of the heat insulating wall, and one side of the heat insulating container divided by the heat insulating wall is used for cold storage on the indoor heat exchanger side. At the same time, the other end of the insulating container is installed in the middle of the cold storage material circulation piping on the outdoor heat exchanger side, and before the start of the magnetic refrigeration cycle, the high temperature side cold storage material and the low temperature side cold storage material are This is an air conditioner that uses a magnetic refrigerator that creates a temperature difference between the refrigerator and the refrigerator.

作用 上記の構成によると、磁気冷凍サイクルの開始前に、高
温側2蓄冷材と低温側蓄冷材との間にはあらかじめ温度
差が設けられるため、その立上シを早くすることができ
る。また、磁気作業物質を環状にするとともに回転自在
に構成することによシ、磁気冷凍サイクルを連続して行
うことができる。
Effects According to the above configuration, a temperature difference is provided in advance between the high-temperature side 2 regenerator materials and the low-temperature side regenerator materials before the start of the magnetic refrigeration cycle, so that the start-up can be accelerated. Further, by making the magnetic working substance circular and rotatable, the magnetic refrigeration cycle can be performed continuously.

実施例 以下、本発明の第1の実施例を第1図に基づき説明する
EXAMPLE A first example of the present invention will be described below with reference to FIG.

第1図において、1は筒状の断熱容器で、その上端部は
室内側熱交換器2側の蓄冷液(蓄冷材)の循環配管3の
途中に介装され、曾たその下端側は室外側熱交換器4側
の蓄冷液の循環配管5の途中に介装されている。また、
上記断熱容器1の内部には磁気作業物質(断熱性を有す
るとともに小さい穴が多数形成されたもの)6が昇降自
在に配置されるとともに、断熱容器1の所定位置外周に
は、その軸心に沿って磁場を発生させる電磁石7が備え
られている。なか、図中8シよび9はそれぞれの循環配
管3.5途中に介装された蓄冷液の循環装置、iた10
釦よび11はそれぞれの熱交換器2.4に設けられた送
風機である。
In Fig. 1, reference numeral 1 denotes a cylindrical heat insulating container, the upper end of which is inserted in the middle of the circulation pipe 3 for cold storage liquid (cold storage material) on the indoor heat exchanger 2 side, and the lower end of the container 1 that is connected to the indoor heat exchanger 2. It is interposed in the middle of the cold storage liquid circulation pipe 5 on the outside heat exchanger 4 side. Also,
Inside the heat insulating container 1, a magnetic working material (having heat insulating properties and having many small holes formed therein) is disposed so as to be movable up and down. An electromagnet 7 is provided along which a magnetic field is generated. In the figure, 8 and 9 indicate a cold storage liquid circulation device installed in the middle of each circulation pipe 3.5, and 10.
Buttons 11 are blowers provided in each heat exchanger 2.4.

上記Wllitにおいて、その動作を説明する。The operation of Wllit above will be explained.

筐ず、室内温度が室外温度よシ低く、室内を冷房する場
合を例に挙げる。運転の開始に先立ち、室内側蓄冷液の
循環装置8シよび室外側蓄冷液の循環装置9を駆動して
、室内側熱交換器2を通ってきた蓄冷液を低温側で、室
外側を通ってきた蓄冷液を高温側で循環させ、吸熱側で
は低温に、放熱側では高温にしておく。この場合、たと
えば高温側の蓄冷液はヒータなどに加熱されて、低温側
の蓄冷液との間で温度差が与えられる。つまシ、両者に
温度差があれば良く、したがって低温側蓄冷液を冷水な
どであらかじめ冷却してかいてもよい。そして、冷房運
転は磁気作業物質6の往復移動によシ開始される。この
ように、磁気冷凍機の運転に先立ち、装置の内部であら
かじめ温度差を設けることによシ、運転開始時点にかけ
る磁気冷凍のエントロピーを増大させ、運転開始時点か
ら能力のある磁気冷凍サイクルを行うことができる。
Let us take as an example a case where the indoor temperature is lower than the outdoor temperature and the room is to be cooled. Prior to the start of operation, the indoor cold storage liquid circulation device 8 and the outdoor cold storage liquid circulation device 9 are activated to circulate the cold storage liquid that has passed through the indoor heat exchanger 2 through the outdoor side on the low temperature side. The cool storage liquid is circulated on the high-temperature side, and kept at a low temperature on the heat-absorbing side and a high temperature on the heat-radiating side. In this case, for example, the cold storage liquid on the high temperature side is heated by a heater or the like, and a temperature difference is given between it and the cold storage liquid on the low temperature side. As long as there is a temperature difference between the two, the cold storage liquid on the low temperature side may be cooled in advance with cold water or the like. Then, the cooling operation is started by reciprocating the magnetic working material 6. In this way, by creating a temperature difference inside the device before operating the magnetic refrigerator, the entropy of the magnetic refrigeration applied at the start of operation is increased, and a magnetic refrigeration cycle with high capacity can be achieved from the start of operation. It can be carried out.

次に、本発明の第2の実施例を第2図シよび第3図、に
基づき説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 2 and 3.

第2図において、21は円筒形の断熱容器で、内部は断
熱壁22によシ2分割されるとともに、この断熱壁22
を貫通して環状の磁気作業物質23が断熱容器21の内
周に沿って配置され、さらに断熱容器21の内部には、
蓄冷液(蓄冷材)が充填されている。そして、さらに磁
気作業物質23の一部を囲むようにすなわち断熱壁22
の両側に亘って電磁石例が配置されている。また、上記
断熱容器21の一方側は、室内側熱交換器25側の蓄冷
液の循環配管あ途中に介装されるとともに、他方側は、
室外側熱交換器27側の蓄冷液の循環配管28途中に介
装されている。なか、図中、29シよび30はそれぞれ
の循環配管26.27途中に介装された蓄冷液の循環装
置、また31カよび32はそれぞれの熱交換器25.2
7に設けられた送風機である。
In FIG. 2, reference numeral 21 denotes a cylindrical heat insulating container, the inside of which is divided into two parts by a heat insulating wall 22.
An annular magnetic working material 23 is disposed along the inner periphery of the heat insulating container 21, and further inside the heat insulating container 21,
It is filled with cold storage liquid (cold storage material). Then, a heat insulating wall 22 further surrounds a part of the magnetic working material 23.
Examples of electromagnets are arranged on both sides. Further, one side of the heat insulating container 21 is interposed in the cold storage liquid circulation pipe on the indoor heat exchanger 25 side, and the other side is
It is interposed in the middle of the cold storage liquid circulation pipe 28 on the outdoor side heat exchanger 27 side. In the figure, 29 and 30 are cold storage liquid circulation devices installed in the middle of the respective circulation pipes 26 and 27, and 31 and 32 are the respective heat exchangers 25 and 27.
This is a blower installed at 7.

上記のように構成された磁気冷凍機を使用した空気調和
装置について、以下その動作を第3図によシ説明する。
The operation of the air conditioner using the magnetic refrigerator configured as described above will be explained below with reference to FIG.

運転開始以前に熱交換器内の蓄冷液を循環させて温度差
を設けるのは第1o実施例と同じであるが、磁気作業物
質23は第3図に示す矢印A方向に回転され、各(al
〜(dlの範囲は、第4図にかけるブラウンの磁気冷凍
サイクルの(si)〜(d)にそれぞれ相当する動作を
行ない、磁気冷凍機として動作することになる。このよ
うに、磁気作業物質を回転させることによう連続した磁
気冷凍機の運転が実現でき、しかも従来のように電磁石
の入シ・切シを行う必要がないため、その制御が容易と
なる。
It is the same as the 1oth embodiment that the cold storage liquid in the heat exchanger is circulated to create a temperature difference before the start of operation, but the magnetic working material 23 is rotated in the direction of arrow A shown in FIG. al
The range of ~(dl) performs operations corresponding to (si) to (d) of the Brown magnetic refrigeration cycle shown in Fig. 4, respectively, and operates as a magnetic refrigerator.In this way, the magnetic working material It is possible to realize continuous operation of the magnetic refrigerator by rotating the magnetic refrigerator, and since there is no need to turn on and off the electromagnet as in the conventional case, the control becomes easy.

発明の効果 以上のように、本発明の構成によれば、磁気冷凍サイク
ルの開始前に、高温側蓄冷材と低温側蓄冷材との間には
あらかじめ温度差が設けられるため、その立上シを早く
することができ、また磁気作業物質を環状にするととも
に回転自在に構成したので、磁気冷凍サイクルを連続し
て行うことができる。
Effects of the Invention As described above, according to the configuration of the present invention, a temperature difference is established between the high-temperature side cold storage material and the low-temperature side cold storage material before the start of the magnetic refrigeration cycle. In addition, since the magnetic working material is annular and rotatable, the magnetic refrigeration cycle can be performed continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例にかける空気調和装置の
全体概略構成図、第2図は本発明の第2の実施例におけ
る空気調和装置の全体概略構成図、第3図は本発明の第
2の実施例の磁気冷凍サイクルの動作説明図、第4図は
従来のブラウンの磁気冷凍機の動作図、第5図は第4図
の各過程にかける磁場の状態を示すグラフ、第6図はブ
ラウンの磁気冷凍機のS−TM図である。 1・・・断熱容器、2・・・室内側熱交換器、3・・・
循環配管、4・・・室外側熱交換器、5・・・循環配管
、6・・・磁気作業物質、7・・・電磁石、21・・・
断熱容器、22・・・断熱壁、23・・・磁気作業物質
、24・・・電磁石、25・・・室内側熱交換器、26
・・・循環配管、27・・・室外側熱交換器、28・・
・循環配管。
FIG. 1 is an overall schematic configuration diagram of an air conditioner according to a first embodiment of the present invention, FIG. 2 is an overall schematic configuration diagram of an air conditioner according to a second embodiment of the present invention, and FIG. An explanatory diagram of the operation of the magnetic refrigeration cycle according to the second embodiment of the invention, FIG. 4 is an operation diagram of the conventional Braun magnetic refrigerator, and FIG. 5 is a graph showing the state of the magnetic field applied to each process in FIG. FIG. 6 is an S-TM diagram of a Braun magnetic refrigerator. 1... Insulated container, 2... Indoor heat exchanger, 3...
Circulation piping, 4...Outdoor heat exchanger, 5...Circulation piping, 6...Magnetic working material, 7...Electromagnet, 21...
Heat insulating container, 22... Heat insulating wall, 23... Magnetic working substance, 24... Electromagnet, 25... Indoor heat exchanger, 26
...Circulation piping, 27...Outdoor heat exchanger, 28...
・Circulation piping.

Claims (1)

【特許請求の範囲】 1、筒状の断熱容器内に、磁気作業物質を断熱容器の軸
心方向で移動自在に配置するとともに、断熱容器の外周
部に電磁石を配置し、上記断熱容器内に蓄冷材を充填し
、上記断熱容器の一端側を室内熱交換器側の蓄冷材循環
配管途中に介装するとともに、断熱容器の他端側を室外
熱交換器側の蓄冷材循環配管途中に介装し、かつ磁気冷
凍サイクルの開始前に、高温側蓄冷材と低温側蓄冷材と
の間に温度差を設けるようにした磁気冷凍機を使用した
空気調和装置。 2、円筒状の断熱容器内部を断熱壁により2分割すると
ともに、この断熱容器内に断熱壁を貫通する環状の磁気
作業物質を回転自在に配置し、上記断熱壁の両側の所定
範囲に亘って磁気作業物質に磁界を印加する電磁石を配
置し、上記断熱壁によって分割された断熱容器の一方側
を室内熱交換器側の蓄冷材循環配管途中に介装するとと
もに、断熱容器の他端側を室外熱交換器側の蓄冷材循環
配管途中に介装し、かつ磁気冷凍サイクルの開始前に、
高温側蓄冷材と低温側蓄冷材との間に温度差を設けるよ
うにした磁気冷凍機を使用した空気調和装置。
[Claims] 1. A magnetic working substance is arranged in a cylindrical heat-insulating container so as to be movable in the axial direction of the heat-insulating container, and an electromagnet is arranged on the outer periphery of the heat-insulating container. Fill with cold storage material, and insert one end of the heat insulating container in the middle of the cold storage material circulation piping on the indoor heat exchanger side, and insert the other end of the heat insulating container in the middle of the cold storage material circulation piping on the outdoor heat exchanger side. An air conditioner using a magnetic refrigerating machine that is equipped with a magnetic refrigerating machine and that creates a temperature difference between a high-temperature side regenerator and a low-temperature regenerator before starting a magnetic refrigeration cycle. 2. The inside of the cylindrical heat insulating container is divided into two parts by a heat insulating wall, and a ring-shaped magnetic working material is rotatably arranged inside the heat insulating container to penetrate through the heat insulating wall, and is spread over a predetermined range on both sides of the heat insulating wall. An electromagnet that applies a magnetic field to the magnetic working substance is arranged, one side of the insulating container divided by the above-mentioned insulating wall is interposed in the middle of the cold storage material circulation piping on the indoor heat exchanger side, and the other end of the insulating container is It is installed in the middle of the cold storage material circulation piping on the outdoor heat exchanger side, and before starting the magnetic refrigeration cycle,
An air conditioner that uses a magnetic refrigerator that creates a temperature difference between a high-temperature side cold storage material and a low-temperature side cold storage material.
JP20533989A 1989-08-08 1989-08-08 Air conditioner using magnetic refrigerator Pending JPH0370944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20533989A JPH0370944A (en) 1989-08-08 1989-08-08 Air conditioner using magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20533989A JPH0370944A (en) 1989-08-08 1989-08-08 Air conditioner using magnetic refrigerator

Publications (1)

Publication Number Publication Date
JPH0370944A true JPH0370944A (en) 1991-03-26

Family

ID=16505270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20533989A Pending JPH0370944A (en) 1989-08-08 1989-08-08 Air conditioner using magnetic refrigerator

Country Status (1)

Country Link
JP (1) JPH0370944A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112709A (en) * 2004-10-14 2006-04-27 Ebara Corp Magnetic refrigerating device
KR100681462B1 (en) * 2005-05-23 2007-02-09 주식회사 대우일렉트로닉스 Magneto-Refrigeration Air conditioner
WO2007055506A1 (en) * 2005-11-10 2007-05-18 Daewoo Electronics Corperation Magnetic refrigerator
KR100728495B1 (en) * 2005-11-10 2007-06-14 주식회사 대우일렉트로닉스 magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
WO2007073038A1 (en) * 2005-12-21 2007-06-28 Daewoo Electronics Corporation Magnetic refrigerator
KR100737781B1 (en) * 2006-07-10 2007-07-10 주식회사 대우일렉트로닉스 Rotation type regenerator and magnetic refrigerator using the regenerator
KR100768006B1 (en) * 2005-12-21 2007-10-18 주식회사 대우일렉트로닉스 magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
JP2007271138A (en) * 2006-03-30 2007-10-18 Toshiba Corp Refrigerating machine
JP2011160846A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Washing and drying machine
JP2012503754A (en) * 2008-09-25 2012-02-09 クールテック アプリケーションズ エス.エイ.エス. Magnetocaloric effect element
JP2015078790A (en) * 2013-10-16 2015-04-23 株式会社デンソー Thermo-magnetic cycle device
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus
KR101866840B1 (en) * 2012-03-26 2018-06-14 삼성전자주식회사 Magnetic cooling apparatus
CN114183948A (en) * 2021-12-16 2022-03-15 中国科学院江西稀土研究院 Multi-field coupling solid-state refrigerating device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112709A (en) * 2004-10-14 2006-04-27 Ebara Corp Magnetic refrigerating device
KR100681462B1 (en) * 2005-05-23 2007-02-09 주식회사 대우일렉트로닉스 Magneto-Refrigeration Air conditioner
JP2009515135A (en) * 2005-11-10 2009-04-09 株式会社大宇エレクトロニクス Magnetic refrigerator
WO2007055506A1 (en) * 2005-11-10 2007-05-18 Daewoo Electronics Corperation Magnetic refrigerator
KR100728495B1 (en) * 2005-11-10 2007-06-14 주식회사 대우일렉트로닉스 magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
JP4842327B2 (en) * 2005-11-10 2011-12-21 株式会社大宇エレクトロニクス Magnetic refrigerator
US7603865B2 (en) 2005-11-10 2009-10-20 Daewoo Electronics Corporation Magnetic refrigerator
KR100768006B1 (en) * 2005-12-21 2007-10-18 주식회사 대우일렉트로닉스 magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
EP1979689A1 (en) * 2005-12-21 2008-10-15 Daewoo Electronics Corporation Magnetic refrigerator
EP1979689A4 (en) * 2005-12-21 2009-05-13 Daewoo Electronics Corp Magnetic refrigerator
JP2009520946A (en) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス Magnetic refrigerator
US7644588B2 (en) 2005-12-21 2010-01-12 Daewoo Electronics Corporation Magnetic refrigerator
JP4825879B2 (en) * 2005-12-21 2011-11-30 株式会社大宇エレクトロニクス Magnetic refrigerator
WO2007073038A1 (en) * 2005-12-21 2007-06-28 Daewoo Electronics Corporation Magnetic refrigerator
JP2007271138A (en) * 2006-03-30 2007-10-18 Toshiba Corp Refrigerating machine
JP4660412B2 (en) * 2006-03-30 2011-03-30 株式会社東芝 refrigerator
KR100737781B1 (en) * 2006-07-10 2007-07-10 주식회사 대우일렉트로닉스 Rotation type regenerator and magnetic refrigerator using the regenerator
WO2008007833A1 (en) * 2006-07-10 2008-01-17 Daewoo Electronics Corperation Rotation type regenerator and magnetic refrigerator using the regenerator
JP2012503754A (en) * 2008-09-25 2012-02-09 クールテック アプリケーションズ エス.エイ.エス. Magnetocaloric effect element
JP2011160846A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Washing and drying machine
KR101866840B1 (en) * 2012-03-26 2018-06-14 삼성전자주식회사 Magnetic cooling apparatus
JP2015078790A (en) * 2013-10-16 2015-04-23 株式会社デンソー Thermo-magnetic cycle device
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus
CN114183948A (en) * 2021-12-16 2022-03-15 中国科学院江西稀土研究院 Multi-field coupling solid-state refrigerating device
CN114183948B (en) * 2021-12-16 2023-07-04 中国科学院江西稀土研究院 Multi-field coupling solid-state refrigeration device

Similar Documents

Publication Publication Date Title
US7481064B2 (en) Method and device for continuous generation of cold and heat by means of the magneto-calorific effect
JPH0370944A (en) Air conditioner using magnetic refrigerator
JPS58108370A (en) Method and device for operating cooling or heat pump
JP3362596B2 (en) Cooler defroster
JPH07180921A (en) Stirling cold storage box
JP2004278968A (en) Cold heat transferring device for stirling refrigerating machine
JP2000205682A (en) Cooler
KR100208017B1 (en) Multiple hear exchanger and stirring refrigerator
JP2023079333A (en) refrigerator
JPH1068569A (en) Cold/hot storeroom
JPH0854151A (en) Pulse tube refrigerating machine
KR930000940B1 (en) Vuilleumier heat pump air conditioner
JPH08121370A (en) Refrigerating cycle
JPH11230629A (en) Stirling cooling and heating device
JP2000353588A (en) Induction heating roller device
KR100657557B1 (en) Apparatus and method for controlling fixed temperature of refrigerator
JPS59176528A (en) Floor heating device
JPH02183780A (en) Cooling and heating device
JP2552895B2 (en) heat pump
JPS5941726A (en) Space heating apparatus
KR20220113719A (en) Devices and household appliances for self-cooling
JPS5937248A (en) Heat exchanging apparatus
JPH06265238A (en) Refrigerating/cooling system by composite of peltier device and hydrogen-occluding alloy
JPH07167522A (en) Method and apparatus for cooling and heating with molecular heat pump or reversed carnot cycle
JP2002221384A (en) Refrigerator