JP3362596B2 - Cooler defroster - Google Patents
Cooler defrosterInfo
- Publication number
- JP3362596B2 JP3362596B2 JP07589596A JP7589596A JP3362596B2 JP 3362596 B2 JP3362596 B2 JP 3362596B2 JP 07589596 A JP07589596 A JP 07589596A JP 7589596 A JP7589596 A JP 7589596A JP 3362596 B2 JP3362596 B2 JP 3362596B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- cooler
- electric heater
- evaporator
- defrosting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Freezers Or Refrigerated Showcases (AREA)
- Defrosting Systems (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、冷凍,冷蔵オープ
ンショーケースなどに搭載した冷凍機のフィン・チュー
ブ形蒸発器を対象とする冷却器の除霜装置に関する。
【0002】
【従来の技術】まず、本発明の実施対象となる冷気循環
式オープンショーケースの構成を図3に示す。図におい
て、1は前面開放形のケース本体、2,3は庫内の商品
陳列室4を取り巻いてケース本体1の外箱と内箱との間
に画成したインナ通風ダクト,アウタ通風ダクトであ
り、インナダクト2には冷凍機のコンデンシングユニッ
ト7に膨張弁6を介して配管接続されたフィン・チュー
ブ形蒸発器(冷却器)5,およびインナ送風ファン8
が、またアウタ通風ダクト3にはアウタ送風ファン9が
配置されている。なお、10は商品陳列室4に配置した
商品陳列棚である。
【0003】かかる構成で、ショーケースの保冷運転時
(コンデンシングユニット7、送風ファン8,9を運
転)には、前記蒸発器5と熱交換した冷気が前記の通風
ダクトを循環してケース本体1の前面に冷気エアカーテ
ンを吹き出し形成し、外気熱の庫内への侵入を遮蔽しな
がら商品陳列棚10に並べた商品を保冷する。ところ
で、上記ショーケースでは、保冷運転に伴って蒸発器5
の表面には霜が付着し、その着霜量が時間の経過ととも
に増加する。しかも、蒸発器5の表面に着霜すると、霜
が伝熱抵抗となって蒸発器と循環空気との熱交換性能を
低下させるほか、霜が循環冷気の流れを阻害してショー
ケースの保冷性能を低下させる。そこで、通常は1日に
数回程度ショーケースを保冷運転から除霜に切換えて蒸
発器5に付着している霜を融解除去するようにしてい
る。
【0004】この場合の除霜方式として、従来では次記
のような方式が公知である。1)蒸発器5の上流側に除
霜用の電気ヒータを配置し、ヒータで加熱昇温した循環
空気を蒸発器に送り込んで除霜する。2)前記した除霜
用の電気ヒータを蒸発器の内部に配置してフィンと伝熱
的に結合させ、ヒータ通電により蒸発器のフィンを直接
加熱て除霜を行う。
【0005】3)特開平5−346284号公報で提案
されているように、蒸発器にヒートパイプを組み込み、
蒸発器から引き出したヒートパイプの蒸発部に伝熱結合
した電気ヒータからヒートパイプを介して蒸発器に除霜
熱を付与する。
【0006】
【発明が解決しようとする課題】ところで、前記した従
来の各種除霜方式は、それぞれ一長一短があって次記の
ような問題点が残る。すなわち、前記1)の方式では、
除霜時に蒸発器を通過した空気流がそのまま庫内側にも
循環して流れるために、庫内に並べた陳列商品の品温が
上昇して商品の鮮度を劣化させる。そのほかに、蒸発器
の着霜量が多いと除霜空気に対する通風抵抗が大きくな
るために、除霜時間が長引く。
【0007】また、前記2)の方式では、蒸発器の内部
に敷設しり電気ヒータでフィンを直接加熱するようにし
たので、除霜効率が高くて短時間で除霜を終了できる利
点がある反面、フィンに電気ヒータを密着させて伝熱結
合させることが構造的に困難である。例えば図4のよう
に、蒸発器5のフィン5aと密着するように拡管して蒸
発器内に配管した伝熱パイプ11の中に電気ヒータ12
を挿入し、該電気ヒータ12を通電してフィン5aの表
面に付着している霜13を融解させる場合に、伝熱パイ
プ11と電気ヒータ12とが密着してないと伝熱効率が
低く、このためにヒータが異常過熱されて高温となり、
除霜終了後もしばらくの間はヒータ12の熱容量でフィ
ン5a,および周囲空気が加熱され、保冷運転再開後に
庫内温度が所定の保冷温度に低下するまでのプルダウン
時間が長くかかる。
【0008】さらに3)のヒートパイプによる除霜方式
は、前記1),2)に方式に比べて除霜効率が高く、かつ
電気ヒータの過熱する問題もないが、ヒートパイプの蒸
発部をフィン・チューブ形蒸発器の外部に引出して配管
するために、ショーケースの庫内底部に配置した蒸発器
のように、蒸発器の周域,とりわけ蒸発器の下方にヒー
トパイプの配管スペースを確保することが困難な場合に
は適用が難しい。
【0009】本発明は上記の点にかんがみなされたもの
であり、その目的は前記した各種除霜方式の問題点を解
消し、特にショーケースに搭載した冷却器に好適なコン
パクトで除霜効率の高い新規な除霜装置を提供すること
にある。
【0010】
【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、低沸点の作動液を封入した密閉管
に電気ヒータを内蔵した構造のヒートパイプを、フィン
と伝熱結合して冷却器の内方にほぼ水平方向に配管し、
かつ電気ヒータを作動液中に浸漬させるように、ヒート
パイプの長手方向に沿ってパイプ内の底部側に敷設し
て、冷却器の除霜時に前記電気ヒータを通電して作動液
を加熱し、作動液の蒸発,凝縮サイクルによりフィンに
除霜熱を付与して冷却器表面に着霜した霜を融解除去す
るものとする。
【0011】このように、冷却器の内部にほぼ水平方向
に配管したヒートパイプに電気ヒータを内蔵させ、かつ
電気ヒータを作動液中に浸漬させるように、ヒートパイ
プの長手方向に沿ってパイプ内の底部側に敷設すること
により、ヒートパイプに封入した作動液をパイプ内に敷
設した電気ヒータで直接加熱して沸騰させ、その蒸気が
凝縮する際の潜熱でヒートパイプより冷却器のフィンを
均一に加熱して効率よく除霜を行うことができ、電気ヒ
ータと作動液との間に高い伝熱性が確保できて加熱効率
が向上する。
【0012】しかも、電気ヒータより付与した除霜熱
は、作動液の蒸発/凝縮サイクルにより熱移動が行われ
るので、蒸発部と凝縮部との間の小さな温度差で多量の
熱を輸送することができ、これにより電気ヒータの過熱
による庫内温度上昇もない。また、冷却器から外部にヒ
ートパイプを引出し配管する必要がないので、コンパク
トな構成となる。
【0013】
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。なお、各実施例において、図4に対応
する同一部材には同じ符号が付してある。
〔実施例1〕
図1,図2において、フィン5aと冷媒パイプ5bから
なるフィン・チューブ形蒸発器5は、例えば図3に示し
たオープンショーケースに搭載されたものであり、蒸発
器5の内方にはフィン5aと伝熱結合して本発明になる
ヒータ内蔵型のヒートパイプ14が蒸発器5の全幅に亘
ってほぼ水平方向に敷設されている。このヒートパイプ
14は両端を封じ切りしり銅などの伝熱性の高い密閉管
14aの中に凝縮空間を残して作動液14bを封入し、
さらに密閉管14aの長手方向に沿ってその底部側には
電気ヒータ12が作動液14bの液中に浸漬するように
収設されている。なお、かかるヒートパイプ14を蒸発
器5に組み込むには、まず銅パイプをフィン5aに穿孔
した穴の中に挿入配管し、この状態でパイプを拡管して
その周面をフィンに密着させた後に、電気ヒータ12を
収容し、さらにパイプ内を真空引きて適量の作動液14
bを封入し、その後にパイプを封じ切って密閉する。
【0014】また、前記の作動液14bは、その凝固点
が保冷運転時の冷媒蒸発温度よりも低い低沸点の液であ
り、例えばハロゲン化炭化水素系冷媒(HFC−134
a,HCF−22などのフロン系冷媒),フッ化炭素,
アルコールなどが採用できる。なお、15は電気ヒータ
12の電源である。かかる構成で、蒸発器5を搭載した
ショーケースを保冷運転から除霜に切り換えるには、冷
凍機の運転を停止すると同時に電気ヒータ12を通電す
る。これによりヒートパイプ14に封入されている作動
液14bが加熱,沸騰するとともに、その蒸気が図2の
矢印Pのように蒸気流となってパイプ内を隅々まで拡散
し、ヒートパイプ14の上側壁面よりフィン5aに放熱
して凝縮して液体になった後、ヒートパイプ内の底部に
還流するように蒸発/凝縮サイクルを繰り返す。そし
て、作動液の蒸気が凝縮する際に潜熱を放熱してフィン
5aの表面に付着している霜13を融解除去する。しか
も、パイプ内に拡散した作動液の蒸気は温度の低い部分
に集中して凝縮するので、蒸発器全体が均一加熱され、
霜の部分的な溶け残りを生じることなく除霜できる。
【0015】上記の説明から判るように、電気ヒータ1
2を内蔵したヒートパイプ14は、先記の特開平5−3
46284号公報に開示されている構成のように、ヒー
トパイプの蒸発部をフィン・チューブ形蒸発器の外方に
引き出して電気ヒータと結合する必要がなく、ヒートパ
イプ全体を蒸発器5の内部に組み込んでコンパクトに構
成できる。
【0016】
【発明の効果】以上述べたように、本発明の構成によれ
ば、従来の各種除霜方式に比べて次記のような効果を奏
する。
1)冷却器全体を均一加熱してフィンに着霜している霜
を効率よく融解除去することができる。
【0017】2)電気ヒータと冷却器表面に付着した霜
との間の熱伝達には、作動液の蒸発,凝縮による潜熱を
利用するために伝熱経路の熱抵抗が非常に小さく、かつ
電気ヒータが異常過熱されることもない。これにより、
ショーケースの冷却器では除霜中の庫内温度上昇を抑え
つつ、除霜後の保冷運転再開時のプルダウン時間を短縮
できる。
【0018】3)除霜熱源となる電気ヒータをヒートパ
イプに内蔵して冷却器内に組み込んだ構成により、従来
のヒートパイプ除霜方式のようにヒートパイプの蒸発部
を冷却器の外側へ引出して電気ヒータと結合する必要が
なく、したがって、ショーケースの庫内底部側通風ダク
ト内に配置した冷却器のように、冷却器の下側に余分な
スペースを確保するのが困難である場合でも、スペース
に制約されることなく実施できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defroster for a chiller for a fin tube type evaporator of a refrigerator mounted on a freezing or refrigerated open showcase or the like. About. 2. Description of the Related Art First, the configuration of a cool air circulation type open showcase to which the present invention is applied is shown in FIG. In the figure, 1 is a front open case body, 2 and 3 are an inner ventilation duct and an outer ventilation duct defined between an outer box and an inner box of the case body 1 surrounding a product display room 4 in the refrigerator. The inner duct 2 has a fin-tube evaporator (cooler) 5 connected to a condensing unit 7 of a refrigerator via an expansion valve 6, and an inner blower fan 8.
However, the outer ventilation duct 3 is provided with an outer ventilation fan 9. Reference numeral 10 denotes a product display shelf arranged in the product display room 4. [0003] With such a configuration, during the cold-holding operation of the showcase (the condensing unit 7 and the blowing fans 8, 9 are operated), the cool air that has exchanged heat with the evaporator 5 circulates through the ventilation duct and the case body. A cold air curtain is blown out on the front face of 1 to keep the products arranged on the product display shelf 10 cool while shielding the outside air heat from entering the inside of the refrigerator. By the way, in the above showcase, the evaporator 5
Frost adheres to the surface of the surface, and the amount of frost increases with time. In addition, when frost forms on the surface of the evaporator 5, the frost acts as a heat transfer resistance, lowering the heat exchange performance between the evaporator and the circulating air. Lower. Therefore, usually, the showcase is switched from the cooling operation to the defrosting several times a day so that the frost adhering to the evaporator 5 is melted and removed. [0004] As a defrosting method in this case, the following method has been conventionally known. 1) An electric heater for defrosting is arranged on the upstream side of the evaporator 5, and circulating air heated and heated by the heater is sent to the evaporator for defrosting. 2) The above-described electric heater for defrosting is disposed inside the evaporator and is thermally coupled to the fins, and the fins of the evaporator are directly heated by energizing the heater to perform defrosting. [0005] 3) As proposed in JP-A-5-346284, a heat pipe is incorporated in an evaporator.
The defrosting heat is applied to the evaporator via the heat pipe from an electric heater which is thermally coupled to the evaporator of the heat pipe drawn from the evaporator. [0006] The above-mentioned various conventional defrosting methods have their respective advantages and disadvantages, and the following problems remain. That is, in the method 1),
Since the airflow that has passed through the evaporator during defrosting also circulates and flows to the inside of the refrigerator as well, the temperature of the displayed products arranged in the refrigerator increases and the freshness of the products is deteriorated. In addition, when the amount of frost formed on the evaporator is large, the ventilation resistance against the defrosted air increases, so that the defrosting time is prolonged. In the method 2), since the fins are laid directly inside the evaporator and directly heated by the electric heater, the defrosting efficiency is high and the defrosting can be completed in a short time. In addition, it is structurally difficult to bring an electric heater into close contact with the fins and heat-transfer them. For example, as shown in FIG. 4, an electric heater 12 is inserted into a heat transfer pipe 11 which is expanded so as to be in close contact with the fins 5a of the evaporator 5 and is piped into the evaporator.
When the electric heater 12 is energized to melt the frost 13 adhering to the surface of the fin 5a, the heat transfer efficiency is low unless the heat transfer pipe 11 and the electric heater 12 are in close contact with each other. As a result, the heater becomes abnormally
The fins 5a and the surrounding air are heated by the heat capacity of the heater 12 for a while after the completion of the defrosting, and a long pull-down time is required until the inside temperature decreases to a predetermined cooling temperature after the cooling operation restarts. [0008] Further, the defrosting method using a heat pipe of 3) has a higher defrosting efficiency than the methods of 1) and 2), and there is no problem of overheating of the electric heater. -To secure piping space for heat pipes around the evaporator, especially below the evaporator, like an evaporator placed at the bottom of the showcase, so that it can be drawn out of the tube evaporator for piping. It is difficult to apply when it is difficult. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to solve the above-mentioned problems of the various defrosting methods, and particularly to a compact and defrosting efficiency suitable for a cooler mounted on a showcase. An object of the present invention is to provide a high novel defrosting device. According to the present invention, there is provided a heat pipe having a structure in which an electric heater is built in a sealed pipe in which a low-boiling-point working fluid is sealed. Heat transfer coupling and piping almost horizontally inside the cooler,
And so that the electric heater is immersed in the working fluid, laid on the bottom side in the pipe along the longitudinal direction of the heat pipe, heating the working fluid by energizing the electric heater when defrosting the cooler, The defrosting heat is applied to the fins by the cycle of evaporating and condensing the hydraulic fluid to melt and remove the frost formed on the cooler surface. [0011] As described above, the electric heater is built in the heat pipe which is arranged in a substantially horizontal direction inside the cooler, and the electric heater is immersed in the working fluid. By laying it on the bottom side, the working fluid enclosed in the heat pipe is directly heated by the electric heater laid in the pipe and boiled, and the fins of the cooler are made uniform from the heat pipe by the latent heat when the vapor condenses And the defrosting can be efficiently performed by heating to a high degree, and high heat conductivity can be secured between the electric heater and the working fluid, thereby improving the heating efficiency. In addition, since the defrosting heat provided by the electric heater is transferred by a cycle of evaporating / condensing the working fluid, a large amount of heat is transferred with a small temperature difference between the evaporating part and the condensing part. As a result, there is no rise in the internal temperature due to overheating of the electric heater. In addition, since it is not necessary to draw a heat pipe from the cooler to the outside, a compact configuration is provided. Embodiments of the present invention will be described below with reference to the drawings. In each embodiment, the same members corresponding to FIG. 4 are denoted by the same reference numerals. Embodiment 1 In FIGS. 1 and 2, a fin-tube type evaporator 5 including a fin 5a and a refrigerant pipe 5b is mounted on, for example, the open showcase shown in FIG. A heat pipe 14 with a built-in heater according to the present invention, which is thermally coupled to the fins 5 a, is laid substantially inward over the entire width of the evaporator 5. The heat pipe 14 is sealed off at both ends and encloses the working fluid 14b while leaving a condensing space in a highly heat-conductive sealed tube 14a such as copper.
Further, an electric heater 12 is provided on the bottom side along the longitudinal direction of the sealed tube 14a so as to be immersed in the working fluid 14b. In order to incorporate the heat pipe 14 into the evaporator 5, a copper pipe is first inserted into a hole drilled in the fin 5a, and the pipe is expanded in this state, and its peripheral surface is brought into close contact with the fin. , An electric heater 12, and the inside of the pipe is evacuated to an appropriate amount of the working fluid 14.
b, and then the pipe is sealed off. The working liquid 14b is a liquid having a low boiling point whose freezing point is lower than the refrigerant evaporation temperature during the cold-holding operation, and is, for example, a halogenated hydrocarbon-based refrigerant (HFC-134).
a, a chlorofluorocarbon refrigerant such as HCF-22), fluorocarbon,
Alcohol can be adopted. In addition, 15 is a power supply of the electric heater 12. In such a configuration, in order to switch the showcase equipped with the evaporator 5 from the cold-holding operation to the defrosting operation, the operation of the refrigerator is stopped and the electric heater 12 is energized at the same time. As a result, the working fluid 14b sealed in the heat pipe 14 is heated and boiled, and its vapor is dispersed as a vapor stream as shown by an arrow P in FIG. After the heat is radiated from the wall surface to the fins 5a and condensed into a liquid, the evaporation / condensation cycle is repeated so that the liquid flows back to the bottom in the heat pipe. Then, when the vapor of the working fluid condenses, the latent heat is radiated to melt and remove the frost 13 attached to the surface of the fin 5a. In addition, the vapor of the working fluid diffused in the pipe concentrates on the low-temperature part, so that the entire evaporator is uniformly heated,
Defrosting can be performed without causing partial melting of frost. As can be seen from the above description, the electric heater 1
2 is incorporated in the above-mentioned Japanese Patent Application Laid-Open No. 5-3 / 1993.
As in the configuration disclosed in Japanese Patent No. 46284, there is no need to draw out the evaporator of the heat pipe to the outside of the fin-tube evaporator and connect it to the electric heater. It can be configured compact by incorporating it. As described above, according to the structure of the present invention, the following effects can be obtained as compared with the conventional various defrosting methods. 1) The entire chiller can be uniformly heated to efficiently melt and remove frost formed on the fins. 2) For the heat transfer between the electric heater and the frost adhering to the cooler surface, the latent heat generated by the evaporation and condensation of the working fluid is utilized, so that the heat resistance of the heat transfer path is very small, and There is no abnormal overheating of the heater. This allows
In the cooler of the showcase, the pull-down time at the time of restarting the cold-holding operation after the defrost can be reduced while suppressing the rise in the internal temperature during the defrost. 3) The evaporator of the heat pipe is drawn out of the cooler as in the conventional heat pipe defrosting system by using a configuration in which an electric heater serving as a defrost heat source is built in the heat pipe and incorporated in the cooler. Therefore, even when it is difficult to secure extra space below the cooler, such as a cooler arranged in the ventilation duct on the bottom side of the inside of the cabinet of the showcase, there is no need to connect the electric heater to the electric heater. , And can be implemented without being limited by space.
【図面の簡単な説明】
【図1】本発明の実施例1に対応する除霜装置を冷却器
内に組み込んだ全体の構成図
【図2】図1の構成による除霜動作の説明図
【図3】本発明の実施対象となるオープンショーケース
の略示構成図
【図4】従来のヒータ除霜方式による除霜装置の構成図
【符号の説明】
5 フィン・チューブ形蒸発器
5a フィン
5b 冷媒パイプ
12 電気ヒータ
13 霜
14 ヒートパイプ
14a 密閉管
14b 作動液BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram in which a defrosting device corresponding to a first embodiment of the present invention is incorporated in a cooler. FIG. 2 is an explanatory diagram of a defrosting operation by the configuration of FIG. FIG. 3 is a schematic configuration diagram of an open showcase to which the present invention is applied. FIG. 4 is a configuration diagram of a conventional defrosting apparatus using a heater defrosting system. [Description of References] 5 Fin-tube type evaporator 5a Fin 5b Refrigerant pipe 12 Electric heater 13 Frost 14 Heat pipe 14a Sealed pipe 14b Hydraulic fluid
Claims (1)
機のフィン・チューブ形蒸発器を対象とする冷却器の除
霜装置であって、低沸点の作動液を封入した密閉管に電
気ヒータを内蔵した構造のヒートパイプを、フィンと伝
熱結合して冷却器の内方にほぼ水平方向に配管し、かつ
電気ヒータを、作動液中に浸漬させるように、ヒートパ
イプの長手方向に沿ってパイプ内の底部側に敷設してな
り、冷却器の除霜時に前記電気ヒータを通電して作動液
を加熱し、作動液の蒸発,凝縮サイクルによりフィンに
除霜熱を付与して冷却器表面に着霜した霜を融解除去す
ることを特徴とする冷却器の除霜装置。(57) [Claim 1] A defroster for a cooler intended for a fin-tube type evaporator of a refrigerator mounted on an open showcase or the like, wherein a low-boiling-point hydraulic fluid is supplied. A heat pipe with a built-in electric heater in the sealed tube is heat-coupled to the fins and is piped in a substantially horizontal direction inside the cooler, and the electric heater is immersed in the working fluid, It is laid on the bottom side inside the pipe along the longitudinal direction of the heat pipe. When the cooler is defrosted, the electric heater is energized to heat the working fluid, and the fin is defrosted by the cycle of evaporation and condensation of the working fluid. A defroster for a cooler, which melts and removes frost formed on the surface of the cooler by applying heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07589596A JP3362596B2 (en) | 1996-03-29 | 1996-03-29 | Cooler defroster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07589596A JP3362596B2 (en) | 1996-03-29 | 1996-03-29 | Cooler defroster |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09264657A JPH09264657A (en) | 1997-10-07 |
JP3362596B2 true JP3362596B2 (en) | 2003-01-07 |
Family
ID=13589523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07589596A Expired - Lifetime JP3362596B2 (en) | 1996-03-29 | 1996-03-29 | Cooler defroster |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3362596B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102878756B (en) * | 2012-08-31 | 2014-10-15 | 河南新飞电器有限公司 | Thawing device and refrigerator with thawing device |
WO2014077081A1 (en) * | 2012-11-15 | 2014-05-22 | 東芝ホームテクノ株式会社 | Heat pipe, smartphone, tablet terminal or personal digital assistant |
JP6263841B2 (en) * | 2013-02-22 | 2018-01-24 | 東芝ホームテクノ株式会社 | Portable information terminal |
CN103591751B (en) * | 2013-10-30 | 2016-02-24 | 西安交通大学 | A kind of defrost system of wind cooling refrigerator and defrosting control method thereof |
US10386102B2 (en) | 2014-10-21 | 2019-08-20 | Lg Electronics Inc. | Defrosting device and refrigerator having the same |
CN107003060B (en) * | 2015-10-21 | 2019-09-17 | Lg 电子株式会社 | Defroster and refrigerator with the defroster |
-
1996
- 1996-03-29 JP JP07589596A patent/JP3362596B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09264657A (en) | 1997-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1123135A (en) | Refrigerator having defrosting device | |
US20020184904A1 (en) | Enclosable evaporator/defroster unit for a refrigerated display case | |
JP5261066B2 (en) | Refrigerator and refrigerator | |
JPH09113103A (en) | Refrigerated display case | |
JPH08303932A (en) | Defrosting device for freezer/refrigerator show case | |
JP3362596B2 (en) | Cooler defroster | |
JPH08313144A (en) | Defrosting device of freezing and refrigerating showcase | |
JP3616174B2 (en) | Cooling device, refrigerator, showcase and vending machine | |
KR20080088807A (en) | Defrosting apparatus of refrigerator | |
JPH11173710A (en) | Defrosting system using exhaust heat of compressor | |
JP3649875B2 (en) | Low temperature showcase | |
JP2000161835A (en) | Cooling devices | |
JPH08303933A (en) | Defrosting device for freezing and refrigerating showcase | |
JP2002213832A (en) | Cooling device | |
JPH07318229A (en) | Defrosting method of refrigerating and cold storage showcase | |
JP2002243350A (en) | Refrigerating system | |
JP3157360B2 (en) | Cooler | |
JPH07159018A (en) | Defrosting system for freezing cold storage display case | |
JPS5922460Y2 (en) | Refrigeration equipment | |
JPH07120132A (en) | Cold gas circulation type display case | |
KR940009568B1 (en) | Defrosting device of refrigerator by stirling cycle module | |
JPH05346284A (en) | Cooler | |
JP2004212001A (en) | Refrigerator | |
JPH0740945Y2 (en) | Cold air circulation showcase | |
JPH0689984B2 (en) | Defrosting method for cold air circulation type showcase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |