JPH0689984B2 - Defrosting method for cold air circulation type showcase - Google Patents

Defrosting method for cold air circulation type showcase

Info

Publication number
JPH0689984B2
JPH0689984B2 JP10618288A JP10618288A JPH0689984B2 JP H0689984 B2 JPH0689984 B2 JP H0689984B2 JP 10618288 A JP10618288 A JP 10618288A JP 10618288 A JP10618288 A JP 10618288A JP H0689984 B2 JPH0689984 B2 JP H0689984B2
Authority
JP
Japan
Prior art keywords
evaporator
defrosting
cooling coil
inlet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10618288A
Other languages
Japanese (ja)
Other versions
JPH01208688A (en
Inventor
賢二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10618288A priority Critical patent/JPH0689984B2/en
Publication of JPH01208688A publication Critical patent/JPH01208688A/en
Publication of JPH0689984B2 publication Critical patent/JPH0689984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷気循環形ショーケースを対象としたエバポ
レータの除霜方式に関する。
TECHNICAL FIELD The present invention relates to a defrosting method of an evaporator for a cold air circulation type showcase.

〔従来の技術〕[Conventional technology]

まず第6図に頭記した冷気循環形ショーケースの従来構
成を示す。図において、1は前面を開口したオープンシ
ョーケースのケース本体、2は商品陳列棚21を装備した
商品陳列室、3,4は商品陳列室2を取り巻いてケース本
体1の内部に画成した内外二重の冷気循環ダクト、5,6
は前記各ダクト3,4内に配備したファン、7は内側の冷
気循環ダクト3内に設置した冷凍機のエバポレータであ
り、該エバポレータは冷媒の入口を上部に出口を下部に
して蛇行配管した直膨式冷却コイルにフィンを取付けた
フィン付きコイルであって周知のように膨張弁を介して
図示されてない別置の冷凍機コンデンシングユニットに
配管接続されている。なお8は除霜ヒータであり、ダク
ト3内でエバポレータ7の入口側に配備されている。
First, the conventional structure of the cold air circulation type showcase shown in FIG. 6 is shown. In the figure, 1 is a case body of an open showcase having an open front surface, 2 is a product display room equipped with a product display shelf 21, and 3 and 4 are interior and exterior parts which surround the product display room 2 and are defined inside the case body 1. Double cold air circulation duct, 5,6
Is a fan provided in each of the ducts 3 and 4, and 7 is an evaporator of a refrigerator installed in the inner cool air circulation duct 3. The evaporator is a straight pipe that is serpentine with the refrigerant inlet at the top and the outlet at the bottom. This is a finned coil in which fins are attached to an expansion cooling coil, and as is well known, it is connected to a separate refrigerator condensing unit (not shown) via an expansion valve. A defrosting heater 8 is provided inside the duct 3 on the inlet side of the evaporator 7.

かかる構成で保冷運転時には、前記した冷気循環ダクト
3,4を通じてケース本体1の前面開口部に内外二層の冷
気エアカーテンA,Bが吹出し形成され、これにより庫内
に陳列した商品が保冷される。
With such a configuration, during the cold insulation operation, the cold air circulation duct described above is used.
Two layers of cool air curtains A and B are blown out through the front opening of the case body 1 through 3, 4 to keep the products displayed in the refrigerator cool.

一方、ショーケースは保冷運転の時間経過とともにエバ
ポレータ7に霜が発生付着して保冷性能を低下させるこ
とから、周期的に保冷運転から除霜に切換え、前記した
除霜ヒータ8に通電して霜を除去することが一般に実施
されている。なお除霜方式としては、前記のヒータ除霜
方式の他に、冷却コイル内にホットガスを通流して除霜
するホットガス除霜方式も知られている。
On the other hand, in the showcase, frost is generated and adheres to the evaporator 7 with the lapse of time in the cold insulation operation to lower the cold insulation performance. Therefore, the cold insulation operation is periodically switched to the defrost, and the defrost heater 8 is energized to defrost. Is commonly practiced. As the defrosting method, in addition to the heater defrosting method, a hot gas defrosting method is also known in which hot gas is passed through the cooling coil to defrost.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、上記した従来の各除霜方式では次のような欠
点がある。すなわちヒータ除霜方式では、ヒータで加熱
した空気をファンによりエバポレータへ送流して除霜を
行うため、冷気循環ダクトを通じて庫内に吹き出す空気
温度も20℃前後にまで上昇し、この結果として庫内温
度,したがって陳列商品の品温が大きく上昇し、特に精
肉,鮮魚等の食品では品質が劣化する。またホットガス
除霜方式では、除霜時に高温のホットガスを直接エバポ
レータの冷却コイル内に供給するのでエバポレータの表
面温度もホットガス温度に相応して急上昇する。このた
めに除霜時間が短縮できる利点のある反面、冷気循環形
ショーケースでは庫内を循環する空気温度も高まり、商
品の品温上昇に及ぼす影響が大となる。
By the way, each of the above conventional defrosting methods has the following drawbacks. That is, in the heater defrosting method, since the air heated by the heater is sent to the evaporator by the fan to defrost, the temperature of the air blown into the refrigerator through the cool air circulation duct also rises to around 20 ° C. The temperature, and therefore the temperature of the displayed products, rises significantly, and the quality of foods such as meat and fresh fish deteriorates. Further, in the hot gas defrosting method, high-temperature hot gas is directly supplied to the cooling coil of the evaporator during defrosting, so that the surface temperature of the evaporator also rises rapidly in accordance with the hot gas temperature. For this reason, the defrosting time can be shortened, but in the cold air circulation type showcase, the temperature of the air circulating in the refrigerator is also increased, which has a great effect on the rise in the product temperature.

本発明は上記の点にかんがみ成されたものであり、除霜
に伴う庫内温度の上昇を低く抑えつつ、エバポレータに
付着した霜を短時間で効率よく除霜できるようにした冷
気循環形ショーケースの除霜方式を提供することを目的
とする。
The present invention has been made in view of the above points, and a cold air circulation type show capable of efficiently defrosting the frost adhering to the evaporator in a short time while suppressing a rise in the internal temperature due to the defrosting. It is intended to provide a defrosting method for a case.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、本発明の除霜方式において
は、該エバポレータの上部側に位置する冷却コイルの冷
媒入口,下部側に位置する冷却コイルの冷媒出口にそれ
ぞれ電磁弁を接続し、かつ該電磁弁より内側に冷却コイ
ルの入口と出口との間にまたがりバイパス管を配管し、
該バイパス管には冷却コイルの出口側から入口側に向け
て流通する逆止弁を設け、エバポレータの下部側に位置
する冷却コイルの配管に沿って除霜ヒータを伝熱的に配
備し、除霜時には前記入口,出口側の電磁弁を閉じた上
で除霜ヒータを通電して除霜を行うものとする。
In order to solve the above problems, in the defrosting method of the present invention, a refrigerant inlet of the cooling coil located on the upper side of the evaporator, an electromagnetic valve is respectively connected to the refrigerant outlet of the cooling coil located on the lower side, and Inside the solenoid valve, a bypass pipe is laid across the inlet and outlet of the cooling coil,
A check valve that flows from the outlet side to the inlet side of the cooling coil is provided in the bypass pipe, and a defrost heater is thermally arranged along the pipe of the cooling coil located on the lower side of the evaporator to remove heat. At the time of frost, the defrosting heater is energized after the solenoid valves on the inlet and outlet sides are closed to perform defrosting.

さらに除霜に伴う庫内温度上昇をより効果的に抑制する
手段として、本発明では庫内の冷気循環ダクトに複数基
に分割して直膨式冷却コイル形エバポレータを並置配備
し、かつ各分割エバポレータ毎にその上部側に位置する
冷却コイルの冷媒入口,下部側に位置する冷却コイルの
冷媒出口にそれぞれ電磁弁、該電磁弁より内側に冷却コ
イルの入口と出口との間にまたがり配管したバイパス
管、該バイパス管に冷却コイルの出口側から入口側に向
けて流通するように設けられた逆止弁、およびエバポレ
ータの下部側に位置する冷却コイルの配管に沿って伝熱
的に配備した除霜ヒータを備えるとともに、前記エバポ
レータの除霜を各分割エバポレータの相互間でタイミン
グをずらして周期的に順次行いつつ、除霜側のエバポレ
ータでは当該エバポレータに付属する入口,出口側の電
磁弁を閉じた上で除霜ヒータを通電して除霜を行うもの
とする。
Further, as a means for more effectively suppressing the temperature increase in the refrigerator due to defrosting, in the present invention, a plurality of direct expansion cooling coil type evaporators are divided into a plurality of groups in the cold air circulation duct in the refrigerator, and each division is arranged. Each evaporator has a refrigerant inlet of the cooling coil located on the upper side, a refrigerant outlet of the cooling coil located on the lower side of the evaporator, and a bypass piped inside the solenoid valve between the inlet and the outlet of the cooling coil. Pipe, a check valve provided in the bypass pipe so as to flow from the outlet side of the cooling coil toward the inlet side, and a heat transfer disposed along the pipe of the cooling coil located on the lower side of the evaporator. The evaporator on the defrosting side is provided with a frost heater, and the evaporator on the defrosting side is defrosted while the defrosting of the evaporator is performed sequentially in sequence while shifting the timing between the divided evaporators. Inlet that comes with over data, by energizing the defrost heater upon closing the solenoid valve at the outlet side shall be defrosted.

〔作用〕[Action]

上記のように保冷運転から除霜に切換えた際に、エバポ
レータの入口,出口側に接続した電磁弁を閉じるととも
に、同時に除霜ヒータを通電することにより、この時点
でエバポレータの冷却コイル内に封じ込められた冷媒
は、凝縮して重力により冷却コイルの下部に流下し、こ
こで除霜ヒータの加熱により蒸発して飽和ガスとなる。
またこの飽和ガスはバイパス管を通じて冷却コイル内の
上部域に拡散してエバポレータの周囲に付着している霜
へ放熱した後に凝縮し、再び冷却コイルの下部に流下す
るように蒸発/凝縮サイクルを繰り返す。これにより冷
却コイルはヒートパイプと同様に機能能し、除霜ヒータ
より付与された除霜熱を冷却コイルの全長域に亙りコイ
ル内部から凝縮潜熱の形で放熱してエバポレータの周囲
に付着している霜を除霜する。また同時に除霜ヒータの
発熱の一部はダクト内の通風空気を加熱し、この空気を
熱媒体としてエバポレータへ外側からも除霜熱を付与す
ることになる。なお除霜ヒータの給電回路にはエバポレ
ータの温度上昇に応動する過熱防止用サーモスタットが
接続されている。
When switching from cold insulation operation to defrosting as described above, the solenoid valves connected to the inlet and outlet sides of the evaporator are closed, and at the same time the defrosting heater is energized, so that the cooling coil of the evaporator is confined at this point. The obtained refrigerant is condensed and flows down to the lower part of the cooling coil due to gravity, where it is evaporated by the heating of the defrost heater to become a saturated gas.
The saturated gas diffuses through the bypass pipe to the upper part of the cooling coil, dissipates heat to the frost adhering to the periphery of the evaporator, then condenses, and repeats the evaporation / condensation cycle so as to flow down to the lower part of the cooling coil again. . This allows the cooling coil to function like a heat pipe, radiating the defrosting heat applied from the defrosting heater over the entire length of the cooling coil in the form of latent latent heat of condensation and adhering to the periphery of the evaporator. Defrost existing frost. At the same time, a part of the heat generated by the defrosting heater heats the ventilation air in the duct, and the defrosting heat is also applied to the evaporator from the outside by using this air as a heat medium. An overheat prevention thermostat that responds to the temperature rise of the evaporator is connected to the power supply circuit of the defrost heater.

このようにエバポレータの冷却コイルをヒートパイプと
して機能させ、除霜ヒータの発生熱をエバポレータに対
してその冷却コイル内からも除霜熱を付与することで、
エバポレータに付着した霜を短時間で効率よく除霜する
ことができ、これにより除霜に伴う庫内温度,商品の品
温上昇を低く抑えることができる。
In this way, the cooling coil of the evaporator is made to function as a heat pipe, and the generated heat of the defrosting heater is given to the evaporator by the defrosting heat from inside the cooling coil as well.
The frost adhering to the evaporator can be efficiently defrosted in a short time, and the temperature inside the warehouse and the product temperature rise due to defrosting can be suppressed to a low level.

また、冷気循環ダクト内に配備したエバポレータを複数
基に分割して並置配備し、かつ各分割エバポレータの相
互間でタイミングをずらせながら周期的に前記方式によ
り除霜を行うことにより、一方の分割エバポレータが除
霜を行っている期間中も他方の分割エバポレータが保冷
運転を継続しているので、庫内温度の上昇抑制がより効
果的に行われるようになる。
In addition, the evaporator installed in the cold air circulation duct is divided into a plurality of units and arranged side by side, and the defrosting is periodically performed by the above method while shifting the timing between the respective divided evaporators. Since the other divided evaporator continues the cold keeping operation even during the period when defrosting is performed, the increase in the internal cold storage temperature can be suppressed more effectively.

〔実施例〕〔Example〕

第1図は第6図の冷気循環形ショーケースを実施対象と
した本発明実施例の構成図、第2図は従来の除霜方式と
対比して表した本発明による除霜特性図、第3図,第4
図はエバポレータを複数基に分割して行う別な実施例の
構成図、第5図はその運転タイムチャートを示す。
FIG. 1 is a block diagram of an embodiment of the present invention for implementing the cold air circulation type showcase of FIG. 6, FIG. 2 is a defrosting characteristic diagram according to the present invention in comparison with a conventional defrosting method, 3、4
FIG. 5 is a configuration diagram of another embodiment in which the evaporator is divided into a plurality of units, and FIG. 5 is an operation time chart thereof.

まず第1図において、エバポレータ7は上下に蛇行配管
された冷却コイル71に図示されてないフィンが取付けら
れた構造であり、エバポレータの上部側に位置する冷却
コイル71の冷媒入口には膨張弁9,電磁弁10を接続し、下
部側に位置する冷媒出口には電磁弁11を接続した上で、
冷凍機のコンデンシングユニット12に配管接続して冷凍
サイクルを構成している。。またエバポレータ7におけ
る冷却コイル71の入口と出口との間を結んで逆止弁13を
含むバイパス管14が配管されており、さらにエバポレー
タ7の底部側には冷却コイル71の配管に沿って除霜ヒー
タ8が伝熱的に配線されている。なお15はエバポレータ
7に付設して除霜ヒータ8の給電回路に介装接続した過
熱防止用のサーモスタットである。
First, in FIG. 1, the evaporator 7 has a structure in which a fin (not shown) is attached to a cooling coil 71 vertically piped, and an expansion valve 9 is provided at a refrigerant inlet of the cooling coil 71 located on the upper side of the evaporator. Then, after connecting the solenoid valve 10 and connecting the solenoid valve 11 to the refrigerant outlet located on the lower side,
A refrigeration cycle is constructed by connecting piping to the condensing unit 12 of the refrigerator. . Further, a bypass pipe 14 including a check valve 13 is connected between the inlet and the outlet of the cooling coil 71 in the evaporator 7, and the bottom side of the evaporator 7 is further defrosted along the pipe of the cooling coil 71. The heater 8 is thermally conductively wired. Reference numeral 15 is a thermostat for preventing overheating, which is attached to the evaporator 7 and is connected to the power supply circuit of the defrost heater 8 by interposition.

かかる構成でショーケースの保冷運転時には、図示され
てない運転制御部からの指令で電磁弁10,11が開放さ
れ、この状態で冷凍機のコンデンシングユニット12が運
転されて所定の保冷動作を行う。なおこの場合に前記バ
イパス管14には逆止弁13が介装されているので冷媒がバ
イパス管14を通って冷却コイル71内を短絡通流すること
はない。
With such a configuration, during the cold-keeping operation of the showcase, the solenoid valves 10 and 11 are opened by a command from an operation control unit (not shown), and the condensing unit 12 of the refrigerator is operated in this state to perform a predetermined cold-keeping operation. . In this case, since the check valve 13 is provided in the bypass pipe 14, the refrigerant does not flow through the bypass pipe 14 in the cooling coil 71 in a short circuit.

一方、タイマ制御等により保冷運転から除霜に切換わる
と、運転制御部からの指令で電磁弁10,11が共に閉じ、
同時に除霜ヒータ8が通電される。また電磁弁10,11を
閉じた時点では、冷却コイル71の内部に残留している冷
媒はその蒸発温度に対応した圧力で冷媒ガスと液冷媒と
が共存する形で封じ込められており、このうち液冷媒は
重力によって蛇行状の冷却コイル71の管内を流下してそ
の底部に溜るようになる。また冷却コイル71の下部配管
は除霜ヒータ8で加熱されている。
On the other hand, when switching from cold insulation operation to defrosting by timer control etc., both solenoid valves 10 and 11 are closed by a command from the operation control unit,
At the same time, the defrost heater 8 is energized. Further, when the solenoid valves 10 and 11 are closed, the refrigerant remaining inside the cooling coil 71 is confined in a form in which the refrigerant gas and the liquid refrigerant coexist at a pressure corresponding to the evaporation temperature. Due to gravity, the liquid refrigerant flows down in the tube of the meandering cooling coil 71 and accumulates at the bottom thereof. The lower pipe of the cooling coil 71 is heated by the defrost heater 8.

これにより冷却コイル71の内部を流下した液冷媒は、そ
の下部で除霜ヒータ9の加熱により蒸発して飽和ガスと
なり、ここから逆止弁13,バイパス管14を通って冷却コ
イル71の上部入口側に拡散し、エバポレータ7の周面に
付着している霜へ放熱する。また周囲に放熱した冷媒ガ
スは凝縮し、蛇行状の冷却コイル71の内部を流下して再
び除霜ヒータ8の加熱を受けて蒸発するように蒸発/凝
縮サイクルを繰り返す。つまりエバポレータ7の冷却コ
イル71はヒートパイプと同様に機能し、除霜ヒータ8よ
り付与された熱を冷却コイル内に熱移送してその全域で
霜へ放熱する。また除霜ヒータ8の発熱の一部は冷気循
環ダクト内を通風する空気を加熱し、エバポレータ7に
対して外側からも除霜熱を与える。
As a result, the liquid refrigerant flowing down the inside of the cooling coil 71 is evaporated by the heating of the defrost heater 9 at its lower portion to become saturated gas, and from there, passes through the check valve 13 and the bypass pipe 14 and the upper inlet of the cooling coil 71. It diffuses to the side and radiates heat to the frost adhering to the peripheral surface of the evaporator 7. Further, the refrigerant gas radiated to the surroundings is condensed, flows down through the meandering cooling coil 71, and is again heated by the defrosting heater 8 to evaporate by repeating the evaporation / condensation cycle. That is, the cooling coil 71 of the evaporator 7 functions similarly to a heat pipe, and transfers the heat given by the defrosting heater 8 to the inside of the cooling coil and radiates it to the frost throughout the entire area. Part of the heat generated by the defrost heater 8 heats the air passing through the cold air circulation duct, and the defrost heat is also applied to the evaporator 7 from the outside.

このように除霜ヒータ8の加熱でエバポレータ7へ内外
から除霜熱を付与することにより、エバポレータ7に付
着した霜の除霜が効果的に進行して短時間で除霜を終了
することができ、ショーケースの庫内温度,したがって
陳列商品の品温上昇を抑えてその品質維持を図ることが
できる。
By applying the defrosting heat to the evaporator 7 from the inside and outside by heating the defrosting heater 8 as described above, the defrosting of the frost attached to the evaporator 7 effectively progresses and the defrosting can be completed in a short time. Therefore, it is possible to suppress the temperature inside the showcase, and hence the temperature of the displayed products, and maintain the quality.

次に本発明の除霜方式の評価を確認するために、発明者
が従来のホットガス除霜方式,ヒータ除霜方式と本発明
の除霜方式とを対比して行った実機での除霜テストの結
果を第2図に示す。なお本発明の方式では除霜条件とし
て先記した過熱防止用サーモスタット15の設定温度を5
℃とした。第2図の除霜特性から明らかなように、本発
明の除霜方式によれば、従来のヒータ除霜方式と比べて
除霜時間,並びに庫内の温度上昇幅が遥かに小であり、
かつホット除霜方式と比べても庫内の温度上昇が格段に
低く抑えられることが判る。
Next, in order to confirm the evaluation of the defrosting method of the present invention, the inventor compared the conventional hot gas defrosting method, heater defrosting method, and defrosting method of the present invention The test results are shown in FIG. In the method of the present invention, the preset temperature of the thermostat 15 for preventing overheating described above is set as 5 as the defrosting condition.
℃ was made. As is clear from the defrosting characteristics of FIG. 2, the defrosting method of the present invention has a much smaller defrosting time and a temperature rise width in the refrigerator than the conventional heater defrosting method.
Moreover, it can be seen that the temperature rise in the refrigerator can be suppressed to a much lower level compared to the hot defrosting method.

次に第3図ないし第5図に本発明の別な実施例を示す。
この実施例は除霜に伴う庫内温度の上昇をより効果的に
抑制するようにしたものであり、第3図に示すように冷
気循環ダクト3内には2基に分割されたエバポレータ7
a,7bが相互間に断熱仕切板16を介して左右に並置配備さ
れており、かつ各エバポレータ7a,7b毎に第1図の実施
例と同様に電磁弁,逆止弁付きバイパス管、および除霜
ヒータが付着さている。またその構成を第4図の冷媒回
路図に示す。なお図中、8a,8bは除霜ヒータ、9a,9bは膨
張弁、10a,10bは冷却コイルの入口側に接続した電磁
弁、11a,11bは出口側に接続した電磁弁、13a,13bは逆止
弁、14a,14bはバイパス管である。
Next, FIGS. 3 to 5 show another embodiment of the present invention.
In this embodiment, an increase in the temperature inside the refrigerator due to defrosting is suppressed more effectively. As shown in FIG. 3, the evaporator 7 is divided into two in the cool air circulation duct 3.
a and 7b are arranged side by side between each other via a heat insulating partition plate 16, and each evaporator 7a and 7b is provided with a solenoid valve, a bypass pipe with a check valve, and a bypass pipe with a check valve, as in the embodiment of FIG. Defrost heater is attached. The structure is shown in the refrigerant circuit diagram of FIG. In the figure, 8a and 8b are defrost heaters, 9a and 9b are expansion valves, 10a and 10b are solenoid valves connected to the inlet side of the cooling coil, 11a and 11b are solenoid valves connected to the outlet side, and 13a and 13b are The check valves 14a and 14b are bypass pipes.

かかる二分割構造のエバポレータを装備したショーケー
スは、第5図の運転タイムチャートで示すように、分割
エバポレータ7a,7bに対する除霜が互いにタイミングを
ずらして周期的に順次行われる。また分割エバポレータ
の除霜時には除霜側の分割エバポレータに対して第1図
で述べたと同様な方式で除霜が行われる。
In a showcase equipped with such a two-divided evaporator, as shown in the operation time chart of FIG. 5, defrosting of the divided evaporators 7a and 7b is periodically performed with a mutually shifted timing. Further, at the time of defrosting the divided evaporator, defrosting is performed on the divided evaporator on the defrosting side by the same method as described in FIG.

このような運転制御により、2基の分割エバポレータ7
a,7bのうち、一方の分割エバポレータを除霜している期
間には他方の分割エバポレータが保冷運転状態にある。
つまりショーケースの全稼働期間を通じて少なくとも片
方の分割エバポレータが保冷運転を継続するようにな
る。
By such operation control, two split evaporators 7
Among the a and 7b, the other divided evaporator is in the cold insulation operation state while the one divided evaporator is defrosting.
In other words, at least one of the split evaporators keeps the cool operation throughout the entire operation period of the showcase.

〔発明の効果〕〔The invention's effect〕

本発明の除霜方式は、以上説明したように実施されてい
るので、次記の効果を奏する。
Since the defrosting method of the present invention is carried out as described above, it has the following effects.

(1)エバポレータの冷却コイルにヒートパイプと同様
な機能を持たせ、除霜ヒータより加えた除霜熱をエバポ
レータに対してその内外から付与するようにしたので、
従来のホットガス除霜方式,ヒータ除霜方式と比べて除
霜時における庫内温度、したがって商品のの品温上昇を
良好に抑えつつ、短時間で効率よく除霜を行うことがで
き、これにより精肉,鮮魚等の商品の品質維持に大きく
寄与することができる。
(1) Since the cooling coil of the evaporator has a function similar to that of the heat pipe and the defrosting heat applied from the defrosting heater is applied to the evaporator from inside and outside thereof,
Compared with the conventional hot gas defrosting method and heater defrosting method, defrosting can be performed efficiently in a short time while satisfactorily suppressing the temperature inside the refrigerator during defrosting and hence the product temperature rise. This can greatly contribute to maintaining the quality of products such as meat and fresh fish.

(2)エバポレータを複数基に分割して冷気循環ダクト
内に並置し、かつ各分割エバポレータの相互間でタイミ
ングをずらして周期的に前項(1)で述べたと同様な方
式で除霜を行うことにより、一方の分割エバポレータを
除霜している期間中でも他方の分割エバポレータが継続
して保冷運転することになり、これによりショーケース
の全稼働期間を通じて除霜に伴う庫内温度の上昇をより
一層効果的に抑制することができる。
(2) The evaporator is divided into a plurality of units and arranged side by side in the cool air circulation duct, and the defrosting is periodically performed by shifting the timing between the divided evaporators in the same manner as described in (1) above. As a result, even if one of the divided evaporators is being defrosted, the other divided evaporator will continue to operate in a cold state, which will further increase the temperature inside the store due to defrosting during the entire operating period of the showcase. It can be effectively suppressed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例によるエバポレータの構成図、第
2図は従来の除霜方式と対比して表した本発明の除霜特
性図、第3図は本発明の別な実施例を示すショーケース
全体の構成図、第4図,第5図はそれぞれ第3図におけ
る冷媒回路図,およびショーケースの運転タイムチャー
ト、第6図は従来における冷気循環形ショーケース全体
の構成図である。各図において、 3:冷気循環ダクト、7:エバポレータ、7a,7b:分割エバポ
レータ、8,8a,8b:除霜ヒータ、10,10a,10b:入口側電磁
弁、11,11a,11b:出口側電磁弁、13,13a,13b:逆止弁、1
4,14a,14b:バイパス管。
FIG. 1 is a configuration diagram of an evaporator according to an embodiment of the present invention, FIG. 2 is a defrosting characteristic diagram of the present invention in comparison with a conventional defrosting method, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a configuration diagram of the entire showcase, FIG. 4 and FIG. 5 are respectively the refrigerant circuit diagram in FIG. 3, and an operation time chart of the showcase, and FIG. 6 is a configuration diagram of the entire conventional cold air circulation type showcase. In each figure, 3: Cold air circulation duct, 7: Evaporator, 7a, 7b: Split evaporator, 8, 8a, 8b: Defrost heater, 10, 10a, 10b: Inlet solenoid valve, 11, 11a, 11b: Outlet side Solenoid valve, 13,13a, 13b: Check valve, 1
4,14a, 14b: Bypass pipes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】庫内の冷気循環ダクトに配備した冷凍機の
直膨式冷却コイル形エバポレータに対し、該エバポレー
タの上部側に位置する冷却コイルの冷媒入口,下部側に
位置する冷却コイルの冷媒出口にそれぞれ電磁弁を接続
し、かつ該電磁弁より内側に冷却コイルの入口と出口と
の間にまたがりバイパス管を配管し、該バイパス管には
冷却コイルの出口側から入口側に向けて流通する逆止弁
を設け、エバポレータの下部側に位置する冷却コイルの
配管に沿って除霜ヒータを伝熱的に配備し、除霜時には
前記入口,出口側の電磁弁を閉じた上で除霜ヒータを通
電して除霜を行うことを特徴とする冷気循環形ショーケ
ースの除霜方式。
1. A direct expansion type cooling coil type evaporator of a refrigerator installed in a cold air circulation duct in a refrigerator, a refrigerant inlet of a cooling coil located on an upper side of the evaporator, and a refrigerant of a cooling coil located on a lower side of the evaporator. A solenoid valve is connected to each of the outlets, and a bypass pipe is laid inside the solenoid valve between the inlet and the outlet of the cooling coil, and the bypass pipe is circulated from the outlet side of the cooling coil toward the inlet side. A non-return valve is provided, and a defrost heater is arranged in a heat-transfer manner along the piping of the cooling coil located on the lower side of the evaporator.When defrosting, the solenoid valves on the inlet and outlet sides are closed before defrosting. A defrosting method for a cold air circulation type showcase, which is characterized by defrosting by energizing the heater.
【請求項2】庫内の冷気循環ダクトに複数基に分割して
直膨式冷却コイル形エバポレータを並置配備し、かつ各
分割エバポレータ毎にその上部側に位置する冷却コイル
の冷媒入口,下部側に位置する冷却コイルの冷媒出口に
それぞれ電磁弁、該電磁弁より内側に冷却コイルの入口
と出口との間にまたがり配管したバイパス管、該バイパ
ス管に冷却コイルの出口側から入口側に向けて流通する
ように設けられた逆止弁、およびエバポレータの下部側
に位置する冷却コイルの配管に沿って伝熱的に配備した
除霜ヒータを備えるとともに、前記エバポレータの除霜
を各分割エバポレータの相互間でタイミングをずらして
周期的に順次行いつつ、除霜側のエバポレータでは当該
エバポレータに付属する入口,出口側の電磁弁を閉じた
上で除霜ヒータを通電して除霜を行うことを特徴とする
冷気循環形ショーケースの除霜方式。
2. A direct-expansion cooling coil type evaporator is divided into a plurality of units in a cold air circulation duct in a refrigerator and arranged in parallel, and a refrigerant inlet and a lower side of a cooling coil located on the upper side of each divided evaporator. Solenoid valve at the refrigerant outlet of the cooling coil located at, respectively, bypass pipe piped between the inlet and the outlet of the cooling coil inside the solenoid valve, the bypass pipe from the outlet side of the cooling coil to the inlet side A non-return valve provided so as to circulate, and a defrost heater thermally arranged along the piping of the cooling coil located on the lower side of the evaporator are provided, and defrosting of the evaporator is performed by mutual defrosting of each divided evaporator. In the evaporator on the defrosting side, while closing the electromagnetic valves on the inlet side and the outlet side attached to the evaporator, the defrosting heater is turned on while shifting the timing periodically between them. Defrosting method of the cool air circulation type showcase and performs defrosting by electrodeposition.
JP10618288A 1987-10-01 1988-04-28 Defrosting method for cold air circulation type showcase Expired - Fee Related JPH0689984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10618288A JPH0689984B2 (en) 1987-10-01 1988-04-28 Defrosting method for cold air circulation type showcase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24827587 1987-10-01
JP62-248275 1987-10-01
JP10618288A JPH0689984B2 (en) 1987-10-01 1988-04-28 Defrosting method for cold air circulation type showcase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22305093A Division JPH07120132A (en) 1987-10-01 1993-09-08 Cold gas circulation type display case

Publications (2)

Publication Number Publication Date
JPH01208688A JPH01208688A (en) 1989-08-22
JPH0689984B2 true JPH0689984B2 (en) 1994-11-14

Family

ID=26446345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10618288A Expired - Fee Related JPH0689984B2 (en) 1987-10-01 1988-04-28 Defrosting method for cold air circulation type showcase

Country Status (1)

Country Link
JP (1) JPH0689984B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431348B1 (en) * 2002-03-20 2004-05-12 삼성전자주식회사 refrigerator
WO2013029686A1 (en) 2011-09-02 2013-03-07 Carrier Corporation Refrigerated sales furniture

Also Published As

Publication number Publication date
JPH01208688A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
US3359751A (en) Two temperature refrigerator
US7028499B2 (en) Refrigerator with an evaporator
JPH1123135A (en) Refrigerator having defrosting device
JP6709363B2 (en) refrigerator
JPH08303932A (en) Defrosting device for freezer/refrigerator show case
JPH08313144A (en) Defrosting device of freezing and refrigerating showcase
JPH08254385A (en) Defrosting system for freezing/refrigerating showcase
JPH0689984B2 (en) Defrosting method for cold air circulation type showcase
CN106257204A (en) The ice making pipeline of refrigerator and its ice making method of use
JPH07120132A (en) Cold gas circulation type display case
JP3362596B2 (en) Cooler defroster
JPH08303933A (en) Defrosting device for freezing and refrigerating showcase
US2095835A (en) Defrosting means for refrigerating apparatus
JPH07318229A (en) Defrosting method of refrigerating and cold storage showcase
JPH0788999B2 (en) Defrosting method for cold air circulation showcase
JPH0517580Y2 (en)
US3324678A (en) Single evaporator combination refrigerator
JP7012139B2 (en) refrigerator
JPH07159018A (en) Defrosting system for freezing cold storage display case
JPS5917342B2 (en) Evaporator for refrigeration equipment
JPH05346284A (en) Cooler
JP2002081845A (en) Refrigerator
KR100335054B1 (en) the separational cooling system for a refrigerator
JPH0740945Y2 (en) Cold air circulation showcase
JPH0424387Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees