WO2022224305A1 - Magnetic heat exchanger and air conditioning ventilation system - Google Patents
Magnetic heat exchanger and air conditioning ventilation system Download PDFInfo
- Publication number
- WO2022224305A1 WO2022224305A1 PCT/JP2021/015866 JP2021015866W WO2022224305A1 WO 2022224305 A1 WO2022224305 A1 WO 2022224305A1 JP 2021015866 W JP2021015866 W JP 2021015866W WO 2022224305 A1 WO2022224305 A1 WO 2022224305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- space
- magnetic
- heat exchange
- exchange chamber
- magnetic field
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title description 14
- 238000009423 ventilation Methods 0.000 title description 14
- 239000000463 material Substances 0.000 claims abstract description 65
- 239000006163 transport media Substances 0.000 claims description 63
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000003795 desorption Methods 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000005192 partition Methods 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 18
- 238000011144 upstream manufacturing Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/04—Ventilation with ducting systems, e.g. by double walls; with natural circulation
- F24F7/06—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
- F24F7/08—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D11/00—Heat-exchange apparatus employing moving conduits
- F28D11/02—Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the present disclosure relates to magnetic heat exchangers and air conditioning ventilation systems.
- a magnetic heat exchanger that uses the magnetocaloric effect of a magnetic material (magnetocaloric material) that absorbs and heats by excitation and demagnetization is known (for example, Patent Document 1).
- the magnetic heat exchanger described in Patent Document 1 includes a plurality of heat transfer areas partitioned by isolation walls and each filled with a heat medium, and a magnetic field generated in each predetermined area within the plurality of heat transfer areas.
- a magnetocaloric material that changes in temperature due to changes in the magnetic field generated by the magnetic field generator and that is configured by inserting an isolation wall between a plurality of adjacent heat transfer regions;
- a rotating part for rotating the magnetocaloric material in the heat medium in the predetermined area of the first heat transfer area and in the heat medium outside the predetermined area of the second heat transfer area.
- a main object of the present disclosure is to provide a magnetic heat exchanger and an air conditioning ventilation system that can improve heat exchange efficiency without increasing the heat transfer area.
- a magnetic heat exchanger has a central axis and includes a first magnetic heat exchange chamber and a second magnetic heat exchange chamber arranged to sandwich the central axis in a radial direction with respect to the central axis; a magnetic field intensity distribution between a drive unit that rotates the heat exchange unit around the central axis and a first space located on one side of the central axis and a second space located on the other side in the radial direction with respect to the central axis; A first magnetic field generating section to be formed, and a case housing the heat exchange section and partitioning the first space and the second space are provided.
- Each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a space penetrating in the extending direction of the central axis.
- a material forming at least a portion of each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a magnetocaloric material.
- FIG. 1 is a perspective view for explaining a magnetic heat exchanger according to Embodiment 1;
- FIG. 2 is a cross-sectional view as seen from arrow II-II in FIG. 1;
- FIG. FIG. 2 is a partial cross-sectional view of the heat exchange section in FIG. 1 as viewed in a cross section perpendicular to the central axis;
- FIG. 2 is a cross-sectional view showing a usage example of the magnetic heat exchanger according to Embodiment 1;
- FIG. 8 is a perspective view for explaining a magnetic heat exchanger according to Embodiment 2;
- FIG. 11 is a perspective view for explaining a magnetic heat exchanger according to Embodiment 3;
- FIG. 11 is a perspective view for explaining a magnetic heat exchanger according to Embodiment 4;
- FIG. 11 is a diagram for explaining an air-conditioning ventilation system according to Embodiment 5;
- the magnetic heat exchanger 100 according to Embodiment 1 is a magnetic heat exchanger in which heat is exchanged between a magnetocaloric material and a heat transport medium. Specifically, in the magnetic heat exchanger 100, heat exchange is performed between the magnetocaloric material and the first heat transport medium, and heat exchange is performed between the magnetocaloric material and the second heat transport medium. magnetic heat exchanger. As shown in FIGS. 1 and 2, the magnetic heat exchanger 100 includes a driving section 1, a first magnetic field generating section 2, a heat exchanging section 3, and a case 4. FIG.
- the drive unit 1 includes a first rotating shaft 11 and a motor 12 that rotates the first rotating shaft 11 .
- the 1st rotating shaft 11 is extended along the central axis line C of the heat exchange part 3 mentioned later.
- the central axis of the first rotating shaft 11 is arranged coaxially with the central axis C of the heat exchange section 3, for example.
- the extending direction of the central axis C of the heat exchange section 3 is simply referred to as the axial direction.
- a radial direction with respect to the center axis C is simply referred to as a radial direction.
- the circumferential direction with respect to the central axis C is simply called the circumferential direction.
- the axial direction is, for example, along the horizontal direction.
- the rotation speed (the number of rotations per unit time) of the first rotating shaft 11 is not particularly limited. be.
- the drive unit 1 is arranged outside the case 4, for example.
- the first magnetic field generator 2 is positioned between a first space S1 (see FIG. 2) located on one side of the central axis C and a second space S2 (see FIG. 2) located on the other side in the first direction A. form the intensity distribution of the magnetic field.
- the first direction A is a specific direction along the radial direction.
- the first direction A is, for example, the vertical direction.
- the first magnetic field generator 2 is arranged on the one side with respect to the central axis C.
- the distance between the first magnetic field generator 2 and the first space is longer than the distance between the first magnetic field generator 2 and the second space.
- the first magnetic field generator 2 generates a stronger magnetic field in the second space than in the first space.
- the first magnetic field generator 2 is provided to excite the magnetocaloric material that has moved from the first space to the second space and to demagnetize the magnetocaloric material that has moved from the second space to the first space.
- the first magnetic field generating section 2 is provided so as to periodically increase or decrease the strength of the magnetic field with respect to the heat exchanging section 3 rotated around the central axis C by the driving section 1 .
- the first magnetic field generator 2 does not rotate synchronously with the heat exchange section 3 .
- the first magnetic field generator 2 is fixed to, for example, a case 4 which will be described later.
- the first magnetic field generator 2 includes, for example, a permanent magnet as a magnetic force source.
- the magnetic force source of the first magnetic field generator 2 is composed of, for example, a permanent magnet.
- the first magnetic field generator 2 is arranged symmetrically with respect to a plane passing through the central axis C and extending along the first direction A, for example. Note that the first magnetic field generator 2 may be provided in the second space so as to generate a stronger magnetic field as it advances in the direction of rotation.
- the heat exchange section 3 has a central axis C.
- the heat exchange section 3 is fixed to the first rotating shaft 11 and rotated around the central axis C by the driving section 1 .
- the heat exchange section 3 includes a plurality of magnetic heat exchange chambers arranged side by side in the circumferential direction. By rotating the heat exchanging portion 3 in the circumferential direction by the drive portion 1, each of the plurality of magnetic heat exchanging chambers alternately and repeatedly moves inside each of the first space and the second space. In other words, each of the plurality of magnetic heat exchange chambers periodically moves within the space where the intensity distribution of the magnetic field is formed by the first magnetic field generator 2 .
- a space 30 (see FIG. 2) extending along the axial direction is formed in each of the plurality of magnetic heat exchange chambers.
- Each space 30 is provided so as to form a first channel through which the first heat transport medium flows in the axial direction or a second channel through which the second heat transport medium flows in the axial direction. 1, the illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted.
- the plurality of magnetic heat exchange chambers include a first magnetic heat exchange chamber and a second magnetic heat exchange chamber arranged so as to sandwich the central axis C in the radial direction.
- the first magnetic exchange chamber is arranged 180 degrees rotationally symmetrical to the second magnetic exchange chamber with respect to the central axis C, for example.
- the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the second space.
- a first state and a second state in which the first magnetic heat exchange chamber is arranged in the second space and the second magnetic heat exchange chamber is arranged in the first space are alternately switched.
- the heat exchange section 3 includes, for example, multiple annular members 31 and multiple corrugated members 32 .
- Each of the plurality of annular members 31 extends along the circumferential direction and is spaced apart from each other in the radial direction.
- Each of the plurality of annular members 31 is arranged concentrically, for example.
- Each of the multiple corrugated members 32 is connected to at least one annular member 31 of the multiple annular members 31 .
- Each of the plurality of corrugated members 32 connects, for example, two radially adjacent annular members 31 .
- Two radially adjacent annular members 31 and one corrugated member 32 arranged therebetween are provided so as to partition a plurality of spaces 30 .
- One space 30 and parts of the annular member 31 and the corrugated member 32 facing the one space 30 constitute one magnetic heat exchange chamber.
- the material that constitutes at least part of each of the plurality of magnetic heat exchange chambers includes a magnetocaloric material.
- the material forming each annular member 31 comprises a magnetocaloric material.
- the magnetocaloric material is a magnetic material that provides a magnetocaloric effect, and includes gadolinium (Gd), for example.
- the material forming the corrugated member 32 does not contain a magnetocaloric material, but only a material that is easier to process (has high ductility) than the magnetocaloric material.
- a material forming the corrugated member 32 includes, for example, aluminum (Al).
- the corrugated member 32 may be made of paper.
- the material that constitutes at least part of each of the plurality of magnetic heat exchange chambers contains a material that absorbs and releases moisture.
- Moisture-absorbing and desorbing materials include, for example, at least one of diatomaceous earth and silica gel.
- the outer shape of the heat exchange section 3 is circular, for example.
- the heat exchange section 3 is rotatably supported around the central axis C by the case 4 .
- the heat exchange section 3 is housed in the case 4 .
- the case 4 includes the first space and the second space as internal spaces.
- the case 4 is arranged so as to sandwich the first space in the axial direction, and a pair of first inlets and outlets (41, 42) are formed. Further, the case 4 is arranged so as to sandwich the second space in the axial direction, and a pair of second inlets and outlets ( 43, 44) are formed. In addition, in FIG. 1, the case 4 is indicated by a dashed line for convenience.
- a pair of first inlets and outlets includes a first inlet 41 for the first heat transport medium to flow into the first space and a first heat transport medium for the first heat transport medium to flow out of the first space. 1 outflow port 42 .
- a pair of second inlets includes a second inlet 43 for the second heat transport medium to flow into the second space and a second heat transport medium for the second heat transport medium to flow out of the second space. 2 outlets 44 .
- the first inlet 41 and the first outlet 42 are provided symmetrically with the heat exchange section 3 interposed therebetween.
- the second inlet 43 and the second outlet 44 are provided symmetrically with the heat exchange section 3 interposed therebetween.
- Each planar shape of the first inlet 41, the first outlet 42, the second inlet 43, and the second outlet 44 is, for example, a substantially semicircular shape.
- the second inlet 43 is arranged on the same side as the first outlet 42 with respect to the heat exchange section 3 in the axial direction.
- the second outlet 44 is arranged on the same side as the first inlet 41 with respect to the heat exchange section 3 in the axial direction.
- the case 4 has, for example, a circular first opening located on the axial side of the driving section 1 and a circular second opening located on the axial side opposite to the driving section 1 . is formed.
- the case 4 includes a first separator 45A that divides the first opening into the first inlet 41 and the second outlet 44, and a second opening into the first outlet 42 and the second inlet 43. and a second separator 45B.
- At least the first separator 45A has a through hole through which the first rotating shaft 11 is passed.
- the second separator 45B is also formed with a through hole through which the first rotating shaft 11 is passed.
- Each of the first separator 45A and the second separator 45B extends along a direction orthogonal to each of the axial direction and the first direction A. As shown in FIG. Both end faces in the axial direction of the heat exchanging portion 3 are parallel to the respective inner peripheral surfaces of the case 4 on which the first opening and the second opening are formed.
- FIG. 4 is a diagram showing a usage example of the magnetic heat exchanger 100.
- the magnetic heat exchanger 100 includes a third space S3 filled with a heat transport medium with a relatively high temperature and a fourth space S3 filled with a heat transport medium with a relatively low temperature. It is arranged in the space connecting S4.
- the first heat transport medium is a heat transport medium that flows from the third space S3 to the fourth space S4.
- the second heat transport medium is a heat transport medium that flows from the fourth space S4 to the third space S3.
- a first flow path and a second flow path that are separated from each other are formed in the space that connects the third space S3 and the fourth space S4.
- the heat transport medium is, but not limited to, air, for example.
- the first flow path includes an upstream flow path F1 through which the first heat transport medium flowing into the first space S1 of the magnetic heat exchanger 100 flows, and the first heat transport medium flowing in from the first space S1 of the magnetic heat exchanger 100. and a downstream flow path F2.
- the upstream flow path F1 is formed between the inlet 51 and the first inlet 41 through which the first heat transport medium flows from the third space S3.
- the downstream flow path F2 is formed between the first outlet 42 and the outlet 52 through which the first heat transport medium flows out to the fourth space S4.
- the second flow path includes an upstream flow path F3 in which the second heat transport medium flowing into the second space S2 of the magnetic heat exchanger 100 flows, and the second heat transport medium flowing in from the second space S2 of the magnetic heat exchanger 100. and a downstream flow path F4.
- the upstream flow path F3 is formed between the inlet 53 and the second inlet 43 through which the second heat transport medium flows from the fourth space S4.
- the downstream flow path F4 is formed between the second outlet 44 and the outlet 54 through which the second heat transport medium flows out to the third space S3.
- the first heat transport medium in the first flow path is sent in a first direction along the axial direction by, for example, a first pump 6 (for example, an air blower) arranged in the downstream flow path F2.
- the second heat transport medium in the second flow path is forced along the axial direction and in a second direction opposite to the first direction by, for example, a second pump 7 (eg, blower) located in the downstream flow path F4. Sent.
- the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the first space.
- the second state is alternately switched.
- the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space and is excited by the first magnetic field generator 2 to generate heat.
- the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
- the magnetocaloric material in the first magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
- the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
- part of the heat quantity of the first heat transport medium that has flowed into the first space from the upstream flow path F1 is recovered (heat stored) in the magnetic heat exchange chamber, and recovered (heat absorbed) by the magnetocaloric material in the heat absorbing state. ), and then flows out to the fourth space S4 via the downstream flow path F2.
- the second heat transport medium that has flowed into the second space from the upstream flow path F3 receives from the magnetic heat exchange chambers the amount of heat recovered when the magnetic heat exchange chambers move in the first space, and is in a heat generating state. It is heated by the magnetocaloric material and then flows out to the third space S3 through the downstream flow path F4.
- the magnetic heat exchanger 100 can provide the first heat transport medium with the heat amount recovered from the second heat transport medium and the heat amount generated by the magnetocaloric effect.
- the magnetocaloric effect of the magnetocaloric material can be used more efficiently, so the heat exchange efficiency can be improved without depending on the increase in the heat transfer area.
- the heat exchange portion 3 includes a plurality of annular members 31 extending along the circumferential direction, and a corrugated member 32 connected to at least one of the plurality of annular members 31. including.
- the material forming the annular member 31 includes a magnetocaloric material.
- the material forming the corrugated member 32 does not contain a magnetocaloric material.
- Annular members 31 containing magnetocaloric material can be manufactured more easily than corrugated members 32 containing magnetocaloric material. Therefore, the magnetic heat exchanger 100 can be manufactured easily and inexpensively compared to the case where the material forming the corrugated member 32 contains a magnetocaloric material.
- the first magnetic field generator 2 includes a permanent magnet. In this way, the power for generating the magnetic field in the first magnetic field generator 2 is eliminated or reduced, so the energy consumption of the magnetic heat exchanger 100 can be reduced. Moreover, when the magnetic force source of the first magnetic field generator 2 is composed of a permanent magnet, the number of parts can be reduced compared to the case where the first magnetic field generator 2 further includes an electromagnet as the magnetic force source.
- the magnetic heat exchanger 101 according to the second embodiment has basically the same configuration as the magnetic heat exchanger 100 according to the first embodiment, except that the drive unit 1 includes a motor 13, It differs from the magnetic heat exchanger 100 in that it includes the second rotating shaft 14 and the belt 15 . Differences from the magnetic heat exchanger 100 are mainly described below. 5, illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 5, case 4 is indicated by a dashed line.
- the motor 13 rotates the second rotating shaft 14 .
- the central axis of the second rotating shaft 14 is arranged parallel to the central axis C of the heat exchange section 3 .
- the belt 15 is hung on the heat exchanging section 3 and the second rotating shaft 14 and is provided so as to transmit the rotational force of the second rotating shaft 14 to the heat exchanging section 3 .
- the belt 15 is wrapped around the outer peripheral surface of the heat exchange section 3 and the outer peripheral surface of the second rotating shaft 14 .
- the motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 are housed in the case 4.
- Each of the motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 is arranged outside the first space and the second space. Furthermore, each of the motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 is arranged outside the first flow path and the second flow path.
- the drive unit 1 is arranged outside the first space, the second space, the first flow path, and the second flow path.
- the pressure loss of each of the first heat transport medium and the second heat transport medium can be reduced compared to the magnetic heat exchangers 100 arranged in each part of the passage.
- the axial dimension of the magnetic heat exchanger 101 is smaller than the axial dimension of the magnetic heat exchanger 100 .
- the magnetic heat exchanger 102 according to Embodiment 3 has basically the same configuration as the magnetic heat exchanger 100 according to Embodiment 1, but the first magnetic field generating section 2 is It differs from the magnetic heat exchanger 100 in that it includes an electromagnet 21 . Differences from the magnetic heat exchanger 100 are mainly described below. 6, the illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 6, case 4 is indicated by dashed lines.
- the first magnetic field generator 2 is configured as a magnetic field modulation device provided to modulate the magnetic field.
- First magnetic field generator 2 includes electromagnet 21 and controller 22 that controls the strength of the magnetic field generated by electromagnet 21 .
- the control unit 22 controls the strength of the magnetic field generated by the electromagnet 21 according to, for example, the amount of heat to be transferred to the second transportation medium.
- the amount of heat to be transferred to the second transport medium by the magnetic heat exchanger 102 is, for example, the temperature of the second heat transport medium that has flowed into the second space from the upstream flow path F3 and the temperature of the second heat transport medium that has flowed into the third space S3 via the downstream flow path F4. 2 is set based on the difference from the temperature set for the heat transport medium.
- the electromagnet 21 is housed in the case 4.
- the control unit 22 is arranged outside the case 4, for example. Note that the control unit 22 may be accommodated in the case 4 .
- the strength of the magnetic field generated by the electromagnet 21 can be controlled according to the amount of heat to be transferred to the second transportation medium.
- the heat exchange efficiency is improved compared to the case where the strength of the magnetic field generated by 2 cannot be controlled according to the amount of heat to be transferred to the second transport medium.
- the magnetic heat exchanger 102 may have the same configuration as the magnetic heat exchanger 101 except that the first magnetic field generator 2 includes the electromagnet 21 .
- the magnetic heat exchanger 103 according to Embodiment 4 has basically the same configuration as the magnetic heat exchanger 100 according to Embodiment 1, except that the second magnetic field generator 8 is It differs from the magnetic heat exchanger 100 in that it is further provided. Differences from the magnetic heat exchanger 100 are mainly described below. 7, illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 7, case 4 is indicated by a dashed line.
- the second magnetic field generator 8 forms a magnetic field strength distribution in the first direction A between the first space S1 and the second space S2.
- the second magnetic field generator 8 is arranged on the opposite side of the central axis C from the first magnetic field generator 2 .
- the distance between the second magnetic field generator 8 and the first space is shorter than the distance between the second magnetic field generator 8 and the second space.
- the second magnetic field generator 8 generates a stronger magnetic field in the first space than in the second space.
- Each of the first magnetic field generator 2 and the second magnetic field generator 8 includes, for example, an electromagnet.
- First magnetic field generator 2 includes electromagnet 21 and controller 22 that controls the strength of the magnetic field generated by electromagnet 21 .
- the second magnetic field generator 8 includes an electromagnet 81 and a controller 82 that controls the strength of the magnetic field generated by the electromagnet 81 .
- the control unit 22 and the control unit 82 are arranged outside the case 4, for example. Note that the control unit 22 and the control unit 82 may be accommodated in the case 4 .
- a third state in which the magnetic field in the first space is stronger than the magnetic field in the second space and a fourth state in which the magnetic field in the first space is weaker than the magnetic field in the second space are generated by the first magnetic field generator 2 and the second magnetic field generator 8 . state can be switched.
- the magnetocaloric material moving from the first space to the second space is demagnetized and heat is absorbed, and the magnetocaloric material moving from the second space to the first space is excited and generates heat.
- the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space. is demagnetized and absorbs heat as it moves to At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the second space to the first space.
- the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the second space to the first space. It is excited and heats up as it moves.
- the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the first space to the second space.
- the magnetocaloric material moving from the first space to the second space is excited and generates heat, and the magnetocaloric material moving from the second space to the first space is demagnetized and absorbs heat.
- the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the first space to the second space. It is excited and heats up as it moves.
- the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
- the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the second space to the first space. is demagnetized and absorbs heat as it moves to At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
- Switching between the third state and the fourth state by the first magnetic field generator 2 and the second magnetic field generator 8 is performed by changing the temperature of the heat transport medium in the third space S3 and the temperature of the heat transport medium in the fourth space S4. It is performed according to the magnitude relationship of When switching between the third state and the fourth state, the circulation direction of the first heat transport medium flowing through the first space S1 and the circulation direction of the second heat transport medium flowing through the second space S2 are kept constant.
- the third state is assumed.
- the second heat transport medium flowing from the fourth space S4 through the magnetic heat exchanger 103 to the third space S3 absorbs heat by the magnetic heat exchanger 103, and flows from the third space S3 through the magnetic heat exchanger 103.
- the first heat transport medium flowing in the fourth space S4 is heated by the magnetic heat exchanger 103 .
- the fourth state is set.
- the second heat transport medium flowing from the fourth space S4 through the magnetic heat exchanger 103 to the third space S3 is heated by the magnetic heat exchanger 103, and flows from the third space S3 through the magnetic heat exchanger 103.
- the magnetic heat exchanger 103 absorbs heat from the first heat transport medium flowing in the fourth space S4.
- the direction of flow of the first heat transport medium flowing through the first space S1 and the The temperature of the second heat transport medium flowing into the third space S3 via the magnetic heat exchanger 103 can be set to a predetermined temperature without reversing the flow direction of the second heat transport medium flowing through the second space S2. can.
- the magnetic heat exchanger 103 may have the same configuration as the magnetic heat exchanger 101 or the magnetic heat exchanger 102, except that the second magnetic field generator 8 is further provided.
- At least one of the first magnetic field generator 2 and the second magnetic field generator 8 should include an electromagnet.
- Either the magnetic force source of the first magnetic field generator 2 or the second magnetic field generator 8 may be a permanent magnet.
- a plurality of magnetic heat exchange chambers are composed of the annular member 31 and the corrugated member 32, but are not limited to this.
- Each of the plurality of magnetic heat exchange chambers may be composed of any structure containing a magnetocaloric material.
- the air conditioning ventilation system 200 includes flow paths F1 and F2 as first flow paths, flow paths F3 and F4 as second flow paths, and a first blower 6 as a first pump. , and a second blower 7 as a second pump.
- the magnetic heat exchanger 100, the flow paths F1, F2, the flow paths F3, F4, the first blower 6, and the second blower 7 of the air conditioning ventilation system 200 shown in FIG. flow paths F1, F2, flow paths F3, F4, first pump 6, and second pump 7, the third space S3 is an indoor space, and the fourth space S4 is an outdoor space. It differs from the example of use of the magnetic heat exchanger 100 shown in FIG. 4 in that it is a space. In the following, differences of the air-conditioning/ventilation system 200 from the usage example shown in FIG. 4 will be mainly described.
- the air conditioning ventilation system 200 is arranged in a space connecting the indoor space S3 and the outdoor space S4.
- the first heat transport medium is air (hereinafter referred to as ambient air) flowing from the indoor space S3 to the outdoor space S4.
- the second heat transport medium is air (hereinafter referred to as outside air) flowing from the outdoor space S4 to the indoor space S3.
- a first channel and a second channel are formed which are separated from each other.
- the first flow path includes an upstream flow path F1 in which the recirculating air flowing into the first space S1 of the magnetic heat exchanger 100 flows, and a downstream flow path F2 in which the recirculating air flowing in from the first space S1 of the magnetic heat exchanger 100 flows.
- the upstream flow path F1 is formed between the inflow port 51 and the first inflow port 41 through which recirculated air flows from the indoor space S3.
- the downstream flow path F2 is formed between the first outflow port 42 and the outflow port 52 for the recirculated air to flow out to the outdoor space S4.
- the second flow path includes an upstream flow path F3 through which the outside air flowing into the second space S2 of the magnetic heat exchanger 100 flows, and a downstream flow path F4 through which the outside air flowing in from the second space S2 of the magnetic heat exchanger 100 flows.
- the upstream flow path F3 is formed between the inflow port 53 and the second inflow port 43 through which the outside air flows in from the outdoor space S4.
- the downstream flow path F4 is formed between the second outlet 44 and an outlet 54 through which outside air flows out to the indoor space S3.
- the recirculating air in the first flow path is sent in a first direction along the axial direction by, for example, the first blower 6 arranged in the downstream flow path F2.
- the outside air in the second flow path is sent in a second direction opposite to the first direction along the axial direction, for example, by a second blower 7 arranged in the downstream flow path F4.
- the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the first space.
- the second state is alternately switched.
- the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space and is excited by the first magnetic field generator 2 to generate heat.
- the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
- the magnetocaloric material in the first magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
- the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
- part of the heat quantity of the recirculated air that has flowed into the first space from the upstream flow path F1 is recovered (heat stored) in the magnetic heat exchange chamber, and is also recovered (heat absorbed) by the magnetocaloric material in a heat-absorbing state, After that, it flows out to the outdoor space S4 through the downstream flow path F2.
- the outside air that has flowed into the second space from the upstream flow path F3 receives from the magnetic heat exchange chamber the amount of heat recovered when the magnetic heat exchange chamber moves in the first space, and the heat is generated by the magnetocaloric material in the heat generating state. After being heated, it flows out into the indoor space S3 through the downstream flow path F4.
- air-conditioning/ventilation system 200 includes the magnetic heat exchanger 100, air-conditioning/ventilation can be performed without separately preparing an auxiliary device such as a heater for heating the outside air flowing from the external space S4 to the indoor space S3. can.
- the air conditioning ventilation system 200 may include at least one of the heat exchangers 100 to 103 according to Embodiments 1 to 4.
- the air-conditioning ventilation system 200 may be provided to air-condition and ventilate between two indoor spaces.
- the fourth space S4 may be an indoor space different from the indoor space serving as the third space S3.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A magnetic heat exchanger (100) comprises: a heat exchange part (3) that has a center axis and that includes a first magnetic heat exchange chamber and a second magnetic heat exchange chamber disposed so as to sandwich the center axis in a radial direction relative to the center axis; a drive unit (1) that causes the heat exchange part to rotate around the center axis; a first magnetic field generation unit (2) that forms a magnetic field strength distribution between a first space (S1) positioned, in the radial direction relative to the center axis, on one side relative to the center axis and a second space (S2) positioned on the other side; and a case (4) that houses the heat exchange part and that partitions the first space and the second space. Each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a space that penetrates in a direction of extension of the center axis. The material forming a portion of each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a magnetocaloric material. Due to the aforementioned rotation, the following states are switched in alternating manner: a first state in which the first magnetic heat exchange chamber is disposed in the first space and the second magnetic heat exchange chamber is disposed in the second space; and a second state in which the first magnetic heat exchange chamber is disposed in the second space and the second magnetic heat exchange chamber is disposed in the first space.
Description
本開示は、磁気熱交換器および空調換気システムに関する。
The present disclosure relates to magnetic heat exchangers and air conditioning ventilation systems.
励磁消磁により吸発熱する磁性体(磁気熱量材料)の磁気熱量効果を空調冷熱に利用した磁気熱交換器が知られている(例えば、特許文献1)。
A magnetic heat exchanger that uses the magnetocaloric effect of a magnetic material (magnetocaloric material) that absorbs and heats by excitation and demagnetization is known (for example, Patent Document 1).
特許文献1に記載の磁気熱交換器は、隔離壁によりそれぞれ区画されておりかつ熱媒体がそれぞれ充填された複数の熱伝達領域と、複数の熱伝達領域内のそれぞれの所定領域に磁界を発生する磁界発生部と、磁界発生部による発生磁界の変化により温度変化すると共に隣接する複数の熱伝達領域間の隔離壁を挿通して構成された磁気熱量材と、複数の熱伝達領域のうち第1熱伝達領域の所定領域の熱媒体中と第2熱伝達領域の所定領域外の熱媒体中とに前記磁気熱量材を回転させる回動部とを備える。
The magnetic heat exchanger described in Patent Document 1 includes a plurality of heat transfer areas partitioned by isolation walls and each filled with a heat medium, and a magnetic field generated in each predetermined area within the plurality of heat transfer areas. a magnetocaloric material that changes in temperature due to changes in the magnetic field generated by the magnetic field generator and that is configured by inserting an isolation wall between a plurality of adjacent heat transfer regions; A rotating part for rotating the magnetocaloric material in the heat medium in the predetermined area of the first heat transfer area and in the heat medium outside the predetermined area of the second heat transfer area.
近年、磁気熱交換器では、磁気熱交換器の熱交換効率の向上が求められている。熱交換効率を向上させるためには、熱交換に必要な伝熱面積を増加させる方法が考えられる。しかしながら、単に伝熱面積を増加させる場合、磁気熱交換器の大型化を招くおそれがある。例えば特許文献1に記載の磁気熱交換器では、伝熱面積を増加させて熱交換効率の向上を図るには、低温側の伝熱面積と高温側の伝熱面積の各々を増加させる必要がある。一方で、大型化を抑制するために外形寸法を変えずに伝熱面積を増加させる場合、熱輸送媒体の流路断面積が狭隘化し、熱輸送媒体の圧力損失が増大するため、熱媒体輸送機器などの補機類の大型化を招くおそれがある。
In recent years, magnetic heat exchangers are required to improve their heat exchange efficiency. In order to improve the heat exchange efficiency, a method of increasing the heat transfer area required for heat exchange can be considered. However, simply increasing the heat transfer area may lead to an increase in the size of the magnetic heat exchanger. For example, in the magnetic heat exchanger described in Patent Document 1, in order to increase the heat transfer area and improve the heat exchange efficiency, it is necessary to increase both the heat transfer area on the low temperature side and the heat transfer area on the high temperature side. be. On the other hand, if the heat transfer area is increased without changing the external dimensions in order to suppress the size increase, the flow path cross-sectional area of the heat transport medium becomes narrower and the pressure loss of the heat transport medium increases. There is a risk of causing an increase in the size of auxiliary equipment such as equipment.
本開示の主たる目的は、伝熱面積の増大によらずに、熱交換効率を向上し得る磁気熱交換器および空調換気システムを提供することにある。
A main object of the present disclosure is to provide a magnetic heat exchanger and an air conditioning ventilation system that can improve heat exchange efficiency without increasing the heat transfer area.
本開示に係る磁気熱交換器は、中心軸線を有し、中心軸線に対する径方向において中心軸線を挟むように配置された第1磁気熱交換室および第2磁気熱交換室を含む熱交換部と、熱交換部を中心軸線周りに回転させる駆動部と、中心軸線に対する径方向において中心軸線に対する一方側に位置する第1空間と他方側に位置する第2空間との間に磁界の強度分布を形成する第1磁界発生部と、熱交換部を収容しており、第1空間と第2空間とを区画するケースとを備える。第1磁気熱交換室および第2磁気熱交換室の各々は、中心軸線の延在方向に貫通する空間を含む。第1磁気熱交換室および第2磁気熱交換室の各々の少なくとも一部を構成する材料は、磁気熱量材料を含む。上記回転により、第1磁気熱交換室が第1空間内に配置されておりかつ第2磁気熱交換室が第2空間内に配置されている第1状態と、第1磁気熱交換室が第2空間内に配置されておりかつ第2磁気熱交換室が第1空間内に配置されている第2状態とが交互に切り替えられる。
A magnetic heat exchanger according to the present disclosure has a central axis and includes a first magnetic heat exchange chamber and a second magnetic heat exchange chamber arranged to sandwich the central axis in a radial direction with respect to the central axis; a magnetic field intensity distribution between a drive unit that rotates the heat exchange unit around the central axis and a first space located on one side of the central axis and a second space located on the other side in the radial direction with respect to the central axis; A first magnetic field generating section to be formed, and a case housing the heat exchange section and partitioning the first space and the second space are provided. Each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a space penetrating in the extending direction of the central axis. A material forming at least a portion of each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a magnetocaloric material. By the rotation, the first state in which the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the second space, and the first state in which the first magnetic heat exchange chamber is arranged in the second space. A second state in which the second magnetic heat exchange chamber is arranged in two spaces and the second magnetic heat exchange chamber is arranged in the first space is alternately switched.
本開示によれば、伝熱面積の増大によらずに、熱交換効率を向上し得る磁気熱交換器および空調換気システムを提供できる。
According to the present disclosure, it is possible to provide a magnetic heat exchanger and an air conditioning ventilation system that can improve heat exchange efficiency without increasing the heat transfer area.
以下、図面を参照して、本開示の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
Embodiments of the present disclosure will be described below with reference to the drawings. In the drawings below, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
実施の形態1.
<磁気熱交換器の構成>
実施の形態1に係る磁気熱交換器100は、磁気熱量材料と熱輸送媒体との間で熱交換が行われる磁気熱交換器である。具体的には、磁気熱交換器100は、磁気熱量材料と第1熱輸送媒体との間で熱交換が行われるとともに、該磁気熱量材料と第2熱輸送媒体との間で熱交換が行われる磁気熱交換器である。図1および図2に示されるように、磁気熱交換器100は、駆動部1、第1磁界発生部2、熱交換部3、およびケース4を備える。Embodiment 1.
<Configuration of magnetic heat exchanger>
Themagnetic heat exchanger 100 according to Embodiment 1 is a magnetic heat exchanger in which heat is exchanged between a magnetocaloric material and a heat transport medium. Specifically, in the magnetic heat exchanger 100, heat exchange is performed between the magnetocaloric material and the first heat transport medium, and heat exchange is performed between the magnetocaloric material and the second heat transport medium. magnetic heat exchanger. As shown in FIGS. 1 and 2, the magnetic heat exchanger 100 includes a driving section 1, a first magnetic field generating section 2, a heat exchanging section 3, and a case 4. FIG.
<磁気熱交換器の構成>
実施の形態1に係る磁気熱交換器100は、磁気熱量材料と熱輸送媒体との間で熱交換が行われる磁気熱交換器である。具体的には、磁気熱交換器100は、磁気熱量材料と第1熱輸送媒体との間で熱交換が行われるとともに、該磁気熱量材料と第2熱輸送媒体との間で熱交換が行われる磁気熱交換器である。図1および図2に示されるように、磁気熱交換器100は、駆動部1、第1磁界発生部2、熱交換部3、およびケース4を備える。
<Configuration of magnetic heat exchanger>
The
駆動部1は、第1回転軸11と、第1回転軸11を回転させるモータ12とを含む。以下では、第1回転軸11は、後述する熱交換部3の中心軸線Cに沿って延びている。第1回転軸11の中心軸線は、例えば熱交換部3の中心軸線Cと同軸上に配置されている。
The drive unit 1 includes a first rotating shaft 11 and a motor 12 that rotates the first rotating shaft 11 . Below, the 1st rotating shaft 11 is extended along the central axis line C of the heat exchange part 3 mentioned later. The central axis of the first rotating shaft 11 is arranged coaxially with the central axis C of the heat exchange section 3, for example.
以下では、熱交換部3の中心軸線Cの延在方向を単に軸方向とよぶ。中心軸線Cに対する径方向を単に径方向とよぶ。中心軸線Cに対する周方向を単に周方向とよぶ。軸方向は、例えば水平方向に沿っている。
Below, the extending direction of the central axis C of the heat exchange section 3 is simply referred to as the axial direction. A radial direction with respect to the center axis C is simply referred to as a radial direction. The circumferential direction with respect to the central axis C is simply called the circumferential direction. The axial direction is, for example, along the horizontal direction.
第1回転軸11の回転速度(単位時間当たりの回転数)は、特に制限されないが、例えば後述する熱交換部3を流れる第1熱輸送媒体および第2輸送媒体の各々の流速よりも低速である。駆動部1は、例えばケース4の外部に配置される。
The rotation speed (the number of rotations per unit time) of the first rotating shaft 11 is not particularly limited. be. The drive unit 1 is arranged outside the case 4, for example.
第1磁界発生部2は、第1方向Aにおいて、中心軸線Cに対する一方側に位置する第1空間S1(図2参照)と他方側に位置する第2空間S2(図2参照)との間に磁界の強度分布を形成する。第1方向Aは、径方向に沿った特定の方向である。第1方向Aは、例えば上下方向である。
The first magnetic field generator 2 is positioned between a first space S1 (see FIG. 2) located on one side of the central axis C and a second space S2 (see FIG. 2) located on the other side in the first direction A. form the intensity distribution of the magnetic field. The first direction A is a specific direction along the radial direction. The first direction A is, for example, the vertical direction.
第1磁界発生部2は、中心軸線Cに対する上記一方側に配置されている。第1磁界発生部2と第1空間との間の距離は、第1磁界発生部2と第2空間との間の距離よりも長い。第1磁界発生部2は、第2空間に第1空間よりも強い磁界を発生させる。第1磁界発生部2は、第1空間から第2空間に移動した磁気熱量材料を励磁し、第2空間から第1空間に移動した磁気熱量材料を消磁するように設けられている。言い換えると、第1磁界発生部2は、駆動部1により中心軸線C周りに回転する熱交換部3に対し、磁界の強さを周期的に増減させるように設けられている。第1磁界発生部2は、熱交換部3と同期して回転しない。第1磁界発生部2は、例えば後述するケース4に対して固定されている。第1磁界発生部2は、例えば磁力源として永久磁石を含む。第1磁界発生部2の磁力源は、例えば永久磁石により構成されている。第1磁界発生部2は、例えば、中心軸線Cを通り第1方向Aに沿って延びる面に対して対称に配置されている。なお、第1磁界発生部2は、第2空間内に、回転方向に進むにつれて強い磁界を発生させるように設けられていてもよい。
The first magnetic field generator 2 is arranged on the one side with respect to the central axis C. The distance between the first magnetic field generator 2 and the first space is longer than the distance between the first magnetic field generator 2 and the second space. The first magnetic field generator 2 generates a stronger magnetic field in the second space than in the first space. The first magnetic field generator 2 is provided to excite the magnetocaloric material that has moved from the first space to the second space and to demagnetize the magnetocaloric material that has moved from the second space to the first space. In other words, the first magnetic field generating section 2 is provided so as to periodically increase or decrease the strength of the magnetic field with respect to the heat exchanging section 3 rotated around the central axis C by the driving section 1 . The first magnetic field generator 2 does not rotate synchronously with the heat exchange section 3 . The first magnetic field generator 2 is fixed to, for example, a case 4 which will be described later. The first magnetic field generator 2 includes, for example, a permanent magnet as a magnetic force source. The magnetic force source of the first magnetic field generator 2 is composed of, for example, a permanent magnet. The first magnetic field generator 2 is arranged symmetrically with respect to a plane passing through the central axis C and extending along the first direction A, for example. Note that the first magnetic field generator 2 may be provided in the second space so as to generate a stronger magnetic field as it advances in the direction of rotation.
熱交換部3は、中心軸線Cを有している。熱交換部3は、第1回転軸11に固定されており、駆動部1によって中心軸線C周りに回転する。熱交換部3は、周方向に並んで配置された複数の磁気熱交換室を含む。熱交換部3が駆動部1により周方向に回転することにより、複数の磁気熱交換室の各々は、第1空間および第2空間の各々の内部を交互に繰り返し移動する。言い換えると、複数の磁気熱交換室の各々は、第1磁界発生部2により磁界の強度分布が形成された空間内を、周期的に移動する。複数の磁気熱交換室の各々には、軸方向に沿って延びる空間30(図2参照)が形成されている。各空間30は、第1熱輸送媒体が軸方向に流れる第1流路または第2熱輸送媒体が軸方向に流れる第2流路を構成するように設けられている。なお、図1では、複数の磁気熱交換室および複数の空間30の図示が省略されている。
The heat exchange section 3 has a central axis C. The heat exchange section 3 is fixed to the first rotating shaft 11 and rotated around the central axis C by the driving section 1 . The heat exchange section 3 includes a plurality of magnetic heat exchange chambers arranged side by side in the circumferential direction. By rotating the heat exchanging portion 3 in the circumferential direction by the drive portion 1, each of the plurality of magnetic heat exchanging chambers alternately and repeatedly moves inside each of the first space and the second space. In other words, each of the plurality of magnetic heat exchange chambers periodically moves within the space where the intensity distribution of the magnetic field is formed by the first magnetic field generator 2 . A space 30 (see FIG. 2) extending along the axial direction is formed in each of the plurality of magnetic heat exchange chambers. Each space 30 is provided so as to form a first channel through which the first heat transport medium flows in the axial direction or a second channel through which the second heat transport medium flows in the axial direction. 1, the illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted.
複数の磁気熱交換室は、径方向において中心軸線Cを挟むように配置された第1磁気熱交換室および第2磁気熱交換室を含む。第1磁気交換室は、例えば中心軸線Cに対して、第2磁気交換室と180度の回転対称に配置されている。熱交換部3が駆動部1により周方向に回転することにより、第1磁気熱交換室が第1空間内に配置されておりかつ第2磁気熱交換室が第2空間内に配置されている第1状態と、第1磁気熱交換室が第2空間内に配置されておりかつ第2磁気熱交換室が第1空間内に配置されている第2状態とを交互に切り替えられる。
The plurality of magnetic heat exchange chambers include a first magnetic heat exchange chamber and a second magnetic heat exchange chamber arranged so as to sandwich the central axis C in the radial direction. The first magnetic exchange chamber is arranged 180 degrees rotationally symmetrical to the second magnetic exchange chamber with respect to the central axis C, for example. By rotating the heat exchange section 3 in the circumferential direction by the driving section 1, the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the second space. A first state and a second state in which the first magnetic heat exchange chamber is arranged in the second space and the second magnetic heat exchange chamber is arranged in the first space are alternately switched.
図3に示されるように、熱交換部3は、例えば、複数の環状部材31と、複数のコルゲート状部材32とを含む。複数の環状部材31の各々は、周方向に沿って延びており、径方向に互いに間隔を隔てて配置されている。複数の環状部材31の各々は、例えば同心状に配置されている。複数のコルゲート状部材32の各々は、複数の環状部材31の少なくとも1つの環状部材31と接続されている。複数のコルゲート状部材32の各々は、例えば径方向に隣り合う2つの環状部材31間を接続している。径方向に隣り合う2つの環状部材31と、これらの間に配置された1つのコルゲート状部材32とは、複数の空間30を区画するように設けられている。1つの空間30と、当該1つの空間30に面する環状部材31およびコルゲート状部材32の各一部とが、1つの磁気熱交換室を構成している。
As shown in FIG. 3, the heat exchange section 3 includes, for example, multiple annular members 31 and multiple corrugated members 32 . Each of the plurality of annular members 31 extends along the circumferential direction and is spaced apart from each other in the radial direction. Each of the plurality of annular members 31 is arranged concentrically, for example. Each of the multiple corrugated members 32 is connected to at least one annular member 31 of the multiple annular members 31 . Each of the plurality of corrugated members 32 connects, for example, two radially adjacent annular members 31 . Two radially adjacent annular members 31 and one corrugated member 32 arranged therebetween are provided so as to partition a plurality of spaces 30 . One space 30 and parts of the annular member 31 and the corrugated member 32 facing the one space 30 constitute one magnetic heat exchange chamber.
複数の磁気熱交換室の各々の少なくとも一部を構成する材料は、磁気熱量材料を含む。好ましくは、各環状部材31を構成する材料が磁気熱量材料を含む。磁気熱量材料は、磁気熱量効果が得られる磁性体であり、例えばガドリニウム(Gd)を含む。好ましくは、コルゲート状部材32を構成する材料は、磁気熱量材料を含まず、磁気熱量材料と比べて加工しやすい(高い展延性を有する)材料のみを含む。コルゲート状部材32を構成する材料は、例えばアルミニウム(Al)を含む。コルゲート状部材32は、紙により構成されていてもよい。
The material that constitutes at least part of each of the plurality of magnetic heat exchange chambers includes a magnetocaloric material. Preferably, the material forming each annular member 31 comprises a magnetocaloric material. The magnetocaloric material is a magnetic material that provides a magnetocaloric effect, and includes gadolinium (Gd), for example. Preferably, the material forming the corrugated member 32 does not contain a magnetocaloric material, but only a material that is easier to process (has high ductility) than the magnetocaloric material. A material forming the corrugated member 32 includes, for example, aluminum (Al). The corrugated member 32 may be made of paper.
好ましくは、複数の磁気熱交換室の各々の少なくとも一部を構成する材料は、吸放湿性を有する材料を含む。吸放湿性を有する材料は、例えば珪藻土およびシリカゲルの少なくともいずれかを含む。
Preferably, the material that constitutes at least part of each of the plurality of magnetic heat exchange chambers contains a material that absorbs and releases moisture. Moisture-absorbing and desorbing materials include, for example, at least one of diatomaceous earth and silica gel.
軸方向から視て、熱交換部3の外形状は、例えば円形状である。熱交換部3は、ケース4によって中心軸線C周りに回転可能に支持されている。熱交換部3は、ケース4に収容されている。ケース4は、内部空間として、上記第1空間および上記第2空間を含む。
When viewed from the axial direction, the outer shape of the heat exchange section 3 is circular, for example. The heat exchange section 3 is rotatably supported around the central axis C by the case 4 . The heat exchange section 3 is housed in the case 4 . The case 4 includes the first space and the second space as internal spaces.
ケース4には、軸方向において第1空間を挟むように配置されており、第1熱輸送媒体が第1空間に流入または第1空間から流出するための1対の第1流出入口(41,42)が形成されている。さらに、ケース4には、軸方向において第2空間を挟むように配置されており、第2熱輸送媒体が第2空間に流入または第2空間から流出するための1対の第2流出入口(43,44)が形成されている。なお、図1では、便宜上、ケース4が破線で示されている。
The case 4 is arranged so as to sandwich the first space in the axial direction, and a pair of first inlets and outlets (41, 42) are formed. Further, the case 4 is arranged so as to sandwich the second space in the axial direction, and a pair of second inlets and outlets ( 43, 44) are formed. In addition, in FIG. 1, the case 4 is indicated by a dashed line for convenience.
1対の第1流出入口(41,42)は、第1熱輸送媒体が第1空間に流入するための第1流入口41と、第1熱輸送媒体が第1空間から流出するための第1流出口42とから成る。1対の第2流出入口(43,44)は、第2熱輸送媒体が第2空間に流入するための第2流入口43と、第2熱輸送媒体が第2空間から流出するための第2流出口44とから成る。第1流入口41および第1流出口42は、熱交換部3を挟んで対称に設けられている。第2流入口43および第2流出口44は、熱交換部3を挟んで対称に設けられている。第1流入口41、第1流出口42、第2流入口43、および第2流出口44の各平面形状は、例えば略半円形状である。
A pair of first inlets and outlets (41, 42) includes a first inlet 41 for the first heat transport medium to flow into the first space and a first heat transport medium for the first heat transport medium to flow out of the first space. 1 outflow port 42 . A pair of second inlets (43, 44) includes a second inlet 43 for the second heat transport medium to flow into the second space and a second heat transport medium for the second heat transport medium to flow out of the second space. 2 outlets 44 . The first inlet 41 and the first outlet 42 are provided symmetrically with the heat exchange section 3 interposed therebetween. The second inlet 43 and the second outlet 44 are provided symmetrically with the heat exchange section 3 interposed therebetween. Each planar shape of the first inlet 41, the first outlet 42, the second inlet 43, and the second outlet 44 is, for example, a substantially semicircular shape.
第2流入口43は、軸方向において、熱交換部3に対し第1流出口42と同じ側に配置されている。第2流出口44は、軸方向において、熱交換部3に対し第1流入口41と同じ側に配置されている。
The second inlet 43 is arranged on the same side as the first outlet 42 with respect to the heat exchange section 3 in the axial direction. The second outlet 44 is arranged on the same side as the first inlet 41 with respect to the heat exchange section 3 in the axial direction.
ケース4には、例えば軸方向の駆動部1側に位置しかつ円形状である第1開口部と、軸方向の駆動部1とは反対側に位置しかつ円形状である第2開口部とが形成されている。この場合、ケース4は、第1開口部を第1流入口41および第2流出口44に区画する第1セパレータ45Aと、第2開口部を第1流出口42および第2流入口43に区画する第2セパレータ45Bとを含む。少なくとも第1セパレータ45Aには、第1回転軸11を通す貫通孔が形成されている。例えば第2セパレータ45Bにも、第1回転軸11を通す貫通孔が形成されている。第1セパレータ45Aおよび第2セパレータ45Bの各々は、軸方向および第1方向Aの各々と直交する方向に沿って延びている。熱交換部3の軸方向の両端面は、ケース4の第1開口部および第2開口部の各々が形成されている各内周面と平行である。
The case 4 has, for example, a circular first opening located on the axial side of the driving section 1 and a circular second opening located on the axial side opposite to the driving section 1 . is formed. In this case, the case 4 includes a first separator 45A that divides the first opening into the first inlet 41 and the second outlet 44, and a second opening into the first outlet 42 and the second inlet 43. and a second separator 45B. At least the first separator 45A has a through hole through which the first rotating shaft 11 is passed. For example, the second separator 45B is also formed with a through hole through which the first rotating shaft 11 is passed. Each of the first separator 45A and the second separator 45B extends along a direction orthogonal to each of the axial direction and the first direction A. As shown in FIG. Both end faces in the axial direction of the heat exchanging portion 3 are parallel to the respective inner peripheral surfaces of the case 4 on which the first opening and the second opening are formed.
ケース4には、熱交換部3に加えて、第1磁界発生部2が収容されている。第1磁界発生部2は、軸方向から視て、1対の第2流出入口(43,44)よりも外側に配置されている。言い換えると、第1磁界発生部2は、第2空間に形成される熱輸送媒体の第2流路上には配置されていない。
<磁気熱交換器の動作>
図4は、磁気熱交換器100の使用例を示す図である。図4に示されるように、磁気熱交換器100は、温度が比較的高い熱輸送媒体で満たされている第3空間S3と、温度が比較的低い熱輸送媒体で満たされている第4空間S4とを接続する空間に配置される。第1熱輸送媒体は、第3空間S3から第4空間S4に流れる熱輸送媒体である。第2熱輸送媒体は、第4空間S4から第3空間S3に流れる熱輸送媒体である。第3空間S3と第4空間S4とを接続する上記空間には、互いに区画された第1流路と第2流路とが形成されている。熱輸送媒体は、特に制限されないが、例えば空気である。 Thecase 4 accommodates the first magnetic field generator 2 in addition to the heat exchange section 3 . The first magnetic field generator 2 is arranged outside the pair of second inlets and outlets (43, 44) when viewed in the axial direction. In other words, the first magnetic field generator 2 is not arranged on the second flow path of the heat transport medium formed in the second space.
<Operation of magnetic heat exchanger>
FIG. 4 is a diagram showing a usage example of themagnetic heat exchanger 100. As shown in FIG. As shown in FIG. 4, the magnetic heat exchanger 100 includes a third space S3 filled with a heat transport medium with a relatively high temperature and a fourth space S3 filled with a heat transport medium with a relatively low temperature. It is arranged in the space connecting S4. The first heat transport medium is a heat transport medium that flows from the third space S3 to the fourth space S4. The second heat transport medium is a heat transport medium that flows from the fourth space S4 to the third space S3. A first flow path and a second flow path that are separated from each other are formed in the space that connects the third space S3 and the fourth space S4. The heat transport medium is, but not limited to, air, for example.
<磁気熱交換器の動作>
図4は、磁気熱交換器100の使用例を示す図である。図4に示されるように、磁気熱交換器100は、温度が比較的高い熱輸送媒体で満たされている第3空間S3と、温度が比較的低い熱輸送媒体で満たされている第4空間S4とを接続する空間に配置される。第1熱輸送媒体は、第3空間S3から第4空間S4に流れる熱輸送媒体である。第2熱輸送媒体は、第4空間S4から第3空間S3に流れる熱輸送媒体である。第3空間S3と第4空間S4とを接続する上記空間には、互いに区画された第1流路と第2流路とが形成されている。熱輸送媒体は、特に制限されないが、例えば空気である。 The
<Operation of magnetic heat exchanger>
FIG. 4 is a diagram showing a usage example of the
第1流路は、磁気熱交換器100の第1空間S1に流入する第1熱輸送媒体が流れる上流路F1と、磁気熱交換器100の第1空間S1から流入した第1熱輸送媒体が流れる下流路F2とを含む。上流路F1は、第1熱輸送媒体が第3空間S3から流入するための流入口51と第1流入口41との間に形成される。下流路F2は、第1流出口42と第1熱輸送媒体が第4空間S4に流出するための流出口52との間に形成される。
The first flow path includes an upstream flow path F1 through which the first heat transport medium flowing into the first space S1 of the magnetic heat exchanger 100 flows, and the first heat transport medium flowing in from the first space S1 of the magnetic heat exchanger 100. and a downstream flow path F2. The upstream flow path F1 is formed between the inlet 51 and the first inlet 41 through which the first heat transport medium flows from the third space S3. The downstream flow path F2 is formed between the first outlet 42 and the outlet 52 through which the first heat transport medium flows out to the fourth space S4.
第2流路は、磁気熱交換器100の第2空間S2に流入する第2熱輸送媒体が流れる上流路F3と、磁気熱交換器100の第2空間S2から流入した第2熱輸送媒体が流れる下流路F4とを含む。上流路F3は、第2熱輸送媒体が第4空間S4から流入するための流入口53と第2流入口43との間に形成される。下流路F4は、第2流出口44と第2熱輸送媒体が第3空間S3に流出するための流出口54との間に形成される。
The second flow path includes an upstream flow path F3 in which the second heat transport medium flowing into the second space S2 of the magnetic heat exchanger 100 flows, and the second heat transport medium flowing in from the second space S2 of the magnetic heat exchanger 100. and a downstream flow path F4. The upstream flow path F3 is formed between the inlet 53 and the second inlet 43 through which the second heat transport medium flows from the fourth space S4. The downstream flow path F4 is formed between the second outlet 44 and the outlet 54 through which the second heat transport medium flows out to the third space S3.
第1流路内の第1熱輸送媒体は、例えば下流路F2に配置された第1ポンプ6(例えば送風機)によって軸方向に沿った第1の向きに送られる。第2流路内の第2熱輸送媒体は、例えば下流路F4に配置された第2ポンプ7(例えば送風機)によって軸方向に沿っておりかつ第1の向きとは反対の第2の向きに送られる。
The first heat transport medium in the first flow path is sent in a first direction along the axial direction by, for example, a first pump 6 (for example, an air blower) arranged in the downstream flow path F2. The second heat transport medium in the second flow path is forced along the axial direction and in a second direction opposite to the first direction by, for example, a second pump 7 (eg, blower) located in the downstream flow path F4. Sent.
このように配置された磁気熱交換器100の熱交換部3が駆動部1によって中心軸線C周りに回転すると、第1磁気熱交換室が第1空間内に配置されておりかつ第2磁気熱交換室が第2空間内に配置されている第1状態と、第1磁気熱交換室が第2空間内に配置されておりかつ第2磁気熱交換室が第1空間内に配置されている第2状態とが交互に切り替えられる。
When the heat exchange section 3 of the magnetic heat exchanger 100 arranged in this way is rotated around the central axis C by the driving section 1, the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the first space. a first state in which the exchange chamber is located within the second space; and a first magnetic heat exchange chamber is located within the second space and a second magnetic heat exchange chamber is located within the first space. The second state is alternately switched.
第1状態から第2状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、第1磁界発生部2によって励磁され、発熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。
When the first state is switched to the second state, the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space and is excited by the first magnetic field generator 2 to generate heat. . At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
第2状態から第1状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、励磁され、発熱する。
When the second state is switched to the first state, the magnetocaloric material in the first magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space. At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
これにより、上流路F1から第1空間に流入した第1熱輸送媒体は、その熱量の一部が磁気熱交換室で回収(蓄熱)されるとともに、吸熱状態にある磁気熱量材料により回収(吸熱)され、その後、下流路F2を経て第4空間S4に流出する。
As a result, part of the heat quantity of the first heat transport medium that has flowed into the first space from the upstream flow path F1 is recovered (heat stored) in the magnetic heat exchange chamber, and recovered (heat absorbed) by the magnetocaloric material in the heat absorbing state. ), and then flows out to the fourth space S4 via the downstream flow path F2.
一方で、上流路F3から第2空間に流入した第2熱輸送媒体は、磁気熱交換室が第1空間内を移動する際に回収した熱量を磁気熱交換室から受け取るとともに、発熱状態にある磁気熱量材料により加熱され、その後、下流路F4を経て第3空間S3に流出する。
On the other hand, the second heat transport medium that has flowed into the second space from the upstream flow path F3 receives from the magnetic heat exchange chambers the amount of heat recovered when the magnetic heat exchange chambers move in the first space, and is in a heat generating state. It is heated by the magnetocaloric material and then flows out to the third space S3 through the downstream flow path F4.
<磁気熱交換器の効果>
磁気熱交換器100では、第1磁界発生部2が第2空間S2に第1空間S1よりも強い磁界を発生させ、熱交換部3の回転により上記第1状態と第2状態とが切り替えられる。そのため、磁気熱交換器100は、第1熱輸送媒体に、第2熱輸送媒体から回収した蓄熱量、および磁気熱量効果により生じた熱量を、与えることができる。磁気熱交換器100では、磁気熱量材料の磁気熱量効果がより効率的に利用され得るため、伝熱面積の増大によらずに、熱交換効率を向上し得る。 <Effect of magnetic heat exchanger>
In themagnetic heat exchanger 100, the first magnetic field generating section 2 generates a stronger magnetic field in the second space S2 than in the first space S1, and the rotation of the heat exchanging section 3 switches between the first state and the second state. . Therefore, the magnetic heat exchanger 100 can provide the first heat transport medium with the heat amount recovered from the second heat transport medium and the heat amount generated by the magnetocaloric effect. In the magnetic heat exchanger 100, the magnetocaloric effect of the magnetocaloric material can be used more efficiently, so the heat exchange efficiency can be improved without depending on the increase in the heat transfer area.
磁気熱交換器100では、第1磁界発生部2が第2空間S2に第1空間S1よりも強い磁界を発生させ、熱交換部3の回転により上記第1状態と第2状態とが切り替えられる。そのため、磁気熱交換器100は、第1熱輸送媒体に、第2熱輸送媒体から回収した蓄熱量、および磁気熱量効果により生じた熱量を、与えることができる。磁気熱交換器100では、磁気熱量材料の磁気熱量効果がより効率的に利用され得るため、伝熱面積の増大によらずに、熱交換効率を向上し得る。 <Effect of magnetic heat exchanger>
In the
磁気熱交換器100では、熱交換部3は、周方向に沿って延びている複数の環状部材31と、複数の環状部材31の少なくとも1つの環状部材31と接続されているコルゲート状部材32とを含む。環状部材31を構成する材料は、磁気熱量材料を含む。コルゲート状部材32を構成する材料は、磁気熱量材料を含まない。磁気熱量材料を含む環状部材31は、磁気熱量材料を含むコルゲート状部材32と比べて、容易に製造され得る。そのため、磁気熱交換器100は、コルゲート状部材32を構成する材料が磁気熱量材料を含む場合と比べて、容易にかつ安価に製造され得る。
In the magnetic heat exchanger 100, the heat exchange portion 3 includes a plurality of annular members 31 extending along the circumferential direction, and a corrugated member 32 connected to at least one of the plurality of annular members 31. including. The material forming the annular member 31 includes a magnetocaloric material. The material forming the corrugated member 32 does not contain a magnetocaloric material. Annular members 31 containing magnetocaloric material can be manufactured more easily than corrugated members 32 containing magnetocaloric material. Therefore, the magnetic heat exchanger 100 can be manufactured easily and inexpensively compared to the case where the material forming the corrugated member 32 contains a magnetocaloric material.
第1磁界発生部2は、永久磁石を含む。このようにすれば、第1磁界発生部2にて磁界を生じさせるための動力が不要とされまたは低減されるため、磁気熱交換器100のエネルギー消費量が削減され得る。また、第1磁界発生部2の磁力源が永久磁石により構成されている場合、第1磁界発生部2が磁力源として電磁石をさらに含む場合と比べて、部品点数が削減され得る。
The first magnetic field generator 2 includes a permanent magnet. In this way, the power for generating the magnetic field in the first magnetic field generator 2 is eliminated or reduced, so the energy consumption of the magnetic heat exchanger 100 can be reduced. Moreover, when the magnetic force source of the first magnetic field generator 2 is composed of a permanent magnet, the number of parts can be reduced compared to the case where the first magnetic field generator 2 further includes an electromagnet as the magnetic force source.
実施の形態2.
図5に示されるように、実施の形態2に係る磁気熱交換器101は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、駆動部1がモータ13、第2回転軸14、およびベルト15を含む点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図5では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図5では、ケース4が破線で示されている。Embodiment 2.
As shown in FIG. 5, themagnetic heat exchanger 101 according to the second embodiment has basically the same configuration as the magnetic heat exchanger 100 according to the first embodiment, except that the drive unit 1 includes a motor 13, It differs from the magnetic heat exchanger 100 in that it includes the second rotating shaft 14 and the belt 15 . Differences from the magnetic heat exchanger 100 are mainly described below. 5, illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 5, case 4 is indicated by a dashed line.
図5に示されるように、実施の形態2に係る磁気熱交換器101は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、駆動部1がモータ13、第2回転軸14、およびベルト15を含む点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図5では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図5では、ケース4が破線で示されている。
As shown in FIG. 5, the
モータ13は、第2回転軸14を回転させる。第2回転軸14の中心軸線は、熱交換部3の中心軸線Cと平行に配置されている。ベルト15は、熱交換部3および第2回転軸14に掛けられており、第2回転軸14の回転力を熱交換部3に伝達するように設けられている。ベルト15は、熱交換部3の外周面と第2回転軸14の外周面とに掛けられている。
The motor 13 rotates the second rotating shaft 14 . The central axis of the second rotating shaft 14 is arranged parallel to the central axis C of the heat exchange section 3 . The belt 15 is hung on the heat exchanging section 3 and the second rotating shaft 14 and is provided so as to transmit the rotational force of the second rotating shaft 14 to the heat exchanging section 3 . The belt 15 is wrapped around the outer peripheral surface of the heat exchange section 3 and the outer peripheral surface of the second rotating shaft 14 .
駆動部1のモータ13、第2回転軸14、およびベルト15は、ケース4に収容されている。駆動部1のモータ13、第2回転軸14、およびベルト15の各々は、第1空間および第2空間の外部に配置されている。さらに、駆動部1のモータ13、第2回転軸14、およびベルト15の各々は、第1流路および第2流路の外部に配置されている。
The motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 are housed in the case 4. Each of the motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 is arranged outside the first space and the second space. Furthermore, each of the motor 13, the second rotating shaft 14, and the belt 15 of the drive unit 1 is arranged outside the first flow path and the second flow path.
磁気熱交換器101では、駆動部1が第1空間、第2空間、第1流路、および第2流路の外部に配置されているため、駆動部1が第1流路および第2流路の各一部に配置されている磁気熱交換器100と比べて、第1熱輸送媒体および第2熱輸送媒体の各々の圧力損失が低減され得る。また、磁気熱交換器101の軸方向の寸法は、磁気熱交換器100の軸方向の寸法よりも小さくなる。
In the magnetic heat exchanger 101, the drive unit 1 is arranged outside the first space, the second space, the first flow path, and the second flow path. The pressure loss of each of the first heat transport medium and the second heat transport medium can be reduced compared to the magnetic heat exchangers 100 arranged in each part of the passage. Also, the axial dimension of the magnetic heat exchanger 101 is smaller than the axial dimension of the magnetic heat exchanger 100 .
実施の形態3.
図6に示されるように、実施の形態3に係る磁気熱交換器102は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、第1磁界発生部2が電磁石21を含む点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図6では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図6では、ケース4が破線で示されている。Embodiment 3.
As shown in FIG. 6, themagnetic heat exchanger 102 according to Embodiment 3 has basically the same configuration as the magnetic heat exchanger 100 according to Embodiment 1, but the first magnetic field generating section 2 is It differs from the magnetic heat exchanger 100 in that it includes an electromagnet 21 . Differences from the magnetic heat exchanger 100 are mainly described below. 6, the illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 6, case 4 is indicated by dashed lines.
図6に示されるように、実施の形態3に係る磁気熱交換器102は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、第1磁界発生部2が電磁石21を含む点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図6では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図6では、ケース4が破線で示されている。
As shown in FIG. 6, the
磁気熱交換器102では、第1磁界発生部2が磁界を変調するように設けられた磁界変調装置として構成されている。第1磁界発生部2は、電磁石21と、電磁石21により生じる磁界の強度を制御する制御部22とを含む。制御部22は、例えば第2輸送媒体に伝えるべき熱量に応じて、電磁石21により生じる磁界の強度を制御する。磁気熱交換器102が第2輸送媒体に伝えるべき熱量は、例えば、上流路F3から第2空間に流入した第2熱輸送媒体の温度と、下流路F4を経て第3空間S3に流出する第2熱輸送媒体に設定される温度との差に基づいて設定される。
In the magnetic heat exchanger 102, the first magnetic field generator 2 is configured as a magnetic field modulation device provided to modulate the magnetic field. First magnetic field generator 2 includes electromagnet 21 and controller 22 that controls the strength of the magnetic field generated by electromagnet 21 . The control unit 22 controls the strength of the magnetic field generated by the electromagnet 21 according to, for example, the amount of heat to be transferred to the second transportation medium. The amount of heat to be transferred to the second transport medium by the magnetic heat exchanger 102 is, for example, the temperature of the second heat transport medium that has flowed into the second space from the upstream flow path F3 and the temperature of the second heat transport medium that has flowed into the third space S3 via the downstream flow path F4. 2 is set based on the difference from the temperature set for the heat transport medium.
電磁石21は、ケース4に収容されている。制御部22は、例えばケース4の外部に配置されている。なお、制御部22は、ケース4に収容されていてもよい。
The electromagnet 21 is housed in the case 4. The control unit 22 is arranged outside the case 4, for example. Note that the control unit 22 may be accommodated in the case 4 .
磁気熱交換器102では、第2輸送媒体に伝えるべき熱量に応じて電磁石21により生じる磁界の強度が制御され得るため、第1磁界発生部2が電磁石21を含まないために第1磁界発生部2により生じる磁界の強度が第2輸送媒体に伝えるべき熱量に応じて制御され得ない場合と比べて、熱交換効率が向上する。
In the magnetic heat exchanger 102, the strength of the magnetic field generated by the electromagnet 21 can be controlled according to the amount of heat to be transferred to the second transportation medium. The heat exchange efficiency is improved compared to the case where the strength of the magnetic field generated by 2 cannot be controlled according to the amount of heat to be transferred to the second transport medium.
なお、磁気熱交換器102は、第1磁界発生部2が電磁石21を含む点を除き、磁気熱交換器101と同様の構成を備えていてもよい。
Note that the magnetic heat exchanger 102 may have the same configuration as the magnetic heat exchanger 101 except that the first magnetic field generator 2 includes the electromagnet 21 .
実施の形態4.
図7に示されるように、実施の形態4に係る磁気熱交換器103は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、第2磁界発生部8をさらに備える点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図7では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図7では、ケース4が破線で示されている。Embodiment 4.
As shown in FIG. 7, themagnetic heat exchanger 103 according to Embodiment 4 has basically the same configuration as the magnetic heat exchanger 100 according to Embodiment 1, except that the second magnetic field generator 8 is It differs from the magnetic heat exchanger 100 in that it is further provided. Differences from the magnetic heat exchanger 100 are mainly described below. 7, illustration of the plurality of magnetic heat exchange chambers and the plurality of spaces 30 is omitted. In FIG. 7, case 4 is indicated by a dashed line.
図7に示されるように、実施の形態4に係る磁気熱交換器103は、実施の形態1に係る磁気熱交換器100と基本的に同様の構成を備えるが、第2磁界発生部8をさらに備える点で、磁気熱交換器100とは異なる。以下では、磁気熱交換器100と異なる点を主に説明する。なお、図7では、複数の磁気熱交換室および複数の空間30の図示が省略されている。図7では、ケース4が破線で示されている。
As shown in FIG. 7, the
第2磁界発生部8は、第1方向Aにおいて、第1空間S1と第2空間S2との間に磁界の強度分布を形成する。第2磁界発生部8は、中心軸線Cに対して第1磁界発生部2とは反対側に配置されている。第2磁界発生部8と第1空間との間の距離は、第2磁界発生部8と第2空間との間の距離よりも短い。第2磁界発生部8は、第1空間に第2空間よりも強い磁界を発生させる。
The second magnetic field generator 8 forms a magnetic field strength distribution in the first direction A between the first space S1 and the second space S2. The second magnetic field generator 8 is arranged on the opposite side of the central axis C from the first magnetic field generator 2 . The distance between the second magnetic field generator 8 and the first space is shorter than the distance between the second magnetic field generator 8 and the second space. The second magnetic field generator 8 generates a stronger magnetic field in the first space than in the second space.
第1磁界発生部2および第2磁界発生部8の各々は、例えば電磁石を含む。第1磁界発生部2は、電磁石21と、電磁石21により生じる磁界の強度を制御する制御部22とを含む。第2磁界発生部8は、電磁石81と、電磁石81により生じる磁界の強度を制御する制御部82とを含む。制御部22および制御部82は、例えばケース4の外部に配置されている。なお、制御部22および制御部82は、ケース4に収容されていてもよい。
Each of the first magnetic field generator 2 and the second magnetic field generator 8 includes, for example, an electromagnet. First magnetic field generator 2 includes electromagnet 21 and controller 22 that controls the strength of the magnetic field generated by electromagnet 21 . The second magnetic field generator 8 includes an electromagnet 81 and a controller 82 that controls the strength of the magnetic field generated by the electromagnet 81 . The control unit 22 and the control unit 82 are arranged outside the case 4, for example. Note that the control unit 22 and the control unit 82 may be accommodated in the case 4 .
第1磁界発生部2および第2磁界発生部8により、第1空間の磁界が第2空間の磁界よりも強い第3状態と、第1空間の磁界が第2空間の磁界よりも弱い第4状態とが切り替えられる。
A third state in which the magnetic field in the first space is stronger than the magnetic field in the second space and a fourth state in which the magnetic field in the first space is weaker than the magnetic field in the second space are generated by the first magnetic field generator 2 and the second magnetic field generator 8 . state can be switched.
第3状態では、第1空間から第2空間に移動する磁気熱量材料は消磁され吸熱し、第2空間から第1空間に移動する磁気熱量材料は励磁され発熱する。
In the third state, the magnetocaloric material moving from the first space to the second space is demagnetized and heat is absorbed, and the magnetocaloric material moving from the second space to the first space is excited and generates heat.
第3状態において、熱交換部3が中心軸線C周りに回転することによって第1状態から第2状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、消磁され、吸熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、励磁され、発熱する。
In the third state, when the heat exchange section 3 rotates around the central axis C to switch from the first state to the second state, the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space. is demagnetized and absorbs heat as it moves to At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the second space to the first space.
第3状態において、熱交換部3が中心軸線C周りに回転することによって第2状態から第1状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、励磁され、発熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、消磁され、吸熱する。
In the third state, when the heat exchange section 3 rotates around the central axis C to switch from the second state to the first state, the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the second space to the first space. It is excited and heats up as it moves. At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the first space to the second space.
第4状態では、第1空間から第2空間に移動する磁気熱量材料は励磁され発熱し、第2空間から第1空間に移動する磁気熱量材料は消磁され吸熱する。
In the fourth state, the magnetocaloric material moving from the first space to the second space is excited and generates heat, and the magnetocaloric material moving from the second space to the first space is demagnetized and absorbs heat.
第4状態において、熱交換部3が中心軸線C周りに回転することによって第1状態から第2状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、励磁され、発熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。
In the fourth state, when the heat exchange section 3 rotates around the central axis C to switch from the first state to the second state, the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the first space to the second space. It is excited and heats up as it moves. At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
第4状態において、熱交換部3が中心軸線C周りに回転することによって第2状態から第1状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、励磁され、発熱する。
In the fourth state, when the heat exchange section 3 rotates around the central axis C to switch from the second state to the first state, the magnetocaloric material in the first magnetic heat exchange chamber is transferred from the second space to the first space. is demagnetized and absorbs heat as it moves to At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
第1磁界発生部2および第2磁界発生部8による第3状態と第4状態との切り替えは、第3空間S3中の熱輸送媒体の温度と第4空間S4中の熱輸送媒体の温度との大小関係に応じて、行われる。第3状態と第4状態との切り替えに際し、第1空間S1を流れる第1熱輸送媒体の流通方向および第2空間S2を流れる第2熱輸送媒体の流通方向は、一定とされる。
Switching between the third state and the fourth state by the first magnetic field generator 2 and the second magnetic field generator 8 is performed by changing the temperature of the heat transport medium in the third space S3 and the temperature of the heat transport medium in the fourth space S4. It is performed according to the magnitude relationship of When switching between the third state and the fourth state, the circulation direction of the first heat transport medium flowing through the first space S1 and the circulation direction of the second heat transport medium flowing through the second space S2 are kept constant.
例えば、第3空間S3中の熱輸送媒体の温度が第4空間S4中の熱輸送媒体の温度が低い場合、第3状態とされる。第3状態では、第4空間S4から磁気熱交換器103を経て第3空間S3に流れる第2熱輸送媒体は磁気熱交換器103により吸熱され、第3空間S3から磁気熱交換器103を経て第4空間S4に流れる第1熱輸送媒体は磁気熱交換器103にて加熱される。
For example, when the temperature of the heat transport medium in the third space S3 is lower than the temperature of the heat transport medium in the fourth space S4, the third state is assumed. In the third state, the second heat transport medium flowing from the fourth space S4 through the magnetic heat exchanger 103 to the third space S3 absorbs heat by the magnetic heat exchanger 103, and flows from the third space S3 through the magnetic heat exchanger 103. The first heat transport medium flowing in the fourth space S4 is heated by the magnetic heat exchanger 103 .
例えば、第3空間S3中の熱輸送媒体の温度が第4空間S4中の熱輸送媒体の温度が高い場合、第4状態とされる。第4状態では、第4空間S4から磁気熱交換器103を経て第3空間S3に流れる第2熱輸送媒体は磁気熱交換器103により加熱され、第3空間S3から磁気熱交換器103を経て第4空間S4に流れる第1熱輸送媒体は磁気熱交換器103にて吸熱される。
For example, when the temperature of the heat transport medium in the third space S3 is higher than the temperature of the heat transport medium in the fourth space S4, the fourth state is set. In the fourth state, the second heat transport medium flowing from the fourth space S4 through the magnetic heat exchanger 103 to the third space S3 is heated by the magnetic heat exchanger 103, and flows from the third space S3 through the magnetic heat exchanger 103. The magnetic heat exchanger 103 absorbs heat from the first heat transport medium flowing in the fourth space S4.
これにより、第3空間S3中の熱輸送媒体の温度と第4空間S4中の熱輸送媒体の温度との大小関係によらず、第1空間S1を流れる第1熱輸送媒体の流通方向および第2空間S2を流れる第2熱輸送媒体の流通方向を反転することなく、磁気熱交換器103を経て第3空間S3に流入する第2熱輸送媒体の温度を予め定められた温度とすることができる。
As a result, regardless of the magnitude relationship between the temperature of the heat transport medium in the third space S3 and the temperature of the heat transport medium in the fourth space S4, the direction of flow of the first heat transport medium flowing through the first space S1 and the The temperature of the second heat transport medium flowing into the third space S3 via the magnetic heat exchanger 103 can be set to a predetermined temperature without reversing the flow direction of the second heat transport medium flowing through the second space S2. can.
なお、磁気熱交換器103は、第2磁界発生部8をさらに備える点を除き、磁気熱交換器101または磁気熱交換器102と同様の構成を備えていてもよい。
Note that the magnetic heat exchanger 103 may have the same configuration as the magnetic heat exchanger 101 or the magnetic heat exchanger 102, except that the second magnetic field generator 8 is further provided.
磁気熱交換器103では、第1磁界発生部2および第2磁界発生部8の少なくともいずれかが、電磁石を含んでいればよい。第1磁界発生部2および第2磁界発生部8のいずれかの磁力源は、永久磁石であってもよい。
In the magnetic heat exchanger 103, at least one of the first magnetic field generator 2 and the second magnetic field generator 8 should include an electromagnet. Either the magnetic force source of the first magnetic field generator 2 or the second magnetic field generator 8 may be a permanent magnet.
磁気熱交換器100~103では、複数の磁気熱交換室が環状部材31とコルゲート状部材32とによって構成されているが、これに限られるものではない。複数の磁気熱交換室の各々は、磁気熱量材料を含む任意の構造体により、構成されていてもよい。
In the magnetic heat exchangers 100 to 103, a plurality of magnetic heat exchange chambers are composed of the annular member 31 and the corrugated member 32, but are not limited to this. Each of the plurality of magnetic heat exchange chambers may be composed of any structure containing a magnetocaloric material.
実施の形態5.
図8に示されるように、空調換気システム200は、第1流路としての流路F1,F2と、第2流路としての流路F3,F4と、第1ポンプとしての第1送風機6と、第2ポンプとしての第2送風機7とを備える。Embodiment 5.
As shown in FIG. 8, the airconditioning ventilation system 200 includes flow paths F1 and F2 as first flow paths, flow paths F3 and F4 as second flow paths, and a first blower 6 as a first pump. , and a second blower 7 as a second pump.
図8に示されるように、空調換気システム200は、第1流路としての流路F1,F2と、第2流路としての流路F3,F4と、第1ポンプとしての第1送風機6と、第2ポンプとしての第2送風機7とを備える。
As shown in FIG. 8, the air
図8に示される空調換気システム200の磁気熱交換器100、流路F1,F2、流路F3,F4、第1送風機6、および第2送風機7は、図4に示される磁気熱交換器100、流路F1,F2、流路F3,F4、第1ポンプ6、および第2ポンプ7と基本的に同様の構成を備え、第3空間S3が室内空間とされ、かつ第4空間S4が室外空間とされている点で、図4に示された磁気熱交換器100の使用例とは異なる。以下では、空調換気システム200が図4に示される使用例と異なる点を主に説明する。
The magnetic heat exchanger 100, the flow paths F1, F2, the flow paths F3, F4, the first blower 6, and the second blower 7 of the air conditioning ventilation system 200 shown in FIG. , flow paths F1, F2, flow paths F3, F4, first pump 6, and second pump 7, the third space S3 is an indoor space, and the fourth space S4 is an outdoor space. It differs from the example of use of the magnetic heat exchanger 100 shown in FIG. 4 in that it is a space. In the following, differences of the air-conditioning/ventilation system 200 from the usage example shown in FIG. 4 will be mainly described.
空調換気システム200は、室内空間S3と室外空間S4とを接続する空間に配置される。第1熱輸送媒体は、室内空間S3から室外空間S4に流れる空気(以下、環気とよぶ)である。第2熱輸送媒体は、室外空間S4から室内空間S3に流れる空気(以下、外気とよぶ)である。室内空間S3と室外空間S4とを接続する上記空間には、互いに区画された第1流路と第2流路とが形成されている。
The air conditioning ventilation system 200 is arranged in a space connecting the indoor space S3 and the outdoor space S4. The first heat transport medium is air (hereinafter referred to as ambient air) flowing from the indoor space S3 to the outdoor space S4. The second heat transport medium is air (hereinafter referred to as outside air) flowing from the outdoor space S4 to the indoor space S3. In the space connecting the indoor space S3 and the outdoor space S4, a first channel and a second channel are formed which are separated from each other.
第1流路は、磁気熱交換器100の第1空間S1に流入する環気が流れる上流路F1と、磁気熱交換器100の第1空間S1から流入した環気が流れる下流路F2とを含む。上流路F1は、環気が室内空間S3から流入するための流入口51と第1流入口41との間に形成される。下流路F2は、第1流出口42と環気が室外空間S4に流出するための流出口52との間に形成される。
The first flow path includes an upstream flow path F1 in which the recirculating air flowing into the first space S1 of the magnetic heat exchanger 100 flows, and a downstream flow path F2 in which the recirculating air flowing in from the first space S1 of the magnetic heat exchanger 100 flows. include. The upstream flow path F1 is formed between the inflow port 51 and the first inflow port 41 through which recirculated air flows from the indoor space S3. The downstream flow path F2 is formed between the first outflow port 42 and the outflow port 52 for the recirculated air to flow out to the outdoor space S4.
第2流路は、磁気熱交換器100の第2空間S2に流入する外気が流れる上流路F3と、磁気熱交換器100の第2空間S2から流入した外気が流れる下流路F4とを含む。上流路F3は、外気が室外空間S4から流入するための流入口53と第2流入口43との間に形成される。下流路F4は、第2流出口44と外気が室内空間S3に流出するための流出口54との間に形成される。
The second flow path includes an upstream flow path F3 through which the outside air flowing into the second space S2 of the magnetic heat exchanger 100 flows, and a downstream flow path F4 through which the outside air flowing in from the second space S2 of the magnetic heat exchanger 100 flows. The upstream flow path F3 is formed between the inflow port 53 and the second inflow port 43 through which the outside air flows in from the outdoor space S4. The downstream flow path F4 is formed between the second outlet 44 and an outlet 54 through which outside air flows out to the indoor space S3.
第1流路内の環気は、例えば下流路F2に配置された第1送風機6によって軸方向に沿った第1の向きに送られる。第2流路内の外気は、例えば下流路F4に配置された第2送風機7によって軸方向に沿っておりかつ第1の向きとは反対の第2の向きに送られる。
The recirculating air in the first flow path is sent in a first direction along the axial direction by, for example, the first blower 6 arranged in the downstream flow path F2. The outside air in the second flow path is sent in a second direction opposite to the first direction along the axial direction, for example, by a second blower 7 arranged in the downstream flow path F4.
このように配置された磁気熱交換器100の熱交換部3が駆動部1によって中心軸線C周りに回転すると、第1磁気熱交換室が第1空間内に配置されておりかつ第2磁気熱交換室が第2空間内に配置されている第1状態と、第1磁気熱交換室が第2空間内に配置されておりかつ第2磁気熱交換室が第1空間内に配置されている第2状態とが交互に切り替えられる。
When the heat exchange section 3 of the magnetic heat exchanger 100 arranged in this way is rotated around the central axis C by the driving section 1, the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the first space. a first state in which the exchange chamber is located within the second space; and a first magnetic heat exchange chamber is located within the second space and a second magnetic heat exchange chamber is located within the first space. The second state is alternately switched.
第1状態から第2状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、第1磁界発生部2によって励磁され、発熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。
When the first state is switched to the second state, the magnetocaloric material in the first magnetic heat exchange chamber moves from the first space to the second space and is excited by the first magnetic field generator 2 to generate heat. . At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space.
第2状態から第1状態に切り替えられると、第1磁気熱交換室の磁気熱量材料は、第2空間から第1空間に移動することに伴い、消磁され、吸熱する。同時に、第2磁気熱交換室の磁気熱量材料は、第1空間から第2空間に移動することに伴い、励磁され、発熱する。
When the second state is switched to the first state, the magnetocaloric material in the first magnetic heat exchange chamber is demagnetized and absorbs heat as it moves from the second space to the first space. At the same time, the magnetocaloric material in the second magnetic heat exchange chamber is excited and generates heat as it moves from the first space to the second space.
これにより、上流路F1から第1空間に流入した環気は、その熱量の一部が磁気熱交換室で回収(蓄熱)されるとともに、吸熱状態にある磁気熱量材料により回収(吸熱)され、その後、下流路F2を経て室外空間S4に流出する。
As a result, part of the heat quantity of the recirculated air that has flowed into the first space from the upstream flow path F1 is recovered (heat stored) in the magnetic heat exchange chamber, and is also recovered (heat absorbed) by the magnetocaloric material in a heat-absorbing state, After that, it flows out to the outdoor space S4 through the downstream flow path F2.
一方で、上流路F3から第2空間に流入した外気は、磁気熱交換室が第1空間内を移動する際に回収した熱量を磁気熱交換室から受け取るとともに、発熱状態にある磁気熱量材料により加熱され、その後、下流路F4を経て室内空間S3に流出する。
On the other hand, the outside air that has flowed into the second space from the upstream flow path F3 receives from the magnetic heat exchange chamber the amount of heat recovered when the magnetic heat exchange chamber moves in the first space, and the heat is generated by the magnetocaloric material in the heat generating state. After being heated, it flows out into the indoor space S3 through the downstream flow path F4.
空調換気システム200は、磁気熱交換器100を備えるため、例えば外部空間S4から室内空間S3に流れる外気を加熱するための加熱器等の補助機器を別途用意することなく、空調換気を行うことができる。
Since the air-conditioning/ventilation system 200 includes the magnetic heat exchanger 100, air-conditioning/ventilation can be performed without separately preparing an auxiliary device such as a heater for heating the outside air flowing from the external space S4 to the indoor space S3. can.
空調換気システム200は、実施の形態1~4に係る熱交換器100~103の少なくともいずれかを備えていればよい。
The air conditioning ventilation system 200 may include at least one of the heat exchangers 100 to 103 according to Embodiments 1 to 4.
空調換気システム200は、2つの室内空間の間で空調換気するように設けられていてもよい。具体的には、第4空間S4は、第3空間S3としての室内空間とは別の室内空間であってもよい。
The air-conditioning ventilation system 200 may be provided to air-condition and ventilate between two indoor spaces. Specifically, the fourth space S4 may be an indoor space different from the indoor space serving as the third space S3.
以上のように本開示の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本開示の範囲は上述の実施の形態に限定されるものではない。本開示の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
Although the embodiment of the present disclosure has been described as above, it is also possible to modify the above-described embodiment in various ways. Also, the scope of the present disclosure is not limited to the above-described embodiments. The scope of the present disclosure is indicated by the claims, and is intended to include all changes within the meaning and range of equivalents to the claims.
1 駆動部、2 第1磁界発生部、3 熱交換部、4 ケース、6 第1ポンプ(第1送風機)、7 第2ポンプ(第2送風機)、8 第2磁界発生部、11 第1回転軸、12,13 モータ、14 第2回転軸、15 ベルト、21,81 電磁石、22,82 制御部、30 空間、31 環状部材、32 コルゲート状部材、41 第1流入口、42 第1流出口、43 第2流入口、44 第2流出口、45A 第1セパレータ、45B 第2セパレータ、51,53 流入口、52,54 流出口、100,101,102,103 磁気熱交換器、200 空調換気システム。
1 drive section, 2 first magnetic field generation section, 3 heat exchange section, 4 case, 6 first pump (first blower), 7 second pump (second blower), 8 second magnetic field generation section, 11 first rotation Shaft, 12, 13 motor, 14 second rotating shaft, 15 belt, 21, 81 electromagnet, 22, 82 control unit, 30 space, 31 annular member, 32 corrugated member, 41 first inlet, 42 first outlet , 43 second inlet, 44 second outlet, 45A first separator, 45B second separator, 51, 53 inlet, 52, 54 outlet, 100, 101, 102, 103 magnetic heat exchanger, 200 air conditioning ventilation system.
Claims (8)
- 中心軸線を有し、前記中心軸線に対する径方向において前記中心軸線を挟むように配置された第1磁気熱交換室および第2磁気熱交換室を含む熱交換部と、
前記熱交換部を前記中心軸線周りに回転させる駆動部と、
前記中心軸線に対する径方向において前記中心軸線に対する一方側に位置する第1空間と他方側に位置する第2空間との間に磁界の強度分布を形成する第1磁界発生部とを備え、
前記第1磁気熱交換室および前記第2磁気熱交換室の各々は、前記中心軸線の延在方向に貫通する空間を含み、
前記第1磁気熱交換室および前記第2磁気熱交換室の各々の少なくとも一部を構成する材料は、磁気熱量材料を含み、
前記回転により、前記第1磁気熱交換室が前記第1空間内に配置されておりかつ前記第2磁気熱交換室が前記第2空間内に配置されている第1状態と、前記第1磁気熱交換室が前記第2空間内に配置されておりかつ前記第2磁気熱交換室が前記第1空間内に配置されている第2状態とが交互に切り替えられる、磁気熱交換器。 a heat exchange section having a central axis and including a first magnetic heat exchange chamber and a second magnetic heat exchange chamber arranged to sandwich the central axis in a radial direction with respect to the central axis;
a drive unit that rotates the heat exchange unit around the central axis;
a first magnetic field generator that forms a magnetic field intensity distribution between a first space positioned on one side of the central axis and a second space positioned on the other side in a radial direction with respect to the central axis;
each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a space penetrating in the extending direction of the central axis,
a material that constitutes at least part of each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a magnetocaloric material;
The rotation causes a first state in which the first magnetic heat exchange chamber is arranged in the first space and the second magnetic heat exchange chamber is arranged in the second space, and the first magnetic heat exchange chamber is arranged in the second space. A magnetic heat exchanger alternately switched between a second state in which a heat exchange chamber is located within said second space and said second magnetic heat exchange chamber is located within said first space. - 前記熱交換部は、前記中心軸線に対する周方向に沿って延びている少なくとも1つの環状部材と、前記少なくとも1つの環状部材と接続されている少なくとも1つのコルゲート状部材とを含み、
前記第1磁気熱交換室および前記第2磁気熱交換室の各々は、前記少なくとも1つの環状部材および前記少なくとも1つのコルゲート部材の各々の一部によって構成されており、
前記少なくとも1つの環状部材を構成する材料は、磁気熱量材料を含む、請求項1に記載の磁気熱交換器。 The heat exchange section includes at least one annular member extending along a circumferential direction with respect to the central axis, and at least one corrugated member connected to the at least one annular member,
each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber is configured by a portion of each of the at least one annular member and the at least one corrugated member;
2. The magnetic heat exchanger of claim 1, wherein the material comprising the at least one annular member comprises a magnetocaloric material. - 前記駆動部は、第2回転軸を回転させるモータと、前記第2回転軸および前記熱交換部に掛けられており、前記第2回転軸の回転力を前記熱交換部に伝達するベルトとをさらに含み、
前記駆動部および前記熱交換部を収容しているケースをさらに備える、請求項1または2に記載の磁気熱交換器。 The driving section includes a motor that rotates a second rotating shaft, and a belt that is hung on the second rotating shaft and the heat exchanging section and transmits the rotational force of the second rotating shaft to the heat exchanging section. further includes
3. The magnetic heat exchanger according to claim 1, further comprising a case housing said drive unit and said heat exchange unit. - 前記第1磁界発生部は、永久磁石を含む、請求項1~3のいずれか1項に記載の磁気熱交換器。 The magnetic heat exchanger according to any one of claims 1 to 3, wherein the first magnetic field generator includes a permanent magnet.
- 前記第1磁界発生部は、電磁石を含む、請求項1~4のいずれか1項に記載の磁気熱交換器。 The magnetic heat exchanger according to any one of claims 1 to 4, wherein the first magnetic field generator includes an electromagnet.
- 前記第1磁界発生部は、前記第2空間に前記第1空間よりも強い磁界を発生させ、
前記第1空間に前記第2空間よりも強い磁界を発生させる第2磁界発生部をさらに備え、
前記第1磁界発生部および前記第2磁界発生部により、前記第1空間の磁界が前記第2空間の磁界よりも強い第3状態と、前記第1空間の磁界が前記第2空間の磁界よりも弱い第4状態とが切り替えられる、請求項1~5のいずれか1項に記載の磁気熱交換器。 The first magnetic field generator generates a stronger magnetic field in the second space than in the first space,
further comprising a second magnetic field generator that generates a stronger magnetic field in the first space than in the second space;
The first magnetic field generator and the second magnetic field generator generate a third state in which the magnetic field in the first space is stronger than the magnetic field in the second space, and a state in which the magnetic field in the first space is stronger than the magnetic field in the second space. Magnetic heat exchanger according to any one of claims 1 to 5, wherein the magnetic heat exchanger is switched between a weak fourth state. - 前記第1磁気熱交換室および前記第2磁気熱交換室の各々の少なくとも一部を構成する材料は、吸放湿性を有する材料を含む、請求項1~6のいずれか1項に記載の磁気熱交換器。 The magnetism according to any one of claims 1 to 6, wherein a material that constitutes at least part of each of the first magnetic heat exchange chamber and the second magnetic heat exchange chamber includes a material having moisture absorption and desorption properties. Heat exchanger.
- 請求項1~7のいずれか1項に記載の磁気熱交換器と、
前記磁気熱交換器の前記第1空間に接続されている第1流路と、
前記磁気熱交換器の前記第2空間に接続されている第2流路と、
前記第1流路内に配置されており第1熱輸送媒体を前記中心軸線に沿った第1の向きに送る第1ポンプと、
前記第2流路内に配置されており第2熱輸送媒体を前記中心軸線に沿っておりかつ前記第1の向きとは反対の第2の向きに送る第2ポンプとを備える、空調換気システム。 A magnetic heat exchanger according to any one of claims 1 to 7;
a first flow path connected to the first space of the magnetic heat exchanger;
a second flow path connected to the second space of the magnetic heat exchanger;
a first pump disposed in the first flow path for sending a first heat transport medium in a first direction along the central axis;
a second pump disposed within said second flow path for pumping a second heat transport medium in a second direction along said central axis and opposite said first direction. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021564167A JPWO2022224305A1 (en) | 2021-04-19 | 2021-04-19 | |
PCT/JP2021/015866 WO2022224305A1 (en) | 2021-04-19 | 2021-04-19 | Magnetic heat exchanger and air conditioning ventilation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/015866 WO2022224305A1 (en) | 2021-04-19 | 2021-04-19 | Magnetic heat exchanger and air conditioning ventilation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022224305A1 true WO2022224305A1 (en) | 2022-10-27 |
Family
ID=83722072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015866 WO2022224305A1 (en) | 2021-04-19 | 2021-04-19 | Magnetic heat exchanger and air conditioning ventilation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022224305A1 (en) |
WO (1) | WO2022224305A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005049005A (en) * | 2003-07-28 | 2005-02-24 | Denso Corp | Magnetic heat storage material type temperature adjusting device and vehicular air conditioner |
JP2006512556A (en) * | 2002-12-24 | 2006-04-13 | エコール ディ’インゲニエウルス ドゥ カントン デ ヴァウド | Method and apparatus for continuously generating cold and heat by electromagnetic heat effect |
EP1736717A1 (en) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump |
JP2007155267A (en) * | 2005-12-07 | 2007-06-21 | Toshiba Corp | Magnetic refrigerating device having magnetic material blade |
WO2016038797A1 (en) * | 2014-09-09 | 2016-03-17 | 株式会社デンソー | Thermomagnetic cycle device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6464922B2 (en) * | 2014-05-22 | 2019-02-06 | 株式会社デンソー | Thermomagnetic cycle equipment |
-
2021
- 2021-04-19 WO PCT/JP2021/015866 patent/WO2022224305A1/en active Application Filing
- 2021-04-19 JP JP2021564167A patent/JPWO2022224305A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006512556A (en) * | 2002-12-24 | 2006-04-13 | エコール ディ’インゲニエウルス ドゥ カントン デ ヴァウド | Method and apparatus for continuously generating cold and heat by electromagnetic heat effect |
JP2005049005A (en) * | 2003-07-28 | 2005-02-24 | Denso Corp | Magnetic heat storage material type temperature adjusting device and vehicular air conditioner |
EP1736717A1 (en) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump |
JP2007155267A (en) * | 2005-12-07 | 2007-06-21 | Toshiba Corp | Magnetic refrigerating device having magnetic material blade |
WO2016038797A1 (en) * | 2014-09-09 | 2016-03-17 | 株式会社デンソー | Thermomagnetic cycle device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022224305A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9784482B2 (en) | Magnetic cooling apparatus and method of controlling the same | |
JP5267689B2 (en) | Magnetic heat pump device | |
JP5556739B2 (en) | Magnetic heat pump device | |
JP6191539B2 (en) | Thermomagnetic cycle equipment | |
US6959875B2 (en) | Humidity controller | |
WO2012102016A1 (en) | Magnetic refrigeration system, and air conditioning system for automobiles | |
US9696064B2 (en) | Thermo-magnetism cycle apparatus | |
US20090308080A1 (en) | Air Conditioning System | |
JP2012229831A (en) | Heat pump device of magneto-caloric effect type | |
AU2002318752B2 (en) | Air conditioning device | |
JP2017172820A (en) | Thermomagnetic cycle device | |
US20050022538A1 (en) | Temperature regulation apparatus of magnetic thermal storage medium type and vehicle air-conditioning system | |
WO2022224305A1 (en) | Magnetic heat exchanger and air conditioning ventilation system | |
JP6384256B2 (en) | Magneto-caloric element and thermomagnetism cycle device | |
JP5641002B2 (en) | Magnetic heat pump device | |
JP5821889B2 (en) | Thermomagnetic cycle equipment | |
JP6583143B2 (en) | Thermomagnetic cycle equipment | |
JP2020041742A (en) | Magnetic refrigeration device | |
WO2019087695A1 (en) | Adsorption type refrigeration device | |
JP2009281683A (en) | Magnetic refrigerating device | |
JP6361413B2 (en) | Magnetic heat pump device | |
JP6365173B2 (en) | Magnetic heat pump device | |
JP6601300B2 (en) | Thermomagnetic cycle equipment | |
JP2012154567A (en) | Air conditioning core | |
JP6683138B2 (en) | Thermomagnetic cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021564167 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21937804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21937804 Country of ref document: EP Kind code of ref document: A1 |