JP2011058652A - Refrigerant heating auxiliary device for refrigerating cycle and refrigerant heating method - Google Patents

Refrigerant heating auxiliary device for refrigerating cycle and refrigerant heating method Download PDF

Info

Publication number
JP2011058652A
JP2011058652A JP2009206063A JP2009206063A JP2011058652A JP 2011058652 A JP2011058652 A JP 2011058652A JP 2009206063 A JP2009206063 A JP 2009206063A JP 2009206063 A JP2009206063 A JP 2009206063A JP 2011058652 A JP2011058652 A JP 2011058652A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
eddy current
turbine expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009206063A
Other languages
Japanese (ja)
Other versions
JP5146884B2 (en
Inventor
Hiroaki Matsushita
紘晃 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC KK
Mac KK
Original Assignee
MAC KK
Mac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC KK, Mac KK filed Critical MAC KK
Priority to JP2009206063A priority Critical patent/JP5146884B2/en
Publication of JP2011058652A publication Critical patent/JP2011058652A/en
Application granted granted Critical
Publication of JP5146884B2 publication Critical patent/JP5146884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, inexpensive and economic refrigerant heating auxiliary device of a simple configuration, capable of rotating a turbine expanding machine by utilizing fluid power of a refrigerant, generating heat by rotating an eddy current heat generating machine by torque of the turbine expanding machine to surely increase a temperature of the refrigerant by the heat, performing stable defrosting and heating with high efficiency, performing an operation of a refrigerating cycle even in a cold district or at a low temperature, and dispensing with external power, an external heat source and the like as an evaporation heat source in an evaporating process. <P>SOLUTION: This refrigerant heating auxiliary device includes an integrated heat self-balance heat exchanger 8 having a primary side 8a and a secondary side 8b, the turbine expanding machine 9 disposed at an inlet side of the secondary side 8b, and the eddy current heat generating machine 10 rotated by the torque of the turbine expanding machine 9 and disposed at an outlet side of the secondary side 8b, the refrigerant is distributed to a compressor 1 successively through the primary side 8a of the heat self-balance heat exchanger 8, the turbine expanding machine 9, the secondary side 8b and the eddy current heat generating machine 10, and a temperature of the refrigerant is increased by the heat generated by the eddy current heat generating machine 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蒸気圧縮式冷凍機のホットガスによるデフロスト(霜取り)作動時や、蒸気圧縮式冷暖房機や暖房専用機のヒートポンプ暖房作動時に於いて、デフロストの効率化や安定化や、ヒートポンプ暖房の効率化や安定化や能力向上や、寒冷下環境に於ける運転不能状態の解消や効率運転の継続や安定化等を図れるようにし、しかも、これらが蒸発工程にあって蒸発熱源となる外部熱源や蓄熱源なしに行えるように工夫した冷凍サイクル用冷媒加熱補助装置及びその冷媒加熱方法に関するものである。   The present invention relates to the efficiency and stabilization of defrosting and the heat pump heating in the defrosting (defrosting) operation by hot gas of the vapor compression refrigerator and in the heat pump heating operation of the vapor compression air conditioner and heating dedicated machine. An external heat source that can improve efficiency, stabilize and improve capacity, eliminate inoperable conditions in cold environments, continue and stabilize efficient operation, etc., and this is the evaporation heat source in the evaporation process The present invention relates to a refrigerant heating auxiliary device for a refrigeration cycle devised so as to be performed without a heat storage source and a refrigerant heating method thereof.

一般的に蒸気圧縮式冷凍機にあっては、冷凍サイクルによって同時に冷却と加熱が行われている。しかも、冷却能力と加熱能力は同一サイクルにあって完全に相関し、この能力が冷凍サイクルの優劣として表されている。すなわち、蒸発器による冷却を目的とする時は、凝縮器が低温に接すると蒸発器での冷却能力を向上させ、凝縮器による加熱を目的とする時は、蒸発器が高温に接すると凝縮器での加熱能力を向上させることとなる。   In general, in a vapor compression refrigerator, cooling and heating are simultaneously performed by a refrigeration cycle. Moreover, the cooling capacity and the heating capacity are completely correlated in the same cycle, and this capacity is expressed as superiority or inferiority of the refrigeration cycle. In other words, when cooling with an evaporator is intended, the cooling capacity of the evaporator is improved when the condenser is in contact with a low temperature, and when the evaporator is in contact with a high temperature when the condenser is in contact with a high temperature, the condenser is improved. This will improve the heating capacity at

そして、従来の蒸気圧縮式冷凍機に於けるデフロスト手段としては、例えば、本願発明者によって特許文献1に示すようなデフロスト方法及びそのシステムが発明されている。
これは、冷凍機とコンデンサと、膨張弁及びエバポレーターを有する冷凍回路を有し、前記したエバポレーターと高効率の熱交換器を連結し、その熱交換器の一次側を通過した冷媒ガスを、その交換機の二次側へ膨張弁を介して送り、その熱交換器の二次側を通過した冷媒ガスを冷凍機へ送ることとし、冷凍サイクルのうち凝縮、膨張、蒸発の機能を外部熱源や蓄熱源なしに行えるようにしたものである。
And as a defrost means in the conventional vapor compression refrigerator, for example, the inventor of the present application has invented a defrost method and its system as shown in Patent Document 1.
This has a refrigeration circuit having a refrigerator, a condenser, an expansion valve and an evaporator, and connects the evaporator and the high-efficiency heat exchanger, and the refrigerant gas passing through the primary side of the heat exchanger is The refrigerant gas that has been sent to the secondary side of the exchanger via the expansion valve and passed through the secondary side of the heat exchanger is sent to the refrigerator, and the functions of condensation, expansion, and evaporation in the refrigeration cycle are external heat sources and heat storage. It can be done without a source.

また、冷媒ガスを加熱する手段として渦電流発熱機(マグネットヒーター)を利用したものは、例えば、特許文献2に示すような車両用暖房装置が創出されている。
これは、エバポレーターの膨張弁出口と、コンプレッサー入口にそれぞれ切替弁が設けられ、該切替弁を介してバイパス管を接続し、該バイパス管の中間に、磁石と導体とが僅かな空隙を隔てて対向配置され、該磁石と導体とを相対的に回転させることにより、導体に生じる発熱(磁路が剪断されることにより導体内に発生する渦電流の電気抵抗による発熱)で前記エバポレーター内部の冷媒ガスを加熱する方式のマグネット式ヒーターが配置される構造の車両用空調システムであって、エンジン冷却水温低下時に前記切替弁を開いて前記エバポレーター内部の冷媒ガスを前記マグネット式ヒーターにて急速加熱し、エンジン冷却水が所定の温度に達した時点で前記切替弁を閉じる構成となしたものである。
Further, for example, a vehicle heating device as shown in Patent Document 2 has been created using an eddy current heater (magnet heater) as means for heating the refrigerant gas.
This is because a switching valve is provided at each of the expansion valve outlet and the compressor inlet of the evaporator, and a bypass pipe is connected via the switching valve, with a slight gap between the magnet and the conductor in the middle of the bypass pipe. Refrigerant inside the evaporator by heat generated in the conductor (heat generated by the electric resistance of eddy current generated in the conductor by shearing the magnetic path) by rotating the magnet and the conductor relative to each other. A vehicle air conditioning system having a structure in which a magnet heater of a gas heating type is arranged, and when the engine cooling water temperature decreases, the switching valve is opened and the refrigerant gas inside the evaporator is rapidly heated by the magnet heater. The switching valve is closed when the engine coolant reaches a predetermined temperature.

特許第3710093号公報Japanese Patent No. 3710093 特許第3934398号公報Japanese Patent No. 3934398

ところで、前述のデフロストシステムにあっては、熱交換器の一次側が蒸発熱源となり、二次側が凝縮熱源となり、これらの相乗効果による自らの加熱能力・冷却能力を高めて効率の良いデフロストが行えるようになっているが、冷凍サイクルの凝縮潜熱で蒸発器に付着した霜をホットガスの熱で加熱融解する作業が長く続くと、凝縮熱源が徐々に低温となり、凝縮圧力が低下し、相関する蒸発圧力・温度が低下し、冷媒蒸発温度が低下し、加熱効果(デフロスト)が悪くなる虞があった。
また、前述の車両用暖房装置にあっては、マグネット式ヒーターが、モーターやエンジン等の外部の回転駆動源を利用しているため、装置自体が大きくなると共に、コスト高となる等の難点があった。
By the way, in the above-mentioned defrost system, the primary side of the heat exchanger serves as an evaporation heat source, and the secondary side serves as a condensation heat source, so that efficient heating and cooling ability can be enhanced by these synergistic effects so that efficient defrosting can be performed. However, if the frost adhering to the evaporator with the latent heat of condensation of the refrigeration cycle is heated and melted with the heat of hot gas for a long time, the condensation heat source gradually becomes cold, the condensation pressure decreases, and the correlated evaporation There was a possibility that the pressure and temperature were lowered, the refrigerant evaporation temperature was lowered, and the heating effect (defrost) was deteriorated.
Further, in the above-described vehicle heating device, since the magnet heater uses an external rotational drive source such as a motor or an engine, the device itself becomes large and the cost is high. there were.

そこで、本発明は前述の如き難点等を解消し、より効率が良く、安定したデフロストや暖房が行え、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、効率運転の維持や安定化も図れ、加えて、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要で、しかも、構成簡素で、コンパクトに構成でき、比較的低廉で、経済的なものを提供できるようにすべく創出されたもので、請求項1記載の冷凍サイクル用冷媒加熱補助装置にあっては、蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機1に送れるように構成した冷媒加熱補助装置であって、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備え、冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成する手段を採用した。   Therefore, the present invention eliminates the above-mentioned difficulties and the like, enables more efficient and stable defrosting and heating, enables operation of the refrigeration cycle even in a cold environment, and maintains and stabilizes efficient operation. In addition, in the evaporation process, external power or an external heat source as an evaporation heat source is unnecessary, and the configuration is simple, compact, relatively inexpensive, and economical. The refrigerant heating auxiliary device for a refrigeration cycle according to claim 1, which has been created as much as possible, is configured to increase the latent heat of condensation in the vapor compression refrigeration cycle and send it to the compressor 1. The apparatus is an integral thermal self-equilibrium heat exchanger 8 having a primary side 8a and a secondary side 8b, and a turbine expander 9 in which the secondary side 8b inlet of the thermal self-equilibrium heat exchanger 8 is allotted. And this turbine expander 9 And an eddy current heat generator 10 that is rotated by the rolling force and is arranged on the secondary side 8b outlet of the thermal self-equilibrium heat exchanger 8, and the refrigerant is the primary side 8a of the thermal self-equilibrium heat exchanger 8; The turbine expander 9, the secondary side 8 b of the thermal self-equilibrium heat exchanger 8, and the eddy current heater 10 are formed so as to be sequentially sent, and the vortex is generated by the rotational force of the turbine expander 9 rotated by the refrigerant flow. The current heat generator 10 is formed so as to be rotated, and means configured to increase the temperature of the refrigerant by the heat generated in the eddy current heat generator 10 is adopted.

また、請求項2記載の冷凍サイクル用冷媒加熱補助装置にあっては、蒸気圧縮式冷凍機のホットガスによるデフロスト作動時に於いて作動せしめられると共に、少なくとも圧縮機1と凝縮器2と膨張弁3と蒸発器4とホットガス管5とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機1に送れるように構成した冷媒加熱補助装置であって、蒸発器4と圧縮機1の間に切替弁7aを介して直列状態に配されており、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備え、前記蒸発器4からの冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成する手段を採用した。   The refrigerant heating auxiliary device for a refrigeration cycle according to claim 2 is operated at the time of defrosting operation by hot gas of the vapor compression refrigerator, and at least the compressor 1, the condenser 2, and the expansion valve 3 are operated. A refrigerant heating auxiliary device configured to increase the latent heat of condensation in a vapor compression refrigeration cycle having an evaporator 4, an evaporator 4 and a hot gas pipe 5 so as to be sent to the compressor 1. An integrated thermal self-equilibrium heat exchanger 8 having a primary side 8a and a secondary side 8b, and a secondary side 8b of the thermal self-equilibrium heat exchanger 8 are arranged in series via a switching valve 7a. Turbine expander 9 with the inlet arranged in the alley, and eddy current heater 10 that rotates by the rotational force of this turbine expander 9 and the secondary side 8b outlet of the thermal self-equilibrium heat exchanger 8 is arranged in the alligator And from the evaporator 4 The medium is formed so as to be sent sequentially through the primary side 8a of the thermal self-equilibrium heat exchanger 8, the turbine expander 9, the secondary side 8b of the thermal self-equilibrium heat exchanger 8, and the eddy current heat generator 10. Means for rotating the eddy current heat generator 10 by the rotational force of the turbine expander 9 rotating by the flow of the eddy current so that the temperature of the refrigerant can be increased by the heat generated by the eddy current heat generator 10. Adopted.

更に、請求項3記載の冷凍サイクル用冷媒加熱補助装置にあっては、ヒートポンプ暖房時に於いて作動せしめられ、少なくとも圧縮機30と室内側熱交換器31と膨張弁32a、32bと室外側熱交換器33とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機30に送れるように構成した冷媒加熱補助装置であって、室外側熱交換器33に対して切替弁36を介して並列状態に配されており、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備え、冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成する手段を採用した。   Furthermore, the refrigerant heating auxiliary device for a refrigeration cycle according to claim 3 is operated during heat pump heating, and at least the compressor 30, the indoor heat exchanger 31, the expansion valves 32a and 32b, and the outdoor heat exchange. The refrigerant heating auxiliary device is configured to increase the latent heat of condensation in the vapor compression refrigeration cycle having the compressor 33 and send it to the compressor 30 through the switching valve 36 to the outdoor heat exchanger 33. An integral thermal self-equilibrium heat exchanger 8 having a primary side 8a and a secondary side 8b and a turbine on which a secondary side 8b inlet of the thermal self-equilibrium heat exchanger 8 is allotted in parallel. The expander 9 and an eddy current heat generator 10 that is rotated by the rotational force of the turbine expander 9 and at which the outlet of the secondary side 8b of the thermal self-equilibrium heat exchanger 8 is allotted are allotted. Primary side of self-equilibrium heat exchanger 8 a, the turbine expander 9, the secondary side 8 b of the thermal self-equilibrium heat exchanger 8, and the eddy current heat generator 10 are formed so as to be sent sequentially, and with the rotational force of the turbine expander 9 that is rotated by the refrigerant flow The eddy current heat generator 10 is formed so as to be rotated, and means configured to increase the temperature of the refrigerant with the heat generated in the eddy current heat generator 10 is adopted.

そして、請求項4記載の冷凍サイクル用冷媒加熱補助装置にあっては、ヒートポンプ暖房時に於いて作動せしめられ、圧縮機40と暖房用室内熱交換器41とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機40に送れるように構成した冷媒加熱補助装置であって、暖房用室内熱交換器41と圧縮機40の間に直列状態に配されており、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備え、前記暖房用室内熱交換器41からの冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成する手段を採用した。   And in the refrigerant | coolant heating auxiliary device for refrigeration cycles of Claim 4, it is act | operated at the time of heat pump heating, The condensation in the vapor compression refrigeration cycle which has the compressor 40 and the indoor heat exchanger 41 for heating A refrigerant heating auxiliary device configured to increase latent heat to be sent to the compressor 40, and is arranged in series between the indoor heat exchanger 41 for heating and the compressor 40, and includes a primary side 8a and a secondary side. An integral thermal self-equilibrium heat exchanger 8 having a side 8b, a turbine expander 9 at which the secondary side 8b inlet of the thermal self-equilibrium heat exchanger 8 is allotted, and the rotational force of the turbine expander 9 And an eddy current heat generator 10 that is arranged at the secondary side 8b outlet of the heat self-equilibrium heat exchanger 8, and the refrigerant from the indoor heat exchanger 41 for heating is subjected to heat self-equilibrium heat exchange. Primary side 8a of turbine 8, turbine expansion 9. The secondary side 8b of the thermal self-equilibrium heat exchanger 8 and the eddy current heat generator 10 are formed so as to be sent sequentially, and the rotational force of the turbine expander 9 that is rotated by the flow of the refrigerant causes the eddy current heat generator. 10 is used so that it can be rotated, and the temperature of the refrigerant is increased by the heat generated by the eddy current heat generator 10.

それから、請求項5記載の冷凍サイクル用冷媒加熱方法にあっては、蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加する冷媒加熱方法であって、冷媒を、熱自己平衡熱交換器8の一次側8aに送って凝縮させ、この一次側8aを通過した冷媒をタービン膨張機9に送って、タービン膨張機9を回転させると共に、タービン膨張機9で冷媒を膨張させ、タービン膨張機9を通過した冷媒を熱自己平衡熱交換器8の二次側8bに送って蒸発させ、この二次側8bを通過した冷媒を渦電流発熱機10に送り、タービン膨張機9の回転力で回転する渦電流発熱機10から発生する熱で冷媒の温度を高め、渦電流発熱機10を通過した冷媒を圧縮機1に送る手段を採用した。   The refrigerant heating method for a refrigeration cycle according to claim 5 is a refrigerant heating method for increasing the latent heat of condensation in the vapor compression refrigeration cycle, wherein the refrigerant is the primary side of the thermal self-equilibrium heat exchanger 8. The refrigerant passed through the primary side 8a was sent to the turbine expander 9 to rotate the turbine expander 9, and the refrigerant was expanded by the turbine expander 9 and passed through the turbine expander 9. The refrigerant is sent to the secondary side 8b of the thermal self-equilibrium heat exchanger 8 to evaporate, and the refrigerant that has passed through the secondary side 8b is sent to the eddy current heat generator 10, and the eddy current is rotated by the rotational force of the turbine expander 9. A means for increasing the temperature of the refrigerant with heat generated from the heat generator 10 and sending the refrigerant that passed through the eddy current heat generator 10 to the compressor 1 was adopted.

従って、本発明の請求項1記載の冷凍サイクル用冷媒加熱補助装置によれば、冷媒の流動力を利用してタービン膨張機9を回転でき、このタービン膨張機9の回転力で、渦電流発熱機10を回転させて熱を発生させられ、この熱で冷媒の温度を確実に高められるようになり、より効率が良く、安定したデフロストや暖房が行えるようになる。更に、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、効率運転の維持や安定化も図れるようになる。
しかも、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、構成が簡素となって、コンパクトに構成できるようになり、比較的低廉に提供できて、経済的な冷凍サイクル用冷媒加熱補助装置となる。
Therefore, according to the refrigerant heating auxiliary device for a refrigeration cycle according to claim 1 of the present invention, the turbine expander 9 can be rotated by utilizing the flow force of the refrigerant, and the eddy current heat generation is generated by the rotational force of the turbine expander 9. The machine 10 is rotated to generate heat, and the temperature of the refrigerant can be reliably increased by this heat, so that more efficient and stable defrosting and heating can be performed. Furthermore, even in a cold environment, the refrigeration cycle can be operated, and efficient operation can be maintained and stabilized.
Moreover, there is no need for external power or an external heat source as an evaporation heat source in the evaporation process, the structure is simplified, the structure can be made compact, and it can be provided at a relatively low cost for an economical refrigeration cycle. It becomes a refrigerant heating auxiliary device.

加えて、熱自己平衡熱交換器8にあっては、一次側8aと二次側8bの間に冷媒を膨張させるタービン膨張機9が配置してあり、タービン膨張機9を通過する冷媒を冷却して二次側8bに送込め、一次側8aの冷媒を冷却すると共に、同等の熱エネルギーで二次側8bの冷媒を加熱することとなり、二次側8bに於いて通過する冷媒を安定的に蒸発気化させることができるようになる。   In addition, in the thermal self-equilibrium heat exchanger 8, a turbine expander 9 that expands the refrigerant is disposed between the primary side 8a and the secondary side 8b, and the refrigerant passing through the turbine expander 9 is cooled. Thus, the refrigerant on the secondary side 8b is cooled, the refrigerant on the primary side 8a is cooled, and the refrigerant on the secondary side 8b is heated with the same thermal energy, so that the refrigerant passing on the secondary side 8b can be stabilized. Can be evaporated.

また、本発明の請求項2記載の冷凍サイクル用冷媒加熱補助装置によれば、冷媒の流動力を利用してタービン膨張機9を回転でき、このタービン膨張機9の回転力で、渦電流発熱機10を回転させて熱を発生させられ、この熱で冷媒の温度を確実に高められるようになり、より効率が良く、安定したデフロストが蒸気圧縮式冷凍機に於いて行えるようになる。
しかも、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、構成が簡素となって、コンパクトに構成できるようになり、比較的低廉に提供できて、経済的となり、ホットガスによるデフロスト作動時に最適な冷凍サイクル用冷媒加熱補助装置となる。
Further, according to the refrigerant heating auxiliary device for a refrigeration cycle according to claim 2 of the present invention, the turbine expander 9 can be rotated using the flow force of the refrigerant, and eddy current heat is generated by the rotational force of the turbine expander 9. The heat is generated by rotating the machine 10, and the temperature of the refrigerant can be surely increased by this heat, and more efficient and stable defrosting can be performed in the vapor compression refrigerator.
Moreover, there is no need for an external power source or an external heat source as an evaporation heat source in the evaporation process, the configuration is simplified, the configuration can be made compact, it can be provided at a relatively low cost, and it becomes economical, hot gas It becomes an optimal refrigerant heating auxiliary device for the refrigeration cycle at the time of defrosting operation.

加えて、熱自己平衡熱交換器8にあっては、一次側8aと二次側8bの間に冷媒を膨張させるタービン膨張機9が配置してあり、タービン膨張機9を通過する冷媒を冷却して二次側8bに送込め、一次側8aの冷媒を冷却すると共に、同等の熱エネルギーで二次側8bの冷媒を加熱することとなり、二次側8bに於いて通過する冷媒を安定的に蒸発気化させることができるようになる。   In addition, in the thermal self-equilibrium heat exchanger 8, a turbine expander 9 that expands the refrigerant is disposed between the primary side 8a and the secondary side 8b, and the refrigerant passing through the turbine expander 9 is cooled. Thus, the refrigerant on the secondary side 8b is cooled, the refrigerant on the primary side 8a is cooled, and the refrigerant on the secondary side 8b is heated with the same thermal energy, so that the refrigerant passing on the secondary side 8b can be stabilized. Can be evaporated.

更に、本発明の請求項3記載の冷凍サイクル用冷媒加熱補助装置によれば、冷媒の流動力を利用してタービン膨張機9を回転でき、このタービン膨張機9の回転力で、渦電流発熱機10を回転させて熱を発生させられ、この熱で冷媒の温度を確実に高められるようになり、より効率が良く、安定した暖房が蒸気圧縮式冷暖房機に於いて行えるようになる。
また、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、効率運転の維持や安定化も図れるようになる。
しかも、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、構成が簡素となって、コンパクトに構成できるようになり、比較的低廉に提供できて、経済的となり、ヒートポンプ暖房時に最適な冷凍サイクル用冷媒加熱補助装置となる。
Furthermore, according to the refrigerant heating auxiliary device for a refrigeration cycle according to claim 3 of the present invention, the turbine expander 9 can be rotated by utilizing the flow force of the refrigerant, and the eddy current heat is generated by the rotational force of the turbine expander 9. Heat is generated by rotating the machine 10, and the temperature of the refrigerant can be surely increased by this heat, so that more efficient and stable heating can be performed in the vapor compression type air conditioner.
Further, even in a cold environment, the refrigeration cycle can be operated, and efficient operation can be maintained and stabilized.
Moreover, there is no need for an external power source or an external heat source as an evaporation heat source in the evaporation process, the configuration is simplified, the configuration can be made compact, it can be provided at a relatively low cost, and it becomes economical, heat pump heating Sometimes it becomes the optimum refrigerant heating auxiliary device for the refrigeration cycle.

加えて、熱自己平衡熱交換器8にあっては、一次側8aと二次側8bの間に冷媒を膨張させるタービン膨張機9が配置してあり、タービン膨張機9を通過する冷媒を冷却して二次側8bに送込め、一次側8aの冷媒を冷却すると共に、同等の熱エネルギーで二次側8bの冷媒を加熱することとなり、二次側8bに於いて通過する冷媒を安定的に蒸発気化させることができるようになる。   In addition, in the thermal self-equilibrium heat exchanger 8, a turbine expander 9 that expands the refrigerant is disposed between the primary side 8a and the secondary side 8b, and the refrigerant passing through the turbine expander 9 is cooled. Thus, the refrigerant on the secondary side 8b is cooled, the refrigerant on the primary side 8a is cooled, and the refrigerant on the secondary side 8b is heated with the same thermal energy, so that the refrigerant passing on the secondary side 8b can be stabilized. Can be evaporated.

そして、本発明の請求項4記載の冷凍サイクル用冷媒加熱補助装置によれば、冷媒の流動力を利用してタービン膨張機9を回転でき、このタービン膨張機9の回転力で、渦電流発熱機10を回転させて熱を発生させられ、この熱で冷媒の温度を確実に高められるようになり、より効率が良く、安定した暖房が暖房専用機に於いて行えるようになる。
更に、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、効率運転の維持や安定化も図れるようになる。
しかも、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、構成が簡素となって、コンパクトに構成できるようになり、比較的低廉に提供できて、経済的となり、暖房専用機によるヒートポンプ暖房に最適な冷凍サイクル用冷媒加熱補助装置となる。
According to the refrigerant heating auxiliary device for a refrigeration cycle according to claim 4 of the present invention, the turbine expander 9 can be rotated using the flow force of the refrigerant, and eddy current heat is generated by the rotational force of the turbine expander 9. The machine 10 is rotated to generate heat, and the temperature of the refrigerant can be surely increased by this heat, so that more efficient and stable heating can be performed in the dedicated heating machine.
Furthermore, even in a cold environment, the refrigeration cycle can be operated, and efficient operation can be maintained and stabilized.
Moreover, there is no need for external power or an external heat source as an evaporation heat source in the evaporation process, the configuration is simplified, the configuration can be made compact, it can be provided at a relatively low cost, it is economical, and it is dedicated to heating. It becomes the refrigerant heating auxiliary device for the refrigeration cycle which is most suitable for heat pump heating by the machine.

加えて、熱自己平衡熱交換器8にあっては、一次側8aと二次側8bの間に冷媒を膨張させるタービン膨張機9が配置してあり、タービン膨張機9を通過する冷媒を冷却して二次側8bに送込め、一次側8aの冷媒を冷却すると共に、同等の熱エネルギーで二次側8bの冷媒を加熱することとなり、二次側8bに於いて通過する冷媒を安定的に蒸発気化させることができるようになる。   In addition, in the thermal self-equilibrium heat exchanger 8, a turbine expander 9 that expands the refrigerant is disposed between the primary side 8a and the secondary side 8b, and the refrigerant passing through the turbine expander 9 is cooled. Thus, the refrigerant on the secondary side 8b is cooled, the refrigerant on the primary side 8a is cooled, and the refrigerant on the secondary side 8b is heated with the same thermal energy, so that the refrigerant passing on the secondary side 8b can be stabilized. Can be evaporated.

それから、本発明の請求項5記載の冷凍サイクル用冷媒加熱方法によれば、冷媒の流動力を利用してタービン膨張機9を回転でき、このタービン膨張機9の回転力で、渦電流発熱機10を回転させて熱を発生させられ、この熱で冷媒の温度を確実に高められるようになり、より効率が良く、安定したデフロストや暖房が行えるようになる。更に、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、効率運転の維持や安定化も図れるようになる。しかも、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、経済的な手段となる。   Then, according to the refrigerant heating method for a refrigeration cycle according to claim 5 of the present invention, the turbine expander 9 can be rotated using the flow force of the refrigerant, and the eddy current heat generator can be generated by the rotational force of the turbine expander 9. Heat is generated by rotating 10, and the temperature of the refrigerant can be surely increased by this heat, so that more efficient and stable defrosting and heating can be performed. Furthermore, even in a cold environment, the refrigeration cycle can be operated, and efficient operation can be maintained and stabilized. In addition, external power, an external heat source, or the like that is an evaporation heat source in the evaporation process is not necessary, which is an economical means.

加えて、前記蒸発器4からの冷媒を、熱自己平衡熱交換器8の一次側8aに送って凝縮させ、この一次側8aを通過した冷媒をタービン膨張機9に送って、タービン膨張機9を回転させると共に、タービン膨張機9で冷媒を膨張させ、タービン膨張機9を通過した冷媒を熱自己平衡熱交換器8の二次側8bに送って蒸発させるので、タービン膨張機9を通過する冷媒を冷却して二次側8bに送込め、一次側8aの冷媒を冷却すると共に、同等の熱エネルギーで二次側8bの冷媒を加熱することとなり、二次側8bに於いて通過する冷媒を安定的に蒸発気化させることができるようになる。   In addition, the refrigerant from the evaporator 4 is sent to the primary side 8a of the thermal self-equilibrium heat exchanger 8 to be condensed, and the refrigerant that has passed through the primary side 8a is sent to the turbine expander 9, , The refrigerant is expanded by the turbine expander 9, and the refrigerant that has passed through the turbine expander 9 is sent to the secondary side 8b of the thermal self-equilibrium heat exchanger 8 to evaporate, so that it passes through the turbine expander 9. The refrigerant is cooled and sent to the secondary side 8b, the refrigerant on the primary side 8a is cooled, and the refrigerant on the secondary side 8b is heated with the same thermal energy, so that the refrigerant that passes on the secondary side 8b. Can be stably evaporated.

本発明の冷媒加熱補助装置を組込んだ蒸気圧縮式冷凍機の冷媒回路図である。It is a refrigerant circuit diagram of a vapor compression refrigeration machine incorporating the refrigerant heating auxiliary device of the present invention. 本発明の冷媒過熱補助装置のタービン膨張機及び渦電流発熱機を例示する概略縦断正面図である。It is a schematic longitudinal front view which illustrates the turbine expander and eddy current heat generator of the refrigerant | coolant overheating auxiliary device of this invention. 本発明の冷媒加熱補助装置の渦電流発熱機を例示する概略縦断側面図である。It is a schematic vertical side view which illustrates the eddy current heating machine of the refrigerant | coolant heating auxiliary device of this invention. 本発明の冷媒加熱補助装置を組み込んだ蒸気圧縮式冷凍機の冷凍サイクルのP-h線図である。It is a Ph diagram of a refrigerating cycle of a vapor compression refrigeration machine incorporating a refrigerant heating auxiliary device of the present invention. 本発明の冷媒加熱補助装置を組込んだ蒸気圧縮式冷暖房機の冷媒回路図である。It is a refrigerant circuit diagram of the vapor compression type air conditioning machine incorporating the refrigerant heating auxiliary device of the present invention. 本発明の冷媒加熱補助装置を組込んだ蒸気圧縮式暖房専用機の冷媒回路図である。It is a refrigerant circuit figure of a vapor compression type heating exclusive machine incorporating a refrigerant heating auxiliary device of the present invention.

以下、本発明を図示例に基づいて説明すると、次の通りである。
本発明の冷媒過熱補助装置は、蒸気圧縮式冷凍機や蒸気圧縮式冷暖房機や蒸気圧縮式暖房専用機等に組込まれて、冷凍庫や冷蔵庫のデフロストを行うときや、ヒートポンプ暖房を行うときや、温蔵庫内を加熱する際等に使用されるもので、蒸気圧縮式冷凍サイクル中の冷媒の凝縮潜熱を増加して圧縮機1に送れるように構成したものである。
具体的には、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備えたものである。
そして、冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成したものである。
また、本発明の冷媒過熱方法は、蒸気圧縮式冷凍サイクル中の冷媒の凝縮潜熱を増加する方法である。
具体的には、冷媒を、熱自己平衡熱交換器8の一次側8aに送って凝縮させ、この一次側8aを通過した冷媒をタービン膨張機9に送って、タービン膨張機9を回転させると共に、タービン膨張機9で冷媒を膨張させ、タービン膨張機9を通過した冷媒を熱自己平衡熱交換器8の二次側8bに送って蒸発させ、この二次側8bを通過した冷媒を渦電流発熱機10に送り、タービン膨張機9の回転力で回転する渦電流発熱機10から発生する熱で冷媒の温度を高め、渦電流発熱機10を通過した冷媒を圧縮機1に送るようにする方法である。
Hereinafter, the present invention will be described based on illustrated examples as follows.
The refrigerant overheating auxiliary device of the present invention is incorporated in a vapor compression refrigerator, a vapor compression air conditioner, a vapor compression heating dedicated machine, etc., when defrosting a freezer or a refrigerator, when performing heat pump heating, It is used when heating the inside of the warm storage, etc., and is configured to increase the condensation latent heat of the refrigerant in the vapor compression refrigeration cycle and send it to the compressor 1.
Specifically, an integrated thermal self-equilibrium heat exchanger 8 having a primary side 8a and a secondary side 8b, and a turbine expander 9 in which the secondary side 8b inlet of the thermal self-equilibrium heat exchanger 8 is allotted. And an eddy current heat generator 10 that is rotated by the rotational force of the turbine expander 9 and at which the outlet of the secondary side 8b of the thermal self-balancing heat exchanger 8 is allotted.
And it forms so that a refrigerant | coolant may be sent through the primary side 8a of the thermal self-equilibrium heat exchanger 8, the turbine expander 9, the secondary side 8b of the thermal self-equilibrium heat exchanger 8, and the eddy current heater 10 in order. The eddy current heater 10 is configured to be rotated by the rotational force of the turbine expander 9 that is rotated by the flow of the refrigerant, and the temperature of the refrigerant can be increased by the heat generated by the eddy current heater 10. Is.
The refrigerant superheating method of the present invention is a method for increasing the latent heat of condensation of the refrigerant in the vapor compression refrigeration cycle.
Specifically, the refrigerant is sent to the primary side 8a of the thermal self-equilibrium heat exchanger 8 to be condensed, and the refrigerant that has passed through the primary side 8a is sent to the turbine expander 9 to rotate the turbine expander 9 and Then, the refrigerant is expanded by the turbine expander 9, the refrigerant that has passed through the turbine expander 9 is sent to the secondary side 8b of the thermal self-equilibrium heat exchanger 8 and evaporated, and the refrigerant that has passed through the secondary side 8b is eddy current The temperature of the refrigerant is increased by heat generated from the eddy current heat generator 10 that is rotated by the rotational force of the turbine expander 9 and the refrigerant that has passed through the eddy current heat generator 10 is sent to the compressor 1. Is the method.

図1に示す冷媒加熱補助装置は、圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とからなる冷凍サイクルに、圧縮機1で発生するホットガスを蒸発器4に直接送ることが可能なホットガス管5を設けてなる蒸気圧縮式冷凍機に組み込まれたもので、蒸気圧縮式冷凍機のホットガスによるデフロスト作動時に於いて、作動せしめられるようにしたものである。
すなわち、冷媒加熱補助装置は、蒸発器4と圧縮機1の間に切替弁7a、7bを介して直列状態に配されており、圧縮機1とホットガス管5と蒸発器4と冷媒加熱補助装置とを循環して流れる冷媒の凝縮潜熱を増加して圧縮機1に送れるように構成されたものである。
具体的には、一次側8a及び二次側8bを有する一体の熱自己平衡熱交換器8と、この熱自己平衡熱交換器8の二次側8b入口がわに配されるタービン膨張機9と、このタービン膨張機9の回転力によって回転すると共に、熱自己平衡熱交換器8の二次側8b出口がわに配される渦電流発熱機10とを備えたものである。
そして、前記蒸発器4からの冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て圧縮機1に送られるように形成し、冷媒の流れによって回転するタービン膨張機9の回転力で、渦電流発熱機10を回転せしめられるように形成し、渦電流発熱機10で発生する熱で冷媒の温度を高められるように構成されている。
尚、前記蒸気圧縮式冷凍機に於いて、冷媒加熱補助装置は、熱自己平衡熱交換器8の一次側8aが、凝縮器の働きをし、タービン膨張機9が膨張器の働きをし、二次側8bが蒸発器の働きをするようになり、これらと圧縮機1と蒸発器4(凝縮器)とで冷凍サイクルを構成するようになっている。
The refrigerant heating auxiliary device shown in FIG. 1 directly sends hot gas generated in the compressor 1 to the evaporator 4 to the refrigeration cycle including the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4. It is incorporated in a vapor compression refrigerator having a hot gas pipe 5 that can be operated, and is operated during defrosting operation by hot gas of the vapor compression refrigerator.
That is, the refrigerant heating auxiliary device is arranged in series between the evaporator 4 and the compressor 1 via the switching valves 7a and 7b, and the compressor 1, the hot gas pipe 5, the evaporator 4, and the refrigerant heating auxiliary. The refrigerant is configured to increase the latent heat of condensation of the refrigerant flowing through the apparatus and send it to the compressor 1.
Specifically, an integrated thermal self-equilibrium heat exchanger 8 having a primary side 8a and a secondary side 8b, and a turbine expander 9 in which the secondary side 8b inlet of the thermal self-equilibrium heat exchanger 8 is allotted. And an eddy current heat generator 10 that is rotated by the rotational force of the turbine expander 9 and at which the outlet of the secondary side 8b of the thermal self-balancing heat exchanger 8 is allotted.
Then, the refrigerant from the evaporator 4 is sequentially compressed through the primary side 8a of the thermal self-equilibrium heat exchanger 8, the turbine expander 9, the secondary side 8b of the thermal self-equilibrium heat exchanger 8, and the eddy current heater 10. The eddy current heat generator 10 is formed so as to be rotated by the rotational force of the turbine expander 9 that is rotated by the flow of the refrigerant, and the refrigerant is generated by the heat generated by the eddy current heat generator 10. It is configured to increase the temperature.
In the vapor compression refrigerator, in the refrigerant heating auxiliary device, the primary side 8a of the thermal self-equilibrium heat exchanger 8 functions as a condenser, and the turbine expander 9 functions as an expander. The secondary side 8b functions as an evaporator, and these, the compressor 1, and the evaporator 4 (condenser) constitute a refrigeration cycle.

前記圧縮機1は、冷凍サイクル内の冷媒(低温・低圧の冷媒ガス)を圧縮して、高温・高圧の冷媒ガス(ホットガス)にできるように構成されたもので、前記凝縮器2は、高温・高圧の冷媒ガスから熱を放出させて、常温・高圧の液状冷媒にできるように構成されたもので、前記膨張弁3(エキスパンションバルブまたはキャピラリーチューブ)は、常温・高圧の液状冷媒を減圧と流量制御を行って低温・低圧のガス状冷媒にできるように構成されたもので、前記蒸発器4は、ガス状冷媒が熱(蒸発熱源)を吸収して、相変化(液状からガス状に変化)を維持するための蒸発工程構成部であり、通常は、この冷媒ガスが切替弁7bを介して圧縮機1に吸引されて、冷媒が圧縮機1、凝縮器2、膨張弁3、蒸発器4を循環する冷凍サイクルを構成している。すなわち、蒸発器4部分の熱交換によって冷凍庫内や冷蔵庫内を冷却(或いは、室内を冷房)できるようになっている。   The compressor 1 is configured to compress a refrigerant (low-temperature / low-pressure refrigerant gas) in a refrigeration cycle into a high-temperature / high-pressure refrigerant gas (hot gas). The expansion valve 3 (expansion valve or capillary tube) depressurizes the normal temperature / high pressure liquid refrigerant by releasing heat from the high temperature / high pressure refrigerant gas into a normal temperature / high pressure liquid refrigerant. The vaporizer 4 absorbs heat (evaporation heat source) and the phase change (from liquid state to gaseous state) is achieved. Normally, the refrigerant gas is sucked into the compressor 1 via the switching valve 7b, and the refrigerant is compressed in the compressor 1, the condenser 2, the expansion valve 3, A refrigeration cycle circulating in the evaporator 4 is configured. It is. That is, the inside of the freezer or the refrigerator can be cooled (or the room is cooled) by heat exchange of the evaporator 4 portion.

前記ホットガス管5は、圧縮機1と凝縮器2の間に切替弁6aを介してその一端が接続され、膨張弁3と蒸発器4の間にその他端が接続されて、圧縮機1から吐出されるホットガスを蒸発器4に直接送り込める(切替弁6bによって凝縮器2と膨張弁3にはホットガスが流れない)ようにしたもので、蒸発器4内にホットガスを送り込むと、蒸発器4が凝縮器となって、高温・高圧の冷媒ガスから熱を放出させ、蒸発器4部分の冷却器に付着している霜を溶解させる。
尚、蒸発器4を温蔵庫内や室内に設けることで、ホットガス管5によってホットガスを送り込むと、温蔵庫内を加熱させたり、暖房したりできるようになる。
One end of the hot gas pipe 5 is connected between the compressor 1 and the condenser 2 via a switching valve 6 a, and the other end is connected between the expansion valve 3 and the evaporator 4. The discharged hot gas can be directly sent to the evaporator 4 (the hot valve does not flow to the condenser 2 and the expansion valve 3 by the switching valve 6b). When the hot gas is sent into the evaporator 4, The evaporator 4 becomes a condenser and releases heat from the high-temperature and high-pressure refrigerant gas, thereby melting frost adhering to the cooler in the evaporator 4 portion.
In addition, when the evaporator 4 is provided in the hot storage room or in the room, when the hot gas is fed through the hot gas pipe 5, the inside of the hot storage room can be heated or heated.

前記熱自己平衡熱交換器8は、例えば、中央の仕切板によって一次側8aと二次側8bを設けたもので、一次側8aと二次側8bの熱交換が高効率で行えるものが採用される。
そして、前記蒸発器4からの冷媒(気液二層状態の冷媒)が切替弁7aを介して一次側8a内に送られ、一次側8aを通過した冷媒がタービン膨張機9を経て二次側8b内に送られ、二次側8bを通過した冷媒が渦電流発熱機10を経て圧縮機1に送られるようになる。
The heat self-equilibrium heat exchanger 8 is, for example, provided with a primary side 8a and a secondary side 8b by means of a central partition plate, and can perform heat exchange between the primary side 8a and the secondary side 8b with high efficiency. Is done.
Then, the refrigerant (vapor-liquid two-layer refrigerant) from the evaporator 4 is sent into the primary side 8a via the switching valve 7a, and the refrigerant passing through the primary side 8a passes through the turbine expander 9 to the secondary side. The refrigerant that has been sent into 8 b and has passed through the secondary side 8 b is sent to the compressor 1 through the eddy current heater 10.

前記タービン膨張機9は、例えば、連結シャフト13の一端に固定されると共に、隔壁12で隔てられたケーシング11内の一方がわに設けられ、熱自己平衡熱交換器8の一次側8aから送られてくる冷媒がケーシング11の冷媒導入口14から導入されて冷媒吐出口15から吐出されるように形成され、冷媒の流れによってスムーズに回転すると共に、この冷媒を膨張できるように構成されたものが採用される。   The turbine expander 9 is, for example, fixed to one end of the connecting shaft 13 and provided in one side of the casing 11 separated by the partition wall 12, and is sent from the primary side 8 a of the thermal self-balance heat exchanger 8. The refrigerant thus formed is introduced from the refrigerant introduction port 14 of the casing 11 and discharged from the refrigerant discharge port 15, and is configured to rotate smoothly by the flow of the refrigerant and to expand the refrigerant. Is adopted.

前記渦電流発熱機10は、例えば、連結シャフト13の他端に固定されると共に、隔壁12で隔てられたケーシング11内の他方がわに設けられ、熱自己平衡熱交換器8の一次側8aからタービン膨張機9を経て送られてくる冷媒がケーシング11の冷媒導入口16から導入されて冷媒吐出口17から出るように形成され、通過する冷媒を効率良く加熱できるように構成されたものが採用される。
尚、渦電流発熱機10は、連結シャフト13の他端に固定される回転盤18と、S極、N極を交互にして回転盤18に固定される複数の永久磁石19と、回転盤18を囲繞するように配される発熱盤20とからなり、回転盤18を回転させると、発熱盤20を磁石19のS極N極の磁力線が交互に横切るようになり、電磁誘導現象によって発熱盤20に渦電流が発生し、この渦電流が熱エネルギーに変換されて発熱盤20が発熱するように構成されている。
The eddy current heat generator 10 is fixed to the other end of the connecting shaft 13, for example, and the other side of the casing 11 separated by the partition wall 12 is provided on the side of the primary side 8 a of the heat self-balance heat exchanger 8. The refrigerant sent from the refrigerant through the turbine expander 9 is introduced from the refrigerant introduction port 16 of the casing 11 and exits from the refrigerant discharge port 17 so that the refrigerant passing therethrough can be efficiently heated. Adopted.
The eddy current heater 10 includes a rotating disk 18 fixed to the other end of the connecting shaft 13, a plurality of permanent magnets 19 fixed to the rotating disk 18 with S poles and N poles alternately, and a rotating disk 18. When the rotating disk 18 is rotated, the magnetic field lines of the south and north poles of the magnet 19 alternately cross the heat generating board 20 by the electromagnetic induction phenomenon. An eddy current is generated in 20, and this eddy current is converted into heat energy so that the heat generating panel 20 generates heat.

ところで、圧縮機1の具体的構成、凝縮器2の具体的構成、膨張弁3の具体的構成、蒸発器4の具体的構成、ホットガス管5の具体的構成、形状、配設位置、切替弁6a、6bの具体的構成、配設位置、数、切替弁7a、7bの具体的構成、配設位置、数、熱自己平衡熱交換器8の具体的構成、一次側8aの具体的構成、二次側8bの具体的構成、タービン膨張機9の具体的構成、配設位置、渦電流発熱機10の具体的構成、配設位置、ケーシング11の具体的構成、形状、寸法、材質、配設位置、隔壁12の具体的構成、形状、寸法、材質、配設位置、連結シャフト13の具体的構成、形状、寸法、材質、冷媒導入口14の具体的構成、形状、配設位置、冷媒吐出口15の具体的構成、形状、配設位置、冷媒導入口16の具体的構成、形状、配設位置、冷媒吐出口17の具体的構成、形状、配設位置、回転盤18の具体的構成、形状、寸法、材質、磁石19の具体的構成、形状、寸法、材質、数、配設位置、発熱盤20の具体的構成、形状、寸法、材質、配設位置等は図示例のもの等に限定されることなく適宜自由に設定、変更できるものである。   By the way, the specific configuration of the compressor 1, the specific configuration of the condenser 2, the specific configuration of the expansion valve 3, the specific configuration of the evaporator 4, the specific configuration of the hot gas pipe 5, the shape, the arrangement position, switching Specific configuration, arrangement position and number of valves 6a and 6b, specific configuration of switching valves 7a and 7b, arrangement position and number, specific configuration of thermal self-equilibrium heat exchanger 8, specific configuration of primary side 8a Specific configuration of secondary side 8b, specific configuration of turbine expander 9, arrangement position, specific configuration of eddy current heater 10, arrangement position, specific configuration of casing 11, shape, dimensions, material, Arrangement position, specific configuration of partition 12, shape, dimensions, material, arrangement position, specific configuration of connecting shaft 13, shape, dimensions, material, specific configuration of refrigerant inlet 14, shape, arrangement position, Specific configuration, shape, arrangement position of refrigerant discharge port 15, specific configuration, shape of refrigerant introduction port 16 Arrangement position, specific configuration of refrigerant discharge port 17, shape, arrangement position, specific configuration of turntable 18, shape, dimensions, material, specific configuration of magnet 19, shape, dimensions, material, number, arrangement The position, the specific configuration, shape, dimensions, material, arrangement position, etc. of the heat generating board 20 are not limited to those in the illustrated example, and can be freely set and changed as appropriate.

図5は、本発明の冷媒加熱補助装置を組込んだ蒸気圧縮式冷暖房機の冷媒回路図で、この蒸気圧縮式冷暖房機は、圧縮機30と、室内側熱交換器31と、膨張弁32a、32bと、室外側熱交換器33と、四方切替弁34と、逆止弁35a、35bとを備えたもので、室内側熱交換器31で室内の暖房を行う時には、冷媒が、圧縮機30、四方切替弁34、室内側熱交換器31、逆止弁35a、膨張弁32a、室外側熱交換器33、四方切替弁34を経て圧縮機30に流れるように構成されている。
また、室内側熱交換器31で室内の冷房を行う時には、冷媒が、圧縮機30、四方切替弁34、室外側熱交換器33、逆止弁35b、膨張弁32b、室内側熱交換器31、四方切替弁34を経て圧縮機30に流れるように構成されている。
尚、図中Xは、屋内を示すもので、図中Yは、屋外を示すものである。
FIG. 5 is a refrigerant circuit diagram of a vapor compression type air conditioner incorporating the refrigerant heating auxiliary device of the present invention. The vapor compression type air conditioner includes a compressor 30, an indoor heat exchanger 31, and an expansion valve 32a. 32b, the outdoor heat exchanger 33, the four-way switching valve 34, and the check valves 35a and 35b. When the indoor heat exchanger 31 heats the room, the refrigerant becomes a compressor. 30, the four-way switching valve 34, the indoor heat exchanger 31, the check valve 35 a, the expansion valve 32 a, the outdoor heat exchanger 33, and the four-way switching valve 34, and flows to the compressor 30.
When the indoor heat exchanger 31 cools the room, the refrigerant is the compressor 30, the four-way switching valve 34, the outdoor heat exchanger 33, the check valve 35b, the expansion valve 32b, and the indoor heat exchanger 31. In addition, it is configured to flow to the compressor 30 through the four-way switching valve 34.
In the figure, X indicates indoors, and Y in the figures indicates outdoors.

そして、冷媒加熱補助装置は、冷暖房機の暖房時に於いて作動せしめられ、蒸気圧縮式冷凍サイクル中の冷媒の凝縮潜熱を増加して圧縮機30に送れるように、室外側熱交換器33に対して切替弁36を介して並列状態に配されている。
すなわち、切替弁36を通過してきた冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られ、冷媒の流れによって回転するタービン膨張機9の回転力で渦電流発熱機10を回転せしめ、渦電流発熱機10で発生する熱で冷媒の温度を高めて圧縮機30に送れるように構成されている。
ところで、冷媒加熱補助装置は、蒸気圧縮式冷暖房機で暖房運転を行っていて、冷媒が、圧縮機30、四方切替弁34、室内側熱交換器31、逆止弁35a、膨張弁32a、室外側熱交換器33、四方切替弁34、圧縮機30と循環しているときに作動させるようにしても良いし、或いは、蒸気圧縮式冷暖房機で暖房運転を行っていて、冷媒が、膨張弁32aと室外側熱交換器33に流れない状態のときに作動させるようにしても良い。
尚、前記蒸気圧縮式冷暖房機に於いて、冷媒加熱補助装置は、熱自己平衡熱交換器8の一次側8aが、凝縮器の働きをし、タービン膨張機9が膨張器の働きをし、二次側8bが蒸発器の働きをするようになり、これらと圧縮機30と室内側熱交換器31(凝縮器)とで冷凍サイクルを構成するようになっている。
しかして、蒸気圧縮式冷暖房機で暖房運転を行っていて、室外側熱交換器33に霜が氷結して、これを除霜(デフロスト)する際に、従来システムであれば、暖房運転を冷房運転に切り替えることによって除霜する(このとき、室内は暖房できない)必要があったが、図5に示す冷媒回路(蒸気圧縮式冷暖房機)にあっては、暖房運転を冷房運転に切り替える必要がなく、室内の暖房を継続できるようになる。しかも、渦電流発熱機10で発生する熱で冷媒の温度を高めて圧縮機30に送れ、暖房効果をより高めることもできる。
The refrigerant heating auxiliary device is operated during heating of the air conditioner and increases the condensation latent heat of the refrigerant in the vapor compression refrigeration cycle so as to be sent to the compressor 30 with respect to the outdoor heat exchanger 33. Are arranged in parallel via a switching valve 36.
That is, the refrigerant passing through the switching valve 36 sequentially passes through the primary side 8a of the thermal self-equilibrium heat exchanger 8, the turbine expander 9, the secondary side 8b of the thermal self-equilibrium heat exchanger 8, and the eddy current heat generator 10. The eddy current heat generator 10 is rotated by the rotational force of the turbine expander 9 that is sent and rotated by the flow of the refrigerant, and the temperature of the refrigerant is increased by the heat generated by the eddy current heat generator 10 so as to be sent to the compressor 30. Has been.
By the way, the refrigerant heating auxiliary device performs the heating operation by the vapor compression type air conditioner, and the refrigerant is the compressor 30, the four-way switching valve 34, the indoor heat exchanger 31, the check valve 35a, the expansion valve 32a, the chamber. You may make it operate | move when it circulates with the outer side heat exchanger 33, the four-way switching valve 34, and the compressor 30, or it is heating operation with a vapor | steam compression type air conditioner, and a refrigerant | coolant is an expansion valve. 32a and the outdoor heat exchanger 33 may be operated when not flowing.
In the vapor compression type air conditioner, in the refrigerant heating auxiliary device, the primary side 8a of the thermal self-equilibrium heat exchanger 8 functions as a condenser, and the turbine expander 9 functions as an expander. The secondary side 8b functions as an evaporator, and these, the compressor 30, and the indoor side heat exchanger 31 (condenser) constitute a refrigeration cycle.
Therefore, when the heating operation is performed by the vapor compression type air conditioner, when the frost freezes on the outdoor heat exchanger 33 and defrosts the frost, if the conventional system is used, the heating operation is cooled. Although it was necessary to defrost by switching to the operation (at this time, the room cannot be heated), in the refrigerant circuit (vapor compression type air conditioner) shown in FIG. 5, it is necessary to switch the heating operation to the cooling operation. It will be possible to continue heating the room. In addition, the heat generated in the eddy current heat generator 10 can raise the temperature of the refrigerant and send it to the compressor 30 to further enhance the heating effect.

図6は、本発明の冷媒加熱補助装置を組込んだ蒸気圧縮式暖房専用機の冷媒回路図で、この蒸気圧縮式暖房専用機は、圧縮機40と、暖房用室内熱交換器41とを備えたもので、暖房用室内熱交換器41で室内の暖房を行う時には、冷媒が圧縮機40から暖房用室内熱交換器41に送られ、暖房用室内熱交換器41から冷媒加熱補助装置に送られ、冷媒加熱補助装置から圧縮機40に送られるように構成されている。   FIG. 6 is a refrigerant circuit diagram of a vapor compression heating exclusive machine incorporating the refrigerant heating auxiliary device of the present invention. This vapor compression heating exclusive machine includes a compressor 40 and an indoor heat exchanger 41 for heating. When heating the room with the indoor heat exchanger 41 for heating, the refrigerant is sent from the compressor 40 to the indoor heat exchanger 41 for heating, and from the indoor heat exchanger 41 for heating to the refrigerant heating auxiliary device. It is configured to be sent to the compressor 40 from the refrigerant heating auxiliary device.

そして、冷媒加熱補助装置は、暖房用室内熱交換器41からの冷媒が、熱自己平衡熱交換器8の一次側8a、タービン膨張機9、熱自己平衡熱交換器8の二次側8b、渦電流発熱機10を順次経て送られ、冷媒の流れによって回転するタービン膨張機9の回転力で渦電流発熱機10を回転せしめ、渦電流発熱機10で発生する熱で冷媒の温度を高めて圧縮機40に送れるように構成されている。
尚、前記蒸気圧縮式暖房専用機に於いて、冷媒加熱補助装置は、熱自己平衡熱交換器8の一次側8aが、凝縮器の働きをし、タービン膨張機9が膨張器の働きをし、二次側8bが蒸発器の働きをするようになり、これらと圧縮機40と暖房用室内熱交換器41(凝縮器)とで冷凍サイクルを構成するようになっている。
And the refrigerant | coolant heating auxiliary | assistance apparatus is the refrigerant | coolant from the indoor heat exchanger 41 for heating, the primary side 8a of the thermal self-equilibrium heat exchanger 8, the turbine expander 9, the secondary side 8b of the thermal self-equilibrium heat exchanger 8, The eddy current heat generator 10 is sent sequentially through the eddy current heat generator 10 and rotated by the rotational force of the turbine expander 9 rotated by the flow of the refrigerant, and the temperature of the refrigerant is increased by the heat generated in the eddy current heat generator 10. It is configured to be sent to the compressor 40.
In the vapor compression heating exclusive machine, the refrigerant heating auxiliary device is such that the primary side 8a of the thermal self-equilibrium heat exchanger 8 functions as a condenser, and the turbine expander 9 functions as an expander. The secondary side 8b functions as an evaporator, and the compressor 40 and the heating indoor heat exchanger 41 (condenser) constitute a refrigeration cycle.

ところで、圧縮機30の具体的構成、室内側熱交換器31の具体的構成、膨張弁32a、32bの具体的構成、室外側熱交換器33の具体的構成、四方切替弁34の具体的構成、配設位置、逆止弁35a、35bの具体的構成、配設位置、数、切替弁36の具体的構成、配設位置、数、圧縮機40の具体的構成、暖房用室内熱交換器41の具体的構成等は図示例のもの等に限定されることなく適宜自由に設定、変更できるものである。   By the way, the specific configuration of the compressor 30, the specific configuration of the indoor heat exchanger 31, the specific configuration of the expansion valves 32 a and 32 b, the specific configuration of the outdoor heat exchanger 33, and the specific configuration of the four-way switching valve 34. , Arrangement position, specific configuration of check valves 35a, 35b, arrangement position, number, specific configuration of switching valve 36, arrangement position, number, specific configuration of compressor 40, indoor heat exchanger for heating The specific configuration 41 is not limited to the illustrated example and the like, and can be freely set and changed as appropriate.

また、本発明の冷媒過熱方法は、蒸気圧縮式冷凍機や蒸気圧縮式冷暖房機や蒸気圧縮式暖房専用機に利用されて、冷凍庫や冷蔵庫のデフロストを行うときや、ヒートポンプ暖房を行うときや、温蔵庫内を加熱する際等に利用できる方法である。
具体的には、先ず、冷媒(気液二層状態の冷媒)を、熱自己平衡熱交換器8の一次側8aに送って凝縮させる。このとき、一次側8aは未凝縮冷媒ガスの凝縮潜熱を含んだ熱量を蒸発熱源とし、二次側8bの蒸発工程を機能させる。
次に、この一次側8aを通過した冷媒をタービン膨張機9に送って、タービン膨張機9を回転させると共に、タービン膨張機9で冷媒を減圧・膨張させて冷却する。
そして、タービン膨張機9を通過した冷媒を熱自己平衡熱交換器8の二次側8bに送って蒸発させる。このとき、熱自己平衡熱交換器8の一次側8aでは、熱自己平衡熱交換器8の二次側8bで蒸発冷却した冷媒が冷却熱源となって、一次側8a内の未凝縮冷媒ガスを冷却凝縮させる。すなわち、一次側8aは補助(二段目の)凝縮器の機能を有し、二次側8bは蒸発器の機能を有する。
それから、二次側8bを通過した冷媒を渦電流発熱機10に送り、タービン膨張機9の回転力で回転する渦電流発熱機10から発生する熱で、冷媒の温度を高める。
更に、渦電流発熱機10を通過した冷媒を圧縮機1に送る。
In addition, the refrigerant superheating method of the present invention is used for a vapor compression refrigerator, a vapor compression air conditioner or a vapor compression heating dedicated machine, when defrosting a freezer or a refrigerator, when performing heat pump heating, This is a method that can be used when heating the inside of the warm storage cabinet.
Specifically, first, the refrigerant (the refrigerant in the gas-liquid two-layer state) is sent to the primary side 8a of the thermal self-equilibrium heat exchanger 8 to be condensed. At this time, the primary side 8a uses the amount of heat including the latent heat of condensation of the uncondensed refrigerant gas as an evaporation heat source, and causes the evaporation process of the secondary side 8b to function.
Next, the refrigerant that has passed through the primary side 8a is sent to the turbine expander 9 to rotate the turbine expander 9, and the turbine expander 9 depressurizes and expands the refrigerant to cool it.
Then, the refrigerant that has passed through the turbine expander 9 is sent to the secondary side 8b of the thermal self-equilibrium heat exchanger 8 to be evaporated. At this time, on the primary side 8a of the heat self-equilibrium heat exchanger 8, the refrigerant evaporated and cooled on the secondary side 8b of the heat self-equilibrium heat exchanger 8 serves as a cooling heat source, and uncondensed refrigerant gas in the primary side 8a is removed. Allow to cool and condense. That is, the primary side 8a has a function of an auxiliary (second stage) condenser, and the secondary side 8b has a function of an evaporator.
Then, the refrigerant that has passed through the secondary side 8 b is sent to the eddy current heat generator 10, and the temperature of the refrigerant is increased by heat generated from the eddy current heat generator 10 that is rotated by the rotational force of the turbine expander 9.
Further, the refrigerant that has passed through the eddy current heater 10 is sent to the compressor 1.

ところで、熱自己平衡熱交換器8に於ける機能ついて図1のデフロスト作動時の場合で説明すると、先ず、初期的段階で熱自己平衡熱交換器8の一次側8aに送られるのは高圧で高温(常温)の不完全凝縮の冷媒ガス(ホットガスと冷媒液)である。デフロスト作用をした冷媒ガスは放熱し、その冷却による凝縮をして一部液となっている。
この不完全凝縮冷媒ガスは熱自己平衡熱交換器8の一次側8a出口より送られて二次側8bへ送られるが、このときタービン膨張機9を通過し、その通過時に一部液化されている冷媒が蒸発し、気化相変化する。
この蒸発によって、熱自己平衡熱交換器8の二次側8b内の冷媒ガスは、中間プレートを介して一次側8aに送られてくる不完全凝縮冷媒ガスを熱交換して冷却され、一次側8a内での冷媒ガスの凝縮を促進させる。この時に、一次側8a内に流入してくる不完全凝縮冷媒ガスは高温(常温)のため、二次側8b内の冷媒ガスの蒸発作用の気化熱源となる。
一次側8aでは送られてくる不完全凝縮冷媒ガスが冷却され、より凝縮が促進されることで、この一次側8aには凝縮された冷媒の液が経時変化と共に増量していく。
熱自己平衡熱交換器8の一次側8aに凝縮された冷媒の液が増量されると、二次側8bにおける蒸発能力も伴って増加され、更に、一次側8aにおける不完全凝縮ガスの凝縮を促進させる。
上記した経時変化により増進されていく機能は、一次側8aが二次側8bの蒸発熱源となり、二次側8bの蒸発作用は一次側8aの凝縮熱源となって安定され、二次側8bで蒸発気化された冷媒ガスは渦電流発熱機10で加熱されてから圧縮機1へ吸引され、圧縮、循環されることとなる。
By the way, the function of the thermal self-equilibrium heat exchanger 8 will be described in the case of the defrost operation of FIG. 1. First, at the initial stage, it is high pressure that is sent to the primary side 8a of the thermal self-equilibrium heat exchanger 8. It is a refrigerant gas (hot gas and refrigerant liquid) of incomplete condensation at a high temperature (normal temperature). The refrigerant gas having defrosted action dissipates heat and condenses by cooling to become a part of liquid.
This incompletely condensed refrigerant gas is sent from the outlet of the primary side 8a of the thermal self-equilibrium heat exchanger 8 and sent to the secondary side 8b. At this time, it passes through the turbine expander 9 and is partially liquefied when it passes. The refrigerant that has evaporated evaporates and the vaporization phase changes.
By this evaporation, the refrigerant gas in the secondary side 8b of the thermal self-equilibrium heat exchanger 8 is cooled by exchanging the incompletely condensed refrigerant gas sent to the primary side 8a via the intermediate plate, and cooled. The condensation of the refrigerant gas in 8a is promoted. At this time, since the incompletely condensed refrigerant gas flowing into the primary side 8a is at a high temperature (normal temperature), it becomes a heat source for evaporation of the refrigerant gas in the secondary side 8b.
The incompletely condensed refrigerant gas sent on the primary side 8a is cooled and further condensed, so that the condensed refrigerant liquid increases on the primary side 8a with time.
When the amount of refrigerant condensed on the primary side 8a of the thermal self-equilibrium heat exchanger 8 is increased, the evaporation capacity on the secondary side 8b is also increased, and the condensation of incompletely condensed gas on the primary side 8a is further increased. Promote.
The function that is promoted by the above-described change with time is that the primary side 8a becomes the evaporation heat source of the secondary side 8b, the evaporation action of the secondary side 8b becomes stable as the condensation heat source of the primary side 8a, and the secondary side 8b The evaporated and evaporated refrigerant gas is heated by the eddy current heat generator 10 and then sucked into the compressor 1 to be compressed and circulated.

本発明の冷媒加熱補助装置や冷媒加熱方法によれば、より効率が良く、安定したデフロストや暖房が行え、寒冷下環境にあっても、冷凍サイクルの運転が可能となり、蒸発工程にあって蒸発熱源となる外部動力や外部熱源等が不要となり、経済的な装置及び方法となる。加えて、ヒートポンプによる加熱効率は、電気入力の場合の3〜4倍の効果があり、省エネルギーの実現に役立つものとなる。   According to the refrigerant heating auxiliary device and refrigerant heating method of the present invention, more efficient and stable defrosting and heating can be performed, and the refrigeration cycle can be operated even in a cold environment. An external power source, an external heat source, or the like as a heat source becomes unnecessary, and an economical apparatus and method are obtained. In addition, the heating efficiency by the heat pump has an effect that is 3 to 4 times that in the case of electrical input, and is useful for realizing energy saving.

1 圧縮機
2 凝縮器
3 膨張弁
4 蒸発器
5 ホットガス管
6a 切替弁
6b 切替弁
7a 切替弁
7b 切替弁
8 熱自己平衡熱交換器
8a 一次側
8b 二次側
9 タービン膨張機
10 渦電流発熱機
11 ケーシング
12 隔壁
13 連結シャフト
14 冷媒導入口
15 冷媒吐出口
16 冷媒導入口
17 冷媒吐出口
18 回転盤
19 磁石
20 発熱盤
30 圧縮機
31 室内側熱交換器
32a 膨張弁
32b 膨張弁
33 室外側熱交換器
34 四方切替弁
35a 逆止弁
35b 逆止弁
36 切替弁
40 圧縮機
41 暖房用室内熱交換器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Hot gas pipe 6a Switching valve 6b Switching valve 7a Switching valve 7b Switching valve 8 Thermal self-equilibrium heat exchanger 8a Primary side 8b Secondary side 9 Turbine expander 10 Eddy current heat generation Machine 11 Casing 12 Bulkhead 13 Connection shaft 14 Refrigerant inlet 15 Refrigerant outlet 16 Refrigerant inlet 17 Refrigerant outlet 18 Rotary plate 19 Magnet 20 Heating plate 30 Compressor 31 Indoor side heat exchanger 32a Expansion valve 32b Expansion valve 33 Outdoor side Heat exchanger 34 Four-way switching valve 35a Check valve 35b Check valve 36 Switching valve 40 Compressor 41 Indoor heat exchanger for heating

Claims (5)

蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機に送れるように構成した冷媒加熱補助装置であって、一次側及び二次側を有する一体の熱自己平衡熱交換器と、この熱自己平衡熱交換器の二次側入口がわに配されるタービン膨張機と、このタービン膨張機の回転力によって回転すると共に、熱自己平衡熱交換器の二次側出口がわに配される渦電流発熱機とを備え、冷媒が、熱自己平衡熱交換器の一次側、タービン膨張機、熱自己平衡熱交換器の二次側、渦電流発熱機を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機の回転力で、渦電流発熱機を回転せしめられるように形成し、渦電流発熱機で発生する熱で冷媒の温度を高められるように構成したことを特徴とする冷凍サイクル用冷媒加熱補助装置。   A refrigerant heating auxiliary device configured to increase the latent heat of condensation in a vapor compression refrigeration cycle and send it to a compressor, comprising: an integrated thermal self-equilibrium heat exchanger having a primary side and a secondary side; Turbine expander in which the secondary inlet of the equilibrium heat exchanger is allocated to the alligator, and a vortex that is rotated by the rotational force of the turbine expander and the secondary outlet of the thermal self-equilibrium heat exchanger is allocated to the alligator And a current generator, and the refrigerant is formed to be sent through the primary side of the thermal self-equilibrium heat exchanger, the turbine expander, the secondary side of the thermal self-equilibrium heat exchanger, and the eddy current heater sequentially. It is configured to rotate the eddy current heat generator with the rotational force of the turbine expander rotating by the flow of the refrigerant, and to increase the temperature of the refrigerant with the heat generated by the eddy current heat generator. Refrigerant heating auxiliary equipment for refrigeration cycle . 蒸気圧縮式冷凍機のホットガスによるデフロスト作動時に於いて作動せしめられると共に、少なくとも圧縮機と凝縮器と膨張弁と蒸発器とホットガス管とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機に送れるように構成した冷媒加熱補助装置であって、蒸発器と圧縮機の間に切替弁を介して直列状態に配されており、一次側及び二次側を有する一体の熱自己平衡熱交換器と、この熱自己平衡熱交換器の二次側入口がわに配されるタービン膨張機と、このタービン膨張機の回転力によって回転すると共に、熱自己平衡熱交換器の二次側出口がわに配される渦電流発熱機とを備え、前記蒸発器からの冷媒が、熱自己平衡熱交換器の一次側、タービン膨張機、熱自己平衡熱交換器の二次側、渦電流発熱機を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機の回転力で、渦電流発熱機を回転せしめられるように形成し、渦電流発熱機で発生する熱で冷媒の温度を高められるように構成したことを特徴とする冷凍サイクル用冷媒加熱補助装置。   It is operated during the defrost operation by hot gas of the vapor compression refrigerator and increases the latent heat of condensation in the vapor compression refrigeration cycle having at least the compressor, the condenser, the expansion valve, the evaporator and the hot gas pipe. A refrigerant heating auxiliary device configured to be sent to the compressor, and is arranged in series via a switching valve between the evaporator and the compressor, and has an integrated thermal self having a primary side and a secondary side An equilibrium heat exchanger, a turbine expander in which the secondary inlet of this thermal self-equilibrium heat exchanger is allotted, and a secondary of the thermal self-equilibrium heat exchanger that is rotated by the rotational force of the turbine expander An eddy current heat generator arranged on the side outlet, and the refrigerant from the evaporator is a primary side of the thermal self-equilibrium heat exchanger, a secondary side of the turbine expander, the thermal self-equilibrium heat exchanger, an eddy current To be sent sequentially through the current heating machine The eddy current heat generator can be rotated by the rotational force of the turbine expander that is rotated by the refrigerant flow, and the temperature of the refrigerant can be increased by the heat generated by the eddy current heat generator. A refrigerant heating auxiliary device for a refrigeration cycle. ヒートポンプ暖房時に於いて作動せしめられ、少なくとも圧縮機と室内側熱交換器と膨張弁と室外側熱交換器とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機に送れるように構成した冷媒加熱補助装置であって、室外側熱交換器に対して切替弁を介して並列状態に配されており、一次側及び二次側を有する一体の熱自己平衡熱交換器と、この熱自己平衡熱交換器の二次側入口がわに配されるタービン膨張機と、このタービン膨張機の回転力によって回転すると共に、熱自己平衡熱交換器の二次側出口がわに配される渦電流発熱機とを備え、冷媒が、熱自己平衡熱交換器の一次側、タービン膨張機、熱自己平衡熱交換器の二次側、渦電流発熱機を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機の回転力で、渦電流発熱機を回転せしめられるように形成し、渦電流発熱機で発生する熱で冷媒の温度を高められるように構成したことを特徴とする冷凍サイクル用冷媒加熱補助装置。   It is operated during heat pump heating and is configured to increase the latent heat of condensation in a vapor compression refrigeration cycle having at least a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger and send it to the compressor. A refrigerant heating auxiliary device, which is arranged in parallel with the outdoor heat exchanger via a switching valve, and has an integrated thermal self-equilibrium heat exchanger having a primary side and a secondary side, and the heat A turbine expander in which the secondary side inlet of the self-equilibrium heat exchanger is arranged on the alligator, and the secondary side outlet of the thermal self-equilibrium heat exchanger is arranged on the alligator while rotating by the rotational force of this turbine expander And an eddy current heat generator, and the refrigerant is formed to be sent through the primary side of the thermal self-equilibrium heat exchanger, the turbine expander, the secondary side of the thermal self-equilibrium heat exchanger, and the eddy current heat generator in order. , Turbine rotating by refrigerant flow Refrigerant heating auxiliary for refrigeration cycle, which is constructed so that the eddy current heat generator can be rotated by the rotational force of the tension machine and the temperature of the refrigerant can be raised by the heat generated by the eddy current heat generator apparatus. ヒートポンプ暖房時に於いて作動せしめられ、圧縮機と暖房用室内熱交換器とを有する蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加して圧縮機に送れるように構成した冷媒加熱補助装置であって、暖房用室内熱交換器と圧縮機の間に直列状態に配されており、一次側及び二次側を有する一体の熱自己平衡熱交換器と、この熱自己平衡熱交換器の二次側入口がわに配されるタービン膨張機と、このタービン膨張機の回転力によって回転すると共に、熱自己平衡熱交換器の二次側出口がわに配される渦電流発熱機とを備え、前記暖房用室内熱交換器からの冷媒が、熱自己平衡熱交換器の一次側、タービン膨張機、熱自己平衡熱交換器の二次側、渦電流発熱機を順次経て送られるように形成すると共に、冷媒の流れによって回転するタービン膨張機の回転力で、渦電流発熱機を回転せしめられるように形成し、渦電流発熱機で発生する熱で冷媒の温度を高められるように構成したことを特徴とする冷凍サイクル用冷媒加熱補助装置。   A refrigerant heating auxiliary device configured to increase the latent heat of condensation in a vapor compression refrigeration cycle, which is operated during heat pump heating and has a compressor and an indoor heat exchanger for heating, and is sent to the compressor, An integral thermal self-equilibrium heat exchanger having a primary side and a secondary side, and a secondary inlet of the thermal self-equilibrium heat exchanger, arranged in series between the indoor heat exchanger for heating and the compressor A turbine expander that is disposed on the hook, and an eddy current heat generator that is rotated by the rotational force of the turbine expander and that is disposed on the secondary side outlet of the thermal self-equilibrium heat exchanger. The refrigerant from the indoor heat exchanger for heat is formed so as to be sent through the primary side of the thermal self-equilibrium heat exchanger, the turbine expander, the secondary side of the thermal self-equilibrium heat exchanger, and the eddy current heat generator sequentially. Turbine expander rotating by refrigerant flow A rotating force, and formed to be rotated eddy current heating machine, eddy current heating machine with refrigerant heating aid refrigerating cycle, characterized by being configured to be raised the temperature of the refrigerant in the heat generated. 蒸気圧縮式冷凍サイクル中の凝縮潜熱を増加する冷媒加熱方法であって、冷媒を、熱自己平衡熱交換器の一次側に送って凝縮させ、この一次側を通過した冷媒をタービン膨張機に送って、タービン膨張機を回転させると共に、タービン膨張機で冷媒を膨張させ、タービン膨張機を通過した冷媒を熱自己平衡熱交換器の二次側に送って蒸発させ、この二次側を通過した冷媒を渦電流発熱機に送り、タービン膨張機の回転力で回転する渦電流発熱機から発生する熱で冷媒の温度を高め、渦電流発熱機を通過した冷媒を圧縮機1に送ることを特徴とした冷凍サイクル用冷媒加熱方法。   A refrigerant heating method for increasing latent heat of condensation in a vapor compression refrigeration cycle, wherein the refrigerant is condensed by sending it to the primary side of the thermal self-equilibrium heat exchanger, and the refrigerant passing through the primary side is sent to the turbine expander. Then, the turbine expander was rotated, the refrigerant was expanded by the turbine expander, the refrigerant that passed through the turbine expander was sent to the secondary side of the thermal self-equilibrium heat exchanger and evaporated, and passed through the secondary side. The refrigerant is sent to the eddy current heat generator, the temperature of the refrigerant is increased by the heat generated from the eddy current heat generator rotating by the rotational force of the turbine expander, and the refrigerant that has passed through the eddy current heat generator is sent to the compressor 1. A refrigerant heating method for a refrigeration cycle.
JP2009206063A 2009-09-07 2009-09-07 Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof Active JP5146884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206063A JP5146884B2 (en) 2009-09-07 2009-09-07 Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206063A JP5146884B2 (en) 2009-09-07 2009-09-07 Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof

Publications (2)

Publication Number Publication Date
JP2011058652A true JP2011058652A (en) 2011-03-24
JP5146884B2 JP5146884B2 (en) 2013-02-20

Family

ID=43946505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206063A Active JP5146884B2 (en) 2009-09-07 2009-09-07 Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof

Country Status (1)

Country Link
JP (1) JP5146884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295441B1 (en) * 2013-02-18 2013-09-18 株式会社マック Vapor compression refrigeration system
KR101405759B1 (en) 2013-02-18 2014-06-10 가부시키가이샤 맛쿠 Vapor compression refrigeration system
JP2015048983A (en) * 2013-09-02 2015-03-16 株式会社マック Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated
CN110145895A (en) * 2019-06-17 2019-08-20 李国庆 A kind of scroll refrigerant engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213650A (en) * 1989-02-10 1990-08-24 Toshiba Corp Refrigerant heating type air conditioner
JP3934398B2 (en) * 2001-11-01 2007-06-20 臼井国際産業株式会社 Vehicle heating system
JP2008164183A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2009109141A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Air conditioning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213650A (en) * 1989-02-10 1990-08-24 Toshiba Corp Refrigerant heating type air conditioner
JP3934398B2 (en) * 2001-11-01 2007-06-20 臼井国際産業株式会社 Vehicle heating system
JP2008164183A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2009109141A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Air conditioning apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295441B1 (en) * 2013-02-18 2013-09-18 株式会社マック Vapor compression refrigeration system
KR101405759B1 (en) 2013-02-18 2014-06-10 가부시키가이샤 맛쿠 Vapor compression refrigeration system
JP2015048983A (en) * 2013-09-02 2015-03-16 株式会社マック Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated
CN110145895A (en) * 2019-06-17 2019-08-20 李国庆 A kind of scroll refrigerant engine

Also Published As

Publication number Publication date
JP5146884B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
WO2012066763A1 (en) Freezer
JP2006292351A (en) Refrigerating air conditioner
JP2004322914A (en) Heat exchanger for combined cycle
JP4428341B2 (en) Refrigeration cycle equipment
JP2001147050A (en) Refrigerating system for refrigerator equipped with two evaporators
JP2009133624A (en) Refrigerating/air-conditioning device
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
JP2007218460A (en) Refrigerating cycle device and cool box
JP5146884B2 (en) Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof
JP2010038516A (en) Refrigerator-freezer and cooling storage
JP4651452B2 (en) Refrigeration air conditioner
JP2021011985A (en) Two-stage refrigerator
JP2009024884A (en) Refrigerating cycle device and cold insulation cabinet
JP5295441B1 (en) Vapor compression refrigeration system
JP5506638B2 (en) Refrigeration equipment
JP2007051788A (en) Refrigerating device
JP2012237518A (en) Air conditioner
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
KR101060512B1 (en) Cold and hot water generator
JP2007102680A (en) Automatic vending machine
KR101533644B1 (en) Hotgas defrosting refrigerating cycle device
JP2018063058A (en) Refrigerator and control method for the same
JP2010249444A (en) Freezer-refrigerator
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2004116930A (en) Gas heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5146884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250