JP2015048983A - Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated - Google Patents

Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated Download PDF

Info

Publication number
JP2015048983A
JP2015048983A JP2013181030A JP2013181030A JP2015048983A JP 2015048983 A JP2015048983 A JP 2015048983A JP 2013181030 A JP2013181030 A JP 2013181030A JP 2013181030 A JP2013181030 A JP 2013181030A JP 2015048983 A JP2015048983 A JP 2015048983A
Authority
JP
Japan
Prior art keywords
refrigerant
primary side
supercooler
heat
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013181030A
Other languages
Japanese (ja)
Inventor
紘晃 松下
Hiroaki Matsushita
紘晃 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC KK
Mac KK
Original Assignee
MAC KK
Mac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC KK, Mac KK filed Critical MAC KK
Priority to JP2013181030A priority Critical patent/JP2015048983A/en
Priority to US14/180,841 priority patent/US20140231049A1/en
Priority to KR1020140017858A priority patent/KR101405759B1/en
Publication of JP2015048983A publication Critical patent/JP2015048983A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide equipment or a steam compression type refrigeration cycle that has higher capacity and saves energy by increasing refrigeration capacity by sending a refrigerant having lower temperature and lower pressure to an expansion process prior to a vaporization process, and can sufficiently exhibit capabilities of heating and defrosting in a cold district.SOLUTION: An over-cooler comprises a heat exchanger which is incorporated between a condenser and an expansion valve of a steam compression type refrigeration cycle, integrally has a primary side and a secondary side through which a refrigerant having passed through the primary side flows in and passes in series, the primary side and secondary side being partitioned off by one heat conduction plate to have the same heat conduction area and capacity. The heat exchanger is equipped with a one-stage pressure reduction valve at a primary-side intake and with a two-stage pressure reduction valve at a secondary-side intake so as to overcool the refrigerant by a two-stage pressure reduction system.

Description

本発明は過冷却器及びその過冷却器を組み込んだ蒸気圧縮式冷凍サイクルに関し、その冷凍サイクルの工程のうち、蒸発の前段階となる膨張(低圧低温化)を行なう膨張弁に対して、冷媒を予め過冷却して送り込み、冷凍能力の大幅な向上と省エネルギー化を図る過冷却器とその過冷却器を組み込んだ蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a supercooler and a vapor compression refrigeration cycle incorporating the supercooler, and relates to a refrigerant for an expansion valve that performs expansion (low-pressure low-temperature) that is a pre-evaporation step in the refrigeration cycle process. The present invention relates to a supercooler for supercooling and feeding in advance to achieve a significant improvement in refrigeration capacity and energy saving, and a vapor compression refrigeration cycle incorporating the supercooler.

従来、冷媒ガスを使用した冷凍サイクルにあって、その冷却あるいは暖房の効果を向上させる要素として、熱自己平衡熱交換器を組み込むことが特許文献1〜8に示すように知られている。これらの特許文献1〜8には、一次側と二次側とを一体とし、一次側へ導入させ、その一次側を通過した冷媒ガスを膨張弁を介して二次側へ送り込み、その一次側と二次側で伝熱プレートを介して相互の熱エネルギーが各々凝縮、蒸発の熱源とされ、その熱エネルギーは相乗効果で各々の機能を高め、経時変化で一次側と二次側は作用的に安定される熱交換器が記載されている。   Conventionally, it is known in Patent Documents 1 to 8 that a thermal self-equilibrium heat exchanger is incorporated as an element for improving the cooling or heating effect in a refrigeration cycle using refrigerant gas. In these Patent Documents 1 to 8, the primary side and the secondary side are integrated, introduced to the primary side, and the refrigerant gas that has passed through the primary side is sent to the secondary side via the expansion valve, and the primary side The heat energy is condensed and evaporated as a heat source through the heat transfer plate on the secondary side and the heat energy is synergistically enhanced to enhance the functions of the primary and secondary sides. A heat exchanger that is stable is described.

特許文献9には膨張弁に代えてキャピラリーチューブを設けた熱交換機構が示されている。   Patent Document 9 discloses a heat exchange mechanism provided with a capillary tube instead of an expansion valve.

しかしながら、従来、上記した熱交換器を組み込んだ冷凍サイクルにあっても、完全といえる状態のデフロストには限界があり、デフロストに過大な作業や費用がかけられている。特に、寒冷地にあっては暖房装置としても効率的に安全に作用するには限度があり、どうしてもデフロストは電気を使用するヒーターに頼るのが現実的となっていた。   However, conventionally, even in a refrigeration cycle incorporating the above-described heat exchanger, there is a limit to the defrost that can be said to be complete, and excessive work and cost are applied to the defrost. In particular, in cold regions, there is a limit to the efficient and safe operation as a heating device, and it has become practical to rely on heaters that use electricity for defrost.

特願2013−028699号出願書類Application documents for Japanese Patent Application No. 2013-028699 特開2003−214731号公報JP 2003-214731 A 特開2004−361033号公報Japanese Patent Laid-Open No. 2004-361033 特願2005−98817号公報Japanese Patent Application No. 2005-98817 特開2005−114267号公報JP 2005-114267 A 特開2006−64331号公報JP 2006-64331 A 特開2009−156563号公報JP 2009-156563 A 特開2011−58652号公報JP 2011-58652 A 実開昭56−155277号のマイクロフィルムMicrofilm of Japanese Utility Model Sho 56-155277

本発明が解決しようとする問題点は、蒸発工程の前段階となる膨張工程へより一層の低温低圧とした冷媒を送り込むことで、その冷凍能力を増大させ、能力を高めるとともに、省エネルギー化を図り、寒冷地における暖房、デフロストの作用も十分に発揮することができる機器あるいは蒸気圧縮式冷凍サイクルが存在しなかったという点である。   The problem to be solved by the present invention is that the refrigerant having a lower temperature and lower pressure is fed into the expansion process, which is the previous stage of the evaporation process, thereby increasing its refrigerating capacity, improving its capacity and saving energy. In other words, there was no equipment or vapor compression refrigeration cycle that can sufficiently exhibit the effects of heating and defrosting in cold regions.

この問題点を解決するために本発明に係る過冷却器は、蒸気圧縮式冷凍サイクルの凝縮器と膨張弁の間に組み込まれ、一次側とその一次側を通過した冷媒が流入し、直列で通過する二次側を一体に有し、その一次側と二次側が一枚の伝熱プレートで仕切られ同一の伝熱面積と容量を有する熱交換器によって構成され、この熱交換器の一次側入口に一段減圧弁を備え、かつ、二次側入口には二段減圧弁を備え、二段減圧式とし、冷媒を過冷却することを特徴とし、前記した過冷却器は一次側が過冷却液生成部となり、二次側は一次側冷却のための低温部となり、二次側を通過した冷媒の温度は一次側を通過した冷媒の温度よりも低温であることを特徴としている。   In order to solve this problem, a supercooler according to the present invention is incorporated between a condenser and an expansion valve of a vapor compression refrigeration cycle, and a refrigerant passing through the primary side and the primary side flows in, and is connected in series. It has a secondary side that passes through, and the primary side and the secondary side are partitioned by a single heat transfer plate and are configured by a heat exchanger having the same heat transfer area and capacity. The inlet is provided with a single-stage pressure reducing valve, and the secondary side inlet is provided with a two-stage pressure reducing valve, which is a two-stage pressure reducing type, and the refrigerant is supercooled. It becomes a production | generation part, a secondary side turns into a low temperature part for primary side cooling, and the temperature of the refrigerant | coolant which passed the secondary side is lower than the temperature of the refrigerant | coolant which passed the primary side, It is characterized by the above-mentioned.

また、本発明に係る過冷却器は、前記した過冷却器は、その外面を断熱材で被包し、放熱、吸熱を防止した構成としてあることを特徴とし、前記した断熱材は発泡材タイプである発泡ウレタンを使用していることを特徴としている。   Further, the supercooler according to the present invention is characterized in that the above-described supercooler has a configuration in which the outer surface is encapsulated with a heat insulating material to prevent heat dissipation and heat absorption. It is characterized by using urethane foam.

さらに、本発明に係る蒸気圧縮式冷凍サイクルは、請求項1から4に記載された過冷却器を組み込んだことを特徴とし、冷房時、冷凍時と、暖房時、デフロスト時との二つの前記請求項1から4に記載の過冷却器を組み込んだ冷媒回路を形成してあることを特徴としている。   Furthermore, the vapor compression refrigeration cycle according to the present invention is characterized by incorporating the supercooler described in claims 1 to 4, and includes two of the cooling time, freezing time, heating time, and defrosting time. A refrigerant circuit incorporating the supercooler according to any one of claims 1 to 4 is formed.

本発明に係る過冷却器及びその過冷却器を組み込んだ蒸気圧縮式冷凍サイクルは上記のように構成されている。そのため、冷媒は、膨張工程(膨張弁)に導入される前に、凝縮工程によって低圧低温化された状態で、さらに、過冷却器によって二段階で一層の低圧低温のものとされる。従って、その後の膨張弁と併せ三段階の低圧低温化がされることとなり、P−h線図における飽和液線上までの低温過冷却状態となり、従来にない冷凍能力を得ることができる。   The supercooler according to the present invention and the vapor compression refrigeration cycle incorporating the supercooler are configured as described above. Therefore, before the refrigerant is introduced into the expansion process (expansion valve), the refrigerant is made into a low pressure and low temperature in two stages by the subcooler in a state where the pressure is lowered by the condensation process. Therefore, in combination with the subsequent expansion valve, three stages of low pressure and low temperature are achieved, and a low temperature supercooling state up to the saturated liquid line in the Ph diagram is obtained, and an unprecedented refrigeration capacity can be obtained.

また、この過冷却器の外面を断熱することで、その過冷却器からの放熱及び吸熱は極わずかな量に抑えられ、エネルギーは一次側、二次側冷媒間にのみ移行されることとなり、非常に効率が向上することとなり、凝縮潜熱を増加するとともに蒸発潜熱を増加させる。このため、従来に比べ冷凍効率を20〜30%、最良では50%の向上を図ることができる。   Also, by insulating the outer surface of the subcooler, heat dissipation and heat absorption from the subcooler are suppressed to a very small amount, and energy is transferred only between the primary side and secondary side refrigerants, The efficiency will be greatly improved, increasing the latent heat of condensation and increasing the latent heat of evaporation. For this reason, it is possible to improve the refrigeration efficiency by 20 to 30%, and most preferably by 50% compared to the conventional case.

さらに、この過冷却器を二つ回路中に配し、冷房、冷凍時と暖房、デフロスト時に切り替えることで、その各々のサイクル効率も大幅に向上することとなる。   Furthermore, by arranging this supercooler in two circuits and switching between cooling, freezing and heating, and defrosting, the cycle efficiency of each of them will be greatly improved.

本発明を実施した二段減圧式とした過冷却器を示す図である。It is a figure which shows the supercooler made into the two-stage pressure reduction type | mold which implemented this invention. 部分断面図である。It is a fragmentary sectional view. 二段減圧式とした過冷却器における潜熱の移行を示すP−h線図である。It is a Ph diagram which shows transfer of latent heat in a subcooler made into a two-stage decompression type. 従来の冷凍サイクルにおけるT−s線図である。It is a Ts diagram in the conventional refrigeration cycle. 二段減圧式の過冷却器を使用した冷凍サイクルのT−s線図である。It is a Ts diagram of a refrigerating cycle using a two-stage decompression type supercooler. 冷房、冷凍時のサイクル回路図である。It is a cycle circuit diagram at the time of cooling and freezing. 暖房、デフロスト時のサイクル回路図である。It is a cycle circuit diagram at the time of heating and defrosting.

図面として示し、実施例で説明したように構成したことで実現した。   This was realized by configuring as illustrated in the drawings and described in the examples.

次に、本発明の好ましい実施の一例を図面を参照して説明する。図中1は本発明に係る二段減圧式過冷却器を示している。この二段減圧式過冷却器1は蒸気圧縮式冷凍サイクルの凝縮工程(凝縮器)と膨張工程(膨張弁)との間にサイクル回路上組み込まれるものである。   Next, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes a two-stage depressurizing subcooler according to the present invention. This two-stage depressurization type subcooler 1 is incorporated on a cycle circuit between a condensation step (condenser) and an expansion step (expansion valve) of a vapor compression refrigeration cycle.

この二段減圧式過冷却器1は一体的なケーシングから成り、凝縮器からの冷媒が導入される一次側2と、その一次側を通過した冷媒が導入通過する二次側3が一枚の伝熱プレート4で仕切られて一体に有している。そのため、一次側2と二次側3の伝熱面積は同一となり、容量も同一のものとなっている。   The two-stage pressure-reducing supercooler 1 is composed of an integral casing. The primary side 2 into which the refrigerant from the condenser is introduced and the secondary side 3 into which the refrigerant that has passed through the primary side is introduced and passed are one sheet. It is partitioned by the heat transfer plate 4 and integrated. Therefore, the heat transfer areas of the primary side 2 and the secondary side 3 are the same, and the capacities are also the same.

また、前記した一次側2の冷媒導入口には一段減圧弁5を、二次側3の一次側2を通過した冷媒の導入口には二段減圧弁6を各々備えた構成とし、凝縮器から送出された冷媒を直列に通過させるものとなっており、二次側3を通過した冷媒を蒸発工程(蒸発器)の前段階に配置される膨張弁7へ送り込むこととなっている。   The primary side 2 refrigerant inlet is provided with a first-stage pressure reducing valve 5, and the refrigerant inlet having passed the primary side 2 of the secondary side 3 is provided with a second-stage pressure reducing valve 6. The refrigerant sent out from the refrigerant is passed in series, and the refrigerant that has passed through the secondary side 3 is sent to the expansion valve 7 that is arranged in the previous stage of the evaporation step (evaporator).

さらに、この過冷却器1は、その外表面を、冷媒の導入口及び吐出口部分を残し、断熱材8によって被包され、過冷却器1からの放熱及び吸熱を最小限となるように制御しており、ここではこの断熱材8として気泡材タイプの発泡ウレタンを使用しているもので、外衝にも対応できるように図られている。   Further, the supercooler 1 is controlled so that the outer surface of the supercooler 1 is encapsulated by the heat insulating material 8 while leaving the inlet and outlet portions of the refrigerant, and heat radiation and heat absorption from the supercooler 1 are minimized. Here, a foam material type urethane foam is used as the heat insulating material 8, and it is designed so that it can cope with external impacts.

ここで、この二段減圧式過冷却器1の作用について説明する。凝縮器を通過した冷媒は気液二相の未凝縮状態となっており(冷媒温度T3)、一段減圧弁5を通過して一次側2に導入される。この時、一段減圧弁5の通過によって冷媒は減圧され低温となる(冷媒温度T4)。この減圧低温化された冷媒は一次側2から吐出され(冷媒温度T5)、二段減圧弁6を通過して(冷媒温度T6)、二次側3へ導入される。この二次側3への導入時には冷媒は一次側2の状態よりも減圧され、より一層の低温となって吐出される(冷媒温度T7)。二段減圧式過冷却器1にあっては一次側2と二次側3にあって冷媒は互いを冷却し合ってより低温過冷却液となる。   Here, the operation of the two-stage decompression supercooler 1 will be described. The refrigerant that has passed through the condenser is in a gas-liquid two-phase uncondensed state (refrigerant temperature T3), passes through the first-stage pressure reducing valve 5, and is introduced to the primary side 2. At this time, the refrigerant is depressurized by the passage of the first stage pressure reducing valve 5 and becomes low temperature (refrigerant temperature T4). The refrigerant whose pressure has been reduced and discharged is discharged from the primary side 2 (refrigerant temperature T5), passes through the two-stage pressure reducing valve 6 (refrigerant temperature T6), and is introduced to the secondary side 3. At the time of introduction to the secondary side 3, the refrigerant is decompressed as compared with the state of the primary side 2, and discharged at a much lower temperature (refrigerant temperature T7). In the two-stage decompression-type supercooler 1, the refrigerant cools each other on the primary side 2 and the secondary side 3, and becomes a low-temperature supercooling liquid.

ここで、冷媒の温度関係を不等式を用いて説明する。前記したT3は一段減圧弁5を通過して低温T4となり、一段減圧弁5によって高温凝縮冷媒液を蒸発させ、低温、低圧に向け冷媒を変化させる。即ちT4はT3より低温となる。T4の冷媒は一次側2に導入されてTaとなる(T4=Ta)。Taは蒸発熱源(Taより高温の熱源)がないため蒸発気化は行なえない。サイクルが進行して後にTaはT4より低温となる。一次側2の通過時に冷媒は二次側3に放熱して、冷却、凝縮が進行する。この時、二次側3の冷媒はTbとなる。   Here, the temperature relationship of the refrigerant will be described using inequalities. The above-described T3 passes through the first stage pressure reducing valve 5 to become a low temperature T4, and the high temperature condensed refrigerant liquid is evaporated by the first stage pressure reducing valve 5 to change the refrigerant toward low temperature and low pressure. That is, T4 is cooler than T3. The refrigerant of T4 is introduced into the primary side 2 and becomes Ta (T4 = Ta). Since Ta does not have an evaporation heat source (a heat source higher in temperature than Ta), it cannot evaporate. After the cycle progresses, Ta becomes lower than T4. When the primary side 2 passes, the refrigerant dissipates heat to the secondary side 3, and cooling and condensation proceed. At this time, the refrigerant on the secondary side 3 becomes Tb.

前記した一次側2の冷媒Taと二次側3の冷媒は一枚の伝熱プレート4によって熱交換する。一次側2から吐出された冷媒T5は凝縮器より吐出された冷媒T3よりも低温の気液二相のものであり、T5はT3より低温である。この冷媒T5は二段減圧弁6を通過して、さらに低温の冷媒T6となり、T6はT5より低温となる。   The refrigerant Ta on the primary side 2 and the refrigerant on the secondary side 3 exchange heat with a single heat transfer plate 4. The refrigerant T5 discharged from the primary side 2 is a gas-liquid two-phase one having a temperature lower than that of the refrigerant T3 discharged from the condenser, and T5 is lower in temperature than T3. This refrigerant T5 passes through the two-stage pressure reducing valve 6 to become a lower temperature refrigerant T6, and T6 becomes lower in temperature than T5.

冷媒T6は二次側3に導入されてTbとなる。T6=Tb。サイクルが進行してT6≧Tbとなる二段減圧式過冷却器1の一次側2、二次側3を冷媒が通過中に相互補完する熱交換がなされ、温度変化が起こる。一次側2の冷媒Taは二次側3の冷媒Tbが低温のため凝縮熱源(低温)を得る。即ちTbはTaより低温である。   The refrigerant T6 is introduced into the secondary side 3 and becomes Tb. T6 = Tb. As the cycle progresses, heat exchange is performed in which the refrigerant complements the primary side 2 and the secondary side 3 of the two-stage depressurization subcooler 1 where T6 ≧ Tb and the temperature changes. The refrigerant Ta on the primary side 2 obtains a condensation heat source (low temperature) because the refrigerant Tb on the secondary side 3 has a low temperature. That is, Tb is lower than Ta.

一次側2の冷媒Taは二次側3の冷媒Tbより凝縮熱源(Taよりも低温)を得るため蒸発せずに凝縮液となり、凝縮潜熱を増加し、相関して蒸発潜熱も増加する。一次側2の冷媒Taは二次側3の冷媒Tbよりも低温冷却されて、低温化されて、相関してT5も低温となる。相関してT6=Tbも低温となり、Tbと熱交換するTaもさらに低温を進行させて凝縮液化を進行させる。   Since the refrigerant Ta on the primary side 2 obtains a condensation heat source (lower temperature than Ta) from the refrigerant Tb on the secondary side 3, it becomes a condensate without evaporating, increasing the latent heat of condensation, and the latent heat of evaporation also increases. The refrigerant Ta on the primary side 2 is cooled at a lower temperature than the refrigerant Tb on the secondary side 3 and the temperature is lowered, so that T5 is also lowered in temperature. Correspondingly, T6 = Tb also becomes a low temperature, and Ta that exchanges heat with Tb further advances the low temperature to advance the condensation.

上記した熱関係は、
T7はTbより低温、TbはT6より低温もしくは同等、T6はT5より低温、T5はTaより低温、TaはT4より低温、T4はT3より低温となる。
The above thermal relationship is
T7 is lower than Tb, Tb is lower than or equal to T6, T6 is lower than T5, T5 is lower than Ta, Ta is lower than T4, and T4 is lower than T3.

二次側3の冷媒Tbは凝縮液の状態となる。二次側3の冷媒Tbもわずかに蒸発するが、一次側2の冷媒Taから取得する蒸発潜熱(Tbよりも低温の熱)がないため過冷却を維持する。わずかに残る一次側2の冷媒Taの蒸発熱源により、二次側3の冷媒Tbが蒸発して吐出した冷媒T7は最も低温となる。   The refrigerant Tb on the secondary side 3 is in a condensate state. Although the refrigerant Tb on the secondary side 3 also slightly evaporates, the subcooling is maintained because there is no latent heat of evaporation (heat lower than Tb) obtained from the refrigerant Ta on the primary side 2. Due to the evaporation heat source of the refrigerant Ta on the primary side 2 that remains slightly, the refrigerant T7 that is discharged by evaporating the refrigerant Tb on the secondary side 3 has the lowest temperature.

二次側3内では一次側2で冷却され凝縮液となった冷媒T5は、二段減圧弁6を通過しても一次側2の冷媒Taに蒸発熱源が不足しているため蒸発不能で過冷却を進め維持して、低温、低圧の100%の過冷却液となり、蒸発潜熱及び相関して凝縮潜熱を増大させる。   In the secondary side 3, the refrigerant T <b> 5 cooled to the condensate on the primary side 2 is not allowed to evaporate due to the lack of evaporation heat source in the refrigerant Ta on the primary side 2 even after passing through the two-stage pressure reducing valve 6. Cooling is advanced and maintained, resulting in a low-temperature, low-pressure 100% supercooled liquid, increasing latent heat of vaporization and correlation latent heat of condensation.

また、二段減圧式過冷却器1はその外表面を、冷媒の導入口、吐出口部分を残して断熱材8によって被包してあるため、二段減圧式過冷却器1からの放熱あるいは外部からの吸熱は極わずかな熱量に抑えられ、エネルギーは一次側2、二次側3の冷媒間のみに移行される。   Further, since the outer surface of the two-stage depressurization type subcooler 1 is encapsulated by the heat insulating material 8 except for the refrigerant inlet and outlet portions, the heat radiation from the two-stage depressurization subcooler 1 or The heat absorption from the outside is suppressed to a very small amount of heat, and the energy is transferred only between the refrigerant on the primary side 2 and the secondary side 3.

一次側2を通過する冷媒は二次側3の冷媒によって凝縮潜熱を増加させ、同時に相関して蒸発潜熱を増加させるもので、一次側2は二次側3への供給冷媒液を低温にする準備室ともいえる。   The refrigerant passing through the primary side 2 increases the latent heat of condensation by the refrigerant on the secondary side 3 and simultaneously increases the latent heat of vaporization. The primary side 2 lowers the temperature of the refrigerant supplied to the secondary side 3. It can be said that it is a preparation room.

一次側2と二次側3の通過時に冷媒は互いに熱交換をし合って経時変化し、二段減圧式過冷却器1の通過中に冷媒はアナログ的に低圧となり、P−h線図の飽和液線上点まで低温の過冷却液となり(P−h図中鎖線のハッチ部分)、同時に凝縮潜熱を増加させ、相関して蒸発潜熱も増加させる。尚、図3にあって11は圧縮機に吸引される冷媒、12は凝縮器に導入される冷媒、13は一段減圧弁5への導入、14は二段減圧弁6への導入、15は膨張弁7への導入、16は膨張弁7を通過して蒸発器への導入を示し、
Δh1一段減圧して低温となり二次側冷媒に冷却され増量した凝縮潜熱、
Δh2二段減圧して低温となり一次側冷媒に冷却され増加した凝縮潜熱、
Δh3二段減圧式過冷却器1により増加した蒸発潜熱及び凝縮潜熱、
Δhh二段減圧式過冷却器1にて増量した全凝縮潜熱、
ΔhC二段減圧式過冷却器1にて増量した全蒸発潜熱、を示している。
During the passage of the primary side 2 and the secondary side 3, the refrigerant exchanges heat with each other and changes with time. During the passage of the two-stage decompression supercooler 1, the refrigerant becomes an analog low pressure, and the Ph diagram It becomes a supercooled liquid at a low temperature up to the upper point of the saturated liquid line (the hatched portion of the chain line in the Ph diagram), and at the same time, the latent heat of condensation is increased and the latent heat of vaporization is also increased in correlation. In FIG. 3, 11 is a refrigerant sucked into the compressor, 12 is a refrigerant introduced into the condenser, 13 is introduced into the first stage pressure reducing valve 5, 14 is introduced into the two stage pressure reducing valve 6, and 15 is Introduction to the expansion valve 7, 16 indicates introduction into the evaporator through the expansion valve 7,
Δh1 The pressure is reduced by one stage, becomes a low temperature, is cooled by the secondary refrigerant, and the amount of condensation latent heat is increased.
Δh2 two-stage depressurization, the temperature becomes low, and the condensation latent heat is increased by being cooled by the primary refrigerant.
The latent heat of vaporization and latent heat of condensation increased by the Δh3 two-stage depressurization subcooler 1,
Total condensation latent heat increased by the Δhh two-stage decompression supercooler 1,
The total evaporation latent heat increased by the ΔhC two-stage decompression type subcooler 1 is shown.

次に、T−s線図(図4、図5)を参照して従来回路と、二段減圧式過冷却器1を組み込んだ回路との性能を比較する。従来例を示す図4にあって21は圧縮機吸引冷媒、22は圧縮機吐出冷媒状態、23は凝縮器出口冷媒、24は膨張弁入口冷媒、25は蒸発器入口冷媒、26は蒸発器出口冷媒を示している。   Next, the performance of a conventional circuit and a circuit incorporating the two-stage decompression supercooler 1 will be compared with reference to a Ts diagram (FIGS. 4 and 5). In FIG. 4 showing a conventional example, 21 is a compressor suction refrigerant, 22 is a compressor discharge refrigerant state, 23 is a condenser outlet refrigerant, 24 is an expansion valve inlet refrigerant, 25 is an evaporator inlet refrigerant, and 26 is an evaporator outlet. Refrigerant is shown.

二段減圧式過冷却器1を組み込んだ冷媒回路を図5に示し、図4と比べる。この図5にあって、31は圧縮機吸引冷媒、32は圧縮機吐出冷媒状態、33は一段減圧弁5の入口冷媒、34は二段減圧弁6の入口冷媒、35は膨張弁7の入口冷媒、36は膨張弁7を通過して、蒸発器への入口冷媒を示す。この図5にあってはΔS3は凝縮潜熱、ΔS4は蒸発潜熱を示し、共に増加することが明瞭であり、Δ7は冷媒吐出温度を示し、これも大きくなっていることが解る。   A refrigerant circuit incorporating the two-stage depressurization type supercooler 1 is shown in FIG. 5 and compared with FIG. In FIG. 5, 31 is a compressor suction refrigerant, 32 is a compressor discharge refrigerant state, 33 is an inlet refrigerant of the first-stage pressure reducing valve 5, 34 is an inlet refrigerant of the two-stage pressure reducing valve 6, and 35 is an inlet of the expansion valve 7. A refrigerant 36 passes through the expansion valve 7 and indicates an inlet refrigerant to the evaporator. In FIG. 5, ΔS3 indicates the latent heat of condensation, ΔS4 indicates the latent heat of evaporation, and it is clear that both increase, and Δ7 indicates the refrigerant discharge temperature, which is also increased.

続いて、本発明に係る二段減圧式過冷却器1を組み込んだ回路について図6、図7を参照して説明する。図6は具体的に冷凍、冷房時の回路を示しており、鎖線で示す系は暖房、デフロスト時の回路となる。この回路にあって40は圧縮機を示しており、この圧縮器40から吐出された冷媒は凝縮器41へ導入される。そして、この凝縮器41を通過した未凝縮状態の冷媒は前述した構成、作用を行なう過冷却器1を通過し、膨張弁7を通り、室内装置42(蒸発器としての放熱器)を通過して冷気を室内に放出する作用をした後に圧縮機40へ戻る。この循環を行なうこととなり、この回路では一段減圧弁5、二段減圧弁6及び膨張弁7を通ることで計三段階の減圧作用が行なわれることとなる。   Next, a circuit incorporating the two-stage depressurization type subcooler 1 according to the present invention will be described with reference to FIGS. FIG. 6 specifically shows a circuit during freezing and cooling, and a system indicated by a chain line is a circuit during heating and defrosting. In this circuit, reference numeral 40 denotes a compressor, and the refrigerant discharged from the compressor 40 is introduced into the condenser 41. The uncondensed refrigerant that has passed through the condenser 41 passes through the supercooler 1 that performs the above-described configuration and action, passes through the expansion valve 7, and passes through the indoor unit 42 (a radiator as an evaporator). After returning to the room, the air is returned to the compressor 40. In this circuit, the three-stage pressure reducing action is performed by passing through the first-stage pressure reducing valve 5, the two-stage pressure reducing valve 6, and the expansion valve 7.

また、図7にあって実線で示す系が暖房、デフロスト時の回路である。こちらの回路の場合、圧縮機40を吐出した冷媒は、切替弁によって流路を切り替えられてホットガス管43に流入する。このホットガス管43を通過した高温高圧の冷媒は前記した室内装置42を、この場合凝縮器として作用させ、暖気を室内に放出する。この室内装置42を通過した冷媒は、圧縮機40へ戻る流路を切替弁によって切り替えられ、ホットガスデフロストユニット44の第二の過冷却器1aへ導入される。この第二の過冷却器1aにも一次側2aと二次側3aの導入口には各々一段減圧弁5a、二段減圧弁6aが備えられている。但し、この場合、一次側2aにおける一段減圧弁5aにはバイパス45をかけて、この一段減圧弁5aをパスすることもできるものとしている。   Moreover, the system shown by a solid line in FIG. 7 is a circuit during heating and defrosting. In the case of this circuit, the refrigerant discharged from the compressor 40 switches the flow path by the switching valve and flows into the hot gas pipe 43. The high-temperature and high-pressure refrigerant that has passed through the hot gas pipe 43 causes the indoor unit 42 described above to act as a condenser in this case, and discharges warm air into the room. The refrigerant that has passed through the indoor device 42 is switched to the flow path returning to the compressor 40 by the switching valve, and is introduced into the second subcooler 1 a of the hot gas defrost unit 44. The second subcooler 1a is also provided with a first-stage pressure reducing valve 5a and a two-stage pressure reducing valve 6a at the inlets of the primary side 2a and the secondary side 3a, respectively. However, in this case, the first-stage pressure reducing valve 5a on the primary side 2a can be bypassed to pass through the first-stage pressure reducing valve 5a.

ホットガスユニット44内の第二の過冷却器1aを通過した冷媒は、このユニット44における膨張弁7aを通り、蒸発器42aを通過して、圧縮機40へ戻る。このサイクルを循環することとなる。   The refrigerant that has passed through the second subcooler 1a in the hot gas unit 44 passes through the expansion valve 7a in this unit 44, passes through the evaporator 42a, and returns to the compressor 40. This cycle will be circulated.

上記した各回路の説明でも解るように、本発明に係る冷凍サイクルは圧縮、凝縮、過冷却、膨張、蒸発の五工程を循環する構成となり、従来のように膨張弁のみによる減圧よりもはるかに低温が得やすいものとなっており、外気に蒸発される暖房、デフロスト回路の作用は外気温度よりの蒸発熱源を取得し易く、寒冷地における低温作用が優れたものとなる。   As can be seen from the description of each circuit described above, the refrigeration cycle according to the present invention is configured to circulate through the five steps of compression, condensation, supercooling, expansion, and evaporation, much more than the conventional decompression using only the expansion valve. The operation of the heating and defrost circuit that is evaporated to the outside air is easy to obtain a heat source of evaporation from the outside air temperature, and the low temperature operation in a cold region is excellent.

1,1a 過冷却器
2,2a 一次側
3,3a 二次側
4 伝熱プレート
5,5a 一段減圧弁
6,6a 二段減圧弁
7,7a 膨張弁
8 断熱材
11,22,32 圧縮機に吸引される冷媒
12 凝縮器に導入される冷媒
13,33 一段減圧弁に導入される冷媒
14,34 二段減圧弁に導入される冷媒
15,24,35 膨張弁に導入される冷媒
16,25,36 蒸発器に導入される冷媒
22,32 圧縮機吐出冷媒
23 凝縮器出口冷媒
40 圧縮機
41 凝縮器
42 室内装置
42a 蒸発器
43 ホットガス管
44 ホットガスデフロストユニット
45 バイパス
1, 1a Supercooler 2, 2a Primary side 3, 3a Secondary side 4 Heat transfer plate 5, 5a First stage pressure reducing valve 6, 6a Two stage pressure reducing valve 7, 7a Expansion valve 8 Heat insulating material 11, 22, 32 To compressor Refrigerant sucked 12 Refrigerant introduced into the condenser 13, 33 Refrigerant introduced into the first stage pressure reducing valve 14, 34 Refrigerant introduced into the second stage pressure reducing valve 15, 24, 35 Refrigerant introduced into the expansion valve 16, 25 , 36 Refrigerant introduced into the evaporator 22, 32 Compressor discharged refrigerant 23 Condenser outlet refrigerant 40 Compressor 41 Condenser 42 Indoor unit 42a Evaporator 43 Hot gas pipe 44 Hot gas defrost unit 45 Bypass

Claims (6)

蒸気圧縮式冷凍サイクルの凝縮器と膨張弁の間に組み込まれ、一次側とその一次側を通過した冷媒が流入し、直列で通過する二次側を一体に有し、その一次側と二次側が一枚の伝熱プレートで仕切られ同一の伝熱面積と容量を有する熱交換器によって構成され、この熱交換器の一次側入口に一段減圧弁を備え、かつ、二次側入口には二段減圧弁を備え、二段減圧式とし、冷媒を過冷却することを特徴とする過冷却器。   Built-in between the condenser and expansion valve of the vapor compression refrigeration cycle, the primary side and the refrigerant that has passed through the primary side flow in, and the secondary side that passes in series is integrated with the primary side and the secondary side. The side of the heat exchanger is divided by a single heat transfer plate and has the same heat transfer area and capacity, the primary inlet of this heat exchanger is provided with a single pressure reducing valve, and the secondary inlet has two A subcooler comprising a stage pressure reducing valve, having a two-stage pressure reducing type, and supercooling the refrigerant. 前記した過冷却器は一次側が過冷却液生成部となり、二次側は一次側冷却のための低温部となり、二次側を通過した冷媒の温度は一次側を通過した冷媒の温度よりも低温であることを特徴とする請求項1に記載の過冷却器。   In the above-described supercooler, the primary side serves as a supercooling liquid generator, the secondary side serves as a low temperature part for primary side cooling, and the temperature of the refrigerant passing through the secondary side is lower than the temperature of the refrigerant passing through the primary side. The subcooler according to claim 1, wherein: 前記した過冷却器は、その外面を断熱材で被包し、放熱、吸熱を防止した構成としてあることを特徴とする請求項1または2に記載の過冷却器。   The supercooler according to claim 1 or 2, wherein an outer surface of the supercooler is encapsulated with a heat insulating material to prevent heat dissipation and heat absorption. 前記した断熱材は発泡材タイプである発泡ウレタンを使用していることを特徴とする請求項3に記載の過冷却器。   4. The supercooler according to claim 3, wherein the heat insulating material uses foamed urethane which is a foam material type. 請求項1から4に記載された過冷却器を組み込んだことを特徴とする蒸気圧縮式冷凍サイクル。   A vapor compression refrigeration cycle incorporating the supercooler according to claim 1. 冷房時、冷凍時と、暖房時、デフロスト時との二つの前記請求項1から4に記載の過冷却器を組み込んだ冷媒回路を形成してあることを特徴とする請求項5に記載の蒸気圧縮式冷凍サイクル。   6. The steam according to claim 5, wherein a refrigerant circuit incorporating the supercooler according to any one of claims 1 to 4 is formed during cooling, freezing, heating, and defrosting. Compression refrigeration cycle.
JP2013181030A 2013-02-18 2013-09-02 Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated Pending JP2015048983A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013181030A JP2015048983A (en) 2013-09-02 2013-09-02 Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated
US14/180,841 US20140231049A1 (en) 2013-02-18 2014-02-14 Vapor compression refrigeration system
KR1020140017858A KR101405759B1 (en) 2013-02-18 2014-02-17 Vapor compression refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181030A JP2015048983A (en) 2013-09-02 2013-09-02 Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated

Publications (1)

Publication Number Publication Date
JP2015048983A true JP2015048983A (en) 2015-03-16

Family

ID=52699157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181030A Pending JP2015048983A (en) 2013-02-18 2013-09-02 Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated

Country Status (1)

Country Link
JP (1) JP2015048983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065156A1 (en) 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121338A (en) * 1974-08-14 1976-02-20 Hitachi Ltd SEPAREETOGATAREIBOKI
JPS5322146U (en) * 1976-07-31 1978-02-24
JPS56155277U (en) * 1980-04-18 1981-11-19
JPS58160795A (en) * 1982-03-17 1983-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JPS6152171U (en) * 1984-09-10 1986-04-08
JPH11142007A (en) * 1997-11-06 1999-05-28 Nippon Soken Inc Refrigerating cycle
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005009851A (en) * 2003-05-27 2005-01-13 Calsonic Kansei Corp Air conditioning device
US20060053823A1 (en) * 2004-09-16 2006-03-16 Taras Michael F Heat pump with reheat and economizer functions
JP2007078282A (en) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2008180421A (en) * 2007-01-23 2008-08-07 Daikin Ind Ltd Air conditioner
JP2011058652A (en) * 2009-09-07 2011-03-24 Mac:Kk Refrigerant heating auxiliary device for refrigerating cycle and refrigerant heating method
US20130055749A1 (en) * 2011-09-07 2013-03-07 Beomchan Kim Air conditioner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121338A (en) * 1974-08-14 1976-02-20 Hitachi Ltd SEPAREETOGATAREIBOKI
JPS5322146U (en) * 1976-07-31 1978-02-24
JPS56155277U (en) * 1980-04-18 1981-11-19
JPS58160795A (en) * 1982-03-17 1983-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JPS6152171U (en) * 1984-09-10 1986-04-08
JPH11142007A (en) * 1997-11-06 1999-05-28 Nippon Soken Inc Refrigerating cycle
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005009851A (en) * 2003-05-27 2005-01-13 Calsonic Kansei Corp Air conditioning device
US20060053823A1 (en) * 2004-09-16 2006-03-16 Taras Michael F Heat pump with reheat and economizer functions
JP2007078282A (en) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2008180421A (en) * 2007-01-23 2008-08-07 Daikin Ind Ltd Air conditioner
JP2011058652A (en) * 2009-09-07 2011-03-24 Mac:Kk Refrigerant heating auxiliary device for refrigerating cycle and refrigerant heating method
US20130055749A1 (en) * 2011-09-07 2013-03-07 Beomchan Kim Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065156A1 (en) 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device

Similar Documents

Publication Publication Date Title
JP3102651U (en) Refrigerator refrigerator with two evaporators
KR20110072687A (en) Refrigerator
WO2015132966A1 (en) Refrigeration cycle device
KR101274241B1 (en) Air conditioner system for vehicle
KR20100059170A (en) Heat pump storage system
JP2006220351A (en) Freezer
KR20100059176A (en) Storage system
JP5636871B2 (en) Refrigeration equipment
JP5270523B2 (en) Freezer refrigerator
JP2001227840A (en) Hybrid type heat pump device
TW201525389A (en) Refrigeration circulation device
JP2015048983A (en) Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated
KR101405759B1 (en) Vapor compression refrigeration system
JP5295441B1 (en) Vapor compression refrigeration system
KR20100005735U (en) storage system
KR102185416B1 (en) Cooling system
JP2016061537A (en) Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger
JP2012073008A (en) Refrigeration cycle device
JP2010249444A (en) Freezer-refrigerator
WO2016199671A1 (en) Refrigeration system
KR200259324Y1 (en) Refrigeration cycle
JPS59219665A (en) Heat pump device
KR100512418B1 (en) condensation system using refrigerant
CN107327998B (en) Air conditioning system
KR20130024251A (en) Hot water heating device using cooling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170705