JP2011058375A - Method for controlling exhaust emission control device for internal combustion engine, exhaust emission control device for internal combustion engine, and internal combustion engine - Google Patents

Method for controlling exhaust emission control device for internal combustion engine, exhaust emission control device for internal combustion engine, and internal combustion engine Download PDF

Info

Publication number
JP2011058375A
JP2011058375A JP2009205951A JP2009205951A JP2011058375A JP 2011058375 A JP2011058375 A JP 2011058375A JP 2009205951 A JP2009205951 A JP 2009205951A JP 2009205951 A JP2009205951 A JP 2009205951A JP 2011058375 A JP2011058375 A JP 2011058375A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
exhaust
temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205951A
Other languages
Japanese (ja)
Other versions
JP5402423B2 (en
Inventor
Naoki Inukai
直樹 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009205951A priority Critical patent/JP5402423B2/en
Publication of JP2011058375A publication Critical patent/JP2011058375A/en
Application granted granted Critical
Publication of JP5402423B2 publication Critical patent/JP5402423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling an exhaust emission control device of an internal combustion engine, the exhaust emission control device being capable of generating exhaust gas purifying ability with a catalyst at start and during operation, an exhaust emission control device for an internal combustion engine, and an internal combustion engine. <P>SOLUTION: The exhaust emission control device 7 includes a heat exchanger 14 on the upstream side of a catalyst device 15 having a catalyst for purifying an exhaust gas Ae. The catalyst temperature of the catalyst device 15 is sensed so that in the case the temperature is lower than a temperature enabling purification of the exhaust gas Ae, the exhaust gas Ae on the downstream side of the catalyst device 15 is not fed to the heat exchanger 14. In the case the catalyst temperature is in a temperature range enabling purification of the exhaust gas Ae, the exhaust gas Ae on the downstream side of the catalyst device 15 is fed to the heat exchanger 14 via a bypass pipe 16. Thereby, the exhaust gas purification ability with a catalyst is performed at the start and during operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関に関し、更に詳しくは、始動時および運転時において触媒による排気ガス浄化能力を生じさせることが可能な内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関に関する。   The present invention relates to a method for controlling an exhaust gas purification apparatus for an internal combustion engine, an exhaust gas purification apparatus for an internal combustion engine, and an internal combustion engine, and more specifically, an internal combustion engine capable of generating an exhaust gas purification capability by a catalyst at the time of start and operation. The present invention relates to an exhaust gas purification device control method, an internal combustion engine exhaust gas purification device, and an internal combustion engine.

ディーゼル車の排気ガス規制は厳しいものになってきており、過給機の下流に後処理装置を設置することが必須となっている。後処理装置の触媒が排気ガスを浄化するためには、ある一定以上の触媒温度が必要である。そのため、排気ガスの浄化は触媒温度に依存する部分が大きい。   Diesel vehicle exhaust gas regulations are becoming stricter, and it is essential to install an aftertreatment device downstream of the turbocharger. In order for the catalyst of the aftertreatment device to purify the exhaust gas, a catalyst temperature higher than a certain level is required. Therefore, the purification of the exhaust gas largely depends on the catalyst temperature.

一方、排気ガスから得られる熱エネルギーの有効利用を目的として排熱回収装置の開発が進められている。図6に、排熱回収装置50を備えた排気浄化装置(後処理装置)51の構成を示す。ここで示される排熱回収装置50は、排気浄化装置51の触媒装置52を通過した排気ガスAeを触媒装置52の入口で対流させることで熱を回収する装置である。この排熱回収装置50を備える場合、暖機が行われている状態では比較的安定した温度を維持することができ、触媒において高い浄化率を示す温度域を維持することができる。   On the other hand, development of an exhaust heat recovery device is being promoted for the purpose of effectively using thermal energy obtained from exhaust gas. FIG. 6 shows a configuration of an exhaust purification device (post-processing device) 51 including the exhaust heat recovery device 50. The exhaust heat recovery device 50 shown here is a device that recovers heat by causing convection of the exhaust gas Ae that has passed through the catalyst device 52 of the exhaust purification device 51 at the inlet of the catalyst device 52. When this exhaust heat recovery device 50 is provided, a relatively stable temperature can be maintained in a state where warm-up is performed, and a temperature range showing a high purification rate in the catalyst can be maintained.

しかしながら、冷間始動時には、排熱回収装置のために見かけ上の熱容量が増加してしまうため、後処理装置の触媒の昇温に時間がかかり、通常のDeNOx(NOx低減)触媒よりもNOxを多く排出してしまう、という問題がある。   However, at the time of cold start, the apparent heat capacity increases due to the exhaust heat recovery device, so it takes time to raise the temperature of the catalyst of the aftertreatment device, and NOx is consumed more than a normal DeNOx (NOx reduction) catalyst. There is a problem that a lot is discharged.

この問題を解決するために触媒を電気ヒータで加熱する方法(例えば特許文献1,2参照)や排気管内に燃料を噴射する方法(例えば特許文献3参照)が開発されているが、これらの場合、燃料消費率が増大する、という問題が生じてしまう。   In order to solve this problem, a method of heating the catalyst with an electric heater (for example, see Patent Documents 1 and 2) and a method of injecting fuel into the exhaust pipe (for example, see Patent Document 3) have been developed. As a result, the fuel consumption rate increases.

なお、ディーゼルエンジンの排気ガスを有効に利用する技術として、エンジンの後段の排気経路に排熱ボイラを備え、さらにエンジンと排熱ボイラとの間に、排気ガスを浄化する触媒装置を備えることにより、排気ガスによる排熱ボイラへの悪影響を防止する技術がある(例えば特許文献4参照)。   As a technology for effectively using the exhaust gas of a diesel engine, a exhaust heat boiler is provided in the exhaust path downstream of the engine, and a catalyst device for purifying the exhaust gas is provided between the engine and the exhaust heat boiler. There is a technique for preventing an adverse effect on exhaust heat boiler caused by exhaust gas (see, for example, Patent Document 4).

特開2006−105073号公報JP 2006-105073 A 特開平5−1512号公報JP-A-5-1512 特開2005−061249号公報JP 2005-061249 A 特開2004−218454号公報JP 2004-218454 A

本発明の目的は、始動時および運転時において触媒による排気ガス浄化能力を生じさせることが可能な内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関を提供することにある。   An object of the present invention is to provide a method for controlling an exhaust gas purification device for an internal combustion engine, an exhaust gas purification device for an internal combustion engine, and an internal combustion engine capable of producing an exhaust gas purification ability by a catalyst at the time of start and operation. .

上記の目的を達成するための本発明の内燃機関の排気浄化装置の制御方法は、排気ガスを浄化する触媒を持つ触媒装置を排気経路に備えるとともに、前記触媒装置の下流側の排気ガスの熱を前記触媒装置の上流側の排気ガスに伝達することで前記排気ガスの熱エネルギーを回収する排熱回収装置を、前記触媒装置の上流の前記排気経路に前記触媒装置と直列な状態で備える内燃機関の排気浄化装置の制御方法おいて、前記触媒の温度を検出し、その温度が、前記排気ガスを浄化することが可能な温度より低い場合は、前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流すのを停止し、前記触媒の温度が、前記排気ガスを浄化することが可能な温度の場合は、前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流す制御を行うものである。   In order to achieve the above object, a method for controlling an exhaust gas purification apparatus for an internal combustion engine according to the present invention comprises a catalyst device having a catalyst for purifying exhaust gas in an exhaust path, and heat of exhaust gas downstream of the catalyst device. An exhaust heat recovery device that recovers the thermal energy of the exhaust gas by transmitting the exhaust gas to the exhaust gas upstream of the catalyst device, in an in-line state with the catalyst device in the exhaust path upstream of the catalyst device In a method for controlling an exhaust emission control device of an engine, when the temperature of the catalyst is detected and the temperature is lower than a temperature at which the exhaust gas can be purified, the exhaust gas downstream of the catalyst device is When the exhaust heat recovery device is stopped and the temperature of the catalyst is a temperature at which the exhaust gas can be purified, the exhaust gas on the downstream side of the catalyst device is passed to the exhaust heat recovery device. Control flow It is intended.

上記の目的を達成するための本発明の内燃機関の排気浄化装置は、排気ガスを浄化する触媒を持つ触媒装置を排気経路に備えるとともに、前記触媒装置の下流側の排気ガスの熱を前記触媒装置の上流側の排気ガスに伝達することで前記排気ガスの熱エネルギーを回収する排熱回収装置を、前記触媒装置の上流の前記排気経路に前記触媒装置と直列な状態で備える内燃機関の排気浄化装置において、前記触媒の温度を検出する温度検出手段と、前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流す副排気経路と、前記副排気経路の開閉を行う開閉手段と、前記温度検出手段により検出された前記触媒の温度が、前記排気ガスを浄化することが可能な温度より低い場合は、前記開閉手段を閉じることにより、前記触媒装置の下流の前記排気ガスを、前記副排気経路を通じて前記排熱回収装置に流すのを停止し、前記触媒の温度が、前記排気ガスを浄化することが可能な温度の場合は、前記開閉手段を開くことにより、前記触媒装置を通過した前記排気ガスを、前記副排気経路を通じて前記排熱回収装置に流す制御を行う制御部とを備えるものである。   In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a catalyst device having a catalyst for purifying exhaust gas in an exhaust path, and heats the exhaust gas downstream of the catalyst device. Exhaust gas of an internal combustion engine provided with an exhaust heat recovery device that recovers thermal energy of the exhaust gas by transmitting to exhaust gas upstream of the device in a state in series with the catalyst device in the exhaust path upstream of the catalyst device In the purification apparatus, a temperature detecting means for detecting the temperature of the catalyst, a sub exhaust path for flowing the exhaust gas downstream of the catalyst apparatus to the exhaust heat recovery apparatus, and an opening / closing means for opening and closing the sub exhaust path When the temperature of the catalyst detected by the temperature detection means is lower than the temperature at which the exhaust gas can be purified, the opening / closing means is closed to close the downstream of the catalyst device. When the gas is stopped from flowing through the auxiliary exhaust path to the exhaust heat recovery device, and the temperature of the catalyst is a temperature capable of purifying the exhaust gas, by opening the opening and closing means, A control unit that controls the exhaust gas that has passed through the catalyst device to flow through the auxiliary exhaust path to the exhaust heat recovery device.

上記の目的を達成するための本発明の内燃機関は、前記排気浄化装置を有するものである。   In order to achieve the above object, an internal combustion engine of the present invention has the exhaust purification device.

本発明の内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関によれば、触媒温度が排気ガスを浄化することが可能な温度に達するまで、排気ガスを排熱回収装置に流さないことにより、排熱回収装置による熱容量の増加を無くすことができるので、触媒温度を高い浄化率を示す温度域に短時間で到達させることができる。このため、始動後の早い段階で排気ガスを触媒により浄化することができる。一方、触媒温度が排気ガスを浄化するのに十分可能な温度になった後は排気ガスを排熱回収装置に流すことにより、高い浄化率を示す温度域に触媒温度を維持することができる。したがって、始動時および運転時において触媒による排気ガス浄化能力を生じさせることができる。しかも、電気ヒータによる触媒の加熱や排気管内への燃料噴射を行わないことにより、燃料消費率も低減できる。   According to the method for controlling an exhaust gas purification apparatus for an internal combustion engine, the exhaust gas purification apparatus for an internal combustion engine, and the internal combustion engine according to the present invention, the exhaust gas is exhausted until the catalyst temperature reaches a temperature at which the exhaust gas can be purified. In this case, the increase in the heat capacity due to the exhaust heat recovery device can be eliminated, so that the catalyst temperature can reach the temperature range showing a high purification rate in a short time. For this reason, the exhaust gas can be purified by the catalyst at an early stage after starting. On the other hand, after the catalyst temperature reaches a temperature that is sufficiently sufficient to purify the exhaust gas, the exhaust gas is allowed to flow through the exhaust heat recovery device, whereby the catalyst temperature can be maintained in a temperature range that exhibits a high purification rate. Therefore, the exhaust gas purification ability by the catalyst can be generated at the time of start-up and operation. In addition, the fuel consumption rate can be reduced by not heating the catalyst by the electric heater or injecting the fuel into the exhaust pipe.

本発明の実施の形態における内燃機関の要部の構成図である。It is a block diagram of the principal part of the internal combustion engine in embodiment of this invention. 図1の内燃機関の後処理装置の要部の構成図である。It is a block diagram of the principal part of the aftertreatment apparatus of the internal combustion engine of FIG. 図1の内燃機関の後処理装置の要部の構成図である。It is a block diagram of the principal part of the aftertreatment apparatus of the internal combustion engine of FIG. 図1の内燃機関の後処理装置の要部の構成図である。It is a block diagram of the principal part of the aftertreatment apparatus of the internal combustion engine of FIG. 窒素酸化物低減触媒の温度値の推移を示すグラフ図である。It is a graph which shows transition of the temperature value of a nitrogen oxide reduction catalyst. 従来の内燃機関の後処理装置の要部の構成図である。It is a block diagram of the principal part of the post-processing apparatus of the conventional internal combustion engine.

以下、本発明の実施の形態の内燃機関について添付の図面を参照しながら詳細に説明する。   Hereinafter, an internal combustion engine according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に、本実施の形態の内燃機関の要部の構成を示す。本実施の形態の内燃機関は、例えばトラックのような自動車に搭載される直列4気筒のコモンレール式のディーゼルエンジン1として構成されている。なお、本発明はディーゼルエンジンに限定されず、ガソリンエンジン等に適用することもできる。   FIG. 1 shows a configuration of a main part of the internal combustion engine of the present embodiment. The internal combustion engine of the present embodiment is configured as an in-line four-cylinder common rail type diesel engine 1 mounted on an automobile such as a truck. In addition, this invention is not limited to a diesel engine, It can also apply to a gasoline engine etc.

このディーゼルエンジン(以下、単にエンジンという)1は、エンジン本体(内燃機関本体)2と、吸気マニホールド3と、排気マニホールド4と、過給機5と、インタークーラ6と、排気浄化装置(後処理装置)7とを有している。なお、図1の符号Aeは排気ガスを示し、符号Aiは吸気ガスを示し、矢印はその流れを示している。   This diesel engine (hereinafter simply referred to as engine) 1 includes an engine body (internal combustion engine body) 2, an intake manifold 3, an exhaust manifold 4, a supercharger 5, an intercooler 6, an exhaust purification device (post-processing). Device) 7. In FIG. 1, reference symbol Ae indicates exhaust gas, reference symbol Ai indicates intake gas, and arrows indicate the flow thereof.

エンジン本体2は、例えば4個のシリンダ8を備えており、各シリンダ8の燃焼室内において圧縮され高温になった空気に燃料を供給して自己着火させ、この自己着火による燃焼で生じる膨張ガスによりシリンダ8内のピストンを駆動する構成を有している。   The engine body 2 includes, for example, four cylinders 8. The fuel is supplied to the air compressed in the combustion chambers of each cylinder 8 and heated to self-ignite, and the expansion gas generated by the combustion by the self-ignition The piston in the cylinder 8 is driven.

各シリンダ8の吸気口は、吸気マニホールド3に接続されている。吸気マニホールド3は吸気管(吸気経路)9aを通じてインタークーラ6に接続され、さらに吸気管9bを通じて過給機5のコンプレッサ5aの出口に接続されている。一方、各シリンダ8の排気口は、排気マニホールド4に接続されている。この排気マニホールド4は、排気管10aを通じて過給機5のタービン5bの入口に接続されている。   The intake port of each cylinder 8 is connected to the intake manifold 3. The intake manifold 3 is connected to the intercooler 6 through the intake pipe (intake path) 9a, and further connected to the outlet of the compressor 5a of the supercharger 5 through the intake pipe 9b. On the other hand, the exhaust port of each cylinder 8 is connected to the exhaust manifold 4. The exhaust manifold 4 is connected to the inlet of the turbine 5b of the supercharger 5 through the exhaust pipe 10a.

過給機5は、互いに一体的に形成されたコンプレッサ(圧縮機)5aおよびタービン5bを有している。各シリンダ8の排気口から排出された排気ガスの力によりタービン5bが回転駆動すると、その駆動力にコンプレッサ5aが連動することにより圧縮され高密度になった吸気ガスを、吸気マニホールド3を通じて各シリンダ8内に送り込むようになっている。   The supercharger 5 includes a compressor (compressor) 5a and a turbine 5b that are integrally formed with each other. When the turbine 5 b is rotationally driven by the force of the exhaust gas discharged from the exhaust port of each cylinder 8, the intake gas compressed and densified by the compressor 5 a being interlocked with the driving force is supplied to each cylinder through the intake manifold 3. 8 is sent in.

過給機5のタービン5aの出口には排気管10bを通じて排気浄化装置7の入口が接続されている。排気浄化装置7は、エンジン本体2で浄化しきれなかった排気ガスを浄化する装置である。さらに、排気浄化装置7の出口は排気管10cを通じてマフラー(図示せず)に接続されている。   The inlet of the exhaust gas purification device 7 is connected to the outlet of the turbine 5a of the supercharger 5 through the exhaust pipe 10b. The exhaust purification device 7 is a device that purifies exhaust gas that could not be purified by the engine body 2. Further, the outlet of the exhaust purification device 7 is connected to a muffler (not shown) through the exhaust pipe 10c.

次に、図2に、本実施の形態の排気浄化装置7の要部の構成を示す。   Next, FIG. 2 shows a configuration of a main part of the exhaust purification device 7 of the present embodiment.

排気浄化装置7は、排気管10d内に、排気ガスAeの熱エネルギーを回収する熱交換器14と、排気ガスAeを浄化する触媒を持つ触媒装置15とを上流から下流に沿って直列に備えているとともに、触媒装置15を通過した排気ガスAeを熱交換器14に戻すバイパス管16を備えている。   The exhaust purification device 7 includes, in an exhaust pipe 10d, a heat exchanger 14 that recovers thermal energy of the exhaust gas Ae and a catalyst device 15 that has a catalyst that purifies the exhaust gas Ae in series from upstream to downstream. And a bypass pipe 16 that returns the exhaust gas Ae that has passed through the catalyst device 15 to the heat exchanger 14.

また、触媒装置15の触媒の温度を検出し、その温度が、排気ガスAeを浄化することが可能な温度より低い場合は、触媒装置15の下流側の排気ガスAeを、バイパス管16を通じて熱交換器14に流すのを停止し、触媒の温度が、排気ガスAeを浄化することが可能な温度の場合は、触媒装置15の下流側の排気ガスAeを、バイパス管16を通じて熱交換器14に流す制御を行う制御部20を備えている。   When the temperature of the catalyst in the catalyst device 15 is detected and the temperature is lower than the temperature at which the exhaust gas Ae can be purified, the exhaust gas Ae on the downstream side of the catalyst device 15 is heated through the bypass pipe 16. When the flow to the exchanger 14 is stopped and the temperature of the catalyst is a temperature at which the exhaust gas Ae can be purified, the exhaust gas Ae on the downstream side of the catalyst device 15 is passed through the bypass pipe 16 through the heat exchanger 14. The control part 20 which performs control to flow through is provided.

すなわち、本実施の形態のエンジン1の排気浄化装置7においては、エンジン1の冷間時の始動に際して、触媒装置15の触媒温度が排気ガスAeを浄化することが可能な温度に達するまで、排気ガスAeを熱交換器14に流さないようにする。これにより、熱交換器14による熱容量の増加を無くすことができるので、触媒装置15の触媒温度を高い浄化率を示す温度域に短時間で到達させることができる。その結果、エンジン1の始動後の早い段階で排気ガスAeを触媒により浄化することができる。   That is, in the exhaust purification device 7 of the engine 1 of the present embodiment, the exhaust gas is exhausted until the catalyst temperature of the catalyst device 15 reaches a temperature at which the exhaust gas Ae can be purified when the engine 1 is cold. The gas Ae is prevented from flowing into the heat exchanger 14. Thereby, since the increase in the heat capacity by the heat exchanger 14 can be eliminated, the catalyst temperature of the catalyst device 15 can be reached in a temperature range showing a high purification rate in a short time. As a result, the exhaust gas Ae can be purified by the catalyst at an early stage after the engine 1 is started.

一方、触媒装置15の触媒温度が排気ガスAeを浄化するのに十分可能な温度になった後は排気ガスAeを熱交換器14に流すようにする。これにより、触媒温度を高い浄化率を示す温度域に維持することができる。   On the other hand, after the catalyst temperature of the catalyst device 15 reaches a temperature that is sufficient to purify the exhaust gas Ae, the exhaust gas Ae is allowed to flow through the heat exchanger 14. Thereby, catalyst temperature can be maintained in the temperature range which shows a high purification rate.

したがって、本実施の形態のエンジン1においては、始動時および運転時において触媒による排気ガス浄化能力を生じさせることができる。しかも、電気ヒータによる触媒の加熱や排気管内への燃料噴射を行わないことにより、燃料消費率も低減できる。   Therefore, in the engine 1 of the present embodiment, the exhaust gas purification ability by the catalyst can be generated at the time of starting and during operation. In addition, the fuel consumption rate can be reduced by not heating the catalyst by the electric heater or injecting the fuel into the exhaust pipe.

以下、排気浄化装置7の各構成を説明する。熱交換器14は、触媒装置15の下流側の排気ガスAeの熱を、触媒装置15の上流側の排気ガスAeに伝達することで排気ガスAeの熱エネルギーを回収する装置である。すなわち、触媒装置15を通過した排気ガスAeを、バイパス管16を通じて熱交換器14に流して触媒装置15の入口で対流させることで、その排気ガスAeの熱を、タービン5bから排気管10bを通じて熱交換器14に流れてきた排気ガスAeに与える装置である。なお、バイパス管16を通じて熱交換器14に流れた排気ガスAeは別の排気管を通じて排気浄化装置7の下流の排気管10c(上記したマフラーよりも上流位置)に流れるようになっている。   Hereinafter, each structure of the exhaust emission control device 7 will be described. The heat exchanger 14 is a device that recovers heat energy of the exhaust gas Ae by transferring the heat of the exhaust gas Ae on the downstream side of the catalyst device 15 to the exhaust gas Ae on the upstream side of the catalyst device 15. That is, the exhaust gas Ae that has passed through the catalyst device 15 flows through the bypass pipe 16 to the heat exchanger 14 and is convected at the inlet of the catalyst device 15, so that the heat of the exhaust gas Ae is transferred from the turbine 5 b through the exhaust pipe 10 b. It is a device that supplies exhaust gas Ae that has flowed to the heat exchanger 14. The exhaust gas Ae that has flowed to the heat exchanger 14 through the bypass pipe 16 flows through another exhaust pipe to the exhaust pipe 10c downstream of the exhaust purification device 7 (upstream position from the muffler).

熱交換器14としては、例えば対向流式の熱交換器が使用されている。これにより、高い熱交換効率を安定して得られる上、コンパクトにすることができる。熱交換器14は対向流式に限定されるものではなく種々変更可能であり、例えば蓄熱式の熱交換器を用いても良い。   As the heat exchanger 14, for example, a counter flow heat exchanger is used. As a result, high heat exchange efficiency can be stably obtained, and the apparatus can be made compact. The heat exchanger 14 is not limited to the counter flow type and can be variously changed. For example, a heat storage type heat exchanger may be used.

触媒装置15には、例えば酸化触媒部、DPF(Diesel Particulate Filter)および窒素酸化物低減(DeNOx)触媒部が、上流から下流に沿って直列に配置されている。触媒装置15の酸化触媒部は、一酸化炭素(CO)および炭化水素(HC)を浄化する触媒を持つ浄化部である。その下流のDPFは、フィルタを用いて粒子状物質(Particulate Matter:PM)を除去する浄化部である。さらに、その下流のDeNOx触媒部は、窒素酸化物(NOx)を浄化する触媒を持つ浄化部である。なお、触媒装置15の構成は、上記したものに限定されるものではなく種々変更可能であり、例えばDPF自体に各種の触媒層を形成した構成のものでも良い。   In the catalyst device 15, for example, an oxidation catalyst part, a DPF (Diesel Particulate Filter), and a nitrogen oxide reduction (DeNOx) catalyst part are arranged in series from upstream to downstream. The oxidation catalyst part of the catalyst device 15 is a purification part having a catalyst for purifying carbon monoxide (CO) and hydrocarbons (HC). The downstream DPF is a purification unit that removes particulate matter (PM) using a filter. Further, the downstream DeNOx catalyst part is a purification part having a catalyst for purifying nitrogen oxide (NOx). Note that the configuration of the catalyst device 15 is not limited to that described above, and can be variously changed. For example, a configuration in which various catalyst layers are formed on the DPF itself may be used.

この触媒装置15の触媒を持つ浄化部(酸化触媒部、DeNOx触媒部またはその両方)、あるいは触媒装置15の入口には温度センサ21が設置されている。この温度センサ21は、触媒温度を検出するセンサであり、制御部20に電気的に接続されている。   A temperature sensor 21 is installed at the purification unit (the oxidation catalyst unit, the DeNOx catalyst unit, or both) having the catalyst of the catalyst device 15 or at the inlet of the catalyst device 15. The temperature sensor 21 is a sensor that detects the catalyst temperature, and is electrically connected to the control unit 20.

また、触媒装置15の全体または触媒を持つ浄化部を断熱化、あるいは断熱材(図示せず)で覆うようにしても良い。これにより、熱交換器14への熱伝達を低減または無くすことができるので、エンジン1の始動時の触媒温度の観点に関して熱交換器14の無い排気浄化装置7と同等の構造に近づけることができる。すなわち、エンジン1の始動時の触媒の昇温速度を、熱交換器14の無い排気浄化装置7の場合と同程度にすることができる。このため、エンジン1の始動時の触媒温度の昇温速度をさらに向上させることができるので、エンジン1の始動後のさらに早い段階で排気ガスAeを触媒により浄化することができる。なお、触媒装置15は、熱交換器14から空間22だけ離れて配置されている。   Moreover, you may make it cover the whole catalyst apparatus 15 or the purification | cleaning part which has a catalyst with heat insulation or a heat insulating material (not shown). Thereby, since heat transfer to the heat exchanger 14 can be reduced or eliminated, the structure equivalent to that of the exhaust gas purification apparatus 7 without the heat exchanger 14 can be brought close to the viewpoint of the catalyst temperature when the engine 1 is started. . That is, the rate of temperature increase of the catalyst at the start of the engine 1 can be made comparable to that in the case of the exhaust purification device 7 without the heat exchanger 14. For this reason, the rate of temperature increase of the catalyst temperature when the engine 1 is started can be further improved, so that the exhaust gas Ae can be purified by the catalyst at an earlier stage after the engine 1 is started. The catalyst device 15 is disposed away from the heat exchanger 14 by a space 22.

バイパス管16は、排気管10d(触媒装置15)を取り囲むように排気管10dに隣接した状態で設置されている。これにより、排気浄化装置7の小型化が可能となる。また、触媒装置15の保温性を向上させることができるので、触媒温度を高い浄化率を示す温度に維持できる。   The bypass pipe 16 is installed adjacent to the exhaust pipe 10d so as to surround the exhaust pipe 10d (catalyst device 15). Thereby, size reduction of the exhaust gas purification apparatus 7 is attained. Moreover, since the heat retaining property of the catalyst device 15 can be improved, the catalyst temperature can be maintained at a temperature showing a high purification rate.

バイパス管16の下部(触媒装置15の下流)において排気管10dとの境界部には開閉弁(開閉手段)23が設けられている。この開閉弁23は、バイパス管16を開閉する(すなわち、バイパス管16と排気管10dとの開通および閉止を行う)弁である。この開閉弁23は、制御部20に電気的に接続されており、その開閉が制御部20によって制御される。   On the lower part of the bypass pipe 16 (downstream of the catalyst device 15), an opening / closing valve (opening / closing means) 23 is provided at the boundary with the exhaust pipe 10d. The on-off valve 23 is a valve that opens and closes the bypass pipe 16 (that is, opens and closes the bypass pipe 16 and the exhaust pipe 10d). The opening / closing valve 23 is electrically connected to the control unit 20, and the opening / closing thereof is controlled by the control unit 20.

排気管10d,10cの境界には、排気管10d,10cの開通および閉止を行う開閉弁24が設置されている。この開閉弁24は制御部20に電気的に接続されており、その開閉が制御部20によって制御される。   On the boundary between the exhaust pipes 10d and 10c, an open / close valve 24 for opening and closing the exhaust pipes 10d and 10c is installed. The opening / closing valve 24 is electrically connected to the control unit 20, and the opening / closing thereof is controlled by the control unit 20.

次に、排気浄化装置7の制御部20の制御方法を図3および図4を参照しながら説明する。図3は開閉弁23を閉じている状態、図4は開閉弁23を開いている状態を示している。   Next, a control method of the control unit 20 of the exhaust purification device 7 will be described with reference to FIGS. 3 and 4. 3 shows a state in which the on-off valve 23 is closed, and FIG. 4 shows a state in which the on-off valve 23 is opened.

エンジン1の冷間時の始動に際して、排気浄化装置7の触媒の温度を温度センサ21により検出し、その温度が、排気ガスAeを浄化することが可能な温度より低い場合は、図3に示すように、開閉弁23を閉じ、開閉弁24を開く。これにより、触媒装置15を通過した排気ガスAeが熱交換器14に流れないようにする。すなわち、エンジン1の冷間時の始動に際して、触媒装置15の触媒温度が排気ガスAeを浄化することが可能な温度に達するまで、開閉弁23を閉じることにより排気ガスAeを熱交換器14に流さないようにする。これにより、エンジン1の冷間始動時に、負の熱交換を防ぐことができるので、排気管10bから熱交換器14に流入した排気ガスAeの熱交換器14での温度低下を小さくすることができる。このため、触媒装置15の触媒の昇温の遅れを短くでき、触媒装置15の触媒温度を高い浄化率を示す温度域に短時間で到達させることができるので、エンジン1の冷間時の始動後の早い段階で排気ガスAeを触媒により浄化することができる。   When the engine 1 is cold, the temperature of the catalyst of the exhaust purification device 7 is detected by the temperature sensor 21, and the temperature is lower than the temperature at which the exhaust gas Ae can be purified, as shown in FIG. Thus, the on-off valve 23 is closed and the on-off valve 24 is opened. This prevents the exhaust gas Ae that has passed through the catalyst device 15 from flowing into the heat exchanger 14. That is, when the engine 1 is cold, the exhaust gas Ae is passed to the heat exchanger 14 by closing the on-off valve 23 until the catalyst temperature of the catalyst device 15 reaches a temperature at which the exhaust gas Ae can be purified. Do not flush. Thereby, since the negative heat exchange can be prevented when the engine 1 is cold started, the temperature drop in the heat exchanger 14 of the exhaust gas Ae flowing into the heat exchanger 14 from the exhaust pipe 10b can be reduced. it can. For this reason, the delay in the temperature rise of the catalyst of the catalyst device 15 can be shortened, and the catalyst temperature of the catalyst device 15 can reach the temperature range showing a high purification rate in a short time. The exhaust gas Ae can be purified by a catalyst at an early stage later.

続いて、温度センサ21により検出された触媒温度が、排気ガスを浄化することが可能な温度になった場合は、図4に示すように、開閉弁23を開き、開閉弁24を閉じる。これにより、触媒装置15を通過した排気ガスAeを矢印で示すようにバイパス管16を通じて熱交換器14に流す。これにより、排気管10bから熱交換器14に流れてきた排気ガスAeは熱交換器14で温められ触媒装置15に流入するので、触媒装置15の触媒温度を高い浄化率を示す温度域に維持することができる。開閉弁23の開放直後は熱交換器14の昇温のために熱交換部分において負の熱交換が行われると予想されるが、既に触媒装置15の触媒(酸化触媒、DeNOx触媒)が昇温されている状態で開閉弁23を開放しているので排気ガスの浄化率への悪影響を小さくすることができる。   Subsequently, when the catalyst temperature detected by the temperature sensor 21 reaches a temperature at which the exhaust gas can be purified, the on-off valve 23 is opened and the on-off valve 24 is closed as shown in FIG. Thereby, the exhaust gas Ae that has passed through the catalyst device 15 is caused to flow to the heat exchanger 14 through the bypass pipe 16 as indicated by an arrow. As a result, the exhaust gas Ae flowing from the exhaust pipe 10b to the heat exchanger 14 is warmed by the heat exchanger 14 and flows into the catalyst device 15, so that the catalyst temperature of the catalyst device 15 is maintained in a temperature range showing a high purification rate. can do. Immediately after opening of the on-off valve 23, it is expected that negative heat exchange will be performed in the heat exchange portion for raising the temperature of the heat exchanger 14, but the catalyst (oxidation catalyst, DeNOx catalyst) of the catalyst device 15 has already been heated. Since the on-off valve 23 is opened in a state in which the exhaust gas is being used, the adverse effect on the exhaust gas purification rate can be reduced.

図5に、DeNOx触媒の温度値の推移を示す。符号T1は本実施の形態の排気浄化装置7を用いた場合(期待される予測値)、符号T2は熱交換器を持たない従来の後処理装置を用いた場合(シミュレーション結果)、符号T3は熱交換器を持つ従来の後処理装置を用いた場合(シミュレーション結果)をそれぞれ示している。   FIG. 5 shows the transition of the temperature value of the DeNOx catalyst. Reference numeral T1 represents the case where the exhaust purification apparatus 7 of the present embodiment is used (expected predicted value), reference numeral T2 represents the case where a conventional post-treatment apparatus having no heat exchanger is used (simulation result), and reference numeral T3 represents The case (simulation result) where the conventional post-processing apparatus having a heat exchanger is used is shown.

本実施の形態の排気浄化装置7の場合(T1)、DeNOx触媒温度を、熱交換器を持たない従来の後処理装置を用いた場合(T2)と同様に、熱交換器を持つ従来の後処理装置を用いた場合(T3)よりも短時間で、高い浄化率を示す温度域まで上昇させることができることが分かる。このため、エンジン1の始動後の早い段階で排気ガスAeを触媒により浄化することができる。したがって、本実施の形態のエンジン1においては、始動時および運転時において触媒による排気ガス浄化能力を生じさせることができる。   In the case of the exhaust purification device 7 of the present embodiment (T1), the DeNOx catalyst temperature is changed to the conventional rear having a heat exchanger as in the case of using the conventional post-treatment device having no heat exchanger (T2). It can be seen that the temperature can be increased to a temperature range showing a high purification rate in a shorter time than when the processing apparatus is used (T3). For this reason, the exhaust gas Ae can be purified by the catalyst at an early stage after the engine 1 is started. Therefore, in the engine 1 of the present embodiment, the exhaust gas purification ability by the catalyst can be generated at the time of starting and during operation.

本発明の内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関は、排熱回収装置への排気ガスの流れを触媒温度に応じて制御することにより、始動時および運転時において触媒による排気ガス浄化能力を生じさせることができるので、自動車等の内燃機関の排気浄化装置の制御方法、内燃機関の排気浄化装置および内燃機関に利用できる。   The method for controlling an exhaust gas purification apparatus for an internal combustion engine, the exhaust gas purification apparatus for an internal combustion engine, and the internal combustion engine according to the present invention controls the flow of exhaust gas to the exhaust heat recovery device in accordance with the catalyst temperature, so that it can be started and operated. Since the exhaust gas purification ability by the catalyst can be produced in the engine, it can be used for a method for controlling an exhaust gas purification apparatus for an internal combustion engine such as an automobile, an exhaust gas purification apparatus for an internal combustion engine, and an internal combustion engine.

1 ディーゼルエンジン(内燃機関)
2 エンジン本体(内燃機関本体)
3 吸気マニホールド
4 排気マニホールド
5 過給機
7 排気浄化装置(後処理装置)
8 シリンダ
10a〜10d 排気管
14 熱交換器(排熱回収装置)
15 触媒装置(浄化本体)
16 バイパス管(副排気経路)
20 制御部
21 温度センサ
23 開閉弁(開閉手段)
24 開閉弁
1 Diesel engine (internal combustion engine)
2 Engine body (Internal combustion engine body)
3 Intake manifold 4 Exhaust manifold 5 Supercharger 7 Exhaust gas purification device (post-treatment device)
8 Cylinders 10a to 10d Exhaust pipe 14 Heat exchanger (exhaust heat recovery device)
15 Catalytic device (Purification body)
16 Bypass pipe (sub exhaust path)
20 control part 21 temperature sensor 23 on-off valve (opening-closing means)
24 On-off valve

Claims (3)

排気ガスを浄化する触媒を持つ触媒装置を排気経路に備えるとともに、前記触媒装置の下流側の排気ガスの熱を前記触媒装置の上流側の排気ガスに伝達することで前記排気ガスの熱エネルギーを回収する排熱回収装置を、前記触媒装置の上流の前記排気経路に前記触媒装置と直列な状態で備える内燃機関の排気浄化装置の制御方法おいて、
前記触媒の温度を検出し、その温度が、前記排気ガスを浄化することが可能な温度より低い場合は、前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流すのを停止し、前記触媒の温度が、前記排気ガスを浄化することが可能な温度の場合は、前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流す制御を行う内燃機関の排気浄化装置の制御方法。
A catalyst device having a catalyst for purifying the exhaust gas is provided in the exhaust path, and the heat of the exhaust gas downstream of the catalyst device is transferred to the exhaust gas upstream of the catalyst device, whereby the thermal energy of the exhaust gas is reduced. In a control method for an exhaust gas purification device for an internal combustion engine, the exhaust heat recovery device to be recovered is provided in a state in series with the catalyst device in the exhaust path upstream of the catalyst device,
When the temperature of the catalyst is detected and the temperature is lower than the temperature at which the exhaust gas can be purified, the flow of the exhaust gas downstream of the catalyst device to the exhaust heat recovery device is stopped. When the temperature of the catalyst is a temperature at which the exhaust gas can be purified, an exhaust purification device for an internal combustion engine that performs control to flow the exhaust gas downstream of the catalyst device to the exhaust heat recovery device Control method.
排気ガスを浄化する触媒を持つ触媒装置を排気経路に備えるとともに、前記触媒装置の下流側の排気ガスの熱を前記触媒装置の上流側の排気ガスに伝達することで前記排気ガスの熱エネルギーを回収する排熱回収装置を、前記触媒装置の上流の前記排気経路に前記触媒装置と直列な状態で備える内燃機関の排気浄化装置において、
前記触媒の温度を検出する温度検出手段と、
前記触媒装置の下流側の前記排気ガスを前記排熱回収装置に流す副排気経路と、
前記副排気経路の開閉を行う開閉手段と、
前記温度検出手段により検出された前記触媒の温度が、前記排気ガスを浄化することが可能な温度より低い場合は、前記開閉手段を閉じることにより、前記触媒装置の下流の前記排気ガスを、前記副排気経路を通じて前記排熱回収装置に流すのを停止し、前記触媒の温度が、前記排気ガスを浄化することが可能な温度の場合は、前記開閉手段を開くことにより、前記触媒装置を通過した前記排気ガスを、前記副排気経路を通じて前記排熱回収装置に流す制御を行う制御部とを備える内燃機関の排気浄化装置。
A catalyst device having a catalyst for purifying the exhaust gas is provided in the exhaust path, and the heat of the exhaust gas downstream of the catalyst device is transferred to the exhaust gas upstream of the catalyst device, whereby the thermal energy of the exhaust gas is reduced. In the exhaust gas purification apparatus for an internal combustion engine, the exhaust heat recovery apparatus to be recovered is provided in a state in series with the catalyst apparatus in the exhaust path upstream of the catalyst apparatus.
Temperature detecting means for detecting the temperature of the catalyst;
A sub exhaust path for flowing the exhaust gas downstream of the catalyst device to the exhaust heat recovery device;
Opening and closing means for opening and closing the auxiliary exhaust path;
When the temperature of the catalyst detected by the temperature detection means is lower than the temperature at which the exhaust gas can be purified, the exhaust gas downstream of the catalyst device is reduced by closing the opening / closing means. When the temperature of the catalyst is such that the exhaust gas can be purified, the flow through the catalyst device is opened by opening the opening / closing means. An exhaust gas purification apparatus for an internal combustion engine, comprising: a control unit that controls the exhaust gas to flow through the auxiliary exhaust path to the exhaust heat recovery apparatus.
請求項2に記載の内燃機関の排気浄化装置を有する内燃機関。   An internal combustion engine comprising the exhaust gas purification device for an internal combustion engine according to claim 2.
JP2009205951A 2009-09-07 2009-09-07 Control method for exhaust gas purification device for internal combustion engine, exhaust gas purification device for internal combustion engine, and internal combustion engine Expired - Fee Related JP5402423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205951A JP5402423B2 (en) 2009-09-07 2009-09-07 Control method for exhaust gas purification device for internal combustion engine, exhaust gas purification device for internal combustion engine, and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205951A JP5402423B2 (en) 2009-09-07 2009-09-07 Control method for exhaust gas purification device for internal combustion engine, exhaust gas purification device for internal combustion engine, and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011058375A true JP2011058375A (en) 2011-03-24
JP5402423B2 JP5402423B2 (en) 2014-01-29

Family

ID=43946296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205951A Expired - Fee Related JP5402423B2 (en) 2009-09-07 2009-09-07 Control method for exhaust gas purification device for internal combustion engine, exhaust gas purification device for internal combustion engine, and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5402423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192516A (en) * 2011-03-25 2011-09-21 天津赛智科技发展有限公司 High-efficiency catalytic combustion decontamination plant for industrial volatilizable organic pollutants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594628A (en) * 1979-01-09 1980-07-18 Nippon Soken Inc Air purifier
JP2003245521A (en) * 2002-02-26 2003-09-02 Japan Steel Works Ltd:The Catalytic combustion type deodorizing apparatus
JP2007512458A (en) * 2003-11-28 2007-05-17 レクキャット エーピーエス Method for treating a fluid volume comprising a chemical reaction means such as a combustible material and a catalytic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594628A (en) * 1979-01-09 1980-07-18 Nippon Soken Inc Air purifier
JP2003245521A (en) * 2002-02-26 2003-09-02 Japan Steel Works Ltd:The Catalytic combustion type deodorizing apparatus
JP2007512458A (en) * 2003-11-28 2007-05-17 レクキャット エーピーエス Method for treating a fluid volume comprising a chemical reaction means such as a combustible material and a catalytic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192516A (en) * 2011-03-25 2011-09-21 天津赛智科技发展有限公司 High-efficiency catalytic combustion decontamination plant for industrial volatilizable organic pollutants

Also Published As

Publication number Publication date
JP5402423B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP4592504B2 (en) Exhaust purification device
US20080083215A1 (en) Standalone thermal energy recycling device for engine after-treatment systems
JP2006274986A (en) Exhaust gas aftertreatment device
US20070044460A1 (en) Electrical diesel particulate filter (DPF) regeneration
JP6641238B2 (en) diesel engine
JP5763294B2 (en) Exhaust purification equipment
WO2016168106A1 (en) Engine exhaust emissions treatment system
JP5448310B2 (en) Exhaust purification device
JP6775169B2 (en) Exhaust gas purification device
JP5141824B2 (en) Exhaust gas purification device for internal combustion engine
JP2006242098A (en) Exhaust emission control device for internal combustion engine
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP5402423B2 (en) Control method for exhaust gas purification device for internal combustion engine, exhaust gas purification device for internal combustion engine, and internal combustion engine
JP2013072378A (en) Internal combustion engine with supercharger
US10495012B2 (en) Vehicle thermal control system including active exhaust treatment management
JP2005299628A (en) Filter regeneration control device for diesel engine
JP5761517B2 (en) Engine exhaust heat recovery device
JP5573795B2 (en) Exhaust gas purification system for internal combustion engine
JP2004353596A (en) Exhaust emission control device
JP5544758B2 (en) Diesel engine control system
JP2020012407A (en) Engine system
JP2010138717A (en) Exhaust gas after-treatment device for diesel engine
JP5858224B2 (en) Exhaust purification device regenerator
JP4998109B2 (en) Exhaust gas purification system and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees