JP2004353596A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2004353596A
JP2004353596A JP2003154155A JP2003154155A JP2004353596A JP 2004353596 A JP2004353596 A JP 2004353596A JP 2003154155 A JP2003154155 A JP 2003154155A JP 2003154155 A JP2003154155 A JP 2003154155A JP 2004353596 A JP2004353596 A JP 2004353596A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel
temperature
injection
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154155A
Other languages
Japanese (ja)
Other versions
JP4210555B2 (en
Inventor
Masatoshi Shimoda
正敏 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003154155A priority Critical patent/JP4210555B2/en
Priority to EP04745270A priority patent/EP1632654A1/en
Priority to KR1020057022276A priority patent/KR20060012642A/en
Priority to PCT/JP2004/006959 priority patent/WO2004104385A1/en
Priority to US10/557,850 priority patent/US7331170B2/en
Publication of JP2004353596A publication Critical patent/JP2004353596A/en
Application granted granted Critical
Publication of JP4210555B2 publication Critical patent/JP4210555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of suitably burning and removing soot or SOF adhering and accumulating on an electrode of a plasma generating device. <P>SOLUTION: The exhaust emission control device equipped with an after-treatment device (catalyst regeneration type particulate filter 10) making exhaust gas 8 passing therethrough and purifying the same in a middle of an exhaust pipe 9 of an internal combustion engine (diesel engine 1) is provided with the plasma generating device 11 generating plasma by carrying out electrical discharge in the exhaust gas 8 in an upstream side of the after-treatment device, a flow through type oxidation catalyst 12 installed in a preceding stage of the plasma generating device 11, a fuel adding means (control device 17) adding fuel in the exhaust gas 8 in an upstream side of the oxidation catalyst 12, and a temperature raising means (intake air throttle valve 22 or control device 17) raising exhaust gas temperature to temperature enabling oxidation reaction of the fuel added by the fuel adding means in the oxidation catalyst 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排気浄化装置に関するものである。
【0002】
【従来の技術】
ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。
【0003】
この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。
【0004】
そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、例えばアルミナに白金を担持させたものから成る酸化触媒をパティキュレートフィルタに一体的に担持させたり、パティキュレートフィルタの前段に酸化触媒を別体で配置するようにした触媒再生型のパティキュレートフィルタを採用することが検討されている。
【0005】
即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となるのである。
【0006】
また、前述したパティキュレートフィルタ以外にも、排気ガス中のNOxの除去を目的とした選択還元型触媒やNOx吸蔵還元触媒等を後処理装置として排気管途中に装備することも提案されており、特に近年においては、パティキュレートフィルタにNOx吸蔵還元触媒を組み合わせた後処理装置も開発されてきている。
【0007】
ただし、これらの何れの後処理装置を採用した場合であっても、パティキュレートの確実な燃焼除去や十分な触媒活性を得るために所定温度以上の排気温度が必要となるので、排気温度が低い運転状態(一般的に軽負荷の運転領域に排気温度が低い領域が拡がっている)が続くと、後処理装置を十分に機能させることができないという問題があり、例えば、都内の路線バス等のように渋滞路ばかりを走行するような車両では、必要な所定温度以上での運転が長く継続しないため、後処理装置を装備したことによる排気浄化の効果が十分に得られない虞れがあった。
【0008】
このため、排気温度が低い運転領域でも後処理装置による排気浄化の効果が十分に得られるようプラズマ発生装置を後処理装置の前段に配置することが検討されており、このプラズマ発生装置により後処理装置の上流側で排気ガス中に放電してプラズマを発生させれば、排気ガスが励起して、未燃の炭化水素が活性化したラディカルに、酸素がオゾンに、NOはNOになり、これらの排気ガス励起成分が活性化状態となっていることから、従来より低い排気温度領域から後処理装置による排気浄化の効果が得られるようになる。
【0009】
尚、パティキュレートフィルタの前段にプラズマ発生装置を配置した排気浄化装置に関しては、例えば、下記の特許文献1等が先行技術文献として既に存在している。
【0010】
【特許文献1】
特表2002−276333号公報
【0011】
【発明が解決しようとする課題】
しかしながら、斯かるプラズマ発生装置の電極は、パティキュレートを含む排気ガスの流れに晒されているため、炭素質の煤やSOF分が付着堆積することで電流のリークが起こり、これにより電極間に電圧がかかり難くなってプラズマの発生に支障をきたす虞れがあった。
【0012】
本発明は上述の実情に鑑みてなしたもので、プラズマ発生装置の電極に付着堆積した煤やSOF分を適宜に燃焼除去し得るようにした排気浄化装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明は、内燃機関の排気管の途中に排気ガスを通気させて浄化する後処理装置を装備した排気浄化装置であって、後処理装置より上流側で排気ガス中に放電してプラズマを発生させるプラズマ発生装置と、該プラズマ発生装置の前段に装備されたフロースルー型の酸化触媒と、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段と、該燃料添加手段により添加された燃料の前記酸化触媒上での酸化反応を可能ならしめる温度まで排気温度を上げる昇温手段とを備えたことを特徴とするものである。
【0014】
このようにすれば、排気ガス中にプラズマ発生装置で放電して排気ガスを励起させることにより、未燃の炭化水素が活性化したラディカルに、酸素がオゾンに、NOはNOになり、これらの排気ガス励起成分が活性化状態となっていることから、従来より低い排気温度領域から後処理装置による排気浄化の効果が得られる。
【0015】
そして、排気ガス中の煤やSOF分がプラズマ発生装置の電極に付着堆積し、その付着した煤やSOF分の除去が必要となった際に、燃料添加手段により酸化触媒の上流側で燃料を添加すれば、この添加燃料が酸化触媒で酸化反応して反応熱を生じ、この反応熱により酸化触媒を通過する排気ガスが大幅に昇温される結果、酸化触媒を経て昇温した排気ガスがプラズマ発生装置に導入されて、その電極に付着堆積している煤やSOF分が燃焼除去されることになる。
【0016】
また、添加燃料が酸化触媒上で酸化反応することができないほど排気温度が極めて低い運転領域で運転が行われていても、昇温手段により適宜に排気温度を上げた後に燃料添加手段による燃料の添加を行うようにすれば良い。
【0017】
更に、本発明の排気浄化装置をより具体的に実施するに際しては、酸化触媒とプラズマ発生装置との間に排気温度を検出する温度センサを配置し、該温度センサの検出値が所定の閾値を超えている条件下でのみ燃料添加手段による燃料添加を適宜に実施し且つ温度センサの検出値が所定の閾値以下になっている時には昇温手段による排気昇温を挟んで前記燃料添加手段による燃料添加を適宜に実施するように構成すると良い。
【0018】
また、本発明においては、燃料添加手段が、燃料噴射装置に対しメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行わしめる燃料噴射制御手段であることが好ましい。
【0019】
更に、排気温度を上げる昇温手段は、吸気流量を適宜に絞り込む吸気絞り手段であっても良いし、燃料噴射装置に対し通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を行わしめる燃料噴射制御手段であっても良いし、燃料噴射装置に対しメイン噴射直後の燃焼可能なタイミングでアフタ噴射を行わしめる燃料噴射制御手段であっても良い。
【0020】
即ち、排気温度を上げる昇温手段が、吸気流量を適宜に絞り込む吸気絞り手段である場合に、排気温度が低い運転状態で前記吸気絞り手段による吸気流量の絞り込みを行うと、内燃機関の作動空気量が減ることによりポンピングロスが増大し、これにより必要な出力が発生するよう燃料噴射量が増加されて排気温度が上昇される一方、内燃機関での燃焼による排気ガスの発生量が少なくなって熱容量が下がることでも更なる排気温度の上昇が図られる。
【0021】
また、排気温度を上げる昇温手段が、燃料噴射装置に対し通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を行わしめる燃料噴射制御手段である場合には、遅延噴射の燃料が出力に転換され難いタイミングで燃焼することにより内燃機関の熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量が増えて排気温度が上昇することになる。
【0022】
更に、排気温度を上げる昇温手段が、燃料噴射装置に対しメイン噴射直後の燃焼可能なタイミングでアフタ噴射を行わしめる燃料噴射制御手段である場合には、アフタ噴射の燃料が出力に転換され難いタイミングで燃焼することにより内燃機関の熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量が増えて排気温度が上昇することになる。
【0023】
尚、本発明においては、プラズマ発生装置でプラズマを発生した際における電流及び電圧の少くとも何れか一方を監視してリークの発生を判定することで燃料添加の実施の要否を決定する判定手段を備えることが好ましく、このようにすれば、無駄な燃料添加を極力回避することが可能となる。
【0024】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0025】
図1〜図3は本発明を実施する形態の一例を示すもので、図1中における符号の1はターボチャージャ2を搭載したディーゼルエンジン(内燃機関)を示しており、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ導いて加圧し、その加圧された吸気4をインタークーラ6を介しディーゼルエンジン1の各気筒に分配して導入するようにしてある。
【0026】
また、このディーゼルエンジン1の各気筒から排気マニホールド7を介し排出された排気ガス8を前記ターボチャージャ2のタービン2bへ送り、該タービン2bを駆動した排気ガス8を触媒再生型のパティキュレートフィルタ10(後処理装置)を通してパティキュレートを捕集した上で排出するようにしてある。
【0027】
図2に拡大して示す如く、このパティキュレートフィルタ10は、セラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路10aの入口が交互に目封じされ、入口が目封じされていない流路10aについては、その出口が目封じされるようになっており、各流路10aを区画する多孔質薄壁10bを透過した排気ガス8のみが下流側へ排出されるようにしてある。
【0028】
更に、前記パティキュレートフィルタ10の前段には、排気ガス8中に放電してプラズマを発生させるプラズマ発生装置11が装備され、該プラズマ発生装置11の前段には、図3に拡大して示す如きハニカム構造を有するフロースルー型の酸化触媒12が収容されている。
【0029】
そして、前記プラズマ発生装置11は、電極13,14を対向配置して相互間に放電を行い得るようにしてあるが、この電極13,14の相互間距離がほぼ一様に設定できるものであれば、板型、ロッド型、円筒型等の様々な形状を適宜に組み合わせて採用することが可能である。
【0030】
また、各電極13,14に対しては、放電制御ユニット15を介し電源16を接続した構造となっており、特に本形態例では、電源16として車両搭載のバッテリを想定しているので、放電制御ユニット15により電源16の電圧を放電可能な適切な電圧まで高めて各電極13,14へ給電するようにしてあり、前記放電制御ユニット15は、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置17からの指令信号15aを受けて制御されるようにしてある。
【0031】
そして、酸化触媒12とプラズマ発生装置11との間には、排気温度を検出する温度センサ18が装備されており、該温度センサ18の温度信号18aが前記制御装置17に入力されるようになっている。
【0032】
この制御装置17は、エンジン制御コンピュータを兼ねていることから燃料の噴射に関する制御も担うようになっており、より具体的には、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ19(負荷センサ)からのアクセル開度信号19aと、ディーゼルエンジン1の機関回転数を検出する回転センサ20からの回転数信号20aとに基づき、ディーゼルエンジン1の各気筒に燃料を噴射する燃料噴射装置21に向け燃料噴射信号21aが出力されるようになっている。
【0033】
ここで、前記燃料噴射装置21は、各気筒毎に装備される複数のインジェクタにより構成されており、これら各インジェクタの電磁弁が前記燃料噴射信号21aにより適宜に開弁制御されて燃料の噴射タイミング(開弁時期)及び噴射量(開弁時間)が適切に制御されるようになっている。
【0034】
他方、前記制御装置17では、アクセル開度信号19a及び回転数信号20aに基づき通常モードの燃料噴射信号21aが決定されるようになっている一方、ポスト噴射による燃料添加を行う必要が生じた際に、通常モードから電極再生モードに切り替わり、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行うような燃料噴射信号21aが決定されるようになっている。
【0035】
つまり、このようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス8中に未燃の燃料(主として炭化水素)が添加されることになり、この未燃の燃料が酸化触媒12で酸化反応して反応熱を生じ、この反応熱により酸化触媒12を通過する排気ガス8が大幅に昇温されることになる。
【0036】
ただし、この制御装置17においては、温度センサ18からの温度信号18aに基づき、前記ポスト噴射により添加された燃料の前記酸化触媒12での酸化反応を可能ならしめる温度(所定の閾値)を超えている条件下でのみポスト噴射による燃料添加を実施し、当該温度以下になっている時には、後述する昇温手段による排気昇温を挟んで前記ポスト噴射による燃料添加を実施するようになっている。
【0037】
即ち、ここに図示している例では、吸気管5の途中に設けられた吸気絞り弁22(吸気絞り手段)に対し、制御装置17からの開度指令信号22aで本来の作動から独立した別の作動を指令することにより、前記吸気絞り弁22を排気温度を上げるための昇温手段として活用するようになっており、排気温度が低い運転状態で前記吸気絞り弁22により吸気流量の絞り込みを実行すると、ディーゼルエンジン1の作動空気量が減ることによりポンピングロスが増大し、これにより必要な出力が発生するよう燃料噴射量が増加されて排気温度が上昇される一方、ディーゼルエンジン1での燃焼による排気ガス8の発生量が少なくなって熱容量が下がることでも更なる排気温度の上昇が図られることになる。
【0038】
また、排気温度を上げる昇温手段として、燃料噴射制御手段を兼ねている制御装置17を活用することも可能であり、より具体的には、燃料噴射装置21に対し制御装置17により通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を行わしめるようにしたり、燃料噴射装置21に対しメイン噴射直後の燃焼可能なタイミングでアフタ噴射を行わしめるようにしたりすれば良い。
【0039】
即ち、通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を行わしめると、遅延噴射の燃料が出力に転換され難いタイミングで燃焼することによりディーゼルエンジン1の熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量が増えて排気温度が上昇することになる。
【0040】
また、メイン噴射直後の燃焼可能なタイミングでアフタ噴射を行わしめると、そのアフタ噴射の燃料が出力に転換され難いタイミングで燃焼することによりディーゼルエンジン1の熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量が増えて排気温度が上昇することになる。
【0041】
そして、以上に述べた如き昇温手段は、温度センサ18からの温度信号18aに基づき、添加燃料が酸化触媒12上で酸化反応することができなくなる限界温度を閾値として、この閾値以下になっている時に、ポスト噴射を実行する電極再生モードに移行するための前処理として昇温モードが間に挟んで昇温手段を作動させるようにしてあり、他方、電極再生モードは、温度センサ18の検出値が所定の閾値を超えている条件下で切り替えられてポスト噴射が実行されるようになっている。
【0042】
而して、このように排気浄化装置を構成すれば、排気ガス8中にプラズマ発生装置11で放電して排気ガス8を励起させることにより、未燃の炭化水素が活性化したラディカルに、酸素がオゾンに、NOはNOになり、これらの排気ガス励起成分が活性化状態となっていることから、パティキュレートフィルタ10に捕集されたパティキュレートの酸化反応が前記排気ガス励起成分により促進され、従来より低い排気温度でもパティキュレートが着火して燃焼除去されることになる。
【0043】
そして、排気ガス8中の煤やSOF分がプラズマ発生装置11の電極13,14に付着堆積し、その付着した煤やSOF分の除去が必要となった際には、温度センサ18の検出値が所定の閾値を超えている条件下で電極再生モードが選択され、制御装置17により燃料の噴射パターンが通常モードから電極再生モードに切り替えられ、メイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行う噴射パターンが採用される結果、該ポスト噴射により排気ガス8中に未燃のまま添加された燃料が酸化触媒12で酸化反応することにより反応熱を生じ、この反応熱により酸化触媒12を通過する排気ガス8が大幅に昇温され、この酸化触媒12を経て昇温した排気ガス8がプラズマ発生装置11に導入されて、該プラズマ発生装置11の電極13,14に付着堆積している煤やSOF分が燃焼除去されることになる。
【0044】
また、添加燃料が酸化触媒12上で酸化反応することができないほど排気温度が極めて低い運転領域で運転が行われていても、温度センサ18からの温度信号18aを受けた制御装置17により、電極再生モードに移行するための前処理として昇温モードが間に挟まれ、吸気絞り弁22が絞り込まれて酸化触媒12に到る排気ガス8の温度が高められる(通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を実行したり、燃料のメイン噴射直後の燃焼可能なタイミングでアフタ噴射を実行したりしても良い)。
【0045】
そして、温度センサ18の検出値が所定の閾値を超えて電極再生モードに移行した段階では、酸化触媒12にて確実に添加燃料が酸化反応する状態となっているので、その反応熱で大幅に昇温した排気ガス8によりプラズマ発生装置11の電極13,14に付着堆積している煤やSOF分が燃焼除去されることになる。
【0046】
尚、プラズマ発生装置11の電極13,14に付着した煤やSOF分の除去が必要か否かについては、例えば、プラズマ発生装置11でプラズマを発生した際における電圧や電流等を制御装置17を判定手段として常に監視してリークの発生を判定するようにしておけば良いが、運転時間等を目安として定期的にポスト噴射を実施するようにしても良い。
【0047】
従って、上記形態例によれば、必要に応じ吸気絞り弁22等の昇温手段により排気温度を上げた上でポスト噴射により排気ガス8中に燃料を添加し、その添加燃料を酸化触媒12で酸化反応させることにより生じた反応熱で酸化触媒12を通過する排気ガス8を大幅に昇温し、この排気ガス8をプラズマ発生装置11に導入して電極13,14に付着堆積した煤やSOF分を燃焼除去することができるので、煤やSOF分の付着堆積による電流のリークを未然に回避することができ、これにより電極13,14間に適正な電圧が支障なく印加されるようにして良好なプラズマの発生を維持することができる。
【0048】
尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、後処理装置には、触媒再生型のパティキュレートフィルタ以外に、排気ガス中のNOxの除去を目的とした選択還元型触媒やNOx吸蔵還元触媒等を採用しても良いこと、また、燃料添加手段には、排気管の適宜位置(排気マニホールドでも可)にインジェクタを貫通装着し、このインジェクタにより排気ガス中に燃料を直噴して添加するようにしても良いこと、更に、先に説明した形態例で例示した三つの昇温手段は、夫々を選択的に単独使用したり、いくつかを組み合わせて使用したりしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0049】
【発明の効果】
上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。
【0050】
(I)本発明の請求項1に記載の発明によれば、必要に応じ昇温手段により排気温度を上げた上で燃料添加手段により排気ガス中に燃料を添加し、その添加燃料を酸化触媒で酸化反応させることにより生じた反応熱で酸化触媒を通過する排気ガスを大幅に昇温し、この排気ガスをプラズマ発生装置に導入して電極に付着堆積した煤やSOF分を燃焼除去することができるので、煤やSOF分の付着堆積による電流のリークを未然に回避することができ、これにより電極間に適正な電圧が支障なく印加されるようにして良好なプラズマの発生を維持することができる。
【0051】
(II)本発明の請求項2に記載の発明によれば、温度センサの検出値に基づいて燃料添加手段と昇温手段を適切に運用してプラズマ発生装置の電極に付着した煤やSOF分を効率良く燃焼除去することができる。
【0052】
(III)本発明の請求項3に記載の発明によれば、燃料噴射装置に対しメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行わしめる制御を行うだけで、新たな付属設備を必要とせずに排気ガス中に未燃の燃料を添加することができ、燃料添加手段にかかるコストの高騰を抑制することができる。
【0053】
(IV)本発明の請求項4に記載の発明によれば、内燃機関の作動空気量を減らしてポンピングロスを増大せしめると共に、内燃機関での燃焼による排気ガスの発生量を減らして熱容量を下げることにより、酸化触媒に到る排気ガスの温度を確実に上昇させることができる。
【0054】
(V)本発明の請求項5に記載の発明によれば、遅延噴射の燃料を出力に転換され難いタイミングで燃焼させることにより、内燃機関の熱効率を下げて燃料の発熱量のうちの動力に利用されない熱量を増やし、これにより酸化触媒に到る排気ガスの温度を確実に上昇させることができる。
【0055】
(VI)本発明の請求項6に記載の発明によれば、アフタ噴射の燃料を出力に転換され難いタイミングで燃焼させることにより、内燃機関の熱効率を下げて燃料の発熱量のうちの動力に利用されない熱量を増やし、これにより酸化触媒に到る排気ガスの温度を確実に上昇させることができる。
【0056】
(VII)本発明の請求項7に記載の発明によれば、無駄な燃料添加を極力回避して燃料添加コストを必要最小限に抑制することができる。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例を示す概略図である。
【図2】図1のパティキュレートフィルタの詳細を示す断面図である。
【図3】図1の酸化触媒の詳細を示す一部を切り欠いた斜視図である。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
8 排気ガス
9 排気管
10 パティキュレートフィルタ(後処理装置)
11 プラズマ発生装置
12 酸化触媒
13 電極
14 電極
17 制御装置(燃料添加手段:昇温手段;燃料噴射制御手段:判定手段)
18 温度センサ
21 燃料噴射装置
22 吸気絞り弁(昇温手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device.
[0002]
[Prior art]
Particulate matter (particulate matter) discharged from the diesel engine is mainly composed of soot composed of carbonaceous material and SOF component (Soluble Organic Fraction: soluble organic component) composed of a high-boiling hydrocarbon component. Although it has a composition containing a small amount of sulfate (mist-like sulfuric acid component), as a measure to reduce this kind of particulates, it is necessary to equip a particulate filter in the middle of the exhaust pipe through which exhaust gas flows. This has been done conventionally.
[0003]
This kind of particulate filter has a porous honeycomb structure made of ceramic such as cordierite, and the inlets of the respective flow paths partitioned in a lattice are alternately plugged, and the inlets are not plugged. The outlets of the flow passages are sealed so that only the exhaust gas that has passed through the thin porous wall that defines each flow passage is discharged to the downstream side.
[0004]
Since the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging, and the particulate filter is removed. It is necessary to regenerate, but under normal operating conditions of the diesel engine, there is little opportunity to obtain a high exhaust temperature enough for the particulates to self-combust, so for example, an oxidation catalyst made of alumina loaded with platinum It has been studied to employ a catalyst regeneration type particulate filter in which the catalyst is integrally supported on the particulate filter, or an oxidation catalyst is separately provided in front of the particulate filter.
[0005]
That is, if such a catalyst regeneration type particulate filter is employed, the oxidation reaction of the collected particulates is promoted, the ignition temperature is lowered, and the particulates can be burned and removed even at a lower exhaust temperature than before. It is possible.
[0006]
In addition to the particulate filter described above, it has also been proposed to equip a middle part of an exhaust pipe as a post-treatment device with a selective reduction catalyst or a NOx storage reduction catalyst for removing NOx in exhaust gas, In particular, in recent years, post-processing devices that combine a particulate filter with a NOx storage reduction catalyst have also been developed.
[0007]
However, even when any of these post-treatment devices is employed, the exhaust gas temperature must be higher than a predetermined temperature in order to surely remove and remove the particulates and to obtain sufficient catalytic activity. If the operation state (in general, the low-temperature operation region is widened in the light-load operation region) continues, there is a problem that the after-treatment device cannot be functioned sufficiently. As described above, in a vehicle that travels only on a congested road, since the operation at a required predetermined temperature or higher does not continue for a long time, there is a possibility that the exhaust purification effect provided by the aftertreatment device may not be sufficiently obtained. .
[0008]
For this reason, it has been studied to arrange a plasma generator in front of the post-processing device so that the exhaust gas can be sufficiently purified by the post-processing device even in an operation region where the exhaust gas temperature is low. If plasma is generated by discharging into the exhaust gas on the upstream side of the device, the exhaust gas is excited, radically activated unburned hydrocarbons, oxygen becomes ozone, NO becomes NO 2 , Since these exhaust gas excited components are in the activated state, the effect of purifying the exhaust gas by the post-processing device can be obtained from the exhaust temperature range lower than before.
[0009]
Regarding an exhaust gas purifying apparatus in which a plasma generator is arranged in front of a particulate filter, for example, the following Patent Document 1 and the like already exist as prior art documents.
[0010]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2002-276333
[Problems to be solved by the invention]
However, since the electrodes of such a plasma generator are exposed to the flow of the exhaust gas containing the particulates, carbonaceous soot and SOF deposit and accumulate, causing a current leak, thereby causing a current between the electrodes. There is a fear that it becomes difficult to apply a voltage, which may hinder the generation of plasma.
[0012]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has as its object to provide an exhaust gas purification apparatus capable of appropriately burning and removing soot and SOF from the electrodes of a plasma generator.
[0013]
[Means for Solving the Problems]
The present invention is an exhaust gas purification apparatus equipped with a post-processing device for purifying exhaust gas by passing it through the exhaust pipe of an internal combustion engine, and discharges the exhaust gas upstream of the post-processing device to generate plasma. A plasma generator to be produced, a flow-through type oxidation catalyst provided upstream of the plasma generator, fuel addition means for adding fuel to exhaust gas on the upstream side of the oxidation catalyst, and addition by the fuel addition means. A temperature raising means for raising the exhaust gas temperature to a temperature at which the oxidation reaction of the selected fuel on the oxidation catalyst is enabled.
[0014]
In this way, by discharging the exhaust gas into the exhaust gas by the plasma generator to excite the exhaust gas, oxygen becomes ozone and NO becomes NO 2 in a radically activated unburned hydrocarbon. Since the exhaust gas excited component is in the activated state, the effect of purifying the exhaust gas by the post-processing device can be obtained from the exhaust temperature range lower than before.
[0015]
Then, when soot and SOF in the exhaust gas adhere to and accumulate on the electrode of the plasma generator, and when it becomes necessary to remove the soot and SOF, the fuel is added by the fuel addition means on the upstream side of the oxidation catalyst. If added, the added fuel undergoes an oxidation reaction with the oxidation catalyst to generate heat of reaction, and the heat of reaction causes the exhaust gas passing through the oxidation catalyst to be heated significantly. As a result, the exhaust gas heated through the oxidation catalyst is heated. The soot and SOF that have been introduced into the plasma generator and deposited on the electrode are burnt and removed.
[0016]
In addition, even if the operation is performed in an operation region in which the exhaust gas temperature is extremely low so that the added fuel cannot be oxidized on the oxidation catalyst, the fuel temperature is increased by the temperature increasing means and then the fuel is added by the fuel adding means. What is necessary is just to add.
[0017]
Further, when the exhaust gas purifying apparatus of the present invention is more specifically implemented, a temperature sensor for detecting the exhaust gas temperature is arranged between the oxidation catalyst and the plasma generator, and the detected value of the temperature sensor is equal to a predetermined threshold. The fuel addition by the fuel addition means is appropriately performed only under the condition of exceeding, and when the detection value of the temperature sensor is equal to or less than the predetermined threshold value, the fuel by the fuel addition means is sandwiched by the temperature rise of the exhaust gas by the temperature rise means. It is preferable that the addition is appropriately performed.
[0018]
Further, in the present invention, it is preferable that the fuel addition means is a fuel injection control means for performing post injection at a non-ignition timing later than the compression top dead center for the fuel injection device following the main injection.
[0019]
Further, the temperature raising means for raising the exhaust gas temperature may be an intake throttle means for appropriately reducing the intake air flow rate, or may perform the main injection with a delay from the normal injection timing to the fuel injection device within a combustible range. The fuel injection control means may be a fuel injection control means or a fuel injection control means for performing an after-injection at a combustible timing immediately after the main injection to the fuel injection device.
[0020]
That is, when the temperature raising means for raising the exhaust gas temperature is an intake throttle means for appropriately narrowing the intake air flow rate, when the intake air flow rate is reduced by the intake throttle means in an operating state where the exhaust temperature is low, the working air of the internal combustion engine is reduced. As the amount decreases, the pumping loss increases, thereby increasing the fuel injection amount to generate the required output and raising the exhaust gas temperature, while reducing the amount of exhaust gas generated by combustion in the internal combustion engine. The exhaust temperature can be further increased by lowering the heat capacity.
[0021]
Further, when the temperature raising means for raising the exhaust gas temperature is the fuel injection control means for performing the main injection by delaying the fuel injection device from the normal injection timing within a combustible range, the fuel of the delayed injection is output. By burning the fuel at a timing that is difficult to convert to fuel, the thermal efficiency of the internal combustion engine decreases, the amount of heat generated by the fuel that is not used for power increases, and the exhaust gas temperature increases.
[0022]
Further, when the temperature raising means for raising the exhaust gas temperature is the fuel injection control means for performing the after-injection at a combustible timing immediately after the main injection to the fuel injection device, it is difficult to convert the fuel of the after-injection into the output. Combustion at the timing lowers the thermal efficiency of the internal combustion engine, increases the amount of heat generated by the fuel that is not used for power, and increases the exhaust gas temperature.
[0023]
In the present invention, at least one of the current and the voltage when plasma is generated by the plasma generator is monitored to determine the occurrence of a leak to determine whether or not the fuel addition is required. Is preferably provided, and in this case, unnecessary fuel addition can be avoided as much as possible.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
FIGS. 1 to 3 show an example of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a diesel engine (internal combustion engine) equipped with a turbocharger 2, and intake air guided from an air cleaner 3. The intake air 4 is guided to the compressor 2 a of the turbocharger 2 through the intake pipe 5 and pressurized, and the pressurized intake air 4 is distributed to and introduced into each cylinder of the diesel engine 1 via the intercooler 6.
[0026]
Further, the exhaust gas 8 discharged from each cylinder of the diesel engine 1 through the exhaust manifold 7 is sent to the turbine 2b of the turbocharger 2, and the exhaust gas 8 that drives the turbine 2b is converted into a particulate filter 10 of a catalyst regeneration type. The particulates are collected through a (post-processing device) and then discharged.
[0027]
As shown in FIG. 2 in an enlarged manner, the particulate filter 10 has a porous honeycomb structure made of ceramic, and the inlets of the channels 10a partitioned in a lattice are alternately plugged, and the inlets are closed. The outlet of the unsealed flow path 10a is plugged, and only the exhaust gas 8 that has passed through the porous thin wall 10b that defines each flow path 10a is discharged to the downstream side. It is like that.
[0028]
Further, in front of the particulate filter 10, a plasma generator 11 for generating plasma by discharging into the exhaust gas 8 is provided, and in front of the plasma generator 11, as shown in FIG. A flow-through type oxidation catalyst 12 having a honeycomb structure is accommodated therein.
[0029]
In the plasma generator 11, the electrodes 13 and 14 are arranged so as to be opposed to each other so that a discharge can be caused between them. However, the distance between the electrodes 13 and 14 can be set substantially uniformly. For example, various shapes such as a plate type, a rod type, and a cylindrical type can be appropriately combined and adopted.
[0030]
In addition, a power supply 16 is connected to each of the electrodes 13 and 14 via a discharge control unit 15. In this embodiment, a battery mounted on a vehicle is assumed as the power supply 16. The control unit 15 raises the voltage of the power supply 16 to an appropriate dischargeable voltage and supplies power to each of the electrodes 13 and 14. The discharge control unit 15 forms an engine control computer (ECU: Electronic Control Unit). It is controlled in response to a command signal 15a from the control device 17.
[0031]
A temperature sensor 18 for detecting an exhaust gas temperature is provided between the oxidation catalyst 12 and the plasma generator 11, and a temperature signal 18a of the temperature sensor 18 is input to the controller 17. ing.
[0032]
Since the control device 17 also serves as an engine control computer, the control device 17 also controls fuel injection, and more specifically, an accelerator sensor 19 (which detects an accelerator opening as a load on the diesel engine 1). A fuel injection device 21 that injects fuel into each cylinder of the diesel engine 1 based on an accelerator opening signal 19a from the load sensor) and a rotation speed signal 20a from a rotation sensor 20 that detects the engine rotation speed of the diesel engine 1. , A fuel injection signal 21a is output.
[0033]
Here, the fuel injection device 21 is constituted by a plurality of injectors provided for each cylinder, and the solenoid valves of these injectors are appropriately opened by the fuel injection signal 21a to control the fuel injection timing. (Valve opening timing) and the injection amount (valve opening time) are appropriately controlled.
[0034]
On the other hand, in the control device 17, while the fuel injection signal 21a in the normal mode is determined based on the accelerator opening signal 19a and the rotation speed signal 20a, when it becomes necessary to perform the fuel addition by the post injection. The fuel is switched from the normal mode to the electrode regeneration mode, and the fuel is injected in the vicinity of the compression top dead center (crank angle 0 °), followed by the post injection at the non-ignition timing later than the compression top dead center. The injection signal 21a is determined.
[0035]
That is, if the post injection is performed at the non-ignition timing later than the compression top dead center following the main injection, unburned fuel (mainly hydrocarbons) is added to the exhaust gas 8 by the post injection. That is, the unburned fuel is oxidized by the oxidation catalyst 12 to generate reaction heat, and the reaction heat causes the exhaust gas 8 passing through the oxidation catalyst 12 to be heated significantly.
[0036]
However, in the control device 17, based on the temperature signal 18 a from the temperature sensor 18, the temperature exceeds a temperature (predetermined threshold value) at which the oxidation reaction of the fuel added by the post-injection in the oxidation catalyst 12 becomes possible. The fuel addition by post-injection is performed only under certain conditions, and when the temperature is lower than the temperature, the fuel addition by post-injection is performed with the exhaust gas temperature rising by a temperature-raising means described later.
[0037]
In other words, in the example shown here, the intake throttle valve 22 (intake throttle means) provided in the middle of the intake pipe 5 is supplied with an opening degree command signal 22a from the control device 17 to be independent of the original operation. , The intake throttle valve 22 is used as a temperature raising means for raising the exhaust gas temperature. In the operation state where the exhaust gas temperature is low, the intake throttle valve 22 reduces the intake flow rate. When executed, the pumping loss increases due to a decrease in the working air amount of the diesel engine 1, whereby the fuel injection amount is increased to generate a required output and the exhaust temperature is raised, while the combustion in the diesel engine 1 is performed. As a result, the amount of exhaust gas 8 generated decreases and the heat capacity decreases, thereby further increasing the exhaust temperature.
[0038]
It is also possible to utilize the control device 17 which also serves as a fuel injection control device as a temperature raising device for raising the exhaust gas temperature. The main injection may be performed with a delay within the combustible range from the timing, or the after-injection may be performed on the fuel injection device 21 at a combustible timing immediately after the main injection.
[0039]
In other words, if the main injection is performed with a delay within a combustible range from the normal injection timing, the fuel of the delayed injection is burned at a timing that is difficult to be converted into an output, thereby lowering the thermal efficiency of the diesel engine 1 and the heat generation amount of the fuel. Of these, the amount of heat not used for power increases, and the exhaust gas temperature rises.
[0040]
Further, if the after-injection is performed at a combustible timing immediately after the main injection, the fuel of the after-injection is burned at a timing that is difficult to be converted into an output, so that the thermal efficiency of the diesel engine 1 is reduced. The amount of heat not used for power increases, and the exhaust gas temperature rises.
[0041]
Then, the temperature raising means as described above sets the threshold temperature at which the added fuel cannot oxidize on the oxidation catalyst 12 based on the temperature signal 18a from the temperature sensor 18 as a threshold, and becomes lower than this threshold. When the temperature recovery mode is set, the temperature raising mode is operated with the temperature raising mode interposed therebetween as a pre-process for shifting to the electrode regeneration mode for executing post injection. The post-injection is performed under the condition that the value exceeds a predetermined threshold value.
[0042]
Thus, by configuring the exhaust gas purifying apparatus in this way, the plasma generator 11 discharges the exhaust gas 8 to excite the exhaust gas 8, so that the unburned hydrocarbons are radically oxygenated. Becomes ozone and NO becomes NO 2 , and these exhaust gas excited components are in an activated state. Therefore, the oxidation reaction of the particulates collected by the particulate filter 10 is promoted by the exhaust gas excited components. Therefore, the particulates are ignited and burned and removed even at an exhaust temperature lower than in the past.
[0043]
When soot and SOF in the exhaust gas 8 adhere to and accumulate on the electrodes 13 and 14 of the plasma generator 11, and when it is necessary to remove the soot and SOF, the detection value of the temperature sensor 18 is used. The electrode regeneration mode is selected under the condition that exceeds the predetermined threshold, the fuel injection pattern is switched from the normal mode to the electrode regeneration mode by the control device 17, and after the main injection, the non-ignition after the compression top dead center is performed. As a result of adopting the injection pattern of performing post-injection at the timing, the post-injection causes the fuel added unburned in the exhaust gas 8 to undergo an oxidation reaction by the oxidation catalyst 12, thereby generating reaction heat. The temperature of the exhaust gas 8 passing through the oxidation catalyst 12 is significantly increased, and the exhaust gas 8 heated through the oxidation catalyst 12 is introduced into the plasma generator 11 and Adhering deposit on the electrode 13, 14 of the 11 are soot and SOF component is to be burned and removed.
[0044]
Further, even if the operation is performed in an operation region in which the exhaust gas temperature is extremely low so that the added fuel cannot be oxidized on the oxidation catalyst 12, the control device 17 which has received the temperature signal 18a from the temperature sensor 18 performs the electrode operation. As a pre-process for shifting to the regeneration mode, a temperature increase mode is interposed, and the intake throttle valve 22 is throttled to increase the temperature of the exhaust gas 8 reaching the oxidation catalyst 12 (combustible from normal injection timing). The main injection may be executed with a delay within the range, or the after injection may be executed at a combustible timing immediately after the main injection of fuel).
[0045]
Then, at the stage where the detection value of the temperature sensor 18 exceeds the predetermined threshold and the mode shifts to the electrode regeneration mode, the added fuel is oxidized by the oxidation catalyst 12 without fail. The heated exhaust gas 8 burns and removes soot and SOF deposited and deposited on the electrodes 13 and 14 of the plasma generator 11.
[0046]
It should be noted that whether or not soot and SOF attached to the electrodes 13 and 14 of the plasma generator 11 need to be removed is determined, for example, by controlling the voltage and current when the plasma is generated by the plasma generator 11 by controlling the controller 17. The determination means may be constantly monitored to determine the occurrence of a leak, but the post-injection may be performed periodically based on the operation time or the like.
[0047]
Therefore, according to the above-mentioned embodiment, after raising the exhaust temperature by the temperature raising means such as the intake throttle valve 22 if necessary, the fuel is added to the exhaust gas 8 by post-injection, and the added fuel is added to the oxidation catalyst 12. The temperature of the exhaust gas 8 passing through the oxidation catalyst 12 is significantly increased by the reaction heat generated by the oxidation reaction, and the exhaust gas 8 is introduced into the plasma generator 11 to deposit soot and SOF deposited on the electrodes 13 and 14. Since it is possible to burn and remove the components, it is possible to prevent current leakage due to the adhesion and deposition of soot and SOF beforehand, so that an appropriate voltage can be applied between the electrodes 13 and 14 without any trouble. Good plasma generation can be maintained.
[0048]
It should be noted that the exhaust gas purifying apparatus of the present invention is not limited to the above-described embodiment, and the post-processing apparatus is intended to remove NOx in exhaust gas in addition to the catalyst regeneration type particulate filter. A selective reduction catalyst, a NOx storage reduction catalyst, or the like may be employed. In addition, an injector is inserted through an appropriate position of an exhaust pipe (an exhaust manifold is also possible) for the fuel addition means, and the exhaust gas is exhausted by the injector. The fuel may be added by direct injection, and the three temperature raising means exemplified in the above-described embodiment may be used alone or in combination. Of course, various changes can be made without departing from the scope of the present invention.
[0049]
【The invention's effect】
According to the exhaust gas purification apparatus of the present invention described above, various excellent effects as described below can be obtained.
[0050]
(I) According to the invention as set forth in claim 1 of the present invention, if necessary, the temperature of the exhaust gas is raised by the temperature raising means, then the fuel is added to the exhaust gas by the fuel adding means, and the added fuel is converted to the oxidation catalyst. The temperature of the exhaust gas passing through the oxidation catalyst is significantly increased by the reaction heat generated by the oxidation reaction in step 1, and the exhaust gas is introduced into a plasma generator to burn off soot and SOF deposited on the electrodes. Therefore, it is possible to prevent a current leak due to soot and SOF adhesion and deposition, thereby maintaining a good plasma generation by applying an appropriate voltage between the electrodes without any trouble. Can be.
[0051]
(II) According to the invention described in claim 2 of the present invention, the amount of soot and SOF adhered to the electrode of the plasma generator is controlled by appropriately operating the fuel addition means and the temperature raising means based on the detection value of the temperature sensor. Can be efficiently removed by combustion.
[0052]
(III) According to the invention described in claim 3 of the present invention, a new control is only performed by performing post-injection control on the fuel injection device at a non-ignition timing later than the compression top dead center following the main injection. Unburned fuel can be added to the exhaust gas without requiring any additional equipment, and a rise in the cost of the fuel adding means can be suppressed.
[0053]
(IV) According to the invention of claim 4 of the present invention, the pumping loss is increased by reducing the amount of working air of the internal combustion engine, and the heat capacity is reduced by reducing the amount of exhaust gas generated by combustion in the internal combustion engine. Thus, the temperature of the exhaust gas reaching the oxidation catalyst can be reliably increased.
[0054]
(V) According to the invention of claim 5 of the present invention, the fuel of the delayed injection is burned at a timing at which it is difficult to convert the fuel into output, so that the thermal efficiency of the internal combustion engine is reduced and the power of the calorific value of the fuel is reduced. The amount of heat not used is increased, so that the temperature of the exhaust gas reaching the oxidation catalyst can be reliably increased.
[0055]
(VI) According to the invention described in claim 6 of the present invention, the fuel of the after-injection is burned at a timing that is difficult to be converted into an output, so that the thermal efficiency of the internal combustion engine is reduced and the power of the calorific value of the fuel is reduced. The amount of heat not used is increased, so that the temperature of the exhaust gas reaching the oxidation catalyst can be reliably increased.
[0056]
(VII) According to the invention of claim 7 of the present invention, unnecessary fuel addition can be avoided as much as possible, and the fuel addition cost can be suppressed to a necessary minimum.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment for carrying out the present invention.
FIG. 2 is a sectional view showing details of the particulate filter of FIG. 1;
FIG. 3 is a partially cutaway perspective view showing details of the oxidation catalyst of FIG. 1;
[Explanation of symbols]
1 diesel engine (internal combustion engine)
8 Exhaust gas 9 Exhaust pipe 10 Particulate filter (post-processing device)
DESCRIPTION OF SYMBOLS 11 Plasma generator 12 Oxidation catalyst 13 Electrode 14 Electrode 17 Control device (fuel addition means: heating means; fuel injection control means: determination means)
18 Temperature sensor 21 Fuel injection device 22 Intake throttle valve (heating means)

Claims (7)

内燃機関の排気管の途中に排気ガスを通気させて浄化する後処理装置を装備した排気浄化装置であって、後処理装置より上流側で排気ガス中に放電してプラズマを発生させるプラズマ発生装置と、該プラズマ発生装置の前段に装備されたフロースルー型の酸化触媒と、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段と、該燃料添加手段により添加された燃料の前記酸化触媒上での酸化反応を可能ならしめる温度まで排気温度を上げる昇温手段とを備えたことを特徴とする排気浄化装置。An exhaust purification device equipped with a post-processing device for purifying exhaust gas by passing it through the exhaust pipe of an internal combustion engine, wherein the plasma generating device discharges into the exhaust gas upstream of the post-processing device to generate plasma. And a flow-through type oxidation catalyst provided upstream of the plasma generator, fuel addition means for adding fuel to the exhaust gas on the upstream side of the oxidation catalyst, and fuel addition means for adding the fuel added by the fuel addition means. An exhaust gas purifying apparatus comprising: a temperature raising means for raising an exhaust gas temperature to a temperature at which an oxidation reaction on the oxidation catalyst is enabled. 酸化触媒とプラズマ発生装置との間に排気温度を検出する温度センサを配置し、該温度センサの検出値が所定の閾値を超えている条件下でのみ燃料添加手段による燃料添加を適宜に実施し且つ温度センサの検出値が所定の閾値以下になっている時には昇温手段による排気昇温を挟んで前記燃料添加手段による燃料添加を適宜に実施するように構成したことを特徴とする請求項1に記載の排気浄化装置。A temperature sensor for detecting the exhaust gas temperature is disposed between the oxidation catalyst and the plasma generator, and the fuel addition by the fuel addition means is appropriately performed only under the condition that the detected value of the temperature sensor exceeds a predetermined threshold. 2. The fuel supply system according to claim 1, wherein when the detected value of the temperature sensor is equal to or less than a predetermined threshold value, the fuel addition by the fuel addition unit is appropriately performed with the exhaust gas temperature increased by the temperature increase unit. An exhaust gas purification apparatus according to claim 1. 燃料添加手段が、燃料噴射装置に対しメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行わしめる燃料噴射制御手段であることを特徴とする請求項1又は2に記載の排気浄化装置。3. The fuel injection control device according to claim 1, wherein the fuel addition device is a fuel injection control device that performs post-injection at a non-ignition timing later than the compression top dead center to the fuel injection device following the main injection. Exhaust gas purification device. 排気温度を上げる昇温手段が、吸気流量を適宜に絞り込む吸気絞り手段であることを特徴とする請求項1、2又は3に記載の排気浄化装置。4. The exhaust gas purifying apparatus according to claim 1, wherein the temperature increasing means for increasing the exhaust gas temperature is an intake throttle means for appropriately reducing an intake air flow rate. 排気温度を上げる昇温手段が、燃料噴射装置に対し通常の噴射時期より燃焼可能な範囲で遅延させてメイン噴射を行わしめる燃料噴射制御手段であることを特徴とする請求項1、2又は3に記載の排気浄化装置。4. A fuel injection control means for performing a main injection with a delay within a combustible range from a normal injection timing for a fuel injection device, wherein the temperature raising means for raising the exhaust gas temperature is a fuel injection control means. An exhaust gas purification apparatus according to claim 1. 排気温度を上げる昇温手段が、燃料噴射装置に対しメイン噴射直後の燃焼可能なタイミングでアフタ噴射を行わしめる燃料噴射制御手段であることを特徴とする請求項1、2又は3に記載の排気浄化装置。4. The exhaust gas according to claim 1, wherein the temperature raising means for raising the exhaust gas temperature is a fuel injection control means for performing an after-injection at a combustible timing immediately after the main injection to the fuel injection device. Purification device. プラズマ発生装置でプラズマを発生した際における電流及び電圧の少くとも何れか一方を監視してリークの発生を判定することで燃料添加の実施の要否を決定する判定手段を備えたことを特徴とする請求項1〜6の何れかに記載の排気浄化装置。The apparatus further comprises a determination means for determining whether or not to perform fuel addition by monitoring at least one of a current and a voltage when plasma is generated by the plasma generator and determining whether or not to perform fuel addition. The exhaust gas purification apparatus according to claim 1.
JP2003154155A 2003-05-22 2003-05-30 Exhaust purification equipment Expired - Lifetime JP4210555B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003154155A JP4210555B2 (en) 2003-05-30 2003-05-30 Exhaust purification equipment
EP04745270A EP1632654A1 (en) 2003-05-22 2004-05-21 Exhaust gas purifier
KR1020057022276A KR20060012642A (en) 2003-05-22 2004-05-21 Exhaust gas purifier
PCT/JP2004/006959 WO2004104385A1 (en) 2003-05-22 2004-05-21 Exhaust gas purifier
US10/557,850 US7331170B2 (en) 2003-05-22 2004-05-21 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154155A JP4210555B2 (en) 2003-05-30 2003-05-30 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2004353596A true JP2004353596A (en) 2004-12-16
JP4210555B2 JP4210555B2 (en) 2009-01-21

Family

ID=34048895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154155A Expired - Lifetime JP4210555B2 (en) 2003-05-22 2003-05-30 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP4210555B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188979A (en) * 2005-01-05 2006-07-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2007046519A1 (en) * 2005-10-18 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
JP2007187136A (en) * 2006-01-16 2007-07-26 Ooden:Kk Particulate matter removing device, and particulate matter removing method
JP2008069659A (en) * 2006-09-12 2008-03-27 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2009512810A (en) * 2006-08-01 2009-03-26 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Plasma reactor and system for reducing particulate matter in exhaust gas using the same
EP2264290A1 (en) * 2008-03-14 2010-12-22 Imagineering, Inc. After-treatment device for exhaust gases immediately downstream of combustion chamber
KR101228059B1 (en) 2010-08-20 2013-01-30 삼성중공업 주식회사 Exhaust gas purification appraratus and exhaust gas purifying method for ship
US9416763B2 (en) 2008-03-14 2016-08-16 Imagineering, Inc. After-treatment apparatus for exhaust gas in a combustion chamber

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577015B2 (en) * 2005-01-05 2010-11-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2006188979A (en) * 2005-01-05 2006-07-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2007046519A1 (en) * 2005-10-18 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
US7954313B2 (en) 2005-10-18 2011-06-07 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
JPWO2007046519A1 (en) * 2005-10-18 2009-04-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4513861B2 (en) * 2005-10-18 2010-07-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2007187136A (en) * 2006-01-16 2007-07-26 Ooden:Kk Particulate matter removing device, and particulate matter removing method
US8272206B2 (en) 2006-08-01 2012-09-25 Korea Institute Of Machinery & Materials Apparatus for plasma reaction and system for reduction of particulate materials in exhaust gas using the same
JP4659097B2 (en) * 2006-08-01 2011-03-30 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Plasma reactor and system for reducing particulate matter in exhaust gas using the same
JP2009512810A (en) * 2006-08-01 2009-03-26 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Plasma reactor and system for reducing particulate matter in exhaust gas using the same
JP4645563B2 (en) * 2006-09-12 2011-03-09 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2008069659A (en) * 2006-09-12 2008-03-27 Toyota Motor Corp Exhaust emission control system of internal combustion engine
EP2264290A1 (en) * 2008-03-14 2010-12-22 Imagineering, Inc. After-treatment device for exhaust gases immediately downstream of combustion chamber
US8850795B2 (en) 2008-03-14 2014-10-07 Imagineering, Inc. After-treatment apparatus for exhaust gas right after a combustion chamber
EP2264290A4 (en) * 2008-03-14 2015-01-07 Imagineering Inc After-treatment device for exhaust gases immediately downstream of combustion chamber
US9416763B2 (en) 2008-03-14 2016-08-16 Imagineering, Inc. After-treatment apparatus for exhaust gas in a combustion chamber
KR101228059B1 (en) 2010-08-20 2013-01-30 삼성중공업 주식회사 Exhaust gas purification appraratus and exhaust gas purifying method for ship

Also Published As

Publication number Publication date
JP4210555B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
WO2004104385A1 (en) Exhaust gas purifier
US20070044460A1 (en) Electrical diesel particulate filter (DPF) regeneration
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
WO2007026809A1 (en) Method for regenerating particulate filter
WO2006052474A2 (en) Method for controlling temperature in a diesel particulate filter during regeneration
JP4178960B2 (en) Exhaust gas purification device for internal combustion engine
JP2013057308A (en) Exhaust gas purifying system and method of controlling the same
JP2007138866A (en) Regeneration control method for exhaust emission control system, and exhaust emission control system
JP2005299480A (en) Engine exhaust emission control device
JP2010031833A (en) Exhaust emission control device for diesel engine
JP4449947B2 (en) Control device for internal combustion engine
JP4210555B2 (en) Exhaust purification equipment
JP2004150416A (en) Regeneration method for particulate filter
JP2009092015A (en) Exhaust emission control device
JP2010116817A (en) Exhaust emission control device of engine
JP2006274907A (en) Exhaust emission control device
JP2005320880A (en) Exhaust emission control device
JP4012037B2 (en) Exhaust purification equipment
JP3914751B2 (en) Exhaust purification method
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP2005315189A (en) Exhaust gas aftertreatment device for diesel engine
JP4236896B2 (en) Exhaust purification equipment
JP2004316441A (en) Method for raising temperature of particulate filter
JP2009007982A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Ref document number: 4210555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term