JP4178960B2 - Exhaust gas purification device for internal combustion engine - Google Patents
Exhaust gas purification device for internal combustion engine Download PDFInfo
- Publication number
- JP4178960B2 JP4178960B2 JP2003005595A JP2003005595A JP4178960B2 JP 4178960 B2 JP4178960 B2 JP 4178960B2 JP 2003005595 A JP2003005595 A JP 2003005595A JP 2003005595 A JP2003005595 A JP 2003005595A JP 4178960 B2 JP4178960 B2 JP 4178960B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- dpf
- temperature
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1448—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/06—Ceramic, e.g. monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
- F01N2430/085—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/065—Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/10—Carbon or carbon oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/12—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0812—Particle filter loading
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/60—Input parameters for engine control said parameters being related to the driver demands or status
- F02D2200/602—Pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0055—Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/187—Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、排気通路に触媒付パティキュレートフィルタ等の排気後処理装置を備えた内燃機関の排ガス浄化装置に関し、詳しくは排気後処理装置に供給される炭化水素による触媒被毒を回避するための手段を有する排ガス浄化装置に関する。
【0002】
【従来の技術】
近年、環境対策として、内燃機関から排出されるガスを触媒やフィルタで処理し、有害成分の放出を抑制する排ガス浄化装置が重要となっている。その一例に、ディーゼルエンジンから排出される粒子状物質であるパティキュレート(PM)を、排気管の途中に設置したディーゼルパティキュレートフィルタ(以下DPFと称する)で捕集する排ガス浄化装置があり、堆積したPMを定期的に燃焼除去することでDPFを再生して連続的な使用を可能にしている。
【0003】
DPFの再生は、通常、DPFの前後差圧を基に算出されるPM堆積量が所定量以上となった時に行われる。再生の際には、例えばポスト噴射を行ってDPFに未燃炭化水素(HC)を供給し、DPFに予め担持した酸化触媒を用いて供給したHCを燃焼させる。この燃焼熱によってDPF温度をPMが燃焼する温度、例えば600℃以上に昇温させることができる。
【0004】
ところが、この時、DPF温度が低いと触媒反応の速度が小さくなる。ここへ多量のHCが供給された場合には、供給したHCが触媒表面に付着し、触媒近傍への有害成分を含む排気ガスの拡散が阻害されて触媒反応が低下する、いわゆる触媒のHC被毒の問題が生ずる。ここで、HC被毒は、触媒へのHCの物理的な吸着が原因であるため、DPF温度を高く保持して付着したHCの脱離を促すことで触媒活性を回復することができる。これを利用した触媒のHC被毒の回復操作に関する従来技術として、例えば、特許文献1が挙げられる。
【0005】
【特許文献1】
特開平11−257125号公報
【0006】
特許文献1には、窒素酸化物(NOx)を触媒によって浄化するシステムにおいて、触媒へのHC吸着量を算出し、吸着量>所定値かどうかに基づいて触媒被毒を判定する判定手段を設け、触媒が被毒したと判定された場合に被毒を回復させる制御を実施することが記載されている。回復操作は、具体的には、吸気絞り弁を閉弁させるとともに、排ガスの再循環弁(EGR弁)を開弁させて触媒の温度低下を防止することによって行い、HCの脱離と酸化反応を促し、酸化反応熱で触媒温度を上昇させている。なお、このシステムでは、NOxの還元浄化のために触媒上流にHCが添加される。
【0007】
【発明が解決しようとする課題】
すなわち、特許文献1の方法は、HCによる触媒被毒が生じることは許容し、HC被毒が生じたのちに始めて対策を講じるものである。しかしながら、一旦HC被毒してしまうとその回復に時間がかかり、HC被毒が回復するまでの間は触媒による有害成分の浄化ができないという問題がある。特に、DPFにおいては、その前端面がHC被毒した後に高温の排気にさらされることにより、付着したHCが炭化してしまうと、最悪の場合、DPF入口部を閉塞してしまうというおそれがある。そして、炭化したHCを除去するためにはその部分を非常に高い温度(例えば600℃以上)に長時間保持して焼却する必要があり、一方、実走行の大部分を占める排気温度が低い(例えば300℃以下)走行状態において、長時間にわたって高温を保持することは困難であるために、大きな燃費の悪化を伴ってしまうという問題がある。
【0008】
このような実情から、排ガス浄化装置において、HC被毒が生じたのちに始めて対策を講じるのでなく、HC被毒そのものを回避することが、大きな課題となっている。なかでもDPFでは、堆積したPMの燃焼のために、ポスト噴射等により多量のHCを供給する必要があるため、HC被毒が生じやすい。HC被毒が生じるとDPF温度が速やかに上昇せず、PMの燃焼が良好に行われなくなるため、これを回避することが特に重要となっている。
【0009】
本発明の目的は、内燃機関の排気浄化装置において、排気後処理装置に担持される触媒がHC被毒すること自体を回避すること、それにより触媒活性の回復操作を不要として、その間のPMの燃焼性能や有害成分の浄化性能の低下を防止し、あるいは付着したHCの炭化といった不具合を防止して、触媒性能を長期に渡り維持し、信頼性の高い装置を実現することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1の内燃機関の排気浄化装置は、内燃機関の排気通路に設置される酸化触媒を担持したDPFと、該DPFの温度を検出する温度検出手段と、上記DPFを再生処理するために、ポスト噴射、燃料噴射時期の遅角およびEGR量の増量の操作のいずれかまたは組み合わせにより上記DPFに炭化水素を供給するHC供給手段と、上記DPFに供給されるHC量を、内燃機関の燃焼に基づいて発生する未燃分のHC量と上記HC供給手段によるHC量の和として算出するHC量検出手段と、上記温度検出手段で検出された上記DPFの温度に応じて上記DPFに供給可能なHC量の上限値を決定し、上記HC量検出手段にて算出されるHC量が上記上限値以下となるように上記HC供給手段を制御するHC供給量制御手段とを備え、上記HC量検出手段は、上記HC供給手段によるHC量を、上記HC供給手段の操作に起因して上記DPFに実際に供給されるHC量とし、上記HC供給手段の操作量に応じた基本HC量のうち内燃機関のシリンダ内で燃焼する量を減ずることにより算出し、上記HC供給量制御手段は、上記HC量の上限値を、上記DPFの温度と、上記DPFに供給された時にHC被毒を生じることのないHC量の関係に基づいて決定することを特徴とする。
【0011】
本発明者等は、上記DPFの温度がHC被毒に大きく影響する点に着目し、上記DPFの温度に応じて供給可能なHC量の上限値を決定するとともに、上記HC量検出手段で検出されるHC量を基に上記HC供給手段を制御して、供給されるHC量を上記上限値以下に制限することで、HC被毒が防止できることを見出した。このようにすれば、触媒のHC被毒自体を回避することができるので、触媒活性の回復操作が不要となり、回復操作中の浄化性能の低下や、あるいは付着したHCの炭化といった不具合を防止することができるので、触媒性能に優れ信頼性の高い装置を実現できる。
具体的には、上記HC供給手段として、ポスト噴射、燃料噴射時期の遅角およびEGR量の増量の操作のいずれかまたは組み合わせを採用することで、DPFに供給されるHC量を容易に制御可能であるので、上記HC供給量制御手段による制御が容易にできる。また、上記DPFに流入する炭化水素には、上記HC供給手段から供給される炭化水素の他、内燃機関の燃焼によって発生する炭化水素があり、これらを合わせた量を供給されるHC量として上記上限値と比較することで、より精度よい制御が可能となる。
【0013】
請求項2の構成では、上記HC量検出手段は、上記HC供給手段の操作量に応じた基本HC量のうち内燃機関のシリンダ内で燃焼する量を、内燃機関の運転条件に基づいて算出し、
上記HC供給量制御手段は、上記HC量検出手段にて算出されたHC量炭化水素量が上記上限値以下であるかどうかを判定し、否定判定された場合には、上記上限値以下となるまで、上記HC供給手段によるHC量を減量補正する。
【0014】
請求項3の構成において、上記HC量検出手段は、上記HC供給手段の操作量に応じた基本HC量および内燃機関の燃焼に基づいて発生する未燃分のHC量を、内燃機関の運転条件に基づいて算出する。
【0015】
請求項4の構成において、上記温度検出手段は、上記DPFの上流側の排気温度を検出する。具体的には、上記DPFに流入する排気の温度がHC被毒が生じるか否かに大きく影響するので、上記DPFの上流側の排気温度に基づいて、供給可能なHC量の上限値を決定することで、より効果的にHC被毒や浄化性能の低下を回避できる。
【0017】
【発明の実施の形態】
以下、本発明の第1の実施の形態を図面に基づいて説明する。図1はディーゼルエンジンの排気浄化装置の全体構成を示すもので、ディーゼルエンジン1の排気通路である排気管2a、2b間には、排気後処理装置として、表面に酸化触媒を担持したディーゼルパティキュレートフィルタ(以下、酸化触媒付DPFと称する)3が設置されている。酸化触媒付DPF3は、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、ガス流路となる多数のセルを入口側または出口側が互い違いとなるように目封じしてなり、セル壁表面には、Pt等の酸化触媒が塗布されている。エンジン1から排出された排気ガスは、酸化触媒付DPF3の多孔性の隔壁を通過しながら下流へ流れ、その間にパティキュレート(PM)が捕集されて次第に堆積する。
【0018】
酸化触媒付DPF3の上流側の排気管2aおよび下流側の排気管2bには、それぞれ排気温センサ41、42が設置される。排気温センサ41、42はECU6に接続されており、酸化触媒付DPF3の入ガス温度または出ガス温度を検出して、ECU6に出力する。上流側の排気温センサ41は、後述する供給HC量制御において、酸化触媒付DPF3の温度を知るための温度検出手段として用いられる。また、エンジン1の吸気管11には、エアフローメータ(吸気量センサ)43が設置してあり、吸気量を検出して、ECU6に出力するようになっている。エンジン1の吸気管11は、EGRバルブ7を備えたEGR通路71によって、酸化触媒付DPF3の上流側の排気管2aと連通している。EGRバルブ7の駆動はECU6にて制御される。
【0019】
排気管2a、2bには、酸化触媒付DPF3にて捕集されたパティキュレートの量(PM捕集量)を知るために、酸化触媒付DPF3の前後差圧を検出する差圧センサ5が接続される。差圧センサ5の一端側は酸化触媒付DPF3上流の排気管2aに、他端側は酸化触媒付DPF3下流の排気管2bにそれぞれ圧力導入管51、52を介して接続されており、酸化触媒付DPF3の前後差圧に応じた信号をECU6に出力する。ECU6は、酸化触媒付DPF3の前後差圧からPM堆積量を算出し、PM堆積量が予め決められた所定量以上となった時に酸化触媒付DPF3の再生制御を実施する。
【0020】
ECU6には、さらに、アクセル開度センサ61や回転数センサ62といった各種センサが接続されている。ECU6は、これらセンサからの検出信号を基に運転状態を検出し、運転状態に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、エンジン1への燃料噴射を制御する。また、EGRバルブ7の弁開度を調節することで、吸気に還流する排気量(EGR量)を制御している。
【0021】
ここで、酸化触媒付DPF3の再生に伴うHC被毒について説明する。酸化触媒付DPF3の再生時、ECU6は、堆積したPMを燃焼させるために酸化触媒付DPF3にHCを供給する操作を行う(HC供給手段)。供給されたHCは、酸化触媒付DPF3のセル壁表面に担持された酸化触媒により燃焼し、その燃焼熱で酸化触媒付DPF3がPMの燃焼可能な温度以上に上昇する。HC供給手段として、具体的には、ポスト噴射、燃料噴射時期遅角、EGR量の増量、吸気絞り等の操作が行なわれ、これらのうち2つ以上の操作を組み合わせることもできる。
【0022】
ところが、この時、酸化触媒付DPF3の温度が低いと、HC被毒を生じる問題がある。HC被毒とは、触媒温度が低いために触媒の反応速度が小さく、かつ触媒へ多量のHCが供給された場合に、供給したHCが触媒表面に付着し、触媒(Pt等)近傍への有害成分を含むガスの拡散が阻害されるために触媒反応が低下する現象を言う。このHC被毒は触媒へのHCの物理的な吸着が原因であるため、HC供給量を減らしかつ触媒温度を高温に保つことで可逆的に回復させることが可能である。
【0023】
そこで、本発明において、ECU6は、酸化触媒付DPF3の温度に応じて、酸化触媒付DPF3に供給可能なHC量の上限値を決定し、実際に供給されるHC量が上限値以下になるように上記HC供給手段を制御する(HC供給量制御手段)。図2は本発明者等が行った実験に基づくもので、酸化触媒付DPF3の上流排気温度(DPF入ガス温度)と酸化触媒付DPF3に供給されるHC量(入ガスHC量)とを両軸にとった図においてHC被毒が生じる領域を示している。なお、図2においては、HC供給後の触媒温度変化(単位時間当たりの温度上昇率)<所定値の場合にHC被毒発生と判定し、それ以外の場合はHC被毒なしと判定した。これはHC被毒がなければ触媒温度が速やかに上昇し、HC被毒があると触媒温度の上昇が小さくなることによる。
【0024】
図示されるように、酸化触媒付DPF3に供給される(流入する)HCを含む排気の温度が、HC被毒が生じるか否かに大きく影響しており、酸化触媒付DPF3の上流排気温度が250℃以下の場合にはHC被毒が発生する可能性が極めて大きい。上流排気温度が250℃以上の場合には、上流排気温度が高いほどHC被毒が発生しにくくなり、HC被毒に供給可能なHC量の上限値が大きくなる。従って、具体的には、酸化触媒付DPF3の温度=上流排気温(排気温センサ41の検出温度)とし、図2を基にHC被毒が発生しないHC量の上限値を決定する。一方、酸化触媒付DPF3に供給される排気中のHC量を検出し(HC量検出手段)、その結果を上記上限値と比較してHC被毒が生じるか否かを判定する。この際、HC量検出手段は、酸化触媒付DPF3への供給HC量を、次式により算出する。
供給HC量=(1)エンジン燃焼によって生じるHC量
+(2)HC供給手段によって供給されるHC量
つまり、本発明で考慮すべき(HC被毒の原因となる)「酸化触媒付DPF3への供給HC量」は、エンジンの燃焼によって生じるHC量と、ポスト噴射等のHC供給手段により供給されるHC量を足したものとなる。
【0025】
より具体的には、
(1)エンジン燃焼によって生じるHC量は、エンジン運転条件(例えばエンジン回転数と出力トルク)に基づいて求められる。
例えば、図3は、エンジン回転数と出力トルクを両軸にとった図において、エンジン燃焼によって発生するHC量を示す図であり、この関係を予め記憶しておくことで、エンジン回転数と出力トルクから(1)エンジン燃焼によるHC量を容易に算出できる。
【0026】
また、
(2)HC供給手段によって供給されるHC量は、上記HC供給手段の操作量(例えばポスト噴射量)とエンジン条件(例えば出力トルク)に基づいて求めることができる。
図4は、エンジン回転数と出力トルクを両軸にとった図において、各エンジン運転条件におけるポスト噴射量を示す。これは、各エンジン運転条件毎に予め適合させたもので、本発明における基本ポスト噴射量である。ただし、ポスト噴射された燃料の一部はシリンダ内で燃焼するため、ポスト噴射量=ポスト噴射により供給されるHC量とはならない。よって、本発明ではこの燃焼量を考慮して(2)HC供給手段によって供給されるHC量を算出する。これを図5で説明する。
【0027】
ポスト噴射に起因して酸化触媒付DPF3に実際に供給されるHC量は、図5のように、エンジン出力トルク等によって変わる。これは、ポスト噴射された燃料のうちシリンダ内で燃焼する量が、シリンダ内部の温度およびポスト噴射時期により変化するためである。従って、図5の関係を用いて、ポスト噴射量のうちシリンダ内で燃焼する分を求め、(2)HC供給手段によるHC量(ポスト噴射に起因してDPFに供給されるHC量)を、次式のようにして算出することができる。
ポスト噴射に起因してDPFに供給されるHC量
=(基本ポスト噴射量[図4]−ポスト噴射量のうちシリンダ内で燃焼する分[図5])×定数
(定数:噴射量をHC量に換算するための定数)
【0028】
ECU6は、このようにしてHC量検出手段により算出された供給HC量を、HC被毒が発生しないHC量の上限値と比較し、上限値を越える場合には、HC被毒が生じるおそれがあると判断して、ポスト噴射等のHC供給手段により供給されるHC量を減量補正する。これにより、供給HC量が上限値以下となるように制御してHC被毒が生じるのを回避することが可能である。
【0029】
なお、図4の基本ポスト噴射量は、酸化触媒付DPF3の温度が十分安定した状態において、エンジン試験ベンチにて求められる。通常は、再生時に酸化触媒付DPF3の温度を速やかに上昇させたいため、できるだけ多量のポスト噴射を実施するという観点で基本ポスト噴射量が決定される。このため、実際に車両に搭載して運転した場合に、たとえエンジン運転条件が同じであっても、酸化触媒付DPF3の温度がエンジン試験ベンチで基本ポスト噴射量を求めた際の温度と一致しない場合が生じる(特に、始動直後や加速初期)。本発明は、これを回避するもので、供給HC量を補正して適切な量のHCを供給することにより、HC被毒を防止する。
【0030】
図6は、ECU6によるHC供給量制御の一例を示すフローチャート図である。ECU6は、まず、ステップ101で、HC供給手段による酸化触媒付DPF3へのHC供給操作が行われているか、ここでは、ポスト噴射実行条件か否かを判定する。ステップ101が肯定判定されたら、ステップ102へ進み、エンジン回転数とアクセル開度を、アクセル開度センサ61と回転数センサ62の出力から読み込む。また、酸化触媒付DPF3上流の排気温度を排気温センサ41の出力から読みこむ。なお、ステップ101が否定判定された場合には、ポスト噴射を実行することなく本処理を終了する。
【0031】
ここで、ポスト噴射は、酸化触媒付DPF3上に堆積したPM量が所定量を越えた場合に、PMを燃やして酸化触媒付DPF3を再生するために実行される。具体的には、エンジン運転のためのメイン燃料噴射の後(上死点後の膨張工程)に少量の燃料を追加噴射し未燃のHCを発生させてこれを酸化触媒付DPF3に供給する。酸化触媒付DPF3に供給されたHCは酸化触媒付DPF3上の触媒により燃焼し、その燃焼熱でDPFが高温(例えば500℃以上)となり酸化触媒付DPF3上のPMが燃焼する。ポスト噴射の代わりに、燃料噴射時期の遅角またはEGR量の増量といった操作を行っても同様である。
【0032】
その際、酸化触媒付DPF3上に堆積したPM量が所定量に到達したか否かは、例えば、差圧センサ5で検出される酸化触媒付DPF3前後の差圧からPM堆積量を算出し、予め決められた所定量と比較することにより判定する。これは所定量の排気が酸化触媒付DPF3を通過する時に生じる差圧が、酸化触媒付DPF3に堆積したPM量に相関があることを利用するもので、これらの関係は予め実験等により求められる。排気の量は、例えば、エアフローメータ43で検出される吸気量、排気温センサ41、42で検出される酸化触媒付DPF3前後温度、差圧センサ5で検出される差圧等から算出される。
【0033】
ステップ103では、エンジン回転数とアクセル開度から算出したエンジン出力トルクを用い、上記図3に示す関係(予め実験等により求めてECU6内に記憶されている)に基づいて、現在の運転条件においてエンジンから排出されるHC量を算出する。さらに、ステップ104で、エンジン回転数とアクセル開度から算出したエンジン出力トルクを用い、上記図4に基づいて基本ポスト噴射量を決定する。この基本ポスト噴射量は予め各エンジン運転条件毎に適合されECU6内に記憶されている。
【0034】
ステップ105では、ステップ104で決定した基本ポスト噴射量とアクセル開度から算出したエンジン出力トルクとを用い、上記図5に基づいてポスト噴射量のうちシリンダ内で燃焼する分を求める。図5のように、出力トルクが大きいほどシリンダ内で燃焼する燃料量が多くなるためシリンダ内が高温となり、ポスト噴射量が同じでもシリンダ内で燃焼する燃料が増えることになる。
【0035】
ステップ106ではDPF供給HC量を算出する。まず、ポスト噴射によるHC量を、ステップ104、105で決定した値を用いて、
ポスト噴射に起因してDPFに供給されるHC量
=(基本ポスト噴射量[図4]−ポスト噴射量のうちシリンダ内で燃焼する分
[図5])×定数
として算出し、この値とステップ103で算出した値を用いて、
DPF供給HC量=エンジンから排出されるHC量
+ポスト噴射に起因してDPFに供給されるHC量
としてDPF供給HC量を算出する。
【0036】
ステップ107では、上記図2の関係を用い、ステップ102で読み込んだ酸化触媒付DPF3上流の排気温度から、現在の排気温度に対応したHC被毒が生じないDPF供給HC量の上限値を算出する。そして、ステップ108で、この上限値とステップ106で算出したDPF供給HC量を比較し、DPF供給HC量が上限値以下であるか否かを判定する。DPF供給HC量が上限値を越えている場合には、ステップ109へ進み、DPF供給HC量=上限値となるまでポスト噴射量を減量補正する。すなわち、供給HC量が上限値を越えないようにガードをかける。
【0037】
その後、ステップ110へ進み、補正結果に基づき、ポスト噴射を実行する。ステップ108でDPF供給HC量が上限値以下である場合には、そのままステップ110へ進んでポスト噴射を実行する。
【0038】
図7は、本発明の効果を示すタイムチャート図で、実線は上記図6のフローチャートに基づき酸化触媒付DPF3に供給されるHC量の制御を行った場合(本発明)、破線はHC供給量制御を行わない場合(従来)である。従来は、酸化触媒付DPF3上流の排気温度(DPF上流温度)が比較的低い場合でもPM燃焼のために多量のHCが供給されるため、HC被毒が生じやすく、触媒反応の低下により酸化触媒付DPF3の温度はなかなか上昇しない。これに対し、本発明においては、酸化触媒付DPF3上流の排気温度に応じて、HC被毒が生じないように酸化触媒付DPF3へ供給されるHC量(エンジン燃焼によるHC量+ポスト噴射等によるHC量)が調整されるため、速やかに酸化触媒付DPF3温度を昇温させることができる。その結果、酸化触媒付DPF3上のPMの燃焼あるいは排気中の有害成分の浄化が効果的に実現できる。
【0039】
以上のように、本発明によれば、HC被毒を未然に防止してHCの付着による触媒性能の低下を回避し、また、HC被毒が発生してしまった場合の回復操作等に伴う燃費の悪化を回避することができる。
【0041】
なお、DPF上流排気温度を用いて上限値を算出する場合、DPF上流排気温度は運転条件に応じて大きく変化するため、安定した検出を行うためにサンプルした複数点の平均値を用いることもできる。また、上記実施の形態では、HC量検出手段が、DPF供給HC量をエンジン運転条件等に基づいて算出するようにしたが、HC量検出手段としてHCセンサを設けてHC量を直接検出することも可能である。さらに、HC量検出手段を設けず、HC供給量制御手段が、予めHC被毒を考慮して上限値を越えないようにポスト噴射量を算出することも可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す排気浄化装置の全体構成図である。
【図2】DPF上流排気温度とDPF供給HC量とを両軸にとった図において、HC被毒が生じる領域を示す図である。
【図3】エンジン回転数と出力トルクを両軸にとった図において、エンジン燃焼によって発生するHC量を示す図である。
【図4】エンジン回転数と出力トルクを両軸にとった図において、各エンジン運転条件におけるポスト噴射量を示す図である。
【図5】ポスト噴射量とポスト噴射燃料のうちシリンダ内で燃焼する分の関係を、エンジン出力トルクをパラメータとして示す図である。
【図6】本発明によるECUの制御の一例を示すフローチャート図である。
【図7】本発明の効果を示すタイムチャート図である。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
2a、2b 排気通路
3 酸化触媒付DPF(排気後処理装置)
41、42 排気温センサ(温度検出手段)
43 エアフローメータ
5 差圧センサ
6 ECU(HC供給量制御手段)
61 回転数センサ
62 アクセル開度センサ
7 EGRバルブ
71 EGR通路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine having an exhaust aftertreatment device such as a particulate filter with a catalyst in an exhaust passage, and more particularly to avoid catalyst poisoning by hydrocarbons supplied to the exhaust aftertreatment device. The present invention relates to an exhaust gas purification apparatus having means.
[0002]
[Prior art]
In recent years, as an environmental measure, an exhaust gas purification device that treats gas discharged from an internal combustion engine with a catalyst or a filter and suppresses the release of harmful components has become important. One example is an exhaust gas purification device that collects particulates (PM), which are particulate matter discharged from a diesel engine, with a diesel particulate filter (hereinafter referred to as DPF) installed in the middle of an exhaust pipe. DPM is regenerated by periodically removing the PM that has been burned off, enabling continuous use.
[0003]
The regeneration of the DPF is normally performed when the PM deposition amount calculated based on the differential pressure across the DPF becomes a predetermined amount or more. At the time of regeneration, for example, post-injection is performed to supply unburned hydrocarbon (HC) to the DPF, and the supplied HC is burned using an oxidation catalyst previously supported on the DPF. With this combustion heat, the DPF temperature can be raised to a temperature at which PM burns, for example, 600 ° C. or more.
[0004]
However, at this time, if the DPF temperature is low, the rate of the catalytic reaction becomes small. When a large amount of HC is supplied here, the supplied HC adheres to the surface of the catalyst, the diffusion of exhaust gas containing harmful components to the vicinity of the catalyst is inhibited, and the catalytic reaction is lowered. A poison problem arises. Here, since HC poisoning is caused by physical adsorption of HC to the catalyst, the catalytic activity can be recovered by promoting the detachment of the attached HC while keeping the DPF temperature high. For example, Patent Document 1 is cited as a conventional technique related to the recovery operation of HC poisoning of a catalyst using this.
[0005]
[Patent Document 1]
JP-A-11-257125 [0006]
Patent Document 1 includes a determination unit that calculates the amount of HC adsorbed on the catalyst in a system that purifies nitrogen oxide (NOx) using a catalyst and determines catalyst poisoning based on whether the amount of adsorption is greater than a predetermined value. In addition, it is described that, when it is determined that the catalyst is poisoned, the control for recovering the poisoning is performed. Specifically, the recovery operation is performed by closing the intake throttle valve and opening the exhaust gas recirculation valve (EGR valve) to prevent a decrease in the temperature of the catalyst. The catalyst temperature is raised by the heat of oxidation reaction. In this system, HC is added upstream of the catalyst for NOx reduction purification.
[0007]
[Problems to be solved by the invention]
That is, the method of Patent Document 1 allows catalyst poisoning by HC to occur, and measures are taken only after HC poisoning has occurred. However, once HC poisoning occurs, it takes time to recover, and there is a problem that harmful components cannot be purified by the catalyst until HC poisoning is recovered. In particular, in the DPF, when the front end surface of the DPF is exposed to high-temperature exhaust gas after being poisoned by HC, the adhering HC is carbonized, and in the worst case, the DPF inlet may be blocked. . And in order to remove carbonized HC, it is necessary to incinerate that part at a very high temperature (for example, 600 ° C. or more) for a long time, while the exhaust temperature occupying most of the actual running is low ( For example, it is difficult to maintain a high temperature for a long time in a traveling state, and thus there is a problem that the fuel consumption is greatly deteriorated.
[0008]
From such a situation, in the exhaust gas purification apparatus, it is a big problem to avoid HC poisoning itself, instead of taking measures only after HC poisoning occurs. In particular, in the DPF, since it is necessary to supply a large amount of HC by post injection or the like in order to burn the accumulated PM, HC poisoning is likely to occur. When HC poisoning occurs, the DPF temperature does not rise quickly, and PM is not burned well, so it is particularly important to avoid this.
[0009]
The object of the present invention is to avoid the HC poisoning of the catalyst carried on the exhaust aftertreatment device itself in the exhaust gas purification device of the internal combustion engine, thereby eliminating the need for the recovery operation of the catalyst activity, and the PM in the meantime. The purpose is to prevent the deterioration of the combustion performance and the purification performance of harmful components, or to prevent problems such as carbonization of adhering HC, to maintain the catalyst performance for a long time, and to realize a highly reliable device.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the exhaust gas purifying apparatus for an internal combustion engine according to claim 1, a DPF carrying an oxidation catalyst disposed in an exhaust passage of an internal combustion engine, a temperature detecting means for detecting the temperature of the DPF, the to regenerate the DPF, post-injection, the HC supply means for supplying hydrocarbon to the DPF by either or a combination of operations increase the retard and EGR quantity of the fuel injection timing, HC supplied to the DPF the amount, the HC amount detecting means for calculating the sum of the HC amount caused by unburned HC amount and the HC supply means for generating on the basis of the combustion in the internal combustion engine, the temperature of the DPF detected by the temperature detecting means HC subjected to corresponding determines the upper limit value of the supply can be the amount of HC to the DPF, HC amount calculated by the HC amount detection means for controlling said HC supply means so as not to exceed the upper limit And a quantity control means, the HC amount detecting means, the amount of HC by the HC supply means, due to the operation of the HC supply means and the amount of HC is actually supplied to the DPF, the HC supply means The basic HC amount corresponding to the operation amount is calculated by subtracting the amount burned in the cylinder of the internal combustion engine, and the HC supply amount control means determines the upper limit value of the HC amount as the temperature of the DPF, the DPF It is determined based on the relationship of the amount of HC that does not cause HC poisoning when it is supplied .
[0011]
The present inventors have, as the temperature of the DPF is focused on the point that greatly affects the HC poisoning, determines the upper limit of which can be supplied HC amount according to the temperature of the DPF, detected by the HC amount detecting means It has been found that HC poisoning can be prevented by controlling the HC supply means based on the amount of HC to be supplied and limiting the amount of HC to be supplied to the upper limit value or less. In this way, since HC poisoning of the catalyst itself can be avoided, the recovery operation of the catalyst activity becomes unnecessary, and problems such as deterioration in purification performance during the recovery operation or carbonization of the attached HC are prevented. Therefore, a highly reliable apparatus with excellent catalyst performance can be realized.
Specifically, the amount of HC supplied to the DPF can be easily controlled by employing any one or combination of post-injection, retarding of fuel injection timing and increasing EGR amount as the HC supply means. Therefore, the control by the HC supply amount control means can be easily performed. Further, the hydrocarbons flowing into the DPF include hydrocarbons generated by combustion of the internal combustion engine in addition to the hydrocarbons supplied from the HC supply means, and the combined amount of these is the amount of HC supplied. By comparing with the upper limit value, more accurate control is possible.
[0013]
According to a second aspect of the present invention, the HC amount detection means calculates the amount of combustion in the cylinder of the internal combustion engine among the basic HC amounts according to the operation amount of the HC supply means based on the operating conditions of the internal combustion engine. ,
The HC supply amount control means determines whether or not the HC amount hydrocarbon amount calculated by the HC amount detection means is less than or equal to the upper limit value, and if a negative determination is made, becomes less than or equal to the upper limit value. Until then, the HC amount by the HC supply means is corrected to decrease.
[0014]
4. The configuration according to claim 3 , wherein the HC amount detection means calculates the basic HC amount according to the operation amount of the HC supply means and the HC amount of the unburned portion generated based on the combustion of the internal combustion engine as an operating condition of the internal combustion engine. Calculate based on
[0015]
According to a fourth aspect of the present invention, the temperature detecting means detects an exhaust temperature upstream of the DPF . Specifically, since the temperature of the exhaust gas flowing into the DPF greatly affects whether or not HC poisoning occurs, the upper limit value of the amount of HC that can be supplied is determined based on the exhaust gas temperature upstream of the DPF. By doing so, HC poisoning and reduction in purification performance can be avoided more effectively.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of an exhaust emission control device for a diesel engine. Between the exhaust pipes 2a and 2b, which are exhaust passages of the diesel engine 1, a diesel particulate having an oxidation catalyst supported on the surface as an exhaust aftertreatment device. A filter (hereinafter referred to as an oxidation catalyst-attached DPF) 3 is installed. The oxidation catalyst-attached DPF3 is formed, for example, by forming heat-resistant ceramics such as cordierite into a honeycomb structure and sealing a number of cells serving as gas flow paths so that the inlet side or the outlet side are staggered. An oxidation catalyst such as Pt is applied to the wall surface. The exhaust gas discharged from the engine 1 flows downstream while passing through the porous partition wall of the DPF 3 with an oxidation catalyst, and particulates (PM) are collected and gradually accumulated therebetween.
[0018]
Exhaust temperature sensors 41 and 42 are respectively installed in the upstream exhaust pipe 2a and the downstream exhaust pipe 2b of the oxidation catalyst-attached DPF 3. The exhaust temperature sensors 41 and 42 are connected to the ECU 6, detect the inlet gas temperature or the outlet gas temperature of the DPF 3 with an oxidation catalyst, and output it to the ECU 6. The upstream exhaust temperature sensor 41 is used as a temperature detection means for knowing the temperature of the oxidation catalyst-attached DPF 3 in the supply HC amount control described later. An air flow meter (intake air amount sensor) 43 is installed in the intake pipe 11 of the engine 1 to detect the intake air amount and output it to the ECU 6. The intake pipe 11 of the engine 1 communicates with the exhaust pipe 2a on the upstream side of the DPF 3 with the oxidation catalyst by an EGR passage 71 provided with the EGR valve 7. The driving of the EGR valve 7 is controlled by the ECU 6.
[0019]
The exhaust pipes 2a and 2b are connected to a differential pressure sensor 5 for detecting a differential pressure across the oxidation catalyst DPF 3 in order to know the amount of particulates collected by the oxidation catalyst DPF 3 (PM collection amount). Is done. One end side of the differential pressure sensor 5 is connected to the exhaust pipe 2a upstream of the DPF 3 with oxidation catalyst, and the other end side is connected to the exhaust pipe 2b downstream of the DPF 3 with oxidation catalyst via pressure introduction pipes 51 and 52, respectively. A signal corresponding to the differential pressure across the attached DPF 3 is output to the ECU 6. The ECU 6 calculates the PM accumulation amount from the differential pressure across the oxidation catalyst-attached DPF 3, and performs regeneration control of the oxidation catalyst-attached DPF 3 when the PM accumulation amount exceeds a predetermined amount.
[0020]
Various sensors such as an accelerator opening sensor 61 and a rotation speed sensor 62 are further connected to the ECU 6. The ECU 6 detects the operating state based on the detection signals from these sensors, calculates the optimal fuel injection amount, injection timing, injection pressure, etc. according to the operating state, and controls the fuel injection to the engine 1. Further, by adjusting the valve opening degree of the EGR valve 7, the exhaust amount (EGR amount) recirculated to the intake air is controlled.
[0021]
Here, the HC poisoning accompanying the regeneration of the oxidation catalyst-attached DPF 3 will be described. During regeneration of the DPF 3 with an oxidation catalyst, the ECU 6 performs an operation of supplying HC to the DPF 3 with an oxidation catalyst in order to burn the accumulated PM (HC supply means). The supplied HC is combusted by the oxidation catalyst supported on the surface of the cell wall of the DPF 3 with oxidation catalyst, and the DPF 3 with oxidation catalyst rises to a temperature at which the PM can be combusted by the combustion heat. Specifically, as the HC supply means, operations such as post injection, fuel injection timing retardation, EGR amount increase, intake throttle, etc. are performed, and two or more of these operations can be combined.
[0022]
However, at this time, if the temperature of the oxidation catalyst-attached DPF 3 is low, there is a problem that HC poisoning occurs. HC poisoning means that the catalyst reaction rate is low because the catalyst temperature is low, and when a large amount of HC is supplied to the catalyst, the supplied HC adheres to the catalyst surface and closes to the catalyst (Pt, etc.) This refers to a phenomenon in which the catalytic reaction is lowered due to the inhibition of the diffusion of gas containing harmful components. Since this HC poisoning is caused by physical adsorption of HC on the catalyst, it can be reversibly recovered by reducing the amount of HC supplied and keeping the catalyst temperature high.
[0023]
Therefore, in the present invention, the ECU 6 determines the upper limit value of the amount of HC that can be supplied to the DPF 3 with oxidation catalyst according to the temperature of the DPF 3 with oxidation catalyst, so that the actually supplied HC amount is less than or equal to the upper limit value. The HC supply means is controlled (HC supply amount control means). FIG. 2 is based on an experiment conducted by the present inventors. Both the upstream exhaust temperature of the DPF 3 with an oxidation catalyst (DPF input gas temperature) and the amount of HC supplied to the DPF 3 with an oxidation catalyst (input gas HC amount) are both shown. In the figure taken on the axis, the region where HC poisoning occurs is shown. In FIG. 2, it was determined that HC poisoning occurred when the catalyst temperature change after HC supply (temperature increase rate per unit time) <predetermined value, and in other cases it was determined that there was no HC poisoning. This is because if there is no HC poisoning, the catalyst temperature rises quickly, and if there is HC poisoning, the rise in the catalyst temperature becomes small.
[0024]
As shown in the figure, the temperature of the exhaust gas containing HC supplied (inflowing) to the oxidation catalyst-attached DPF 3 greatly influences whether or not HC poisoning occurs, and the upstream exhaust temperature of the oxidation catalyst-attached DPF 3 is When the temperature is 250 ° C. or lower, the possibility of HC poisoning is extremely high. When the upstream exhaust temperature is 250 ° C. or higher, the higher the upstream exhaust temperature, the less likely HC poisoning occurs, and the upper limit value of the amount of HC that can be supplied to the HC poisoning increases. Therefore, specifically, the temperature of the oxidation catalyst-provided DPF 3 = the upstream exhaust temperature (the detected temperature of the exhaust temperature sensor 41), and the upper limit value of the HC amount at which HC poisoning does not occur is determined based on FIG. On the other hand, the amount of HC in the exhaust gas supplied to the oxidation catalyst-attached DPF 3 is detected (HC amount detection means), and the result is compared with the above upper limit value to determine whether HC poisoning occurs. At this time, the HC amount detection means calculates the amount of HC supplied to the oxidation catalyst-attached DPF 3 by the following equation.
Supply HC amount = (1) HC amount generated by engine combustion + (2) HC amount supplied by the HC supply means, that is, to be considered in the present invention (causing HC poisoning) The “supplied HC amount” is obtained by adding the HC amount generated by combustion of the engine and the HC amount supplied by the HC supply means such as post injection.
[0025]
More specifically,
(1) The amount of HC generated by engine combustion is obtained based on engine operating conditions (for example, engine speed and output torque).
For example, FIG. 3 is a diagram showing the amount of HC generated by engine combustion in a graph in which the engine speed and output torque are taken on both axes, and by storing this relationship in advance, the engine speed and output (1) The amount of HC due to engine combustion can be easily calculated from the torque.
[0026]
Also,
(2) The amount of HC supplied by the HC supply unit can be obtained based on the operation amount (for example, post injection amount) of the HC supply unit and the engine condition (for example, output torque).
FIG. 4 shows the post-injection amount under each engine operating condition in the graph in which the engine speed and the output torque are taken on both axes. This is adapted in advance for each engine operating condition, and is the basic post injection amount in the present invention. However, since a part of the post-injected fuel burns in the cylinder, the post-injection amount is not equal to the HC amount supplied by the post-injection. Therefore, in the present invention, the amount of HC supplied by the HC supply means is calculated in consideration of this combustion amount. This will be described with reference to FIG.
[0027]
The amount of HC actually supplied to the DPF 3 with the oxidation catalyst due to the post injection varies depending on the engine output torque and the like as shown in FIG. This is because the amount of post-injected fuel that burns in the cylinder varies depending on the temperature inside the cylinder and the post-injection timing. Therefore, by using the relationship of FIG. 5, the amount of post-injection combusted in the cylinder is obtained, and (2) the amount of HC by the HC supply means (the amount of HC supplied to the DPF due to post-injection) It can be calculated as follows:
HC amount supplied to DPF due to post-injection = (basic post-injection amount [FIG. 4] —combustion in cylinder of post-injection amount [FIG. 5]) × constant (constant: injection amount is HC amount Constant to convert to
[0028]
The ECU 6 compares the supplied HC amount calculated by the HC amount detecting means in this way with the upper limit value of the HC amount at which HC poisoning does not occur. If the upper limit value is exceeded, there is a possibility that HC poisoning may occur. It is determined that there is, and the amount of HC supplied by the HC supply means such as post injection is corrected to decrease. Thereby, it is possible to avoid the occurrence of HC poisoning by controlling the supplied HC amount to be equal to or lower than the upper limit value.
[0029]
Note that the basic post-injection amount in FIG. 4 is obtained on the engine test bench when the temperature of the oxidation catalyst-attached DPF 3 is sufficiently stable. Usually, since it is desired to quickly raise the temperature of the oxidation catalyst-attached DPF 3 at the time of regeneration, the basic post injection amount is determined from the viewpoint of performing as much post injection as possible. For this reason, when actually mounted on a vehicle and operating, even if the engine operating conditions are the same, the temperature of the oxidation catalyst-attached DPF 3 does not match the temperature when the basic post-injection amount is obtained on the engine test bench Cases arise (especially immediately after start-up or early acceleration). The present invention avoids this, and corrects the amount of supplied HC to supply an appropriate amount of HC, thereby preventing HC poisoning.
[0030]
FIG. 6 is a flowchart showing an example of HC supply amount control by the ECU 6. First, in step 101, the ECU 6 determines whether an HC supply operation to the oxidation catalyst-attached DPF 3 by the HC supply means is being performed, in this case, a post injection execution condition. If an affirmative determination is made in step 101, the process proceeds to step 102, and the engine speed and the accelerator opening are read from the outputs of the accelerator opening sensor 61 and the rotation speed sensor 62. Further, the exhaust temperature upstream of the oxidation catalyst-attached DPF 3 is read from the output of the exhaust temperature sensor 41. If step 101 is negative, the process ends without executing post injection.
[0031]
Here, the post injection is executed to regenerate the DPF 3 with the oxidation catalyst by burning the PM when the amount of PM deposited on the oxidation catalyst-attached DPF 3 exceeds a predetermined amount. Specifically, after main fuel injection for engine operation (expansion process after top dead center), a small amount of fuel is additionally injected to generate unburned HC, which is supplied to the DPF 3 with an oxidation catalyst. The HC supplied to the oxidation catalyst-attached DPF 3 is burned by the catalyst on the oxidation catalyst-attached DPF 3, and the combustion heat causes the DPF to become high temperature (for example, 500 ° C. or more), so that the PM on the oxidation catalyst-attached DPF 3 burns. The same applies to operations such as retarding the fuel injection timing or increasing the EGR amount instead of post-injection.
[0032]
At that time, whether or not the amount of PM deposited on the oxidation catalyst-attached DPF 3 has reached a predetermined amount is calculated, for example, from the differential pressure before and after the oxidation catalyst-attached DPF 3 detected by the differential pressure sensor 5, The determination is made by comparing with a predetermined amount determined in advance. This utilizes the fact that the differential pressure generated when a predetermined amount of exhaust gas passes through the oxidation catalyst-attached DPF 3 is correlated with the amount of PM deposited on the oxidation catalyst-attached DPF 3, and these relationships are obtained in advance through experiments or the like. . The amount of exhaust is calculated from, for example, the intake air amount detected by the air flow meter 43, the temperature before and after the oxidation catalyst-attached DPF 3 detected by the exhaust temperature sensors 41 and 42, the differential pressure detected by the differential pressure sensor 5, and the like.
[0033]
In step 103, the engine output torque calculated from the engine speed and the accelerator opening is used, and based on the relationship shown in FIG. 3 (preliminarily obtained through experiments or the like and stored in the ECU 6) The amount of HC discharged from the engine is calculated. Further, at step 104, the basic post-injection amount is determined based on FIG. 4 using the engine output torque calculated from the engine speed and the accelerator opening. This basic post injection amount is adapted in advance for each engine operating condition and stored in the ECU 6.
[0034]
In step 105, the basic post-injection amount determined in step 104 and the engine output torque calculated from the accelerator opening are used to obtain the post-injection amount combusted in the cylinder based on FIG. As shown in FIG. 5, as the output torque increases, the amount of fuel combusted in the cylinder increases. Therefore, the temperature in the cylinder becomes high, and the fuel combusted in the cylinder increases even if the post injection amount is the same.
[0035]
In step 106, the DPF supply HC amount is calculated. First, using the value determined in steps 104 and 105 for the amount of HC by post injection,
HC amount supplied to DPF due to post injection = (basic post injection amount [FIG. 4] −post injection amount combusted in cylinder [FIG. 5]) × constant, this value and step Using the value calculated in 103,
DPF supply HC amount = HC amount discharged from the engine + HC amount supplied to the DPF due to post injection The DPF supply HC amount is calculated.
[0036]
In step 107, the upper limit value of the DPF supply HC amount that does not cause HC poisoning corresponding to the current exhaust temperature is calculated from the exhaust temperature upstream of the oxidation catalyst-attached DPF 3 read in step 102 using the relationship of FIG. . In step 108, the upper limit value is compared with the DPF supply HC amount calculated in step 106 to determine whether the DPF supply HC amount is equal to or less than the upper limit value. If the DPF supply HC amount exceeds the upper limit value, the process proceeds to step 109, and the post injection amount is corrected to decrease until the DPF supply HC amount becomes the upper limit value. That is, a guard is applied so that the supplied HC amount does not exceed the upper limit value.
[0037]
Then, it progresses to step 110 and performs post injection based on a correction result. If the DPF supply HC amount is less than or equal to the upper limit value in step 108, the routine proceeds to step 110 and post injection is executed.
[0038]
FIG. 7 is a time chart showing the effect of the present invention. The solid line indicates the amount of HC supplied when the HC amount supplied to the DPF 3 with the oxidation catalyst is controlled based on the flowchart of FIG. 6 (the present invention). This is a case where control is not performed (conventional). Conventionally, even when the exhaust temperature upstream of the DPF 3 with an oxidation catalyst (DPF upstream temperature) is relatively low, a large amount of HC is supplied for PM combustion. The temperature of the attached DPF 3 does not increase easily. On the other hand, in the present invention, the amount of HC supplied to the DPF 3 with oxidation catalyst so as not to cause HC poisoning according to the exhaust temperature upstream of the DPF 3 with oxidation catalyst (HC amount by engine combustion + post injection, etc.) Since the HC amount is adjusted, the temperature of the oxidation catalyst-attached DPF 3 can be quickly raised. As a result, it is possible to effectively realize the combustion of PM on the DPF 3 with an oxidation catalyst or the purification of harmful components in the exhaust.
[0039]
As described above, according to the present invention, it is possible to prevent HC poisoning in advance to avoid a decrease in catalyst performance due to the adhesion of HC, and to accompany a recovery operation when HC poisoning has occurred. Deterioration of fuel consumption can be avoided.
[0041]
Note that when the upper limit value is calculated using the DPF upstream exhaust temperature, the DPF upstream exhaust temperature varies greatly depending on the operating conditions. Therefore, it is also possible to use an average value of a plurality of points sampled for stable detection. . In the above embodiment, the HC amount detection means calculates the DPF supply HC amount based on the engine operating conditions or the like, but an HC sensor is provided as the HC amount detection means to directly detect the HC amount. Is also possible. Further, without providing the HC amount detection means, it is possible for the HC supply amount control means to calculate the post injection amount so as not to exceed the upper limit value in consideration of HC poisoning in advance.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust emission control device showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a region where HC poisoning occurs in a diagram in which the DPF upstream exhaust temperature and the DPF supply HC amount are taken on both axes.
FIG. 3 is a diagram showing the amount of HC generated by engine combustion in a graph in which engine speed and output torque are taken on both axes.
FIG. 4 is a diagram showing the post-injection amount under each engine operating condition in a graph in which the engine speed and output torque are taken on both axes.
FIG. 5 is a diagram showing the relationship between the amount of post-injection and post-injected fuel combusted in a cylinder, using engine output torque as a parameter.
FIG. 6 is a flowchart showing an example of control of the ECU according to the present invention.
FIG. 7 is a time chart showing the effect of the present invention.
[Explanation of symbols]
1 Diesel engine (internal combustion engine)
2a, 2b Exhaust passage 3 DPF with oxidation catalyst (exhaust aftertreatment device)
41, 42 Exhaust temperature sensor (temperature detection means)
43 Air Flow Meter 5 Differential Pressure Sensor 6 ECU (HC Supply Control Unit)
61 Rotational speed sensor 62 Accelerator opening sensor 7 EGR valve 71 EGR passage
Claims (4)
上記HC量検出手段は、上記HC供給手段によるHC量を、上記HC供給手段の操作に起因して上記DPFに実際に供給されるHC量とし、上記HC供給手段の操作量に応じた基本HC量のうち内燃機関のシリンダ内で燃焼する量を減ずることにより算出し、
上記HC供給量制御手段は、上記HC量の上限値を、上記DPFの温度と、上記DPFに供給された時にHC被毒を生じることのないHC量の関係に基づいて決定することを特徴とする内燃機関の排気浄化装置。A DPF carrying an oxidation catalyst installed in an exhaust passage of an internal combustion engine, a temperature detecting means for detecting the temperature of the DPF, to regenerate the aforementioned DPF, post-injection, retarding the fuel injection timing and EGR amount HC supply means for supplying hydrocarbons to the DPF by any one or a combination of the operations of increasing the amount of HC, the amount of HC supplied to the DPF , the amount of unburned HC generated based on the combustion of the internal combustion engine, and the amount of HC HC amount detection means for calculating the sum of HC amounts by the HC supply means; and an upper limit value of the HC amount that can be supplied to the DPF according to the temperature of the DPF detected by the temperature detection means; HC supply amount control means for controlling the HC supply means so that the HC amount calculated by the detection means is not more than the upper limit value,
The HC amount detection means uses the HC amount by the HC supply means as the HC amount actually supplied to the DPF due to the operation of the HC supply means, and the basic HC according to the operation amount of the HC supply means calculated by subtracting the amount of combustion in a cylinder of an internal combustion engine of the amount,
The HC supply amount control means determines the upper limit value of the HC amount based on the relationship between the temperature of the DPF and the HC amount that does not cause HC poisoning when supplied to the DPF. An exhaust purification device for an internal combustion engine.
上記HC供給量制御手段は、上記HC量検出手段にて算出されたHC量が上記上限値以下であるかどうかを判定し、否定判定された場合には、上記上限値以下となるまで、上記HC供給手段によるHC量を減量補正する請求項1記載の内燃機関の排気浄化装置。 The HC amount detection means calculates the amount of combustion in the cylinder of the internal combustion engine among the basic HC amounts according to the operation amount of the HC supply means, based on the operating conditions of the internal combustion engine,
The HC supply amount control means determines whether or not the HC amount calculated by the HC amount detection means is less than or equal to the upper limit value. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the amount of HC by the HC supply means is corrected to decrease .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003005595A JP4178960B2 (en) | 2003-01-14 | 2003-01-14 | Exhaust gas purification device for internal combustion engine |
US10/754,560 US20040139738A1 (en) | 2003-01-14 | 2004-01-12 | Exhaust gas purification system of internal combustion engine |
DE102004001827.8A DE102004001827B4 (en) | 2003-01-14 | 2004-01-13 | Emission control system of an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003005595A JP4178960B2 (en) | 2003-01-14 | 2003-01-14 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004218497A JP2004218497A (en) | 2004-08-05 |
JP4178960B2 true JP4178960B2 (en) | 2008-11-12 |
Family
ID=32588497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003005595A Expired - Fee Related JP4178960B2 (en) | 2003-01-14 | 2003-01-14 | Exhaust gas purification device for internal combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040139738A1 (en) |
JP (1) | JP4178960B2 (en) |
DE (1) | DE102004001827B4 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081460A1 (en) * | 2010-12-16 | 2012-06-21 | いすゞ自動車株式会社 | Dpf system |
US10184379B2 (en) | 2014-08-27 | 2019-01-22 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7412822B2 (en) * | 2005-01-27 | 2008-08-19 | Southwest Research Institute | Regeneration control for diesel particulate filter for treating diesel engine exhaust |
US7343735B2 (en) * | 2005-05-02 | 2008-03-18 | Cummins, Inc. | Apparatus and method for regenerating an exhaust gas aftertreatment component of an internal combustion engine |
JP2006316744A (en) * | 2005-05-13 | 2006-11-24 | Honda Motor Co Ltd | Exhaust gas processing system of internal combustion engine |
EP1900928A4 (en) * | 2005-07-06 | 2009-04-29 | Toyota Motor Co Ltd | Exhaust gas purification system in internal combustion engine |
JP2007187149A (en) * | 2005-12-13 | 2007-07-26 | Nissan Motor Co Ltd | Fuel injection control method and fuel injection controller for engine |
JP4591423B2 (en) * | 2006-08-09 | 2010-12-01 | 株式会社デンソー | Engine unburned fuel estimation device, exhaust purification device temperature estimation device |
DE102008058010B4 (en) * | 2008-11-19 | 2015-03-12 | Continental Automotive Gmbh | Method and device for operating an internal combustion engine |
JP2010168955A (en) * | 2009-01-21 | 2010-08-05 | Nissan Motor Co Ltd | Device and method for controlling recirculation exhaust gas temperature of internal combustion engine |
US8307632B2 (en) * | 2009-08-25 | 2012-11-13 | International Engine Intellectual Property Company, Llc | Post injection bucketing strategy to avoid hardware cavitation |
US20130204508A1 (en) * | 2012-02-08 | 2013-08-08 | GM Global Technology Operations LLC | System and method for controlling an engine |
DE102012011603A1 (en) * | 2012-06-12 | 2013-12-12 | Volkswagen Aktiengesellschaft | Exhaust system and method for operating such |
WO2014102932A1 (en) * | 2012-12-26 | 2014-07-03 | トヨタ自動車株式会社 | Exhaust purification system for internal combustion engine |
JP2015068267A (en) * | 2013-09-30 | 2015-04-13 | いすゞ自動車株式会社 | Exhaust emission control system and exhaust emission control method |
JP6300085B2 (en) * | 2014-04-14 | 2018-03-28 | 日産自動車株式会社 | Internal combustion engine system |
US20160084135A1 (en) * | 2014-09-22 | 2016-03-24 | Caterpillar Inc. | Catalyst Protection Against Hydrocarbon Exposure |
JP6606931B2 (en) * | 2014-10-23 | 2019-11-20 | 三菱自動車工業株式会社 | Exhaust aftertreatment device for internal combustion engine |
EP3012441B1 (en) * | 2014-10-23 | 2018-09-19 | Mitsubishi Jidosha Kogyo K.K. | Exhaust after treatment apparatus for internal combustion engine |
US10508607B2 (en) * | 2017-09-19 | 2019-12-17 | Ford Global Technologies, Llc | Diesel engine particulate filter regeneration system and methods |
CN114109564B (en) * | 2021-11-30 | 2022-08-30 | 宁波楷世环保科技有限公司 | Tail gas treatment system only comprising Diesel Particulate Filter (DPF) |
CN115045739B (en) * | 2022-05-16 | 2024-02-20 | 潍柴动力股份有限公司 | Emission control method, emission control device and emission control system of marine diesel engine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11257125A (en) * | 1998-03-12 | 1999-09-21 | Nippon Soken Inc | Method for controlling temperature of catalyst |
JP3584738B2 (en) * | 1998-06-29 | 2004-11-04 | 日産自動車株式会社 | In-cylinder direct injection spark ignition engine |
JP3325231B2 (en) * | 1998-08-03 | 2002-09-17 | マツダ株式会社 | Control device for in-cylinder injection engine |
JP3779828B2 (en) * | 1998-08-12 | 2006-05-31 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP3285002B2 (en) * | 1999-02-19 | 2002-05-27 | 三菱自動車工業株式会社 | In-cylinder injection internal combustion engine |
JP4253986B2 (en) * | 2000-03-03 | 2009-04-15 | マツダ株式会社 | In-cylinder injection engine control device |
US6568178B2 (en) * | 2000-03-28 | 2003-05-27 | Toyota Jidosha Kabushiki Kaisha | Device for purifying the exhaust gas of an internal combustion engine |
JP4389372B2 (en) * | 2000-09-29 | 2009-12-24 | マツダ株式会社 | Engine fuel control device |
JP3812362B2 (en) * | 2001-04-19 | 2006-08-23 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
-
2003
- 2003-01-14 JP JP2003005595A patent/JP4178960B2/en not_active Expired - Fee Related
-
2004
- 2004-01-12 US US10/754,560 patent/US20040139738A1/en not_active Abandoned
- 2004-01-13 DE DE102004001827.8A patent/DE102004001827B4/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081460A1 (en) * | 2010-12-16 | 2012-06-21 | いすゞ自動車株式会社 | Dpf system |
US10184379B2 (en) | 2014-08-27 | 2019-01-22 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE102004001827A1 (en) | 2004-07-22 |
DE102004001827B4 (en) | 2015-07-23 |
US20040139738A1 (en) | 2004-07-22 |
JP2004218497A (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4178960B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4506539B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4755893B2 (en) | NOx-PM simultaneous reduction device regeneration control method and device | |
JP3558017B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20030200746A1 (en) | Exhaust gas purification system having particulate filter | |
JP2004124855A (en) | Exhaust emission control device for internal combustion engine | |
EP2559876B1 (en) | Exhaust gas purification device, and control method for exhaust gas purification device | |
JP4363289B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2008031854A (en) | Exhaust emission control device for internal combustion engine | |
JP2011226314A (en) | Exhaust emission control system | |
JP4544011B2 (en) | Internal combustion engine exhaust purification system | |
JP4211611B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004346794A (en) | Exhaust emission control device for internal combustion engine | |
JP4320586B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004150416A (en) | Regeneration method for particulate filter | |
JP4613787B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2010116817A (en) | Exhaust emission control device of engine | |
JP2010249076A (en) | Exhaust emission control device of internal combustion engine | |
JP3633365B2 (en) | Exhaust gas purification device | |
JP2009299617A (en) | Exhaust emission control device for internal combustion engine | |
JP4032774B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004353596A (en) | Exhaust emission control device | |
JP4070687B2 (en) | Exhaust purification device | |
JP5332664B2 (en) | Engine exhaust purification system | |
JP2005016395A (en) | Emission control system for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4178960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |