WO2014102932A1 - Exhaust purification system for internal combustion engine - Google Patents

Exhaust purification system for internal combustion engine Download PDF

Info

Publication number
WO2014102932A1
WO2014102932A1 PCT/JP2012/083659 JP2012083659W WO2014102932A1 WO 2014102932 A1 WO2014102932 A1 WO 2014102932A1 JP 2012083659 W JP2012083659 W JP 2012083659W WO 2014102932 A1 WO2014102932 A1 WO 2014102932A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ammonia
scrf
filter
filter regeneration
Prior art date
Application number
PCT/JP2012/083659
Other languages
French (fr)
Japanese (ja)
Inventor
見上 晃
中山 茂樹
大橋 伸基
高田 圭
櫻井 健治
佳久 塚本
寛 大月
潤一 松尾
山本 一郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12891274.8A priority Critical patent/EP2940265A4/en
Priority to JP2014553938A priority patent/JPWO2014102932A1/en
Priority to CN201280078001.7A priority patent/CN104870767A/en
Priority to US14/655,586 priority patent/US20150330275A1/en
Priority to PCT/JP2012/083659 priority patent/WO2014102932A1/en
Publication of WO2014102932A1 publication Critical patent/WO2014102932A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification system for an internal combustion engine.
  • an exhaust purification device provided in an exhaust passage of an internal combustion engine has been developed in which a filter carries a selective reduction type NOx catalyst (hereinafter referred to as an SCR catalyst).
  • the filter collects particulate matter (hereinafter referred to as PM) in the exhaust.
  • the SCR catalyst reduces NOx in the exhaust gas using ammonia (NH 3 ) as a reducing agent.
  • a filter carrying such an SCR catalyst may be referred to as SCRF.
  • the size of the exhaust gas purification device can be made smaller than when the filter and the SCR catalyst are separately provided in the exhaust passage. Therefore, the mountability of the exhaust purification device can be improved. Further, by adopting SCRF, it becomes possible to arrange the SCR catalyst upstream of the exhaust passage. The more upstream the SCR catalyst is arranged in the exhaust passage, the more easily the SCR catalyst is heated by the heat of the exhaust. Therefore, it is possible to improve the warm-up property of the SCR catalyst and improve the NOx purification rate (the ratio of the NOx amount reduced in the SCR catalyst to the NOx amount flowing into the SCRF) in the SCR catalyst.
  • Patent Document 1 discloses a configuration in which an oxidation catalyst, an injector, an SCRF, and a slip oxidation catalyst are sequentially provided from the upstream side along the flow of exhaust gas in an exhaust passage of a diesel engine.
  • An injector is a device that injects ammonia or a precursor of ammonia into the exhaust.
  • the slip oxidation catalyst is a catalyst that oxidizes ammonia that has passed through the SCRF.
  • the filter regeneration process is a process for oxidizing and depositing PM deposited on the SCRF.
  • the filter regeneration process is realized by supplying fuel to a pre-stage catalyst having an oxidation function provided in an exhaust passage upstream of SCRF.
  • the exhaust gas flowing into the SCRF is heated by the oxidation heat. Therefore, the temperature of SCRF can be raised to the filter regeneration temperature at which PM oxidation is promoted.
  • Patent Document 2 discloses a technique for reducing the amount of ammonia supplied to the SCRF before heat regeneration (filter regeneration) of the SCRF. According to this, the amount of ammonia adsorbed on the SCR catalyst can be reduced before the thermal regeneration of the SCRF. As a result, it is possible to suppress the release of ammonia accompanying the thermal regeneration of SCRF.
  • Patent Document 3 estimates the amount of HC attached to the SCR catalyst provided in the exhaust passage, and raises the temperature of the SCR catalyst when the amount of HC attached exceeds the allowable amount of attachment.
  • a technique for desorbing HC is disclosed.
  • Patent Document 2 discloses a technique for stopping the temperature increase of the SCR catalyst when the amount of HC adhering to the SCR catalyst decreases to a predetermined lower limit after the temperature increase of the SCR catalyst is started.
  • SCRF is supplied with ammonia or an ammonia precursor. Then, in the SCR catalyst carried on the SCRF, NOx in the exhaust is reduced using ammonia as a reducing agent.
  • ammonia when ammonia is oxidized, NOx may be generated. Since it is necessary to suppress the generation of such NOx, it is difficult to carry a catalyst having a high oxidation ability on SCRF. Therefore, the SCR catalyst supported on SCRF has very low oxidation ability.
  • a part of the HC contained in the fuel supplied to the pre-stage catalyst may pass through the pre-stage catalyst without being oxidized in the pre-stage catalyst.
  • HC that has passed through the front catalyst flows into SCRF.
  • the SCR catalyst supported on SCRF has a very low oxidation ability. Therefore, when HC flows into SCRF, a part of the HC adheres to SCRF. Then, there is a possibility that the attached HC is not oxidized but remains attached to the SCRF.
  • the ammonia adsorption site to which ammonia should be adsorbed in the SCR catalyst supported on the SCRF is blocked by the HC.
  • the ammonia adsorption site is blocked by HC, it becomes difficult for ammonia to be adsorbed on the SCR catalyst after the completion of the filter regeneration process. As a result, the NOx purification rate in the SCR catalyst decreases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to suppress a decrease in the NOx purification rate accompanying the execution of the filter regeneration process in an exhaust gas purification system for an internal combustion engine equipped with an SCRF.
  • the temperature of the SCRF is raised by raising the temperature of the exhaust gas discharged from the internal combustion engine, thereby removing HC adhering to the SCRF.
  • the exhaust gas purification system for an internal combustion engine is: A pre-stage catalyst provided in the exhaust passage of the internal combustion engine and having an oxidation function; A fuel supply device for supplying fuel to the upstream catalyst; A filter that is provided in an exhaust passage downstream of the preceding catalyst and collects particulate matter in exhaust gas, and carries a selective reduction type NOx catalyst that reduces NOx in exhaust gas using ammonia as a reducing agent.
  • SCRF An ammonia supply device for supplying ammonia or an ammonia precursor to the filter
  • a filter regeneration process execution unit for performing a filter regeneration process for increasing the temperature of the filter by supplying fuel from the fuel supply device to the upstream catalyst, thereby removing particulate matter deposited on the filter; After the completion of the filter regeneration process by the filter regeneration process execution unit, the temperature of the filter is raised by raising the temperature of the exhaust discharged from the internal combustion engine, thereby removing the HC adhering to the filter.
  • An HC poisoning recovery process execution unit that executes a poison recovery process.
  • the temperature of the SCRF When the temperature of the SCRF is raised by raising the temperature of the exhaust gas discharged from the internal combustion engine, the temperature of the SCRF can be raised while suppressing an increase in the amount of HC flowing into the SCRF. Therefore, by executing the HC poisoning recovery process after the completion of the filter regeneration process, it is possible to remove HC adhering to the SCRF by executing the filter regeneration process while suppressing the attachment of new HC to the SCRF. it can.
  • the HC poisoning recovery process may be executed for a time corresponding to the amount of HC adhering to the SCRF at the start of execution of the HC poisoning recovery process.
  • the HC poisoning recovery process may be executed for a time corresponding to the execution time of the filter regeneration process. According to these, it is possible to suppress the HC poisoning recovery processing from being excessively long while sufficiently removing the HC adhering to the SCRF.
  • ammonia or an ammonia precursor in an amount corresponding to the SCRF temperature may be supplied to the SCRF by the ammonia supply device until the SCRF temperature reaches the target temperature during the filter regeneration process.
  • ammonia can be adsorbed on the ammonia adsorption site in the SCR catalyst even during the time that the SCRF temperature reaches the target temperature during the execution of the filter regeneration process. Therefore, the amount of HC adsorbed on the SCRF during the filter regeneration process can be suppressed. Therefore, the execution time of the HC poisoning recovery process can be shortened.
  • the present invention in the exhaust gas purification system for an internal combustion engine equipped with SCRF, it is possible to suppress a decrease in the NOx purification rate accompanying the execution of the filter regeneration process.
  • FIG. 1 is a diagram illustrating a schematic configuration of an intake / exhaust system of an internal combustion engine according to Embodiment 1.
  • FIG. 3 is a flowchart illustrating a flow of filter regeneration processing and HC poisoning recovery processing according to the first embodiment.
  • SCRF temperature Tf, pre-catalyst temperature Tpc, fuel addition amount Fadd from the fuel addition valve, post-injection amount Fpost in the internal combustion engine, SCRF when the filter regeneration process and the HC poisoning recovery process according to the first embodiment are executed 6 is a time chart showing transitions of the HC adhesion amount Qhc, the ammonia gas addition amount Aadd from the ammonia addition valve, and the ammonia adsorption amount Qam on the SCR catalyst.
  • 6 is a flowchart showing a flow of filter regeneration processing and HC poisoning recovery processing according to a modification of the first embodiment.
  • 12 is a flowchart illustrating a flow of ammonia gas addition control during the execution of the filter regeneration process according to the second embodiment.
  • SCRF temperature Tf, pre-catalyst catalyst temperature Tpc, fuel addition amount Fadd from the fuel addition valve, post-injection amount Fpost in the internal combustion engine, SCRF when the filter regeneration process and the HC poisoning recovery process according to the second embodiment are executed 6 is a time chart showing transitions of the HC adhesion amount Qhc, the ammonia gas addition amount Aadd from the ammonia addition valve, and the ammonia adsorption amount Qam on the SCR catalyst.
  • Example 1 Here, the case where the exhaust gas purification system for an internal combustion engine according to the present invention is applied to a diesel engine for driving a vehicle will be described.
  • the internal combustion engine according to the present invention is not limited to a diesel engine, and may be a gasoline engine or the like.
  • FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment.
  • the internal combustion engine 1 is a diesel engine for driving a vehicle.
  • An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1.
  • An air flow meter 11 is provided in the intake passage 2. The air flow meter 11 detects the intake air amount of the internal combustion engine 1.
  • a first exhaust temperature sensor 12 In the exhaust passage 3, a first exhaust temperature sensor 12, a fuel addition valve 4, a front catalyst 5, an ammonia addition valve 6, SCRF 7, a second exhaust temperature sensor 13, a rear catalyst 8, and a third exhaust temperature sensor 14 are exhausted. It is provided in order from the upstream side along the flow.
  • the pre-stage catalyst 5 is an oxidation catalyst. However, the pre-stage catalyst 5 may be a catalyst other than the oxidation catalyst as long as it has an oxidation function.
  • the fuel addition valve 4 adds fuel into the exhaust gas in order to supply fuel to the front catalyst 5.
  • the fuel addition valve 4 corresponds to the fuel supply apparatus according to the present invention.
  • the timing is later than the main fuel injection, and the injected fuel is not burned in the combustion chamber and is not burned in the exhaust passage 3.
  • SCRF7 is configured by supporting an SCR catalyst 7a on a wall flow type filter that collects PM in exhaust gas.
  • the SCR catalyst 7a reduces NOx in the exhaust gas using ammonia as a reducing agent.
  • the ammonia addition valve 6 adds ammonia gas into the exhaust gas so as to supply ammonia to the SCRF 7.
  • ammonia is supplied to the SCRF 7, the ammonia is once adsorbed at an ammonia adsorption site in the SCR catalyst 7a supported on the SCRF 7. Then, the adsorbed ammonia becomes a reducing agent, and NOx in the exhaust is reduced.
  • the ammonia addition valve 6 corresponds to the ammonia supply device according to the present invention.
  • the ammonia supply device according to the present invention may be a device that supplies ammonia as a liquid or a solid.
  • the ammonia supply apparatus according to the present invention may be an apparatus for supplying an ammonia precursor.
  • a urea addition valve for adding an aqueous urea solution into the exhaust gas may be provided instead of the ammonia addition valve 6, a urea addition valve for adding an aqueous urea solution into the exhaust gas may be provided. In this case, urea is supplied to SCRF 7 as an ammonia precursor. And ammonia is produced
  • the latter stage catalyst 8 is an oxidation catalyst.
  • the rear catalyst 8 may be another catalyst having an oxidation function.
  • the rear catalyst 8 may be a catalyst configured by combining an oxidation catalyst and an SCR catalyst that reduces ammonia in exhaust using ammonia as a reducing agent.
  • an oxidation catalyst is formed by supporting a noble metal such as platinum (Pt) on a support made of aluminum oxide (Al 2 O 3 ), zeolite, or the like, and copper (Cu SCR catalyst may be formed by supporting a base metal such as iron or iron (Fe).
  • the rear catalyst 8 By making the rear catalyst 8 a catalyst having such a configuration, HC, CO and ammonia in the exhaust can be oxidized, and further, a part of ammonia is oxidized and NOx is generated and generated. NOx can be reduced using excess ammonia as a reducing agent.
  • the first exhaust temperature sensor 12, the second exhaust temperature sensor 13, and the third exhaust temperature sensor 14 are sensors that detect the temperature of the exhaust.
  • the first exhaust temperature sensor 12 detects the temperature of the exhaust discharged from the internal combustion engine 1.
  • the second exhaust temperature sensor 13 detects the temperature of the exhaust gas flowing out from the SCRF 7.
  • the third exhaust temperature sensor 14 detects the temperature of the exhaust gas flowing out from the rear catalyst 8.
  • the internal combustion engine 1 is provided with an electronic control unit (ECU) 10.
  • ECU electronice control unit
  • Various sensors such as an air flow meter 11, a first exhaust temperature sensor 12, a second exhaust temperature sensor 13, and a third exhaust temperature sensor 14 are electrically connected to the ECU 10. And the output signal of various sensors is input into ECU10.
  • the ECU 10 estimates the flow rate of the exhaust gas in the exhaust passage 3 based on the output value of the air flow meter 11. Further, the ECU 10 estimates the temperature of the SCRF 7 based on the output value of the second exhaust temperature sensor 13 and estimates the temperature of the rear catalyst 8 based on the output value of the third exhaust temperature sensor 14.
  • the ECU 10 is electrically connected to the fuel injection valve, the fuel addition valve 4 and the ammonia addition valve 6 of the internal combustion engine 1. These devices are controlled by the ECU 10.
  • the collected PM is gradually deposited on the SCRF 7. Therefore, in this embodiment, a filter regeneration process is executed to remove PM deposited on the SCRF 7.
  • the filter regeneration process according to the present embodiment is realized by adding fuel from the fuel addition valve 4 and supplying the fuel to the front catalyst 5 thereby. When the fuel is oxidized in the front catalyst 5, oxidation heat is generated. The exhaust gas flowing into the SCRF 7 is heated by this oxidation heat. Thereby, the temperature of SCRF7 rises.
  • the amount of fuel added from the fuel addition valve 4 is controlled to raise the temperature of the SCRF 7 to a predetermined filter regeneration temperature (for example, 650 ° C.) at which PM oxidation is promoted. As a result, PM deposited on SCRF 7 is oxidized and removed.
  • a predetermined filter regeneration temperature for example, 650 ° C.
  • the filter regeneration process is executed every time a predetermined time elapses.
  • the filter regeneration process may be executed each time a vehicle equipped with the internal combustion engine 1 travels a predetermined travel distance. Further, the filter regeneration process may be executed every time the PM accumulation amount in SCRF 7 reaches a predetermined accumulation amount.
  • the PM accumulation amount in the SCRF 7 can be estimated based on the history of the fuel injection amount in the internal combustion engine 1, the flow rate of the exhaust gas flowing into the SCRF 7, the temperature of the SCRF 7, and the like.
  • a part of the HC contained in the fuel supplied to the front catalyst 5 may pass through the front catalyst 5 without being oxidized in the front catalyst 5.
  • HC that has passed through the front catalyst 5 flows into the SCRF 7.
  • the SCR catalyst 7a supported on the SCRF 7 has a very low oxidizing ability. Therefore, when HC flows into SCRF7, a part of the HC adheres to SCRF7. Then, there is a possibility that the attached HC is not oxidized but remains attached to the SCRF.
  • the ammonia adsorption site to which ammonia should be adsorbed in the SCR catalyst 7a supported on the SCRF 7 is blocked by the HC.
  • the HC poisoning recovery process is executed to remove the HC adhering to the SCRF 7.
  • the HC poisoning recovery process is a process of increasing the temperature of the SCRF 7 to an HC poisoning recovery temperature (for example, 650 ° C.) at which HC oxidation is promoted by increasing the temperature of the exhaust gas discharged from the internal combustion engine 1.
  • This HC poisoning recovery process is realized in the internal combustion engine 1 by executing the auxiliary fuel injection at a timing later than the main fuel injection and when the injected fuel is used for combustion in the combustion chamber. The By executing the auxiliary fuel injection at such timing, the temperature of the exhaust gas discharged from the internal combustion engine 1 can be raised.
  • the auxiliary fuel injection executed at such timing is referred to as post injection.
  • the temperature of the SCRF 7 When the temperature of the SCRF 7 is increased by increasing the temperature of the exhaust gas discharged from the internal combustion engine 1, the temperature of the SCRF 7 can be increased while suppressing an increase in the amount of HC flowing into the SCRF 7. Therefore, by executing the HC poisoning recovery process after the completion of the filter regeneration process, it is possible to remove the HC adhering to the SCRF 7 by executing the filter regeneration process while suppressing the adhesion of new HC to the SCRF 7. it can.
  • FIG. 2 is a flowchart showing the flow of the filter regeneration process and the HC poisoning recovery process according to this embodiment. This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
  • step S101 it is determined whether or not an execution condition for the filter regeneration process is satisfied. In this embodiment, when a predetermined time has elapsed since the previous execution of the filter regeneration process has been completed, it is determined that the condition for executing the filter regeneration process has been satisfied. If a negative determination is made in step S101, the execution of this flow is temporarily terminated. On the other hand, when an affirmative determination is made in step S101, the process of step S102 is executed next.
  • step S102 fuel addition from the fuel addition valve 4 is executed. That is, the filter regeneration process is executed.
  • the temperature of the SCRF 7 is adjusted to the filter regeneration temperature, which is the target temperature, by controlling the amount of fuel added from the fuel addition valve 4.
  • step S103 it is determined whether or not an execution end condition for the filter regeneration process is satisfied.
  • a predetermined regeneration execution time has elapsed since the start of the execution of the filter regeneration process, it is determined that the execution end condition for the filter regeneration process is satisfied.
  • step S103 If a negative determination is made in step S103, the processes in steps S102 and S103 are executed again. On the other hand, when a positive determination is made in step S103, the process of step S104 is performed next. In step S104, the fuel addition from the fuel addition valve 4 is stopped. That is, the execution of the filter regeneration process is terminated.
  • step S105 the HC adhesion amount Qhc at the current SCRF 7 is calculated.
  • the amount of HC adhering to the SCRF 7 per unit time and the amount of HC oxidized per unit time during execution of the filter regeneration process are the amount of fuel added from the fuel addition valve 4, the flow rate of exhaust, the temperature of the pre-stage catalyst 5, and It can be estimated based on the temperature of the SCRF 7 or the like. Then, by accumulating these values, the HC adhesion amount Qhc in SCRF 7 can be calculated.
  • step S106 an execution time ⁇ Tp of the HC poisoning recovery process to be executed is set.
  • the execution time ⁇ Tp of the HC poisoning recovery process is set based on the HC adhesion amount Qhc in SCRF7. That is, when the HC adhesion amount Qhc in SCRF 7 is large, the execution time ⁇ Tp of the HC poisoning recovery process is set shorter than when the HC adhesion amount Qhc is small.
  • the relationship between the HC adhesion amount Qhc in SCRF 7 and the execution time ⁇ Tp of the HC poisoning recovery process is determined based on experiments and the like. The relationship between these values is stored in advance in the ECU 10 as a map or a function.
  • step S107 post injection in the internal combustion engine 1 is executed. That is, the HC poisoning recovery process is executed.
  • the temperature of the SCRF 7 is adjusted to the HC poisoning recovery temperature, which is the target temperature, by controlling the injection timing and the injection amount of the auxiliary fuel injection.
  • the HC poisoning recovery temperature and the filter regeneration temperature may be the same temperature.
  • step S108 whether or not the time ⁇ Tp set in step S106 has elapsed since the start of the post injection in the internal combustion engine 1, that is, the start of the HC poisoning recovery process. Determined. If a negative determination is made in step S108, the processes in steps S107 and S108 are executed again. On the other hand, if an affirmative determination is made in step S108, the process of step S109 is then executed. In step S109, the post injection is stopped. That is, the execution of the HC poisoning recovery process is terminated.
  • the execution time ⁇ Tp of the HC poisoning recovery process is set based on the HC adhesion amount Qhc in SCRF7.
  • the HC poisoning recovery process may be executed without setting the execution time of the HC poisoning recovery process in advance.
  • the residual amount of HC in SCRF 7 is estimated during the execution of the HC poisoning recovery process.
  • the execution of the HC poisoning recovery process may be terminated when the estimated residual HC amount is equal to or less than the predetermined residual amount.
  • the amount of HC oxidation per unit time during execution of the HC poisoning recovery process can be estimated based on the flow rate of the exhaust gas, the temperature of the SCRF 7, and the like.
  • the HC residual amount in SCRF 7 can be calculated by subtracting the HC oxidation amount from the HC adhesion amount at the start of execution of the HC poisoning recovery process.
  • the execution time of the HC poisoning recovery process may be set based on the execution time of the filter regeneration process. In this case, when the execution time of the filter regeneration process is short, the execution time of the HC poisoning recovery process is set shorter than when the execution time of the filter regeneration process is long. Also by this, it is possible to suppress excessively long execution time of the HC poisoning recovery process while sufficiently removing the HC adhering to the SCRF 7.
  • the execution time of the HC poisoning recovery process may be a predetermined time. Even in this case, the HC adhering to the SCRF 7 can be removed by executing the filter regeneration process. However, from the viewpoint of suppressing deterioration in fuel consumption, it is preferable to change the execution time of the HC poisoning recovery process according to the HC adhesion amount in SCRF 7 or the execution time of the filter regeneration process as described above.
  • the PM residual amount in SCRF 7 may be estimated during the filter regeneration process. Then, in step S103 of the above flow, when the estimated PM residual amount becomes equal to or smaller than the predetermined residual amount, it may be determined that the condition for ending the filter regeneration process is satisfied.
  • the amount of PM oxidation per unit time during the execution of the filter regeneration process can be estimated based on the exhaust flow rate, the temperature of the SCRF 7, and the like. Then, the PM residual amount in SCRF 7 can be calculated by subtracting the PM oxidation amount from the PM deposition amount at the start of execution of the filter regeneration process.
  • the predetermined residual amount may be an amount larger than an amount at which it can be determined that substantially all of the oxidizable PM has been removed.
  • the temperature of the SCRF 7 is adjusted to a target temperature substantially the same as the target temperature in the filter regeneration process even during the execution of the HC poisoning recovery process. Therefore, even if PM remains in the SCRF 7 when the filter regeneration process is completed, the remaining PM can be oxidized and removed during the execution of the HC poisoning recovery process.
  • FIG. 3 shows the temperature Tf of the SCRF 7, the temperature Tpc of the front catalyst 5, the fuel addition amount Fadd from the fuel addition valve 4, the internal combustion engine 1 when the filter regeneration process and the HC poisoning recovery process according to this embodiment are executed.
  • 6 is a time chart showing changes in post injection amount Fpost at HC, HC adhesion amount Qhc at SCRF7, ammonia gas addition amount Aadd from the ammonia addition valve 6, and ammonia adsorption amount Qam at the SCR catalyst 7a.
  • the horizontal axis represents time t.
  • Tft represents the target temperature (filter regeneration temperature, HC poisoning recovery temperature) of SCRF 7 in the filter regeneration process and the HC poisoning recovery process.
  • the fuel addition from the fuel addition valve 4 is executed from time t0 to time t3. That is, the execution time of the filter regeneration process is from time t0 to t3. Therefore, during the period from time t0 to t3, the HC attachment amount Qhc in SCRF7 increases. During this time, the temperature Tf of the SCRF 7 gradually increases from the time t1 to the time t2, and the SCRF temperature Tf is maintained at the target temperature (filter regeneration temperature) Tft from the time t2 to the time t3.
  • the period from time t3 to t4 is the execution time of the HC poisoning recovery process.
  • the supply of new HC to the SCRF 7 is suppressed, and the temperature Tf of the SCRF 7 is maintained at the target temperature (HC poisoning recovery temperature). Therefore, during the period from time t3 to t4, the HC adhesion amount Qhc in SCRF7 decreases.
  • the temperature Tf of the SCRF 7 reaches the target temperature (filter regeneration temperature, HC poisoning recovery temperature) Tft, it is difficult for ammonia to be adsorbed on the SCR catalyst 7a. Therefore, in the present embodiment, the addition of ammonia gas from the ammonia addition valve 6 is stopped during the execution of the filter regeneration process and the HC poisoning recovery process.
  • the temperature Tf of SCRF 7 (that is, the temperature of the SCR catalyst 7a) gradually decreases between time t4 and time t5. Accordingly, the amount of ammonia that can be adsorbed on the SCR catalyst 7a increases. Therefore, during the time t4 to t5, the ammonia gas addition amount Aadd from the ammonia addition valve 6 is gradually increased. Thereby, during the time t4 to t5, the ammonia adsorption amount Qam in the SCR catalyst 7a gradually increases.
  • FIG. 4 is a flowchart showing the flow of filter regeneration processing and HC poisoning recovery processing according to this modification.
  • processes other than step S205 are the same as those in the flowchart shown in FIG. Therefore, only the process of step S205 will be described, and the description of the process of other steps will be omitted.
  • This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
  • step S205 it is determined whether or not the temperature of SCRF 7 has become equal to or lower than a predetermined processing start temperature Tf0.
  • the processing start temperature Tf0 is a temperature that is equal to or lower than a target temperature (filtering temperature) for the filter regeneration processing and is equal to or higher than a lower limit value of the temperature at which HC attached to the SCRF 7 can be oxidized.
  • This processing start temperature Tf0 is determined in advance based on experiments and the like.
  • step S104 If a negative determination is made in step S104, the process of step S104 is executed again. On the other hand, if an affirmative determination is made in step S104, the process of step S105 is then executed.
  • step S105 the amount of HC deposited in SCRF 7 at the current time is subtracted from the amount of HC deposited in SCRF 7 at the end of execution of the filter regeneration process to subtract the amount of HC oxidized after the completion of execution of the filter regeneration process. Is calculated.
  • the execution time ⁇ Tp of the HC poisoning recovery process set in step S106 can be shortened. As a result, it becomes possible to further suppress the deterioration of fuel consumption accompanying the execution of the HC poisoning recovery process.
  • Example 2 The schematic configuration of the intake and exhaust system of the internal combustion engine according to the present embodiment is the same as that according to the first embodiment. Hereinafter, only differences from the first embodiment in the filter regeneration process and the HC poisoning recovery process according to the present embodiment will be described.
  • Example 1 As described above, when the temperature of the SCRF 7 rises to the target temperature (filter regeneration temperature, HC poisoning recovery temperature), it is difficult for ammonia to be adsorbed on the SCR catalyst 7a. Therefore, in Example 1, the addition of ammonia gas from the ammonia addition valve 6 was stopped during the execution of the filter regeneration process and the HC poisoning recovery process. However, ammonia can be adsorbed on the SCR catalyst 7a until the temperature of the SCRF 7 reaches the target temperature during the filter regeneration process, that is, while the temperature of the SCRF 7 is lower than the target temperature. Therefore, in this embodiment, addition of ammonia gas from the ammonia addition valve 6 is executed until the temperature of the SCRF 7 reaches the target temperature even during execution of the filter regeneration process.
  • ammonia can be adsorbed on the ammonia adsorption sites in the SCR catalyst 7a even during the time until the temperature of the SCRF 7 reaches the target temperature during execution of the filter regeneration process. Therefore, the amount of HC adhering to SCRF 7 during the filter regeneration process can be suppressed. As a result, the amount of HC adhering to SCRF 7 at the end of execution of the filter regeneration process can be reduced.
  • FIG. 5 is a flowchart showing a flow of ammonia gas addition control during the execution of the filter regeneration process according to the present embodiment. This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
  • step S301 it is determined whether or not the filter regeneration process is being executed. If a negative determination is made in step S301, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S301, the process of step S302 is then executed.
  • step S302 it is determined whether or not the temperature Tf of the SCRF 7 is lower than the target temperature Tft (filter regeneration temperature) Tft. If an affirmative determination is made in step S302, then the process of step S303 is executed.
  • step S303 an ammonia gas addition amount Add from the ammonia addition valve 6 is set.
  • the ammonia gas addition amount Add is set according to the temperature Tf of SCRF 7 (that is, the temperature of SCR catalyst 7a). That is, when the temperature Tf of the SCRF 7 is high, the ammonia addition amount Add is set smaller than when the temperature is low.
  • the relationship between the ammonia addition amount Add and the temperature Tf of the SCRF 7 is determined based on experiments and the like. The relationship between these values is stored in advance in the ECU 10 as a map or a function.
  • step S304 addition of ammonia from the ammonia addition valve 6 is executed. At this time, the amount of ammonia added is adjusted to the amount set in step S303.
  • step S302 determines whether the temperature of SCRF 7 has reached the target temperature Tft. If a negative determination is made in step S302, that is, if the temperature of SCRF 7 has reached the target temperature Tft, the process of step S305 is then executed. In step S305, the addition of ammonia gas from the ammonia addition valve 6 is stopped.
  • the amount of ammonia gas added from the ammonia addition valve 6 gradually increases as the temperature of the SCRF 7 rises. Reduced to Thereby, it can suppress that an excessive amount of ammonia gas is supplied to SCRF7. Therefore, the ammonia outflow from SCRF 7 can be suppressed.
  • FIG. 6 shows the temperature Tf of the SCRF 7, the temperature Tpc of the front catalyst 5, the fuel addition amount Fadd from the fuel addition valve 4, the internal combustion engine 1 when the filter regeneration process and the HC poisoning recovery process according to this embodiment are executed.
  • 6 is a time chart showing changes in post injection amount Fpost at HC, HC adhesion amount Qhc at SCRF7, ammonia gas addition amount Aadd from the ammonia addition valve 6, and ammonia adsorption amount Qam at the SCR catalyst 7a.
  • the horizontal axis represents time t.
  • Tft represents the target temperature (filter regeneration temperature, HC poisoning recovery temperature) of SCRF 7 in the filter regeneration process and the HC poisoning recovery process.
  • the solid line indicates the transition of each value according to the present embodiment, and the broken line indicates the transition of each value when the filter regeneration process and the HC poisoning recovery process according to the first embodiment are performed. Show.
  • the addition of ammonia gas from the ammonia addition valve 6 is also executed during the time t0 to t2 during which the filter regeneration process is being executed. Then, during the time t1 to t2, the amount of ammonia gas added from the ammonia addition valve 6 is gradually reduced as the temperature of the SCRF 7 rises. As a result, at the time t2, the ammonia adsorption amount Qam in the SCR catalyst 7a becomes substantially zero.
  • the execution time of the HC poisoning recovery process (time from t3 to t4) can be shortened compared to the case of the first embodiment.
  • the SCRF 7 rises to a temperature at which PM oxidation is promoted, as in the filter regeneration process.
  • the temperature of the SCRF 7 is set to the same temperature by supplying fuel to the upstream catalyst 5. Compared with the case where the fuel consumption is increased up to, the fuel consumption is increased. Therefore, removal of PM deposited on SCRF 7 is performed by filter regeneration processing in order to suppress deterioration of fuel consumption.

Abstract

The objective of the present invention is to prevent a decrease in the NOx purification rate in conjunction with a filter regeneration process in an exhaust purification system for an internal combustion engine equipped with a filter supporting an SCR catalyst. In the present invention, after execution of the filter regeneration process is completed the temperature of the exhaust discharged from the internal combustion engine is increased, thereby increasing the filter temperature and removing hydrocarbons adhering to the filter.

Description

内燃機関の排気浄化システムExhaust gas purification system for internal combustion engine
 本発明は、内燃機関の排気浄化システムに関する。 The present invention relates to an exhaust gas purification system for an internal combustion engine.
 従来、内燃機関の排気通路に設けられる排気浄化装置として、フィルタに選択還元型NOx触媒(以下、SCR触媒と称する)を担持させたものが開発されている。フィルタは、排気中の粒子状物質(以下、PMと称する)を捕集する。SCR触媒は、アンモ二ア(NH)を還元剤として排気中のNOxを還元する。以下、このようなSCR触媒を担持したフィルタをSCRFと称する場合もある。 2. Description of the Related Art Conventionally, an exhaust purification device provided in an exhaust passage of an internal combustion engine has been developed in which a filter carries a selective reduction type NOx catalyst (hereinafter referred to as an SCR catalyst). The filter collects particulate matter (hereinafter referred to as PM) in the exhaust. The SCR catalyst reduces NOx in the exhaust gas using ammonia (NH 3 ) as a reducing agent. Hereinafter, a filter carrying such an SCR catalyst may be referred to as SCRF.
 排気浄化装置としてSCRFを採用することで、フィルタとSCR触媒とを別々に排気通路に設けた場合に比べて、排気浄化装置の大きさをより小さくすることができる。そのため、排気浄化装置の搭載性を向上させることができる。また、SCRFを採用することで、排気通路におけるより上流側にSCR触媒を配置することが可能となる。排気通路におけるSCR触媒の配置がより上流側であるほど、該SCR触媒が排気の熱によって加熱され易くなる。そのため、SCR触媒の暖機性の向上や、SCR触媒におけるNOx浄化率(SCRFに流入するNOx量に対するSCR触媒において還元されるNOx量の割合)の向上を図ることができる。 By adopting SCRF as the exhaust gas purification device, the size of the exhaust gas purification device can be made smaller than when the filter and the SCR catalyst are separately provided in the exhaust passage. Therefore, the mountability of the exhaust purification device can be improved. Further, by adopting SCRF, it becomes possible to arrange the SCR catalyst upstream of the exhaust passage. The more upstream the SCR catalyst is arranged in the exhaust passage, the more easily the SCR catalyst is heated by the heat of the exhaust. Therefore, it is possible to improve the warm-up property of the SCR catalyst and improve the NOx purification rate (the ratio of the NOx amount reduced in the SCR catalyst to the NOx amount flowing into the SCRF) in the SCR catalyst.
 特許文献1には、ディーゼルエンジンの排気通路において、酸化用触媒、注入器、SCRF、及びスリップ酸化用触媒を排気の流れに沿って上流側から順に設けた構成が開示されている。注入器は、アンモニア又はアンモニアの前駆体を排気に注入する装置である。スリップ酸化用触媒は、SCRFをすり抜けたアンモニアを酸化する触媒である。 Patent Document 1 discloses a configuration in which an oxidation catalyst, an injector, an SCRF, and a slip oxidation catalyst are sequentially provided from the upstream side along the flow of exhaust gas in an exhaust passage of a diesel engine. An injector is a device that injects ammonia or a precursor of ammonia into the exhaust. The slip oxidation catalyst is a catalyst that oxidizes ammonia that has passed through the SCRF.
 ここで、SCRFには、捕集されたPMが堆積する。そのため、SCRFを備えた排気浄化システムにおいてはフィルタ再生処理が実行される。フィルタ再生処理は、SCRFに堆積したPMを酸化させて除去する処理である。フィルタ再生処理は、SCRFよりも上流側の排気通路に設けられた酸化機能を有する前段触媒に燃料を供給することで実現される。前段触媒において燃料が酸化されると、SCRFに流入する排気が酸化熱によって加熱される。そのため、SCRFの温度を、PMの酸化が促進されるフィルタ再生温度まで上昇させることができる。 Here, the collected PM is deposited on the SCRF. Therefore, filter regeneration processing is executed in an exhaust purification system equipped with SCRF. The filter regeneration process is a process for oxidizing and depositing PM deposited on the SCRF. The filter regeneration process is realized by supplying fuel to a pre-stage catalyst having an oxidation function provided in an exhaust passage upstream of SCRF. When the fuel is oxidized in the pre-stage catalyst, the exhaust gas flowing into the SCRF is heated by the oxidation heat. Therefore, the temperature of SCRF can be raised to the filter regeneration temperature at which PM oxidation is promoted.
 特許文献2には、SCRFの熱再生(フィルタ再生)の前に、該SCRFへのアンモニアの供給量を低減する技術が開示されている。これによれば、SCRFの熱再生の前にSCR触媒におけるアンモニア吸着量を減少させることができる。その結果、SCRFの熱再生に伴うアンモニアの放出を抑制することができる。 Patent Document 2 discloses a technique for reducing the amount of ammonia supplied to the SCRF before heat regeneration (filter regeneration) of the SCRF. According to this, the amount of ammonia adsorbed on the SCR catalyst can be reduced before the thermal regeneration of the SCRF. As a result, it is possible to suppress the release of ammonia accompanying the thermal regeneration of SCRF.
 また、特許文献3には、排気通路に設けられたSCR触媒におけるHC付着量を推定し、該HC付着量が許容付着量を超えたときに、SCR触媒を昇温させることで該SCR触媒からHCを脱離させる技術が開示されている。さらに、特許文献2には、SCR触媒の昇温開始後、SCR触媒におけるHC付着量が予め定められた下限値まで低下したときに該SCR触媒の昇温を停止する技術が開示されている。 Further, Patent Document 3 estimates the amount of HC attached to the SCR catalyst provided in the exhaust passage, and raises the temperature of the SCR catalyst when the amount of HC attached exceeds the allowable amount of attachment. A technique for desorbing HC is disclosed. Further, Patent Document 2 discloses a technique for stopping the temperature increase of the SCR catalyst when the amount of HC adhering to the SCR catalyst decreases to a predetermined lower limit after the temperature increase of the SCR catalyst is started.
特表2007-501353号公報Special table 2007-501353 gazette 特開2007-170388号公報JP 2007-170388 A 特開2009-41437号公報JP 2009-41437 A
 SCRFには、アンモニア又はアンモニアの前駆体が供給される。そして、SCRFに担持されたSCR触媒において、アンモニアを還元剤として排気中のNOxが還元される。ここで、アンモニアが酸化されるとNOxが生成される場合がある。このようなNOxの生成を抑制する必要があるため、SCRFには酸化能力の高い触媒を担持させることが困難である。従って、SCRFに担持されたSCR触媒は酸化能力が非常に低い。 SCRF is supplied with ammonia or an ammonia precursor. Then, in the SCR catalyst carried on the SCRF, NOx in the exhaust is reduced using ammonia as a reducing agent. Here, when ammonia is oxidized, NOx may be generated. Since it is necessary to suppress the generation of such NOx, it is difficult to carry a catalyst having a high oxidation ability on SCRF. Therefore, the SCR catalyst supported on SCRF has very low oxidation ability.
 上記のようなフィルタ再生処理が実行された際には、前段触媒に供給された燃料に含まれるHCの一部が該前段触媒において酸化されずに該前段触媒をすり抜ける場合がある。前段触媒をすり抜けたHCはSCRFに流入する。上述したようにSCRFに担持されたSCR触媒は酸化能力が非常に低い。そのため、HCがSCRFに流入すると、該HCの一部がSCRFに付着する。そして、付着したHCが酸化されずにSCRFに付着したままの状態となる虞がある。 When the filter regeneration process as described above is executed, a part of the HC contained in the fuel supplied to the pre-stage catalyst may pass through the pre-stage catalyst without being oxidized in the pre-stage catalyst. HC that has passed through the front catalyst flows into SCRF. As described above, the SCR catalyst supported on SCRF has a very low oxidation ability. Therefore, when HC flows into SCRF, a part of the HC adheres to SCRF. Then, there is a possibility that the attached HC is not oxidized but remains attached to the SCRF.
 SCRFにHCが付着していると、SCRFに担持されたSCR触媒においてアンモニアが吸着すべきアンモニア吸着サイトがHCによって塞がれる。アンモニア吸着サイトがHCによって塞がれると、フィルタ再生処理の実行終了後において、SCR触媒にアンモニアが吸着し難くなる。その結果、SCR触媒におけるNOx浄化率が低下する。 When HC adheres to the SCRF, the ammonia adsorption site to which ammonia should be adsorbed in the SCR catalyst supported on the SCRF is blocked by the HC. When the ammonia adsorption site is blocked by HC, it becomes difficult for ammonia to be adsorbed on the SCR catalyst after the completion of the filter regeneration process. As a result, the NOx purification rate in the SCR catalyst decreases.
 本発明は、上記問題に鑑みてなされたものであって、SCRFを備えた内燃機関の排気浄化システムにおいて、フィルタ再生処理の実行に伴うNOx浄化率の低下を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress a decrease in the NOx purification rate accompanying the execution of the filter regeneration process in an exhaust gas purification system for an internal combustion engine equipped with an SCRF.
 本発明では、フィルタ再生処理の実行終了後、内燃機関から排出される排気の温度を上昇させることでSCRFの温度を上昇させ、それによってSCRFに付着したHCを除去する。 In the present invention, after the completion of the filter regeneration processing, the temperature of the SCRF is raised by raising the temperature of the exhaust gas discharged from the internal combustion engine, thereby removing HC adhering to the SCRF.
 より詳しくは、本発明に係る内燃機関の排気浄化システムは、
 内燃機関の排気通路に設けられ、酸化機能を有する前段触媒と、
 前記前段触媒に燃料を供給する燃料供給装置と、
 前記前段触媒より下流側の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタであって、アンモニアを還元剤として排気中のNOxを還元する選択還元型NOx触媒が担持されたフィルタ(SCRF)と、
 前記フィルタにアンモニア又はアンモニアの前駆体を供給するアンモニア供給装置と、
 前記燃料供給装置から前記前段触媒に燃料を供給することで前記フィルタの温度を上昇させ、それによって前記フィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行部と、
 前記フィルタ再生処理実行部によるフィルタ再生処理の実行終了後、内燃機関から排出される排気の温度を上昇させることで前記フィルタの温度を上昇させ、それによって前記フィルタに付着したHCを除去するHC被毒回復処理を実行するHC被毒回復処理実行部と、を備える。
More specifically, the exhaust gas purification system for an internal combustion engine according to the present invention is:
A pre-stage catalyst provided in the exhaust passage of the internal combustion engine and having an oxidation function;
A fuel supply device for supplying fuel to the upstream catalyst;
A filter that is provided in an exhaust passage downstream of the preceding catalyst and collects particulate matter in exhaust gas, and carries a selective reduction type NOx catalyst that reduces NOx in exhaust gas using ammonia as a reducing agent. (SCRF),
An ammonia supply device for supplying ammonia or an ammonia precursor to the filter;
A filter regeneration process execution unit for performing a filter regeneration process for increasing the temperature of the filter by supplying fuel from the fuel supply device to the upstream catalyst, thereby removing particulate matter deposited on the filter;
After the completion of the filter regeneration process by the filter regeneration process execution unit, the temperature of the filter is raised by raising the temperature of the exhaust discharged from the internal combustion engine, thereby removing the HC adhering to the filter. An HC poisoning recovery process execution unit that executes a poison recovery process.
 内燃機関から排出される排気の温度を上昇させることでSCRFの温度を上昇させた場合、SCRFに流入するHC量の増加を抑制しつつSCRFの温度を上昇させることができる。そのため、フィルタ再生処理の実行終了後、HC被毒回復処理を実行することで、SCRFへの新たなHCの付着を抑制しつつ、フィルタ再生処理の実行によってSCRFに付着したHCを除去することができる。 When the temperature of the SCRF is raised by raising the temperature of the exhaust gas discharged from the internal combustion engine, the temperature of the SCRF can be raised while suppressing an increase in the amount of HC flowing into the SCRF. Therefore, by executing the HC poisoning recovery process after the completion of the filter regeneration process, it is possible to remove HC adhering to the SCRF by executing the filter regeneration process while suppressing the attachment of new HC to the SCRF. it can.
 これにより、SCRFに担持されたSCR触媒におけるアンモニア吸着サイトが付着したHCによって塞がれたままの状態となることを抑制することができる。従って、本発明によれば、フィルタ再生処理の実行に伴うNOx浄化率の低下を抑制することができる。 Thereby, it can be prevented that the ammonia adsorption site in the SCR catalyst supported on the SCRF is blocked by the HC adhering thereto. Therefore, according to the present invention, it is possible to suppress a decrease in the NOx purification rate accompanying the execution of the filter regeneration process.
 本発明において、HC被毒回復処理は、該HC被毒回復処理の実行開始時のSCRFにおけるHC付着量に応じた時間実行されてもよい。また、HC被毒回復処理は、フィルタ再生処理の実行時間に応じた時間実行されてもよい。これらによれば、SCRFに付着したHCを十分に除去しつつ、HC被毒回復処理の実行時間が過剰に長くなることを抑制することができる。 In the present invention, the HC poisoning recovery process may be executed for a time corresponding to the amount of HC adhering to the SCRF at the start of execution of the HC poisoning recovery process. The HC poisoning recovery process may be executed for a time corresponding to the execution time of the filter regeneration process. According to these, it is possible to suppress the HC poisoning recovery processing from being excessively long while sufficiently removing the HC adhering to the SCRF.
 本発明においては、フィルタ再生処理の実行中においてSCRFの温度が目標温度に達するまでの間、SCRFの温度に応じた量のアンモニア又はアンモニアの前駆体をアンモニア供給装置によってSCRFに供給してもよい。 In the present invention, ammonia or an ammonia precursor in an amount corresponding to the SCRF temperature may be supplied to the SCRF by the ammonia supply device until the SCRF temperature reaches the target temperature during the filter regeneration process. .
 これによれば、フィルタ再生処理の実行中においてSCRFの温度が目標温度に達するまでの間においても、SCR触媒におけるアンモニア吸着サイトにアンモニアを吸着させることができる。従って、フィルタ再生処理の実行中におけるSCRFへのHCの吸着量を抑制することができる。そのため、HC被毒回復処理の実行時間を短縮することができる。 According to this, ammonia can be adsorbed on the ammonia adsorption site in the SCR catalyst even during the time that the SCRF temperature reaches the target temperature during the execution of the filter regeneration process. Therefore, the amount of HC adsorbed on the SCRF during the filter regeneration process can be suppressed. Therefore, the execution time of the HC poisoning recovery process can be shortened.
 本発明によれば、SCRFを備えた内燃機関の排気浄化システムにおいて、フィルタ再生処理の実行に伴うNOx浄化率の低下を抑制することができる。 According to the present invention, in the exhaust gas purification system for an internal combustion engine equipped with SCRF, it is possible to suppress a decrease in the NOx purification rate accompanying the execution of the filter regeneration process.
実施例1に係る内燃機関の吸排気系の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an intake / exhaust system of an internal combustion engine according to Embodiment 1. FIG. 実施例1に係るフィルタ再生処理及びHC被毒回復処理のフローを示すフローチャートである。3 is a flowchart illustrating a flow of filter regeneration processing and HC poisoning recovery processing according to the first embodiment. 実施例1に係るフィルタ再生処理及びHC被毒回復処理を実行した際の、SCRFの温度Tf、前段触媒の温度Tpc、燃料添加弁からの燃料添加量Fadd、内燃機関におけるポスト噴射量Fpost、SCRFにおけるHC付着量Qhc、アンモニア添加弁からのアンモニアガス添加量Aadd、及びSCR触媒におけるアンモニア吸着量Qamの推移を示すタイムチャートである。SCRF temperature Tf, pre-catalyst temperature Tpc, fuel addition amount Fadd from the fuel addition valve, post-injection amount Fpost in the internal combustion engine, SCRF when the filter regeneration process and the HC poisoning recovery process according to the first embodiment are executed 6 is a time chart showing transitions of the HC adhesion amount Qhc, the ammonia gas addition amount Aadd from the ammonia addition valve, and the ammonia adsorption amount Qam on the SCR catalyst. 実施例1の変形例に係るフィルタ再生処理及びHC被毒回復処理のフローを示すフローチャートである。6 is a flowchart showing a flow of filter regeneration processing and HC poisoning recovery processing according to a modification of the first embodiment. 実施例2に係るフィルタ再生処理の実行中におけるアンモニアガス添加制御のフローを示すフローチャートである。12 is a flowchart illustrating a flow of ammonia gas addition control during the execution of the filter regeneration process according to the second embodiment. 実施例2に係るフィルタ再生処理及びHC被毒回復処理を実行した際の、SCRFの温度Tf、前段触媒の温度Tpc、燃料添加弁からの燃料添加量Fadd、内燃機関におけるポスト噴射量Fpost、SCRFにおけるHC付着量Qhc、アンモニア添加弁からのアンモニアガス添加量Aadd、及びSCR触媒におけるアンモニア吸着量Qamの推移を示すタイムチャートである。SCRF temperature Tf, pre-catalyst catalyst temperature Tpc, fuel addition amount Fadd from the fuel addition valve, post-injection amount Fpost in the internal combustion engine, SCRF when the filter regeneration process and the HC poisoning recovery process according to the second embodiment are executed 6 is a time chart showing transitions of the HC adhesion amount Qhc, the ammonia gas addition amount Aadd from the ammonia addition valve, and the ammonia adsorption amount Qam on the SCR catalyst.
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.
  <実施例1>
 ここでは、本発明に係る内燃機関の排気浄化システムを、車両駆動用のディーゼルエンジンに適用した場合について説明する。ただし、本発明に係る内燃機関は、ディーゼルエンジンに限られるものではなく、ガソリンエンジン等であってもよい。
<Example 1>
Here, the case where the exhaust gas purification system for an internal combustion engine according to the present invention is applied to a diesel engine for driving a vehicle will be described. However, the internal combustion engine according to the present invention is not limited to a diesel engine, and may be a gasoline engine or the like.
 [吸排気系の概略構成]
 図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には吸気通路2及び排気通路3が接続されている。吸気通路2にはエアフローメータ11が設けられている。エアフローメータ11は内燃機関1の吸入空気量を検知する。
[Schematic configuration of intake and exhaust system]
FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment. The internal combustion engine 1 is a diesel engine for driving a vehicle. An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. An air flow meter 11 is provided in the intake passage 2. The air flow meter 11 detects the intake air amount of the internal combustion engine 1.
 排気通路3には、第1排気温度センサ12、燃料添加弁4、前段触媒5、アンモニア添加弁6、SCRF7、第2排気温度センサ13、後段触媒8、及び第3排気温度センサ14が排気の流れに沿って上流側から順に設けられている。 In the exhaust passage 3, a first exhaust temperature sensor 12, a fuel addition valve 4, a front catalyst 5, an ammonia addition valve 6, SCRF 7, a second exhaust temperature sensor 13, a rear catalyst 8, and a third exhaust temperature sensor 14 are exhausted. It is provided in order from the upstream side along the flow.
 前段触媒5は酸化触媒である。ただし、前段触媒5は、酸化機能を有する触媒であれば酸化触媒以外の触媒であってもよい。燃料添加弁4は、前段触媒5に燃料を供給すべく、排気中に燃料を添加する。 The pre-stage catalyst 5 is an oxidation catalyst. However, the pre-stage catalyst 5 may be a catalyst other than the oxidation catalyst as long as it has an oxidation function. The fuel addition valve 4 adds fuel into the exhaust gas in order to supply fuel to the front catalyst 5.
 尚、本実施例においては、燃料添加弁4が本発明に係る燃料供給装置に相当する。ただし、燃料添加弁4を設けずに、内燃機関1において、主燃料噴射よりも遅いタイミングであって、噴射された燃料が燃焼室内での燃焼に供されずに排気通路3に未燃の状態で排出されるタイミングで副燃料噴射を実行することで、前段触媒5に燃料を供給することもできる。 In this embodiment, the fuel addition valve 4 corresponds to the fuel supply apparatus according to the present invention. However, in the internal combustion engine 1 without providing the fuel addition valve 4, the timing is later than the main fuel injection, and the injected fuel is not burned in the combustion chamber and is not burned in the exhaust passage 3. By executing the auxiliary fuel injection at the timing of discharging at the step, fuel can be supplied to the pre-stage catalyst 5.
 SCRF7は、排気中のPMを捕集するウォールフロー型のフィルタにSCR触媒7aが担持されて構成されている。SCR触媒7aは、アンモニアを還元剤として排気中のNOxを還元する。アンモニア添加弁6は、SCRF7にアンモニアを供給すべく、排気中にアンモニアガスを添加する。SCRF7にアンモニアが供給されると該アンモニアはSCRF7に担持されたSCR触媒7aにおけるアンモニア吸着サイトに一旦吸着する。そして、吸着したアンモニアが還元剤となって排気中のNOxが還元される。 SCRF7 is configured by supporting an SCR catalyst 7a on a wall flow type filter that collects PM in exhaust gas. The SCR catalyst 7a reduces NOx in the exhaust gas using ammonia as a reducing agent. The ammonia addition valve 6 adds ammonia gas into the exhaust gas so as to supply ammonia to the SCRF 7. When ammonia is supplied to the SCRF 7, the ammonia is once adsorbed at an ammonia adsorption site in the SCR catalyst 7a supported on the SCRF 7. Then, the adsorbed ammonia becomes a reducing agent, and NOx in the exhaust is reduced.
 尚、アンモニアが酸化されるとNOxが生成される場合がある。このようなNOxの生成を抑制する必要があるため、SCRF7に担持されたSCR触媒7aは酸化能力が非常に低い。 In addition, when ammonia is oxidized, NOx may be generated. Since it is necessary to suppress the generation of such NOx, the SCR catalyst 7a supported on the SCRF 7 has a very low oxidation ability.
 本実施例においては、アンモニア添加弁6が本発明に係るアンモニア供給装置に相当する。ただし、本発明に係るアンモニア供給装置は、アンモニアを液体又は個体として供給する装置であってもよい。また、本発明に係るアンモニア供給装置は、アンモニアの前駆体を供給する装置であってもよい。例えば、本実施例において、アンモニア添加弁6に代えて、排気中に尿素水溶液を添加する尿素添加弁を設けてもよい。この場合、アンモニアの前駆体として尿素がSCRF7に供給される。そして、尿素が加水分解することでアンモニアが生成される。 In this embodiment, the ammonia addition valve 6 corresponds to the ammonia supply device according to the present invention. However, the ammonia supply device according to the present invention may be a device that supplies ammonia as a liquid or a solid. Further, the ammonia supply apparatus according to the present invention may be an apparatus for supplying an ammonia precursor. For example, in this embodiment, instead of the ammonia addition valve 6, a urea addition valve for adding an aqueous urea solution into the exhaust gas may be provided. In this case, urea is supplied to SCRF 7 as an ammonia precursor. And ammonia is produced | generated by urea hydrolyzing.
 後段触媒8は酸化触媒である。ただし、後段触媒8は、酸化機能を有する他の触媒であってもよい。また、後段触媒8は、酸化触媒と、アンモニアを還元剤として排気中のNOxを還元するSCR触媒とを組み合わせることで構成された触媒であってもよい。この場合、例えば、酸化アルミニウム(Al)やゼオライト等を材料とする担体に白金(Pt)等の貴金属を担持させることで酸化触媒を形成し、ゼオライトを材料とする担体に銅(Cu)や鉄(Fe)等の卑金属を担持させることでSCR触媒を形成してもよい。後段触媒8をこのような構成の触媒とすることで、排気中のHC、CO、及びアンモニアを酸化させることができ、さらに、アンモニアの一部を酸化させることでNOxを生成すると共に該生成されたNOxを余剰のアンモニアを還元剤として還元することもできる。 The latter stage catalyst 8 is an oxidation catalyst. However, the rear catalyst 8 may be another catalyst having an oxidation function. Further, the rear catalyst 8 may be a catalyst configured by combining an oxidation catalyst and an SCR catalyst that reduces ammonia in exhaust using ammonia as a reducing agent. In this case, for example, an oxidation catalyst is formed by supporting a noble metal such as platinum (Pt) on a support made of aluminum oxide (Al 2 O 3 ), zeolite, or the like, and copper (Cu SCR catalyst may be formed by supporting a base metal such as iron or iron (Fe). By making the rear catalyst 8 a catalyst having such a configuration, HC, CO and ammonia in the exhaust can be oxidized, and further, a part of ammonia is oxidized and NOx is generated and generated. NOx can be reduced using excess ammonia as a reducing agent.
 第1排気温度センサ12、第2排気温度センサ13、及び第3排気温度センサ14は排気の温度を検知するセンサである。第1排気温度センサ12は、内燃機関1から排出された排気の温度を検知する。第2排気温度センサ13は、SCRF7から流出した排気の温度を検知する。第3排気温度センサ14は、後段触媒8から流出した排気の温度を検知する。 The first exhaust temperature sensor 12, the second exhaust temperature sensor 13, and the third exhaust temperature sensor 14 are sensors that detect the temperature of the exhaust. The first exhaust temperature sensor 12 detects the temperature of the exhaust discharged from the internal combustion engine 1. The second exhaust temperature sensor 13 detects the temperature of the exhaust gas flowing out from the SCRF 7. The third exhaust temperature sensor 14 detects the temperature of the exhaust gas flowing out from the rear catalyst 8.
 内燃機関1には、電子制御ユニット(ECU)10が併設されている。ECU10には、エアフローメータ11、第1排気温度センサ12、第2排気温度センサ13、及び第3排気温度センサ14等の各種センサが電気的に接続されている。そして、各種センサの出力信号がECU10に入力される。ECU10は、エアフローメータ11の出力値に基づいて排気通路3における排気の流量を推定する。また、ECU10は、第2排気温度センサ13の出力値に基づいてSCRF7の温度を推定し、第3排気温度センサ14の出力値に基づいて後段触媒8の温度を推定する。 The internal combustion engine 1 is provided with an electronic control unit (ECU) 10. Various sensors such as an air flow meter 11, a first exhaust temperature sensor 12, a second exhaust temperature sensor 13, and a third exhaust temperature sensor 14 are electrically connected to the ECU 10. And the output signal of various sensors is input into ECU10. The ECU 10 estimates the flow rate of the exhaust gas in the exhaust passage 3 based on the output value of the air flow meter 11. Further, the ECU 10 estimates the temperature of the SCRF 7 based on the output value of the second exhaust temperature sensor 13 and estimates the temperature of the rear catalyst 8 based on the output value of the third exhaust temperature sensor 14.
 さらに、ECU10には、内燃機関1の燃料噴射弁、燃料添加弁4、及びアンモニア添加弁6が電気的に接続されている。そして、これらの装置がECU10によって制御される。 Furthermore, the ECU 10 is electrically connected to the fuel injection valve, the fuel addition valve 4 and the ammonia addition valve 6 of the internal combustion engine 1. These devices are controlled by the ECU 10.
 [フィルタ再生処理]
 SCRF7には、捕集されたPMが徐々に堆積する。そこで、本実施例においては、SCRF7に堆積したPMを除去するためにフィルタ再生処理が実行される。本実施例に係るフィルタ再生処理は、燃料添加弁4から燃料を添加し、それによって燃料を前段触媒5に供給することで実現される。前段触媒5において燃料が酸化されると酸化熱が生じる。この酸化熱によってSCRF7に流入する排気が加熱される。これにより、SCRF7の温度が上昇する。フィルタ再生処理の実行時においては、燃料添加弁4からの燃料添加量を制御することで、SCRF7の温度をPMの酸化が促進される所定のフィルタ再生温度(例えば、650℃)まで上昇させる。その結果、SCRF7に堆積したPMが酸化され除去される。
[Filter regeneration processing]
The collected PM is gradually deposited on the SCRF 7. Therefore, in this embodiment, a filter regeneration process is executed to remove PM deposited on the SCRF 7. The filter regeneration process according to the present embodiment is realized by adding fuel from the fuel addition valve 4 and supplying the fuel to the front catalyst 5 thereby. When the fuel is oxidized in the front catalyst 5, oxidation heat is generated. The exhaust gas flowing into the SCRF 7 is heated by this oxidation heat. Thereby, the temperature of SCRF7 rises. At the time of executing the filter regeneration process, the amount of fuel added from the fuel addition valve 4 is controlled to raise the temperature of the SCRF 7 to a predetermined filter regeneration temperature (for example, 650 ° C.) at which PM oxidation is promoted. As a result, PM deposited on SCRF 7 is oxidized and removed.
 本実施例では、フィルタ再生処理は所定時間が経過する毎に実行される。尚、内燃機関1を搭載した車両が所定の走行距離を走行する毎にフィルタ再生処理を実行してもよい。また、SCRF7におけるPM堆積量が所定の堆積量に達する毎にフィルタ再生処理を実行してもよい。SCRF7におけるPM堆積量は、内燃機関1での燃料噴射量、SCRF7に流入する排気の流量、及びSCRF7の温度等の履歴に基づいて推定することができる。 In this embodiment, the filter regeneration process is executed every time a predetermined time elapses. Note that the filter regeneration process may be executed each time a vehicle equipped with the internal combustion engine 1 travels a predetermined travel distance. Further, the filter regeneration process may be executed every time the PM accumulation amount in SCRF 7 reaches a predetermined accumulation amount. The PM accumulation amount in the SCRF 7 can be estimated based on the history of the fuel injection amount in the internal combustion engine 1, the flow rate of the exhaust gas flowing into the SCRF 7, the temperature of the SCRF 7, and the like.
 上記のようなフィルタ再生処理が実行された時には、前段触媒5に供給された燃料に含まれるHCの一部が該前段触媒5において酸化されずに該前段触媒5をすり抜ける場合がある。前段触媒5をすり抜けたHCはSCRF7に流入する。ここで、上述したように、SCRF7に担持されたSCR触媒7aは酸化能力が非常に低い。そのため、HCがSCRF7に流入すると、該HCの一部がSCRF7に付着する。そして、付着したHCが酸化されずにSCRFに付着したままの状態となる虞がある。SCRF7にHCが付着していると、SCRF7に担持されたSCR触媒7aにおいてアンモニアが吸着すべきアンモニア吸着サイトがHCによって塞がれる。アンモニア吸着サイトがHCによって塞がれると、フィルタ再生処理の実行終了後において、SCR触媒7aにアンモニアが吸着し難くなる。その結果、SCR触媒7aにおけるNOx浄化率が低下する。 When the filter regeneration process as described above is executed, a part of the HC contained in the fuel supplied to the front catalyst 5 may pass through the front catalyst 5 without being oxidized in the front catalyst 5. HC that has passed through the front catalyst 5 flows into the SCRF 7. Here, as described above, the SCR catalyst 7a supported on the SCRF 7 has a very low oxidizing ability. Therefore, when HC flows into SCRF7, a part of the HC adheres to SCRF7. Then, there is a possibility that the attached HC is not oxidized but remains attached to the SCRF. When HC adheres to the SCRF 7, the ammonia adsorption site to which ammonia should be adsorbed in the SCR catalyst 7a supported on the SCRF 7 is blocked by the HC. When the ammonia adsorption site is blocked by HC, it becomes difficult for ammonia to be adsorbed to the SCR catalyst 7a after the completion of the filter regeneration process. As a result, the NOx purification rate in the SCR catalyst 7a decreases.
 そこで、本実施例においては、フィルタ再生処理の実行終了後、SCRF7に付着したHCを除去すべくHC被毒回復処理が実行される。HC被毒回復処理は、内燃機関1から排出される排気の温度を上昇させることでSCRF7の温度をHCの酸化が促進されるHC被毒回復温度(例えば、650℃)まで上昇させる処理である。このHC被毒回復処理は、内燃機関1において、主燃料噴射よりも遅いタイミングであって、噴射された燃料が燃焼室内での燃焼に供されるタイミングで副燃料噴射を実行することで実現される。このようなタイミングで副燃料噴射を実行することで、内燃機関1から排出される排気の温度を上昇させることができる。以下、このようなタイミングで実行される副燃料噴射をポスト噴射と称する。 Therefore, in this embodiment, after the completion of the filter regeneration process, the HC poisoning recovery process is executed to remove the HC adhering to the SCRF 7. The HC poisoning recovery process is a process of increasing the temperature of the SCRF 7 to an HC poisoning recovery temperature (for example, 650 ° C.) at which HC oxidation is promoted by increasing the temperature of the exhaust gas discharged from the internal combustion engine 1. . This HC poisoning recovery process is realized in the internal combustion engine 1 by executing the auxiliary fuel injection at a timing later than the main fuel injection and when the injected fuel is used for combustion in the combustion chamber. The By executing the auxiliary fuel injection at such timing, the temperature of the exhaust gas discharged from the internal combustion engine 1 can be raised. Hereinafter, the auxiliary fuel injection executed at such timing is referred to as post injection.
 内燃機関1から排出される排気の温度を上昇させることでSCRF7の温度を上昇させた場合、SCRF7に流入するHC量の増加を抑制しつつSCRF7の温度を上昇させることができる。そのため、フィルタ再生処理の実行終了後、HC被毒回復処理を実行することで、SCRF7への新たなHCの付着を抑制しつつ、フィルタ再生処理の実行によってSCRF7に付着したHCを除去することができる。 When the temperature of the SCRF 7 is increased by increasing the temperature of the exhaust gas discharged from the internal combustion engine 1, the temperature of the SCRF 7 can be increased while suppressing an increase in the amount of HC flowing into the SCRF 7. Therefore, by executing the HC poisoning recovery process after the completion of the filter regeneration process, it is possible to remove the HC adhering to the SCRF 7 by executing the filter regeneration process while suppressing the adhesion of new HC to the SCRF 7. it can.
 これにより、SCRF7に担持されたSCR触媒7aにおけるアンモニア吸着サイトが付着したHCによって塞がれたままの状態となることを抑制することができる。そのため、NOxを還元する際に還元剤となるアンモニアのSCR触媒7aへの吸着がHCによって阻害されることが抑制される。従って、フィルタ再生処理の実行終了後にHC被毒回復処理を実行することで、フィルタ再生処理の実行に伴うNOx浄化率の低下を抑制することができる。 Thereby, it can be prevented that the ammonia adsorption site in the SCR catalyst 7a supported on the SCRF 7 is blocked by the HC adhering thereto. Therefore, it is suppressed that HC inhibits the adsorption of ammonia, which is a reducing agent when reducing NOx, to the SCR catalyst 7a. Therefore, by performing the HC poisoning recovery process after the completion of the filter regeneration process, it is possible to suppress a decrease in the NOx purification rate associated with the execution of the filter regeneration process.
 [処理フロー]
 図2は、本実施例に係るフィルタ再生処理及びHC被毒回復処理のフローを示すフローチャートである。本フローはECU10に予め記憶されており、ECU10によって繰り返し実行される。
[Processing flow]
FIG. 2 is a flowchart showing the flow of the filter regeneration process and the HC poisoning recovery process according to this embodiment. This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
 本フローでは、先ずステップS101において、フィルタ再生処理の実行条件が成立したか否かが判別される。本実施例では、前回のフィルタ再生処理の実行が終了してから所定時間が経過すると、フィルタ再生処理の実行条件が成立したと判断される。ステップS101において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS101において肯定判定された場合、次にステップS102の処理が実行される。 In this flow, first, in step S101, it is determined whether or not an execution condition for the filter regeneration process is satisfied. In this embodiment, when a predetermined time has elapsed since the previous execution of the filter regeneration process has been completed, it is determined that the condition for executing the filter regeneration process has been satisfied. If a negative determination is made in step S101, the execution of this flow is temporarily terminated. On the other hand, when an affirmative determination is made in step S101, the process of step S102 is executed next.
 ステップS102においては、燃料添加弁4からの燃料添加が実行される。即ち、フィルタ再生処理が実行される。フィルタ再生処理においては、燃料添加弁4からの燃料添加量を制御することで、SCRF7の温度が目標温度であるフィルタ再生温度に調整される。 In step S102, fuel addition from the fuel addition valve 4 is executed. That is, the filter regeneration process is executed. In the filter regeneration process, the temperature of the SCRF 7 is adjusted to the filter regeneration temperature, which is the target temperature, by controlling the amount of fuel added from the fuel addition valve 4.
 次に、ステップS103において、フィルタ再生処理の実行終了条件が成立したか否かが判別される。本実施例では、フィルタ再生処理の実行が開始されてから所定の再生実行時間が経過すると、フィルタ再生処理の実行終了条件が成立したと判断される。 Next, in step S103, it is determined whether or not an execution end condition for the filter regeneration process is satisfied. In the present embodiment, when a predetermined regeneration execution time has elapsed since the start of the execution of the filter regeneration process, it is determined that the execution end condition for the filter regeneration process is satisfied.
 ステップS103において否定判定された場合、ステップS102及びS103の処理が再度実行される。一方、ステップS103において肯定判定された場合、次にステップS104の処理が実行される。ステップS104においては、燃料添加弁4からの燃料添加が停止される。即ち、フィルタ再生処理の実行が終了される。 If a negative determination is made in step S103, the processes in steps S102 and S103 are executed again. On the other hand, when a positive determination is made in step S103, the process of step S104 is performed next. In step S104, the fuel addition from the fuel addition valve 4 is stopped. That is, the execution of the filter regeneration process is terminated.
 次に、ステップS105において、現時点のSCRF7におけるHC付着量Qhcが算出される。フィルタ再生処理の実行中における単位時間当たりにSCRF7に付着するHC量及び単位時間当たりに酸化されるHC量は、燃料添加弁4からの燃料添加量、排気の流量、前段触媒5の温度、及びSCRF7の温度等に基づいて推定することができる。そして、これらの値を積算することで、SCRF7におけるHC付着量Qhcを算出することができる。 Next, in step S105, the HC adhesion amount Qhc at the current SCRF 7 is calculated. The amount of HC adhering to the SCRF 7 per unit time and the amount of HC oxidized per unit time during execution of the filter regeneration process are the amount of fuel added from the fuel addition valve 4, the flow rate of exhaust, the temperature of the pre-stage catalyst 5, and It can be estimated based on the temperature of the SCRF 7 or the like. Then, by accumulating these values, the HC adhesion amount Qhc in SCRF 7 can be calculated.
 次に、ステップS106において、これから実行されるHC被毒回復処理の実行時間ΔTpが設定される。ここで、HC被毒回復処理の実行時間ΔTpは、SCRF7におけるHC付着量Qhcに基づいて設定される。つまり、SCRF7におけるHC付着量Qhcが多いときは、該HC付着量Qhcが少ない時に比べてHC被毒回復処理の実行時間ΔTpが短く設定される。SCRF7におけるHC付着量QhcとHC被毒回復処理の実行時間ΔTpとの関係は、実験等に基づいて定められている。そして、これらの値の関係がマップ又は関数としてECU10に予め記憶されている。 Next, in step S106, an execution time ΔTp of the HC poisoning recovery process to be executed is set. Here, the execution time ΔTp of the HC poisoning recovery process is set based on the HC adhesion amount Qhc in SCRF7. That is, when the HC adhesion amount Qhc in SCRF 7 is large, the execution time ΔTp of the HC poisoning recovery process is set shorter than when the HC adhesion amount Qhc is small. The relationship between the HC adhesion amount Qhc in SCRF 7 and the execution time ΔTp of the HC poisoning recovery process is determined based on experiments and the like. The relationship between these values is stored in advance in the ECU 10 as a map or a function.
 次に、ステップS107において、内燃機関1におけるポスト噴射が実行される。即ち、HC被毒回復処理が実行される。HC被毒回復処理においては、副燃料噴射の噴射時期及び噴射量を制御することで、SCRF7の温度が目標温度であるHC被毒回復温度に調整される。尚、HC被毒回復温度とフィルタ再生温度とは同一の温度であってもよい。 Next, in step S107, post injection in the internal combustion engine 1 is executed. That is, the HC poisoning recovery process is executed. In the HC poisoning recovery process, the temperature of the SCRF 7 is adjusted to the HC poisoning recovery temperature, which is the target temperature, by controlling the injection timing and the injection amount of the auxiliary fuel injection. The HC poisoning recovery temperature and the filter regeneration temperature may be the same temperature.
 次に、ステップS108において、内燃機関1におけるポスト噴射の実行が開始されてから、即ちHC被毒回復処理の実行が開始されてから、ステップS106で設定された時間ΔTpが経過したか否かが判別される。ステップS108において否定判定された場合、ステップS107及びS108の処理が再度実行される。一方、ステップS108において肯定判定された場合、次にステップS109の処理が実行される。ステップS109においては、ポスト噴射が停止される。即ち、HC被毒回復処理の実行が終了される。 Next, in step S108, whether or not the time ΔTp set in step S106 has elapsed since the start of the post injection in the internal combustion engine 1, that is, the start of the HC poisoning recovery process. Determined. If a negative determination is made in step S108, the processes in steps S107 and S108 are executed again. On the other hand, if an affirmative determination is made in step S108, the process of step S109 is then executed. In step S109, the post injection is stopped. That is, the execution of the HC poisoning recovery process is terminated.
 上記フローにおいては、HC被毒回復処理の実行時間ΔTpが、SCRF7におけるHC付着量Qhcに基づいて設定される。これにより、SCRF7に付着したHCを十分に除去しつつ、HC被毒回復処理の実行時間ΔTpが過剰に長くなることを抑制することができる。そのため、HC被毒回復処理の実行に伴う燃費の悪化を抑制することができる。 In the above flow, the execution time ΔTp of the HC poisoning recovery process is set based on the HC adhesion amount Qhc in SCRF7. Thereby, it is possible to suppress the HC poisoning recovery processing execution time ΔTp from becoming excessively long while sufficiently removing the HC adhering to the SCRF 7. For this reason, it is possible to suppress the deterioration of fuel consumption accompanying the execution of the HC poisoning recovery process.
 尚、本実施例においては、HC被毒回復処理の実行時間を予め設定せずに、該HC被毒回復処理を実行してもよい。この場合、HC被毒回復処理の実行中に、SCRF7におけるHC残留量を推定する。そして、推定されたHC残留量が所定残留量以下となった時に、HC被毒回復処理の実行を終了してもよい。HC被毒回復処理の実行中における単位時間当たりのHC酸化量は、排気の流量及びSCRF7の温度等に基づいて推定することができる。そして、HC被毒回復処理の実行開始時のHC付着量からHC酸化量を減算することで、SCRF7におけるHC残留量を算出することができる。 In this embodiment, the HC poisoning recovery process may be executed without setting the execution time of the HC poisoning recovery process in advance. In this case, the residual amount of HC in SCRF 7 is estimated during the execution of the HC poisoning recovery process. Then, the execution of the HC poisoning recovery process may be terminated when the estimated residual HC amount is equal to or less than the predetermined residual amount. The amount of HC oxidation per unit time during execution of the HC poisoning recovery process can be estimated based on the flow rate of the exhaust gas, the temperature of the SCRF 7, and the like. Then, the HC residual amount in SCRF 7 can be calculated by subtracting the HC oxidation amount from the HC adhesion amount at the start of execution of the HC poisoning recovery process.
 また、HC被毒回復処理の実行時間を、フィルタ再生処理の実行時間に基づいて設定してもよい。この場合、フィルタ再生処理の実行時間が短いときは、フィルタ再生処理の実行時間が長いときに比べてHC被毒回復処理の実行時間が短く設定される。これによっても、SCRF7に付着したHCを十分に除去しつつ、HC被毒回復処理の実行時間が過剰に長くなることを抑制することができる。 Also, the execution time of the HC poisoning recovery process may be set based on the execution time of the filter regeneration process. In this case, when the execution time of the filter regeneration process is short, the execution time of the HC poisoning recovery process is set shorter than when the execution time of the filter regeneration process is long. Also by this, it is possible to suppress excessively long execution time of the HC poisoning recovery process while sufficiently removing the HC adhering to the SCRF 7.
 また、HC被毒回復処理の実行時間を予め定められた一定時間としてもよい。この場合でも、フィルタ再生処理の実行によってSCRF7に付着したHCを除去することができる。ただし、燃費の悪化を抑制するという観点では、上述したように、SCRF7におけるHC付着量又はフィルタ再生処理の実行時間に応じてHC被毒回復処理の実行時間を変更した方が好ましい。 Also, the execution time of the HC poisoning recovery process may be a predetermined time. Even in this case, the HC adhering to the SCRF 7 can be removed by executing the filter regeneration process. However, from the viewpoint of suppressing deterioration in fuel consumption, it is preferable to change the execution time of the HC poisoning recovery process according to the HC adhesion amount in SCRF 7 or the execution time of the filter regeneration process as described above.
 また、本実施例においては、フィルタ再生処理の実行中にSCRF7におけるPM残留量を推定してもよい。そして、上記フローのステップS103において、推定されたPM残留量が所定残留量以下となったときに、フィルタ再生処理の実行終了条件が成立したと判断してもよい。フィルタ再生処理の実行中における単位時間当たりのPM酸化量は、排気の流量及びSCRF7の温度等に基づいて推定することができる。そして、フィルタ再生処理の実行開始時のPM堆積量からPM酸化量を減算することで、SCRF7におけるPM残留量を算出することができる。 In this embodiment, the PM residual amount in SCRF 7 may be estimated during the filter regeneration process. Then, in step S103 of the above flow, when the estimated PM residual amount becomes equal to or smaller than the predetermined residual amount, it may be determined that the condition for ending the filter regeneration process is satisfied. The amount of PM oxidation per unit time during the execution of the filter regeneration process can be estimated based on the exhaust flow rate, the temperature of the SCRF 7, and the like. Then, the PM residual amount in SCRF 7 can be calculated by subtracting the PM oxidation amount from the PM deposition amount at the start of execution of the filter regeneration process.
 この場合、所定残留量は、酸化可能なPMの略全てが除去されたと判断できる量より多い量であってもよい。所定残留量をこのような量に設定することで、可能な限りPMを除去しようとした場合に比べてフィルタ再生処理の実行時間を短縮することができる。また、本実施例においては、HC被毒回復処理の実行中においても、SCRF7の温度がフィルタ再生処理における目標温度と略同一の目標温度に調整される。そのため、フィルタ再生処理が終了した時点でSCRF7にPMが残留していても、該残留したPMをHC被毒回復処理の実行中に酸化させ除去することができる。 In this case, the predetermined residual amount may be an amount larger than an amount at which it can be determined that substantially all of the oxidizable PM has been removed. By setting the predetermined residual amount to such an amount, it is possible to shorten the execution time of the filter regeneration process as compared with the case where PM is to be removed as much as possible. In the present embodiment, the temperature of the SCRF 7 is adjusted to a target temperature substantially the same as the target temperature in the filter regeneration process even during the execution of the HC poisoning recovery process. Therefore, even if PM remains in the SCRF 7 when the filter regeneration process is completed, the remaining PM can be oxidized and removed during the execution of the HC poisoning recovery process.
 <タイムチャート>
 図3は、本実施例に係るフィルタ再生処理及びHC被毒回復処理を実行した際の、SCRF7の温度Tf、前段触媒5の温度Tpc、燃料添加弁4からの燃料添加量Fadd、内燃機関1におけるポスト噴射量Fpost、SCRF7におけるHC付着量Qhc、アンモニア添加弁6からのアンモニアガス添加量Aadd、及びSCR触媒7aにおけるアンモニア吸着量Qamの推移を示すタイムチャートである。図3において、横軸が時間tを表している。また、図3において、Tftが、フィルタ再生処理及びHC被毒回復処理におけるSCRF7の目標温度(フィルタ再生温度、HC被毒回復温度)を表している。
<Time chart>
FIG. 3 shows the temperature Tf of the SCRF 7, the temperature Tpc of the front catalyst 5, the fuel addition amount Fadd from the fuel addition valve 4, the internal combustion engine 1 when the filter regeneration process and the HC poisoning recovery process according to this embodiment are executed. 6 is a time chart showing changes in post injection amount Fpost at HC, HC adhesion amount Qhc at SCRF7, ammonia gas addition amount Aadd from the ammonia addition valve 6, and ammonia adsorption amount Qam at the SCR catalyst 7a. In FIG. 3, the horizontal axis represents time t. In FIG. 3, Tft represents the target temperature (filter regeneration temperature, HC poisoning recovery temperature) of SCRF 7 in the filter regeneration process and the HC poisoning recovery process.
 図3においては、時間t0からt3までの間、燃料添加弁4からの燃料添加が実行される。つまり、時間t0からt3までの間がフィルタ再生処理の実行時間である。そのため、時間t0からt3までの間においては、SCRF7におけるHC付着量Qhcが増加する。尚、この間において、時間t1からt2までの間はSCRF7の温度Tfが徐々に上昇し、時間t2からt3までの間はSCRFの温度Tfが目標温度(フィルタ再生温度)Tftに維持される。 In FIG. 3, the fuel addition from the fuel addition valve 4 is executed from time t0 to time t3. That is, the execution time of the filter regeneration process is from time t0 to t3. Therefore, during the period from time t0 to t3, the HC attachment amount Qhc in SCRF7 increases. During this time, the temperature Tf of the SCRF 7 gradually increases from the time t1 to the time t2, and the SCRF temperature Tf is maintained at the target temperature (filter regeneration temperature) Tft from the time t2 to the time t3.
 そして、時間t3からt4までの間、内燃機関1におけるポスト噴射が実行される。つまり、時間t3からt4までの間がHC被毒回復処理の実行時間である。この間においては、SCRF7への新たなHCの供給が抑制されつつ、該SCRF7の温度Tfが目標温度(HC被毒回復温度)に維持される。そのため、時間t3からt4までの間においては、SCRF7におけるHC付着量Qhcが減少する。 Then, post injection in the internal combustion engine 1 is executed from time t3 to t4. That is, the period from time t3 to t4 is the execution time of the HC poisoning recovery process. During this time, the supply of new HC to the SCRF 7 is suppressed, and the temperature Tf of the SCRF 7 is maintained at the target temperature (HC poisoning recovery temperature). Therefore, during the period from time t3 to t4, the HC adhesion amount Qhc in SCRF7 decreases.
 尚、SCRF7の温度Tfが目標温度(フィルタ再生温度、HC被毒回復温度)Tftに達していると、SCR触媒7aにはアンモニアが吸着し難い。そのため、本実施例では、フィルタ再生処理の実行中及びHC被毒回復処理の実行中はアンモニア添加弁6からのアンモニアガスの添加は停止される。 If the temperature Tf of the SCRF 7 reaches the target temperature (filter regeneration temperature, HC poisoning recovery temperature) Tft, it is difficult for ammonia to be adsorbed on the SCR catalyst 7a. Therefore, in the present embodiment, the addition of ammonia gas from the ammonia addition valve 6 is stopped during the execution of the filter regeneration process and the HC poisoning recovery process.
 そして、時間t4においてHC被毒回復処理の実行が終了されると、アンモニア添加弁6からのアンモニアガスの添加が再開される。このとき、フィルタ再生処理を実行することでSCRF7に付着したHCはHC被毒回復処理を実行することで除去されている。そのため、SRC触媒7aにおけるアンモニアの吸着が促進され易くなっている。 When the execution of the HC poisoning recovery process is completed at time t4, the addition of ammonia gas from the ammonia addition valve 6 is resumed. At this time, the HC adhering to the SCRF 7 by executing the filter regeneration process is removed by executing the HC poisoning recovery process. Therefore, the adsorption of ammonia in the SRC catalyst 7a is easily promoted.
 また、時間t4においてHC被毒回復処理の実行が終了されると、時間t4からt5の間においては、SCRF7の温度Tf(即ち、SCR触媒7aの温度)が徐々に低下する。これに伴いSCR触媒7aに吸着可能なアンモニア量が増加する。そこで、時間t4からt5の間においては、アンモニア添加弁6からのアンモニアガス添加量Aaddを徐々に増加させる。これにより、時間t4からt5の間においては、SCR触媒7aにおけるアンモニア吸着量Qamが徐々に増加する。 Further, when the execution of the HC poisoning recovery process is completed at time t4, the temperature Tf of SCRF 7 (that is, the temperature of the SCR catalyst 7a) gradually decreases between time t4 and time t5. Accordingly, the amount of ammonia that can be adsorbed on the SCR catalyst 7a increases. Therefore, during the time t4 to t5, the ammonia gas addition amount Aadd from the ammonia addition valve 6 is gradually increased. Thereby, during the time t4 to t5, the ammonia adsorption amount Qam in the SCR catalyst 7a gradually increases.
 [変形例]
 次に、本実施例の変形例について説明する。本実施例において、フィルタ再生処理の実行終了後、即ち燃料添加弁4からの燃料添加の停止後、HC被毒回復処理を実行しなくてもSCRF7の温度がHCの酸化が可能な温度に維持されていれば、SCRF7に付着したHCは除去される。そのため、必ずしも、フィルタ再生処理の実行終了と同時にHC被毒回復処理の実行を開始する必要はない。
[Modification]
Next, a modification of the present embodiment will be described. In this embodiment, after the completion of the filter regeneration process, that is, after the fuel addition from the fuel addition valve 4 is stopped, the temperature of the SCRF 7 is maintained at a temperature at which HC can be oxidized without performing the HC poisoning recovery process. If so, the HC attached to SCRF 7 is removed. Therefore, it is not always necessary to start the execution of the HC poisoning recovery process simultaneously with the end of the execution of the filter regeneration process.
 そこで、本変形例においては、フィルタ再生処理の実行終了後にSCRF7の温度に基づいてHC被毒回復処理の実行開始時期を判断する。図4は、本変形例に係るフィルタ再生処理及びHC被毒回復処理のフローを示すフローチャートである。本フローにおいて、ステップS205以外の処理は、図4に示すフローチャートと同様である。そのため、ステップS205の処理についてのみ説明し、その他のステップの処理についての説明は省略する。本フローはECU10に予め記憶されており、ECU10によって繰り返し実行される。 Therefore, in this modification, the execution start time of the HC poisoning recovery process is determined based on the temperature of the SCRF 7 after the execution of the filter regeneration process is completed. FIG. 4 is a flowchart showing the flow of filter regeneration processing and HC poisoning recovery processing according to this modification. In this flow, processes other than step S205 are the same as those in the flowchart shown in FIG. Therefore, only the process of step S205 will be described, and the description of the process of other steps will be omitted. This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
 本フローでは、ステップS104の次にステップS205の処理が実行される。ステップS205においては、SCRF7の温度が所定の処理開始温度Tf0以下となったか否かが判別される。ここで、処理開始温度Tf0は、フィルタ再生処理の目標温度(フィルタ処理温度)以下の温度であって、且つ、SCRF7に付着したHCの酸化が可能な温度の下限値以上の温度である。この処理開始温度Tf0は、実験等に基づいて予め定められている。 In this flow, the process of step S205 is executed after step S104. In step S205, it is determined whether or not the temperature of SCRF 7 has become equal to or lower than a predetermined processing start temperature Tf0. Here, the processing start temperature Tf0 is a temperature that is equal to or lower than a target temperature (filtering temperature) for the filter regeneration processing and is equal to or higher than a lower limit value of the temperature at which HC attached to the SCRF 7 can be oxidized. This processing start temperature Tf0 is determined in advance based on experiments and the like.
 ステップS104において否定判定された場合、ステップS104の処理が再度実行される。一方、ステップS104において肯定判定された場合、次にステップS105の処理が実行される。 If a negative determination is made in step S104, the process of step S104 is executed again. On the other hand, if an affirmative determination is made in step S104, the process of step S105 is then executed.
 この場合、ステップS105においては、フィルタ再生処理の実行終了時点でのSCRF7におけるHC付着量から、フィルタ再生処理の実行終了後に酸化されたHC量を減算することで、現時点のSCRF7におけるHC付着量Qhcが算出される。 In this case, in step S105, the amount of HC deposited in SCRF 7 at the current time is subtracted from the amount of HC deposited in SCRF 7 at the end of execution of the filter regeneration process to subtract the amount of HC oxidized after the completion of execution of the filter regeneration process. Is calculated.
 これによれば、フィルタ再生処理の実行終了と同時にHC被毒回復処理の実行を開始する場合に比べて、HC被毒回復処理の実行開始時点のSCRF7におけるHC付着量が少なくなる。従って、ステップS106において設定されるHC被毒回復処理の実行時間ΔTpを短くすることができる。その結果、HC被毒回復処理の実行に伴う燃費の悪化をより抑制することが可能となる。 According to this, compared with the case where the execution of the HC poisoning recovery process is started simultaneously with the end of the execution of the filter regeneration process, the amount of HC adhering to the SCRF 7 at the start of the execution of the HC poisoning recovery process is reduced. Therefore, the execution time ΔTp of the HC poisoning recovery process set in step S106 can be shortened. As a result, it becomes possible to further suppress the deterioration of fuel consumption accompanying the execution of the HC poisoning recovery process.
 <実施例2>
 本実施例に係る内燃機関の吸排気系の概略構成は実施例1に係る構成と同様である。以下、本実施例に係るフィルタ再生処理及びHC被毒回復処理において、実施例1と異なる点についてのみ説明する。
<Example 2>
The schematic configuration of the intake and exhaust system of the internal combustion engine according to the present embodiment is the same as that according to the first embodiment. Hereinafter, only differences from the first embodiment in the filter regeneration process and the HC poisoning recovery process according to the present embodiment will be described.
 上述したように、SCRF7の温度が目標温度(フィルタ再生温度、HC被毒回復温度)まで上昇していると、SCR触媒7aにはアンモニアが吸着し難い。そのため、実施例1においては、フィルタ再生処理及びHC被毒回復処理の実行中においては、アンモニア添加弁6からのアンモニアガスの添加を停止した。しかしながら、フィルタ再生処理の実行中においてSCRF7の温度が目標温度に達するまでの間、即ち、SCRF7の温度が目標温度より低い間は、SCR触媒7aにアンモニアを吸着させることができる。そこで、本実施例においては、フィルタ再生処理の実行中においても、SCRF7の温度が目標温度に達するまでの間は、アンモニア添加弁6からのアンモニアガスの添加を実行する。 As described above, when the temperature of the SCRF 7 rises to the target temperature (filter regeneration temperature, HC poisoning recovery temperature), it is difficult for ammonia to be adsorbed on the SCR catalyst 7a. Therefore, in Example 1, the addition of ammonia gas from the ammonia addition valve 6 was stopped during the execution of the filter regeneration process and the HC poisoning recovery process. However, ammonia can be adsorbed on the SCR catalyst 7a until the temperature of the SCRF 7 reaches the target temperature during the filter regeneration process, that is, while the temperature of the SCRF 7 is lower than the target temperature. Therefore, in this embodiment, addition of ammonia gas from the ammonia addition valve 6 is executed until the temperature of the SCRF 7 reaches the target temperature even during execution of the filter regeneration process.
 これにより、フィルタ再生処理の実行中におけるSCRF7の温度が目標温度に達するまでの間においても、SCR触媒7aにおけるアンモニア吸着サイトにアンモニアを吸着させることができる。そのため、フィルタ再生処理の実行中のSCRF7へのHC付着量を抑制することができる。その結果、フィルタ再生処理の実行終了時点でのSCRF7におけるHC付着量を少なくすることができる。 Thus, ammonia can be adsorbed on the ammonia adsorption sites in the SCR catalyst 7a even during the time until the temperature of the SCRF 7 reaches the target temperature during execution of the filter regeneration process. Therefore, the amount of HC adhering to SCRF 7 during the filter regeneration process can be suppressed. As a result, the amount of HC adhering to SCRF 7 at the end of execution of the filter regeneration process can be reduced.
 従って、本実施例によれば、フィルタ再生処理の実行開始時からアンモニア添加弁6からのアンモニアガスの添加を停止する場合に比べて、HC被毒回復処理の実行時間を短縮することが可能となる。そのため、HC被毒回復処理の実行に伴う燃費の悪化をより抑制することができる。 Therefore, according to the present embodiment, it is possible to shorten the execution time of the HC poisoning recovery process compared to the case where the addition of ammonia gas from the ammonia addition valve 6 is stopped from the start of the execution of the filter regeneration process. Become. For this reason, it is possible to further suppress the deterioration of fuel consumption accompanying the execution of the HC poisoning recovery process.
 [アンモニアガス添加制御のフロー]
 図5は、本実施例に係るフィルタ再生処理の実行中におけるアンモニアガス添加制御のフローを示すフローチャートである。本フローはECU10に予め記憶されており、ECU10によって繰り返し実行される。
[Flow of ammonia gas addition control]
FIG. 5 is a flowchart showing a flow of ammonia gas addition control during the execution of the filter regeneration process according to the present embodiment. This flow is stored in advance in the ECU 10 and is repeatedly executed by the ECU 10.
 本フローでは、先ずステップS301において、フィルタ再生処理の実行中であるか否かが判別される。ステップS301において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS301において肯定判定された場合、次にステップS302の処理が実行される。 In this flow, first, in step S301, it is determined whether or not the filter regeneration process is being executed. If a negative determination is made in step S301, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S301, the process of step S302 is then executed.
 ステップS302においては、SCRF7の温度Tfが目標温度Tft(フィルタ再生温度)Tftより低いか否かが判別される。ステップS302において肯定判定された場合、次にステップS303の処理が実行される。ステップS303においては、アンモニア添加弁6からのアンモニアガスの添加量Addが設定される。ここで、アンモニアガスの添加量Addは、SCRF7の温度Tf(即ち、SCR触媒7aの温度)に応じて設定される。つまり、SCRF7の温度Tfが高いときは、その温度が低い場合に比べて、アンモニアの添加量Addが少なく設定される。アンモニアの添加量AddとSCRF7の温度Tfとの関係は、実験等に基づいて定められている。そして、これらの値の関係がマップ又は関数としてECU10に予め記憶されている。 In step S302, it is determined whether or not the temperature Tf of the SCRF 7 is lower than the target temperature Tft (filter regeneration temperature) Tft. If an affirmative determination is made in step S302, then the process of step S303 is executed. In step S303, an ammonia gas addition amount Add from the ammonia addition valve 6 is set. Here, the ammonia gas addition amount Add is set according to the temperature Tf of SCRF 7 (that is, the temperature of SCR catalyst 7a). That is, when the temperature Tf of the SCRF 7 is high, the ammonia addition amount Add is set smaller than when the temperature is low. The relationship between the ammonia addition amount Add and the temperature Tf of the SCRF 7 is determined based on experiments and the like. The relationship between these values is stored in advance in the ECU 10 as a map or a function.
 次に、ステップS304において、アンモニア添加弁6からのアンモニアの添加が実行される。この時、アンモニアの添加量が、ステップS303において
設定された量に調整される。
Next, in step S304, addition of ammonia from the ammonia addition valve 6 is executed. At this time, the amount of ammonia added is adjusted to the amount set in step S303.
 一方、ステップS302において否定判定された場合、即ち、SCRF7の温度が目標温度Tftに達している場合、次にステップS305の処理が実行される。ステップS305においては、アンモニア添加弁6からのアンモニアガスの添加が停止される。 On the other hand, if a negative determination is made in step S302, that is, if the temperature of SCRF 7 has reached the target temperature Tft, the process of step S305 is then executed. In step S305, the addition of ammonia gas from the ammonia addition valve 6 is stopped.
 上記フローによれば、フィルタ再生処理の実行中にアンモニア添加弁6からのアンモニアガスの添加を実行する場合に、SCRF7の温度が上昇するにつれて、アンモニア添加弁6からのアンモニアガスの添加量が徐々に減らされる。これにより、過剰な量のアンモニアガスがSCRF7に供給されることを抑制することができる。そのため、SCRF7からのアンモニアの流出を抑制することができる。 According to the above flow, when adding ammonia gas from the ammonia addition valve 6 during execution of the filter regeneration process, the amount of ammonia gas added from the ammonia addition valve 6 gradually increases as the temperature of the SCRF 7 rises. Reduced to Thereby, it can suppress that an excessive amount of ammonia gas is supplied to SCRF7. Therefore, the ammonia outflow from SCRF 7 can be suppressed.
 [タイムチャート]
 図6は、本実施例に係るフィルタ再生処理及びHC被毒回復処理を実行した際の、SCRF7の温度Tf、前段触媒5の温度Tpc、燃料添加弁4からの燃料添加量Fadd、内燃機関1におけるポスト噴射量Fpost、SCRF7におけるHC付着量Qhc、アンモニア添加弁6からのアンモニアガス添加量Aadd、及びSCR触媒7aにおけるアンモニア吸着量Qamの推移を示すタイムチャートである。図6において、横軸が時間tを表している。また、図6において、Tftが、フィルタ再生処理及びHC被毒回復処理におけるSCRF7の目標温度(フィルタ再生温度、HC被毒回復温度)を表している。また、図6において、実線は、本実施例に係る各値の推移を示しており、破線は、実施例1に係るフィルタ再生処理及びHC被毒回復処理を実行した際の各値の推移を示している。
[Time chart]
FIG. 6 shows the temperature Tf of the SCRF 7, the temperature Tpc of the front catalyst 5, the fuel addition amount Fadd from the fuel addition valve 4, the internal combustion engine 1 when the filter regeneration process and the HC poisoning recovery process according to this embodiment are executed. 6 is a time chart showing changes in post injection amount Fpost at HC, HC adhesion amount Qhc at SCRF7, ammonia gas addition amount Aadd from the ammonia addition valve 6, and ammonia adsorption amount Qam at the SCR catalyst 7a. In FIG. 6, the horizontal axis represents time t. In FIG. 6, Tft represents the target temperature (filter regeneration temperature, HC poisoning recovery temperature) of SCRF 7 in the filter regeneration process and the HC poisoning recovery process. In FIG. 6, the solid line indicates the transition of each value according to the present embodiment, and the broken line indicates the transition of each value when the filter regeneration process and the HC poisoning recovery process according to the first embodiment are performed. Show.
 本実施例では、フィルタ再生処理の実行中である時間t0からt2までの間においても、アンモニア添加弁6からのアンモニアガスの添加が実行される。そして、時間t1からt2までの間においては、SCRF7の温度上昇に伴い、アンモニア添加弁6からのアンモニアガスの添加量が徐々に減らされる。その結果、時間t2の時点では、SCR触媒7aにおけるアンモニア吸着量Qamは略零となる。 In this embodiment, the addition of ammonia gas from the ammonia addition valve 6 is also executed during the time t0 to t2 during which the filter regeneration process is being executed. Then, during the time t1 to t2, the amount of ammonia gas added from the ammonia addition valve 6 is gradually reduced as the temperature of the SCRF 7 rises. As a result, at the time t2, the ammonia adsorption amount Qam in the SCR catalyst 7a becomes substantially zero.
 しかしながら、時間t0からt2までの間においは、SCR触媒7aにおけるアンモニア吸着サイトにアンモニアが吸着されるため、SCRF7にHCが付着し難くなる。従って、フィルタ再生処理の実行が終了する時間t3の時点でのSCRF7におけるHC付着量Qhcが、実施例1の場合に比べて少なくなる。そのため、HC被毒回復処理の実行時間(t3からt4までの時間)を実施例1の場合よりも短縮することができる。 However, during the period from time t0 to t2, ammonia is adsorbed at the ammonia adsorption site in the SCR catalyst 7a, so that HC hardly adheres to the SCRF 7. Therefore, the HC adhesion amount Qhc in the SCRF 7 at the time t3 when the execution of the filter regeneration process ends is smaller than that in the first embodiment. Therefore, the execution time of the HC poisoning recovery process (time from t3 to t4) can be shortened compared to the case of the first embodiment.
 尚、上記実施例1及び2に係るHC被毒回復処理においては、フィルタ再生処理と同様、PMの酸化が促進される温度までSCRF7が上昇する。しかしながら、HC被毒回復処理のように内燃機関1から排出される排気の温度を上昇させることでSCRF7の温度を上昇させる場合、燃料を前段触媒5に供給することでSCRF7の温度を同一の温度まで上昇させる場合に比べて燃料の消費量がより多くなる。そのため、燃費の悪化を抑制すべく、SCRF7に堆積したPMの除去はフィルタ再生処理によって行われる。 In the HC poisoning recovery process according to Examples 1 and 2, the SCRF 7 rises to a temperature at which PM oxidation is promoted, as in the filter regeneration process. However, when the temperature of the SCRF 7 is increased by increasing the temperature of the exhaust gas discharged from the internal combustion engine 1 as in the HC poisoning recovery process, the temperature of the SCRF 7 is set to the same temperature by supplying fuel to the upstream catalyst 5. Compared with the case where the fuel consumption is increased up to, the fuel consumption is increased. Therefore, removal of PM deposited on SCRF 7 is performed by filter regeneration processing in order to suppress deterioration of fuel consumption.
1・・・内燃機関
2・・・吸気通路
3・・・排気通路
4・・・燃料添加弁
5・・・前段触媒
6・・・アンモニア添加弁
7・・・フィルタ(SCRF)
7a・・選択還元型NOx触媒(SCR触媒)
8・・・後段触媒
10・・ECU
11・・エアフローメータ
12・・第1排気温度センサ
13・・第2排気温度センサ
14・・第3排気温度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Intake passage 3 ... Exhaust passage 4 ... Fuel addition valve 5 ... Pre-stage catalyst 6 ... Ammonia addition valve 7 ... Filter (SCRF)
7a ・ ・ Selective reduction type NOx catalyst (SCR catalyst)
8... Rear stage catalyst 10 ..ECU
11. ・ Air flow meter 12 ・ ・ First exhaust temperature sensor 13 ・ ・ Second exhaust temperature sensor 14 ・ ・ Third exhaust temperature sensor

Claims (4)

  1.  内燃機関の排気通路に設けられ、酸化機能を有する前段触媒と、
     前記前段触媒に燃料を供給する燃料供給装置と、
     前記前段触媒より下流側の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタであって、アンモニアを還元剤として排気中のNOxを還元する選択還元型NOx触媒が担持されたフィルタと、
     前記フィルタにアンモニア又はアンモニアの前駆体を供給するアンモニア供給装置と、
     前記燃料供給装置から前記前段触媒に燃料を供給することで前記フィルタの温度を上昇させ、それによって前記フィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行部と、
     前記フィルタ再生処理実行部によるフィルタ再生処理の実行終了後、内燃機関から排出される排気の温度を上昇させることで前記フィルタの温度を上昇させ、それによって前記フィルタに付着したHCを除去するHC被毒回復処理を実行するHC被毒回復処理実行部と、を備える内燃機関の排気浄化システム。
    A pre-stage catalyst provided in the exhaust passage of the internal combustion engine and having an oxidation function;
    A fuel supply device for supplying fuel to the upstream catalyst;
    A filter that is provided in an exhaust passage downstream of the preceding catalyst and collects particulate matter in exhaust gas, and carries a selective reduction type NOx catalyst that reduces NOx in exhaust gas using ammonia as a reducing agent. When,
    An ammonia supply device for supplying ammonia or an ammonia precursor to the filter;
    A filter regeneration process execution unit for performing a filter regeneration process for increasing the temperature of the filter by supplying fuel from the fuel supply device to the upstream catalyst, thereby removing particulate matter deposited on the filter;
    After the completion of the filter regeneration process by the filter regeneration process execution unit, the temperature of the filter is raised by raising the temperature of the exhaust discharged from the internal combustion engine, thereby removing the HC adhering to the filter. An exhaust purification system for an internal combustion engine, comprising: an HC poisoning recovery process execution unit that executes a poison recovery process.
  2.  HC被毒回復処理が、該HC被毒回復処理の実行開始時の前記フィルタにおけるHC付着量に応じた時間実行される請求項1に記載の内燃機関の排気浄化システム。 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the HC poisoning recovery process is executed for a time corresponding to the amount of HC adhering to the filter at the start of execution of the HC poisoning recovery process.
  3.  HC被毒回復処理が、フィルタ再生処理の実行時間に応じた時間実行される請求項1に記載の内燃機関の排気浄化システム。 The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the HC poisoning recovery process is executed for a time corresponding to the execution time of the filter regeneration process.
  4.  フィルタ再生処理の実行中において前記フィルタの温度が目標温度に達するまでの間、前記フィルタの温度に応じた量のアンモニア又はアンモニアの前駆体を前記アンモニア供給装置によって前記フィルタに供給する請求項1から3のいずれか一項に記載の内燃機関の排気浄化システム。 The ammonia or ammonia precursor in an amount corresponding to the temperature of the filter is supplied to the filter by the ammonia supply device until the temperature of the filter reaches a target temperature during the filter regeneration process. The exhaust gas purification system for an internal combustion engine according to any one of claims 3 to 4.
PCT/JP2012/083659 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine WO2014102932A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12891274.8A EP2940265A4 (en) 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine
JP2014553938A JPWO2014102932A1 (en) 2012-12-26 2012-12-26 Exhaust gas purification system for internal combustion engine
CN201280078001.7A CN104870767A (en) 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine
US14/655,586 US20150330275A1 (en) 2012-12-26 2012-12-26 Exhaust Purification System for Internal Combustion Engine
PCT/JP2012/083659 WO2014102932A1 (en) 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083659 WO2014102932A1 (en) 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014102932A1 true WO2014102932A1 (en) 2014-07-03

Family

ID=51020090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083659 WO2014102932A1 (en) 2012-12-26 2012-12-26 Exhaust purification system for internal combustion engine

Country Status (5)

Country Link
US (1) US20150330275A1 (en)
EP (1) EP2940265A4 (en)
JP (1) JPWO2014102932A1 (en)
CN (1) CN104870767A (en)
WO (1) WO2014102932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103627A1 (en) * 2014-12-24 2016-06-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JP2016176429A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2017053334A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Exhaust emission control system of internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016002717T5 (en) * 2015-08-03 2018-03-08 Cummins Emission Solutions Inc. Sensor configuration for an aftertreatment system comprising a SCR with filter
US10961893B2 (en) * 2018-08-24 2021-03-30 Ford Global Technologies, Llc Systems and methods for particulate filter regeneration
CN114233450B (en) * 2021-12-23 2022-10-28 潍柴动力股份有限公司 Method for detecting selective catalytic reduction crystallization, related device and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218497A (en) * 2003-01-14 2004-08-05 Denso Corp Exhaust emission control device for internal combustion engine
JP2006274986A (en) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust gas aftertreatment device
JP2007501353A (en) 2003-08-05 2007-01-25 エンゲルハード・コーポレーシヨン Exhaust treatment system and method using SCR filter
JP2007170388A (en) 2005-12-23 2007-07-05 Robert Bosch Gmbh Operating method and control device for particulate filter
JP2009041437A (en) 2007-08-08 2009-02-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine
JP2009257226A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011001875A (en) * 2009-06-18 2011-01-06 Isuzu Motors Ltd Exhaust emission control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1458960B1 (en) * 2001-12-20 2011-02-09 Johnson Matthey Public Limited Company Improvements in selective catalytic reduction
US6892530B2 (en) * 2002-11-21 2005-05-17 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2009150279A (en) * 2007-12-19 2009-07-09 Hino Motors Ltd Exhaust gas treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218497A (en) * 2003-01-14 2004-08-05 Denso Corp Exhaust emission control device for internal combustion engine
JP2007501353A (en) 2003-08-05 2007-01-25 エンゲルハード・コーポレーシヨン Exhaust treatment system and method using SCR filter
JP2006274986A (en) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust gas aftertreatment device
JP2007170388A (en) 2005-12-23 2007-07-05 Robert Bosch Gmbh Operating method and control device for particulate filter
JP2009041437A (en) 2007-08-08 2009-02-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine
JP2009257226A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011001875A (en) * 2009-06-18 2011-01-06 Isuzu Motors Ltd Exhaust emission control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940265A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103627A1 (en) * 2014-12-24 2016-06-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JP2016121589A (en) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 Internal combustion engine exhaust purification system
CN107109983A (en) * 2014-12-24 2017-08-29 丰田自动车株式会社 Emission control system for explosive motor
CN107109983B (en) * 2014-12-24 2019-05-17 丰田自动车株式会社 Emission control system for internal combustion engine
US10337376B2 (en) 2014-12-24 2019-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JP2016176429A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2017053334A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Exhaust emission control system of internal combustion engine

Also Published As

Publication number Publication date
CN104870767A (en) 2015-08-26
EP2940265A1 (en) 2015-11-04
JPWO2014102932A1 (en) 2017-01-12
US20150330275A1 (en) 2015-11-19
EP2940265A4 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
EP1965048B1 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP5907284B2 (en) Abnormality detection device for exhaust purification system
JP4179386B2 (en) NOx purification system and control method of NOx purification system
WO2012090801A1 (en) Exhaust purification system and method for controlling exhaust purification system
JP5884920B2 (en) Exhaust gas purification system for internal combustion engine
WO2014102932A1 (en) Exhaust purification system for internal combustion engine
JP2017025830A (en) Exhaust emission control device for engine
JP5999193B2 (en) Exhaust gas purification device for internal combustion engine
EP2873823B1 (en) Exhaust gas purification system for an internal combustion engine
JP2010261320A (en) Exhaust emission control device of internal combustion engine
JP5900653B2 (en) Exhaust gas purification system for internal combustion engine
JP5994928B2 (en) Exhaust gas purification system for internal combustion engine
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP5062780B2 (en) Exhaust purification system and control method of exhaust purification system
JP2017106399A (en) Exhaust emission control device for internal combustion engine
JP5698525B2 (en) Exhaust purification system and control method of exhaust purification system
JP7200896B2 (en) Exhaust purification device for internal combustion engine and vehicle
US8307635B2 (en) Exhaust purification system of internal combustion engine
JP2017025710A (en) Exhaust emission control system for internal combustion engine
JP2008115712A (en) Exhaust emission control device of internal combustion engine
JP2007231756A (en) Exhaust emission control system of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14655586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012891274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012891274

Country of ref document: EP