JP2011001875A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011001875A
JP2011001875A JP2009145294A JP2009145294A JP2011001875A JP 2011001875 A JP2011001875 A JP 2011001875A JP 2009145294 A JP2009145294 A JP 2009145294A JP 2009145294 A JP2009145294 A JP 2009145294A JP 2011001875 A JP2011001875 A JP 2011001875A
Authority
JP
Japan
Prior art keywords
dpf
exhaust gas
exhaust
urea
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009145294A
Other languages
Japanese (ja)
Inventor
Yoshihisa Tashiro
欣久 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009145294A priority Critical patent/JP2011001875A/en
Publication of JP2011001875A publication Critical patent/JP2011001875A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact and inexpensive exhaust emission control device.SOLUTION: The exhaust emission control device 1 includes: a DPF (diesel particulate filter) 3 provided in an exhaust pipe 2 through which exhaust gas from a diesel engine flows; an oxidation catalyst 4 provided in the exhaust pipe 2 upstream of the DPF 3; and a gas oil injection device 5 connected to the exhaust pipe 2 upstream of the oxidation catalyst 4. The DPF 3 includes a porous DPF carrier 8 allowing exhaust gas to pass through; a urea decomposition catalyst 10 carried on an exhaust gas inlet side wall 9 of the DPF carrier 8; and a urea SCR catalyst 11 carried on the exhaust gas outlet side wall 9 of the DPF carrier 8. A urea injection device 6 injecting urea into exhaust gas is connected to the exhaust pipe 2 downstream of the oxidation catalyst 4 and upstream of the DPF 3.

Description

本発明は、ディーゼルエンジンから排出される排ガスを浄化する排気浄化装置に関するものである。   The present invention relates to an exhaust purification device that purifies exhaust gas discharged from a diesel engine.

PM(Particulate Matter:粒子状物質)及びNOxの排ガス規制強化に伴い、PM及びNOxを低減する排気浄化装置が必要となっている。PM低減のための代表的な装置としてはDPF(ディーゼル・パティキュレート・フィルター)、NOx低減のための代表的な装置としては尿素SCR触媒装置が挙げられる。図3に示すように、PM及びNOxの両方を低減する代表的な排気浄化装置20としては、前側(エンジン側)にDPF装置(DOC22+DPF23)21を装着し、その後方(大気側)に尿素SCR触媒装置24を装着するものが一般的である。この排気浄化装置20は、DPF23の強制再生のため、DPF23の前方に軽油噴射装置(排気管噴射又はポスト噴射)を有する。また、尿素SCR触媒25の還元剤として尿素を供給するため、DPF23と尿素SCR触媒装置24の間に尿素噴射装置の噴射ノズルを装着する必要がある。尿素水をDPF23の前方で噴射した場合、DPF23及びDOC22に担持された貴金属により尿素より分解されたNH3はNOxに転換され、還元剤としての機能を有しない事になる。したがって、DPF23の後方かつ尿素SCR触媒装置24の前方に尿素噴射ノズルを装着する必要があるが、ノズル位置は、尿素の分解に時間が必要なため、尿素SCR触媒装置24より距離を長く取るか、図4に示すように、尿素分解触媒26を尿素SCR触媒装置24の前方に置く必要があった。 As PM (Particulate Matter) and NOx exhaust gas regulations are strengthened, an exhaust purification device that reduces PM and NOx is required. A typical device for reducing PM includes a DPF (diesel particulate filter), and a typical device for reducing NOx includes a urea SCR catalyst device. As shown in FIG. 3, as a typical exhaust purification device 20 that reduces both PM and NOx, a DPF device (DOC22 + DPF23) 21 is mounted on the front side (engine side), and urea SCR is mounted on the rear side (atmosphere side). A device equipped with a catalyst device 24 is generally used. This exhaust purification device 20 has a light oil injection device (exhaust pipe injection or post injection) in front of the DPF 23 for forced regeneration of the DPF 23. Further, in order to supply urea as a reducing agent for the urea SCR catalyst 25, it is necessary to mount an injection nozzle of the urea injection device between the DPF 23 and the urea SCR catalyst device 24. When urea water is injected in front of the DPF 23, NH 3 decomposed from urea by the noble metal supported on the DPF 23 and the DOC 22 is converted to NOx and does not have a function as a reducing agent. Therefore, it is necessary to install a urea injection nozzle behind the DPF 23 and in front of the urea SCR catalyst device 24. However, because the nozzle position requires time for decomposition of urea, is the distance longer than the urea SCR catalyst device 24 taken? As shown in FIG. 4, it is necessary to place the urea decomposition catalyst 26 in front of the urea SCR catalyst device 24.

特開2009−13932号公報JP 2009-13932 A 特開2009−36109号公報JP 2009-36109 A 特開2009−36041号公報JP 2009-36041 A

このため、現状の排気浄化装置20、27は、図3又は図4に示す如く、それぞれの機能を持つ装置21、24を装着し、その装置21、24に必要な噴射装置を装着する必要があり、システムは複雑で大きな容量を必要として、レイアウト上及びコスト上の課題を有していた。   For this reason, as shown in FIG. 3 or FIG. 4, the current exhaust purification devices 20 and 27 need to be equipped with devices 21 and 24 having the respective functions, and the devices 21 and 24 need to be equipped with necessary injection devices. In addition, the system is complicated and requires a large capacity, and has layout and cost problems.

そこで、本発明の目的は、上記課題を解決し、コンパクトかつ安価な排気浄化装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a compact and inexpensive exhaust purification device.

上記課題を解決するために本発明は、ディーゼルエンジンからの排ガスを流す排気管に設けられたDPFと、該DPFより上流の上記排気管に設けられた酸化触媒と、該酸化触媒より上流の上記排気管に接続され上記DPFを強制再生するとき排ガス中に軽油を噴射する軽油噴射装置とを備えた排気浄化装置において、上記DPFが、排ガスを通過させる多孔質のDPF担体と、該DPF担体の排ガス入口側の壁に担持された尿素分解触媒と、上記DPF担体の排ガス出口側の壁に担持された尿素SCR触媒とからなり、上記酸化触媒より下流かつ上記DPFより上流の上記排気管に排ガス中に尿素を噴射する尿素噴射装置を接続したものである。   In order to solve the above problems, the present invention provides a DPF provided in an exhaust pipe for flowing exhaust gas from a diesel engine, an oxidation catalyst provided in the exhaust pipe upstream of the DPF, and the upstream of the oxidation catalyst. An exhaust gas purification apparatus comprising a light oil injection device that is connected to an exhaust pipe and injects light oil into exhaust gas when the DPF is forcibly regenerated, wherein the DPF includes a porous DPF carrier through which the exhaust gas passes, and the DPF carrier The urea decomposition catalyst supported on the wall on the exhaust gas inlet side and the urea SCR catalyst supported on the wall on the exhaust gas outlet side of the DPF carrier, and the exhaust gas in the exhaust pipe downstream from the oxidation catalyst and upstream from the DPF A urea injection device for injecting urea is connected to the inside.

上記DPF担体が、上記排気管の軸方向に延びる複数の穴を有する格子状に形成されると共に、互いに隣接する穴の上流端と下流端が交互に目封じされ、上記穴間のDPF担体に上記壁が形成されている。   The DPF carrier is formed in a lattice shape having a plurality of holes extending in the axial direction of the exhaust pipe, and the upstream end and the downstream end of adjacent holes are alternately sealed, and the DPF carrier between the holes The wall is formed.

上記DPFより下流の排気管に酸化触媒を設けている。   An oxidation catalyst is provided in the exhaust pipe downstream from the DPF.

排気浄化装置をコンパクトかつ安価にできる。   The exhaust emission control device can be made compact and inexpensive.

図1は本実施の形態の排気浄化装置の断面説明図である。FIG. 1 is an explanatory cross-sectional view of the exhaust purification apparatus of the present embodiment. 図2は図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG. 図3は従来の排気浄化装置の断面説明図である。FIG. 3 is a cross-sectional explanatory view of a conventional exhaust purification device. 図4は従来の排気浄化装置の断面説明図である。FIG. 4 is a cross-sectional explanatory view of a conventional exhaust purification device.

図1に示すように、排気浄化装置1は、ディーゼルエンジン(図示せず)からの排ガス17を流す排気管2に設けられ尿素分解機能と尿素SCR機能を有するDPF3と、DPF3より上流の排気管2に設けられた第1酸化触媒4と、第1酸化触媒4より上流の排気管2に接続されDPF3を強制再生するとき排ガス中に軽油を噴射する軽油噴射装置5と、第1酸化触媒4より下流かつDPF3より上流の排気管2に接続され排ガス中に尿素を噴射する尿素噴射装置6と、DPF3より下流の排気管2に設けられた第2酸化触媒7とを備える。   As shown in FIG. 1, an exhaust purification device 1 includes a DPF 3 having a urea decomposition function and a urea SCR function provided in an exhaust pipe 2 through which exhaust gas 17 from a diesel engine (not shown) flows, and an exhaust pipe upstream of the DPF 3. 2, a first oil catalyst 4 that is connected to the exhaust pipe 2 upstream of the first oxidation catalyst 4 and that injects light oil into the exhaust gas when the DPF 3 is forcibly regenerated, and a first oxidation catalyst 4. A urea injection device 6 that is connected to the exhaust pipe 2 further downstream and upstream from the DPF 3 and injects urea into the exhaust gas, and a second oxidation catalyst 7 provided in the exhaust pipe 2 downstream from the DPF 3 are provided.

図2に示すように、DPF3は、排ガスを通過させる多孔質のDPF担体8と、DPF担体8の排ガス入口側の壁9に担持された尿素分解触媒10と、DPF担体8の排ガス出口側の壁9に担持された尿素SCR触媒11とからなる。DPF担体8は、ウォールスルータイプであり、排気管2の軸方向に延びる複数の穴12を有する格子状に形成されると共に、互いに隣接する穴12の上流端と下流端が交互に目封じされ、これら穴12間のDPF担体8に排ガスを通過させる壁9が形成されている。また、DPF担体8は、貴金属触媒等酸化能力を有する触媒を担持しない。一般にDPF担体8に酸化能力のある貴金属触媒を担持させることによりPMが燃え始める温度を600℃から400℃位に下げることができ、排気温度が400℃を越えたときDPF3が自然と再生されるようにできるが、実際の運転では排気温度が400℃を越える機会は極めて少ない。このため、DPF担体8に酸化能力を有する触媒を担持させるのを止め、軽油噴射装置5から排ガス中に軽油を噴射することでハイドロカーボンを発生させ、このハイドロカーボンを第1酸化触媒4で酸化させることにより酸化熱を発生させ、DPF3を強制再生するように排気浄化装置1を構成した。   As shown in FIG. 2, the DPF 3 includes a porous DPF carrier 8 through which exhaust gas passes, a urea decomposition catalyst 10 supported on the wall 9 on the exhaust gas inlet side of the DPF carrier 8, and an exhaust gas outlet side of the DPF carrier 8. It consists of a urea SCR catalyst 11 supported on the wall 9. The DPF carrier 8 is a wall-through type, is formed in a lattice shape having a plurality of holes 12 extending in the axial direction of the exhaust pipe 2, and the upstream end and the downstream end of the adjacent holes 12 are alternately plugged. A wall 9 that allows exhaust gas to pass through the DPF carrier 8 between the holes 12 is formed. Further, the DPF carrier 8 does not carry a catalyst having oxidation ability such as a noble metal catalyst. In general, by supporting a noble metal catalyst capable of oxidation on the DPF carrier 8, the temperature at which PM starts to burn can be lowered from about 600 ° C. to about 400 ° C., and when the exhaust temperature exceeds 400 ° C., the DPF 3 is naturally regenerated. However, there are very few opportunities for the exhaust temperature to exceed 400 ° C. in actual operation. For this reason, the DPF carrier 8 is stopped from supporting a catalyst having an oxidizing ability, and light oil is injected into the exhaust gas from the light oil injection device 5 to generate hydrocarbons. The hydrocarbons are oxidized by the first oxidation catalyst 4. Thus, the exhaust gas purification apparatus 1 is configured to generate oxidation heat to forcibly regenerate the DPF 3.

尿素分解触媒10は、Al23、SiO2又はZrO2等からなり、尿素をアンモニアと二酸化炭素に分解する機能を有する。 The urea decomposition catalyst 10 is made of Al 2 O 3 , SiO 2, ZrO 2 or the like, and has a function of decomposing urea into ammonia and carbon dioxide.

尿素SCR触媒11はゼオライトからなるNOx還元触媒である。   The urea SCR catalyst 11 is a NOx reduction catalyst made of zeolite.

図1に示す第1酸化触媒4と第2酸化触媒7は、ディーゼル用酸化触媒(DOC:Diesel Oxidation Catalyst)からなる。第1酸化触媒4は排ガス中の一酸化炭素、炭化水素を酸化反応により酸化除去する。また、第1酸化触媒4は、一酸化炭素、炭化水素を酸化除去するとき酸化熱を発生する。この酸化熱はDPF3を強制再生するとき用いられる。第2酸化触媒7は、アンモニアのリークを防ぐためのものであり、アンモニアを酸化する機能を有する。   The 1st oxidation catalyst 4 and the 2nd oxidation catalyst 7 which are shown in FIG. 1 consist of a diesel oxidation catalyst (DOC: Diesel Oxidation Catalyst). The first oxidation catalyst 4 oxidizes and removes carbon monoxide and hydrocarbons in the exhaust gas by an oxidation reaction. The first oxidation catalyst 4 generates oxidation heat when oxidizing and removing carbon monoxide and hydrocarbons. This heat of oxidation is used when the DPF 3 is forcibly regenerated. The second oxidation catalyst 7 is for preventing leakage of ammonia and has a function of oxidizing ammonia.

軽油噴射装置5は、第1酸化触媒4より上流の排気管2に接続された軽油噴射ノズル13と、軽油噴射ノズル13に軽油を供給する軽油供給部14とを備える。   The light oil injection device 5 includes a light oil injection nozzle 13 connected to the exhaust pipe 2 upstream from the first oxidation catalyst 4, and a light oil supply unit 14 that supplies light oil to the light oil injection nozzle 13.

尿素噴射装置6は、第1酸化触媒4より下流かつDPF3より上流の排気管2に接続された尿素噴射ノズル15と、尿素噴射ノズル15に尿素水を供給する尿素供給部16とを備える。   The urea injection device 6 includes a urea injection nozzle 15 connected to the exhaust pipe 2 downstream from the first oxidation catalyst 4 and upstream from the DPF 3, and a urea supply unit 16 that supplies urea water to the urea injection nozzle 15.

次に本実施の形態の作用を述べる。   Next, the operation of this embodiment will be described.

排気浄化装置1に流入した排ガスは、まず第1酸化触媒4を通り、排ガス中の一酸化炭素と炭化水素が酸化除去される。   The exhaust gas that has flowed into the exhaust purification device 1 first passes through the first oxidation catalyst 4, and carbon monoxide and hydrocarbons in the exhaust gas are oxidized and removed.

この後、尿素噴射装置6から排ガス中に尿素が噴射されると、尿素は排ガスと共にDPF3内に入る。排ガスがDPF担体8の壁9を通過するとき排ガス中のPMは壁9に捕捉される。また、排ガス中の尿素は、DPF担体8の排ガス入口側の壁9を通過するとき、尿素分解触媒10によりCO(NH22→NH3+CO2に分解される。またさらに、排ガス中のNOxは、壁9の出口側の尿素SCR触媒11を通過するとき、NH3(アンモニア)により還元され、N2に無害化される。DPF3を通過した排ガスは第2酸化触媒7に入り、排ガス中にアンモニアが残っている場合、アンモニアを酸化させて無害化する。 Thereafter, when urea is injected into the exhaust gas from the urea injection device 6, the urea enters the DPF 3 together with the exhaust gas. When the exhaust gas passes through the wall 9 of the DPF carrier 8, PM in the exhaust gas is captured by the wall 9. Further, urea in the exhaust gas is decomposed into CO (NH 2 ) 2 → NH 3 + CO 2 by the urea decomposition catalyst 10 when passing through the wall 9 on the exhaust gas inlet side of the DPF carrier 8. Furthermore, NOx in the exhaust gas is reduced by NH 3 (ammonia) and made harmless by N 2 when passing through the urea SCR catalyst 11 on the outlet side of the wall 9. The exhaust gas that has passed through the DPF 3 enters the second oxidation catalyst 7, and when ammonia remains in the exhaust gas, the ammonia is oxidized and rendered harmless.

DPF3を強制再生するとき、軽油噴射装置5から排ガス中に軽油を噴射する。これにより排ガス中にハイドロカーボンが大量に発生し、ハイドロカーボンが第1酸化触媒4で燃焼し、DPF3が600℃以上の高温となり、PMが燃焼する。このとき、尿素分解触媒10と尿素SCR触媒11が熱によって変質、破損等することはなく、DPF3の強制再生等の弊害とならない。   When the DPF 3 is forcibly regenerated, light oil is injected from the light oil injection device 5 into the exhaust gas. As a result, a large amount of hydrocarbon is generated in the exhaust gas, the hydrocarbon burns in the first oxidation catalyst 4, the DPF 3 reaches a high temperature of 600 ° C. or higher, and PM burns. At this time, the urea decomposition catalyst 10 and the urea SCR catalyst 11 are not altered or damaged by heat, and there is no adverse effect such as forced regeneration of the DPF 3.

このように、ディーゼルエンジンからの排ガスを流す排気管2に設けられたDPF3と、DPF3より上流の排気管2に設けられた第1酸化触媒4と、第1酸化触媒4より上流の排気管2に接続されDPF3を強制再生するとき排ガス中に軽油を噴射する軽油噴射装置5とを備えた排気浄化装置1において、DPF3が、排ガスを通過させる多孔質のDPF担体8と、DPF担体8の排ガス入口側の壁9に担持された尿素分解触媒10と、DPF担体8の排ガス出口側の壁9に担持された尿素SCR触媒11とからなり、第1酸化触媒4より下流かつDPF3より上流の排気管2に排ガス中に尿素を噴射する尿素噴射装置6を接続したため、排気浄化装置1をコンパクトかつ安価なものにできる。排気浄化装置1がコンパクトになることにより、排気浄化装置1の熱容量を小さくでき、触媒の温度管理を容易にでき、排ガスを効率よく浄化できる。また、排気浄化装置1のレイアウトの自由度が増すため、よりエンジンの近くに排気浄化装置1を配置できる。排気浄化装置1をエンジン近傍に配置した場合、排ガスをより高い温度で排気浄化装置1に供給でき、排ガスを効率よく浄化できる。   As described above, the DPF 3 provided in the exhaust pipe 2 through which the exhaust gas from the diesel engine flows, the first oxidation catalyst 4 provided in the exhaust pipe 2 upstream of the DPF 3, and the exhaust pipe 2 upstream of the first oxidation catalyst 4. In the exhaust gas purification apparatus 1 including the light oil injection device 5 that injects light oil into the exhaust gas when the DPF 3 is forcibly regenerated, the DPF 3 has a porous DPF carrier 8 through which the exhaust gas passes, and the exhaust gas of the DPF carrier 8 The exhaust gas is composed of a urea decomposition catalyst 10 supported on the wall 9 on the inlet side and a urea SCR catalyst 11 supported on the wall 9 on the exhaust gas outlet side of the DPF carrier 8. The exhaust gas is downstream from the first oxidation catalyst 4 and upstream from the DPF 3. Since the urea injection device 6 for injecting urea into the exhaust gas is connected to the pipe 2, the exhaust purification device 1 can be made compact and inexpensive. By making the exhaust purification device 1 compact, the heat capacity of the exhaust purification device 1 can be reduced, the temperature control of the catalyst can be facilitated, and the exhaust gas can be purified efficiently. Further, since the degree of freedom of the layout of the exhaust purification device 1 is increased, the exhaust purification device 1 can be disposed closer to the engine. When the exhaust emission control device 1 is disposed in the vicinity of the engine, the exhaust gas can be supplied to the exhaust emission purification device 1 at a higher temperature, and the exhaust gas can be efficiently purified.

また、DPF担体8が、排気管2の軸方向に延びる複数の穴12を有する格子状に形成されると共に、互いに隣接する穴12の上流端と下流端が交互に目封じされ、これら穴12間のDPF担体8に壁9が形成されるものとしたため、広い面積で効率よく排ガス中のNOxを無害化できる。   In addition, the DPF carrier 8 is formed in a lattice shape having a plurality of holes 12 extending in the axial direction of the exhaust pipe 2, and the upstream end and the downstream end of the adjacent holes 12 are alternately sealed, and these holes 12 Since the wall 9 is formed on the DPF carrier 8 in the middle, NOx in the exhaust gas can be made harmless efficiently over a wide area.

そして、DPF3より下流の排気管2に第2酸化触媒7を設けたため、アンモニアのリークをより確実に防止できる。   And since the 2nd oxidation catalyst 7 was provided in the exhaust pipe 2 downstream from DPF3, the leak of ammonia can be prevented more reliably.

1 排気浄化装置
2 排気管
3 DPF
4 第1酸化触媒(酸化触媒)
5 軽油噴射装置
6 尿素噴射装置
8 DPF担体
9 壁
10 尿素分解触媒
11 尿素SCR触媒
12 穴
1 Exhaust purification device 2 Exhaust pipe 3 DPF
4 First oxidation catalyst (oxidation catalyst)
5 Light oil injection device 6 Urea injection device 8 DPF carrier 9 Wall 10 Urea decomposition catalyst 11 Urea SCR catalyst 12 Hole

Claims (3)

ディーゼルエンジンからの排ガスを流す排気管に設けられたDPFと、該DPFより上流の上記排気管に設けられた酸化触媒と、該酸化触媒より上流の上記排気管に接続され上記DPFを強制再生するとき排ガス中に軽油を噴射する軽油噴射装置とを備えた排気浄化装置において、上記DPFが、排ガスを通過させる多孔質のDPF担体と、該DPF担体の排ガス入口側の壁に担持された尿素分解触媒と、上記DPF担体の排ガス出口側の壁に担持された尿素SCR触媒とからなり、上記酸化触媒より下流かつ上記DPFより上流の上記排気管に排ガス中に尿素を噴射する尿素噴射装置を接続したことを特徴とする排気浄化装置。   A DPF provided in an exhaust pipe for flowing exhaust gas from a diesel engine, an oxidation catalyst provided in the exhaust pipe upstream from the DPF, and the DPF forcibly regenerated by being connected to the exhaust pipe upstream from the oxidation catalyst In an exhaust gas purification apparatus comprising a light oil injection device for injecting light oil into exhaust gas, the DPF is a porous DPF carrier through which the exhaust gas passes, and a urea decomposition carried on the exhaust gas inlet side wall of the DPF carrier A urea injection device for injecting urea into exhaust gas is connected to the exhaust pipe downstream of the oxidation catalyst and upstream of the DPF, comprising a catalyst and a urea SCR catalyst carried on the exhaust gas outlet side wall of the DPF carrier An exhaust purification device characterized by that. 上記DPF担体が、上記排気管の軸方向に延びる複数の穴を有する格子状に形成されると共に、互いに隣接する穴の上流端と下流端が交互に目封じされ、これら穴間のDPF担体に上記壁が形成された請求項1記載の排気浄化装置。   The DPF carrier is formed in a lattice shape having a plurality of holes extending in the axial direction of the exhaust pipe, and the upstream end and the downstream end of holes adjacent to each other are alternately sealed, and the DPF carrier between these holes is attached to the DPF carrier. The exhaust emission control device according to claim 1, wherein the wall is formed. 上記DPFより下流の排気管に酸化触媒を設けた請求項1又は2記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein an oxidation catalyst is provided in an exhaust pipe downstream of the DPF.
JP2009145294A 2009-06-18 2009-06-18 Exhaust emission control device Pending JP2011001875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145294A JP2011001875A (en) 2009-06-18 2009-06-18 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145294A JP2011001875A (en) 2009-06-18 2009-06-18 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2011001875A true JP2011001875A (en) 2011-01-06

Family

ID=43560035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145294A Pending JP2011001875A (en) 2009-06-18 2009-06-18 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2011001875A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102932A1 (en) * 2012-12-26 2014-07-03 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine
JP2014148908A (en) * 2013-01-31 2014-08-21 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2014162597A1 (en) * 2013-04-05 2014-10-09 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine
KR101826556B1 (en) * 2016-09-02 2018-02-07 현대자동차 주식회사 Exhaust system and exhaust gas temperature control method
JP2018187629A (en) * 2012-06-01 2018-11-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Selective catalyst reduction wall flow type filter containing vanadate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290827A (en) * 2003-03-27 2004-10-21 Ne Chemcat Corp Oxidation catalyst for burning light oil
JP2006183507A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2007247652A (en) * 2007-03-30 2007-09-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009097410A (en) * 2007-10-16 2009-05-07 Toyota Motor Corp Particulate matter collection amount estimation device, and filter regeneration system in particulate filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290827A (en) * 2003-03-27 2004-10-21 Ne Chemcat Corp Oxidation catalyst for burning light oil
JP2006183507A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2007247652A (en) * 2007-03-30 2007-09-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009097410A (en) * 2007-10-16 2009-05-07 Toyota Motor Corp Particulate matter collection amount estimation device, and filter regeneration system in particulate filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187629A (en) * 2012-06-01 2018-11-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Selective catalyst reduction wall flow type filter containing vanadate
WO2014102932A1 (en) * 2012-12-26 2014-07-03 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine
CN104870767A (en) * 2012-12-26 2015-08-26 丰田自动车株式会社 Exhaust purification system for internal combustion engine
EP2940265A4 (en) * 2012-12-26 2015-12-23 Toyota Motor Co Ltd Exhaust purification system for internal combustion engine
JPWO2014102932A1 (en) * 2012-12-26 2017-01-12 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2014148908A (en) * 2013-01-31 2014-08-21 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2014162597A1 (en) * 2013-04-05 2014-10-09 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine
JP5994928B2 (en) * 2013-04-05 2016-09-21 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
KR101826556B1 (en) * 2016-09-02 2018-02-07 현대자동차 주식회사 Exhaust system and exhaust gas temperature control method

Similar Documents

Publication Publication Date Title
JP4462556B2 (en) Exhaust gas purification device for internal combustion engine
JP4286888B2 (en) Exhaust purification equipment
JP5630024B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP5251266B2 (en) Exhaust gas purification device and exhaust gas purification system
JP4881213B2 (en) Exhaust purification device
JP4286887B2 (en) Exhaust purification equipment
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP2009114930A (en) Exhaust purification device
KR100999616B1 (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
KR20040060716A (en) NOx AFTERTREATMENT SYSTEM AND METHOD FOR INTERNAL COMBUSTION ENGINES
JP2015020166A (en) Method for reducing nitrogen oxide in diesel engine exhaust gas, and exhaust gas post-treatment system for executing method
JP2009036041A (en) Exhaust emission purifier
JP2011231693A (en) Exhaust gas purification device
JP2010180861A (en) Exhaust emission control device
JP2010031769A (en) Exhaust emission control device
JP2011001875A (en) Exhaust emission control device
JP2010242515A (en) Exhaust emission control system and exhaust emission control method
JP2012149535A (en) Exhaust emission control device
JP2007009718A (en) Exhaust emission control device
KR20140028730A (en) Scr diesel particulate filter and exhaust system having this
JP2013245606A (en) Exhaust gas purification system
WO2013084653A1 (en) Exhaust purification device and method for increasing corrosion resistance of exhaust purification device
KR100769571B1 (en) Harmfulness matter reduction system of diesel engine
JP2019190423A (en) Exhaust emission control device and vehicle
JP2021080874A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140801