JP2007009718A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2007009718A
JP2007009718A JP2005188011A JP2005188011A JP2007009718A JP 2007009718 A JP2007009718 A JP 2007009718A JP 2005188011 A JP2005188011 A JP 2005188011A JP 2005188011 A JP2005188011 A JP 2005188011A JP 2007009718 A JP2007009718 A JP 2007009718A
Authority
JP
Japan
Prior art keywords
fuel
exhaust
exhaust gas
catalyst
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188011A
Other languages
Japanese (ja)
Inventor
Takashi Takakura
隆 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005188011A priority Critical patent/JP2007009718A/en
Publication of JP2007009718A publication Critical patent/JP2007009718A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device adapted for suppressing deterioration of fuel consumption, and making added fuel react in a post-treatment device from a relatively low temperature zone. <P>SOLUTION: The exhaust emission control device is provided with a pair of NOx storage reducing catalysts 5A and 5B in an exhaust pipe 4 as the post-treatment device requiring addition of fuel, and a fuel adding device 23 for adding fuel into exhaust gas 3 on the upstream sides of the respective NOx storage reducing catalysts 5A and 5B. This device also includes an additive tank 14 independent of a fuel tank 20 for supplying light oil 19 as fuel to a diesel engine 1, and is configured so as to supply kerosene 18 from the additive tank 14 to the fuel adding device 23 through a supply line 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に燃料添加を要する後処理装置を装備して排気浄化を図ることが行われており、この種の後処理装置としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。 Conventionally, it has been practiced to provide an aftertreatment device that requires fuel addition in the middle of the exhaust pipe to purify exhaust gas. As this type of aftertreatment device, when the exhaust air-fuel ratio is lean, NOx occluded with the ability to oxidize and temporarily store NOx in the form of nitrate, and to reduce and purify NOx by decomposing and releasing it through the presence of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases Reduction catalysts are known.

このNOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 In this NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded, so the O 2 concentration of the exhaust gas flowing into the NOx occlusion reduction catalyst periodically. Needs to be reduced to decompose and release NOx.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加することにより、この添加燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させることで排気ガス中のO2濃度を低下させる必要がある(例えば、特許文献1参照)。 For this reason, by adding fuel (HC) to the exhaust gas upstream of the NOx storage reduction catalyst, the added fuel is used as a reducing agent to react with O 2 on the NOx storage reduction catalyst. 2 It is necessary to reduce the concentration (see, for example, Patent Document 1).

また、ディーゼル機関の排気ガス中には、燃料中の硫黄分に由来するSO2が存在するため、このSO2によりNOx吸蔵還元触媒が被毒してしまう虞れがあるが、前述のようにNOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加して触媒上で酸化反応させれば、その反応熱によりNOx吸蔵還元触媒の触媒床温度を約600℃以上に上げて硫黄分の脱硫を図ることも可能となる。 Further, since SO 2 derived from the sulfur content in the fuel exists in the exhaust gas of the diesel engine, there is a possibility that the NOx storage reduction catalyst may be poisoned by this SO 2 , as described above. If fuel (HC) is added to the exhaust gas upstream of the NOx storage reduction catalyst and an oxidation reaction is carried out on the catalyst, the heat of reaction raises the catalyst bed temperature of the NOx storage reduction catalyst to about 600 ° C. or higher. It is also possible to desulfurize the components.

一方、ディーゼル機関から排出されるパティキュレート(Particulate Matter:粒子状物質)の低減対策として、酸化触媒を担持させたパティキュレートフィルタを排気管の途中に装備して排気ガス中のパティキュレートを捕集し、その捕集されたパティキュレートの酸化反応を酸化触媒により促進して効率の良いパティキュレートの燃焼除去を図ることが既に提案されている。   On the other hand, as a measure to reduce particulate matter (particulate matter) emitted from diesel engines, a particulate filter carrying an oxidation catalyst is installed in the middle of the exhaust pipe to collect particulates in the exhaust gas. However, it has already been proposed that the oxidation reaction of the collected particulates is promoted by an oxidation catalyst to achieve efficient combustion removal of the particulates.

ただし、この種の酸化触媒には活性温度領域があり、その活性下限温度を下まわるような排気温度での運転状態が続くと、酸化触媒が活性化しないためにパティキュレートが良好に燃焼除去されないという不具合が起こり得るので、必要に応じ上流側の排気ガス中に燃料を添加し、その添加した燃料を高温の排気ガス中で熱分解させることで高濃度のHCガスを生成し、このHCガスを酸化触媒上で酸化反応させて反応熱により触媒床温度を積極的に上昇させることが提案されている。   However, this type of oxidation catalyst has an active temperature range, and if the operation state continues at an exhaust temperature that falls below its lower activation limit temperature, the oxidation catalyst will not be activated and the particulates will not be burned and removed well. If necessary, fuel is added to the exhaust gas on the upstream side, and the added fuel is thermally decomposed in high-temperature exhaust gas to produce high-concentration HC gas. It has been proposed that the catalyst bed temperature is positively increased by the reaction heat by oxidizing the catalyst on the oxidation catalyst.

以上に幾つかの例をあげて説明した通り、排気管の途中に装備した後処理装置(NOx吸蔵還元触媒や酸化触媒、又はこれらを担持したパティキュレートフィルタ)の上流側に燃料を添加するという考え自体は従来より提案されているものである。
特開2000−356127号公報
As described above with some examples, fuel is added to the upstream side of the aftertreatment device (NOx storage reduction catalyst, oxidation catalyst, or particulate filter carrying these) installed in the middle of the exhaust pipe. The idea itself has been proposed previously.
JP 2000-356127 A

しかしながら、従来においては、ディーゼル機関の駆動に使う軽油燃料を燃料タンクから流用して後処理装置の上流側に添加するようにしていたため、燃費の大幅な悪化を招いてしまうことになり、しかも、添加した燃料を後処理装置で反応(燃焼)させるのに必要な排気温度が得られない運転条件下(例えば渋滞の多い都市内での徐行運転等)では、後処理装置の性能を効率良く引き出すことができないという問題があった。   However, in the past, since light oil fuel used for driving the diesel engine was diverted from the fuel tank and added to the upstream side of the aftertreatment device, the fuel consumption was greatly deteriorated, Under operating conditions where the exhaust temperature required to react (combust) the added fuel with the aftertreatment device cannot be obtained (for example, slow driving in a city with heavy traffic), the performance of the aftertreatment device is efficiently extracted. There was a problem that I could not.

本発明は上述の実情に鑑みてなしたもので、従来よりも燃費の悪化を抑制し且つ比較的低い温度領域から添加燃料を後処理装置で反応せしめ得るようにした排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and provides an exhaust emission control device that can suppress the deterioration of fuel consumption as compared with the prior art and allow the added fuel to react with the aftertreatment device from a relatively low temperature range. It is an object.

本発明は、排気管の途中に燃料添加を要する後処理装置を装備し且つ該後処理装置より上流側で排気ガス中に燃料を添加する燃料添加装置を備えた排気浄化装置において、エンジンへ燃料を供給するための燃料タンクから独立した添加剤タンクを備え、該添加剤タンクから前記燃料添加装置へ燃料を供給し得るように構成したことを特徴とするものである。   The present invention relates to an exhaust purification apparatus equipped with an aftertreatment device that requires fuel addition in the middle of an exhaust pipe and a fuel addition device that adds fuel into exhaust gas upstream of the aftertreatment device. The fuel tank is provided with an additive tank independent from the fuel tank for supplying the fuel, and the fuel can be supplied from the additive tank to the fuel adding device.

而して、このようにすれば、燃料添加装置に対し燃料タンクとは別の添加剤タンクから燃料が導かれて排気ガス中に添加されることになるので、添加燃料として燃料タンクの燃料とは異種の軽質で安価な燃料を採用することが可能となり、相対的にコストが高くつく燃料タンクの燃料を後処理装置への添加用として使わなくて済む分だけトータルの燃費が低減され、エンジンの駆動に使う燃料よりも軟質な添加燃料の採用により低温域での反応性が高められることになる。   Thus, in this way, the fuel is introduced from the additive tank different from the fuel tank to the fuel addition device and added to the exhaust gas. Makes it possible to use different types of light and inexpensive fuels, reducing the total fuel consumption by the amount of fuel tank fuel that is relatively expensive and not having to be used for addition to the aftertreatment system. By using an additive fuel that is softer than the fuel used to drive the vehicle, the reactivity in the low temperature range can be increased.

更に、本発明においては、燃料添加装置による燃料の添加位置と後処理装置との間に、燃料中のHC成分を排気ガス中でH2とCOに分解する改質触媒を設け、前記燃料の添加位置から前記改質触媒までの間と該改質触媒の周囲に電熱ヒータを備えることが好ましい。 Further, in the present invention, a reforming catalyst for decomposing HC components in the fuel into H 2 and CO in the exhaust gas is provided between the fuel addition position by the fuel addition device and the aftertreatment device, An electric heater is preferably provided between the addition position and the reforming catalyst and around the reforming catalyst.

このようにすれば、燃料添加装置により添加された燃料が電熱ヒータにより加熱されて高濃度のHCガスが生成され、電熱ヒータの加熱により触媒床温度を高められた改質触媒を前記HCガスが通る際に反応性の高いH2とCOとに分解されるので、その後段に配置されている後処理装置にて反応性の高いH2及びCOによりHCガスがそのまま導かれた場合よりも低い温度から反応が始まる。この際、燃料タンクの燃料よりも軽質な添加燃料を採用していれば、改質触媒におけるHCガスのH2及びCOへの分解も効率良く進むことは勿論である。 In this way, the fuel added by the fuel addition device is heated by the electric heater to generate high-concentration HC gas, and the HC gas is used as the reforming catalyst whose catalyst bed temperature is increased by the heating of the electric heater. Since it is decomposed into highly reactive H 2 and CO when passing through, it is lower than the case where HC gas is introduced as it is with highly reactive H 2 and CO in the post-treatment device arranged in the subsequent stage. The reaction starts from temperature. At this time, if an additive fuel that is lighter than the fuel in the fuel tank is employed, it goes without saying that the decomposition of the HC gas into H 2 and CO in the reforming catalyst proceeds efficiently.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、添加燃料として燃料タンクの燃料とは異種の軽質で安価な燃料を採用することができるので、相対的にコストが高くつく燃料タンクの燃料を後処理装置への添加用として使わなくて済む分だけトータルの燃費を低減して従来よりも燃費の悪化を抑制することができ、しかも、エンジンの駆動に使う燃料よりも軟質な添加燃料を採用することで比較的低い温度領域から添加燃料を後処理装置で反応させることができる。   (I) According to the invention described in claim 1 of the present invention, a light and inexpensive fuel different from the fuel in the fuel tank can be adopted as the added fuel, so that the fuel tank is relatively expensive. The fuel consumption can be reduced by reducing the total fuel consumption as much as it is not necessary to use it as an additive to the aftertreatment device, and it is also softer than the fuel used to drive the engine. By employing the fuel, the added fuel can be reacted in the aftertreatment device from a relatively low temperature range.

(II)本発明の請求項2に記載の発明によれば、燃料添加装置により添加した燃料を改質触媒にてH2とCOに分解させ、これらの反応性の高いH2及びCOにより比較的低い温度領域から後処理装置で反応を起こすことができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、後処理装置の性能を効率良く引き出すことができる。 (II) According to the invention described in claim 2 of the present invention, the fuel added by the fuel adding device is decomposed into H 2 and CO by the reforming catalyst, and compared with these highly reactive H 2 and CO. Since the reaction can occur in the post-treatment device from a low temperature range, for example, operating conditions where low exhaust temperatures and low exhaust temperatures are likely to be continued, such as slow driving in cities with heavy traffic congestion. However, the performance of the post-processing apparatus can be efficiently extracted.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、フロースルー方式のハニカム構造を有する一対のNOx吸蔵還元触媒5A,5Bがケーシング6A,6Bに抱持されて並列に装備されており、該各ケーシング6A,6Bの入口側に対し上流側の排気管4が二股状に分岐して接続され且つ前記各ケーシング6A,6Bの出口側で各排気管4が再び合流されてテールパイプを成すようにしてある。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, the exhaust pipe 4 through which the exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows is shown. Further, a pair of NOx occlusion reduction catalysts 5A and 5B having a flow-through type honeycomb structure are mounted in parallel by being held in the casings 6A and 6B, and are upstream of the inlet sides of the casings 6A and 6B. The exhaust pipe 4 is branched and connected in a bifurcated manner, and the exhaust pipes 4 are joined again on the outlet side of the casings 6A and 6B to form a tail pipe.

また、ここに図示している例では、前記各ケーシング6A,6B内における各NOx吸蔵還元触媒5A,5Bの後段に、酸化触媒を担持したパティキュレートフィルタ7A,7Bが収容されており、これら各パティキュレートフィルタ7A,7Bに前記各NOx吸蔵還元触媒5A,5Bを経た排気ガス3が通されて該排気ガス3中のパティキュレートが捕集されるようにしてある。   Further, in the example shown here, the particulate filters 7A and 7B carrying the oxidation catalyst are accommodated in the subsequent stage of the NOx storage reduction catalysts 5A and 5B in the casings 6A and 6B. The exhaust gas 3 that has passed through the NOx storage reduction catalysts 5A and 5B is passed through the particulate filters 7A and 7B, and the particulates in the exhaust gas 3 are collected.

前記ケーシング6A,6Bの入口側の分岐箇所には、排気ガス3の主な流れを前記各NOx吸蔵還元触媒5A,5Bの何れか一方に振り分けて他方の排気ガス3の流量を絞り込む排気分配バルブ8が回動自在に設けられている。   An exhaust distribution valve that distributes the main flow of the exhaust gas 3 to one of the NOx storage reduction catalysts 5A and 5B and narrows the flow rate of the other exhaust gas 3 at a branch portion on the inlet side of the casings 6A and 6B. 8 is rotatably provided.

ここで、前記排気分配バルブ8の背面側には、ターボチャージャ9のタービン10の出口部から排気ガス3の一部を抜き出して導くバイパス管11が図面に対し直角な方向から接続されており、前記排気分配バルブ8により上流側の排気管4からの排気ガス3の主な流れを絞り込まれた前記各NOx吸蔵還元触媒5A,5Bの何れかに対してバイパス管11からの排気ガス3が導入されるようにしてある。   Here, on the back side of the exhaust distribution valve 8, a bypass pipe 11 that extracts and guides a part of the exhaust gas 3 from the outlet of the turbine 10 of the turbocharger 9 is connected from a direction perpendicular to the drawing. The exhaust gas 3 from the bypass pipe 11 is introduced into one of the NOx storage reduction catalysts 5A and 5B, in which the main flow of the exhaust gas 3 from the upstream exhaust pipe 4 is narrowed by the exhaust distribution valve 8. It is supposed to be.

このバイパス管11の適宜位置には、後述の燃料添加によるHC成分を排気ガス3中でH2とCOに分解する改質触媒12が装備されており、この種の改質触媒12には、例えばアルミナやシリカ等の酸化物又はゼオライト等の複合酸化物を担体として、Pd、Pt、Rh等を活性金属として担持させたものを用いることが可能である。 An appropriate position of the bypass pipe 11 is equipped with a reforming catalyst 12 that decomposes an HC component obtained by fuel addition, which will be described later, into H 2 and CO in the exhaust gas 3. For example, it is possible to use an oxide such as alumina or silica or a composite oxide such as zeolite that supports Pd, Pt, Rh, or the like as an active metal.

更に、前記バイパス管11における改質触媒12の入側に噴射ノズル13が貫通設置されていると共に、該噴射ノズル13と所要場所に設けた添加剤タンク14との間が供給ライン15により接続され、該供給ライン15の途中に装備した供給ポンプ16の駆動と添加弁17の開作動とにより添加剤タンク14内の灯油18(還元剤としての燃料)が前記噴射ノズル13を介し改質触媒12の入側に添加されるようにしてあり、これら噴射ノズル13、供給ライン15、供給ポンプ16、添加弁17により燃料添加装置23が構成されている。   Further, an injection nozzle 13 is provided through the bypass pipe 11 on the inlet side of the reforming catalyst 12, and the supply line 15 connects between the injection nozzle 13 and the additive tank 14 provided at a required location. The kerosene 18 (fuel as the reducing agent) in the additive tank 14 is supplied to the reforming catalyst 12 through the injection nozzle 13 by driving the supply pump 16 provided in the middle of the supply line 15 and opening the addition valve 17. The fuel addition device 23 is constituted by the injection nozzle 13, the supply line 15, the supply pump 16, and the addition valve 17.

ここで、前述した添加剤タンク14は、ディーゼルエンジン1へ軽油19を燃料として供給するための燃料タンク20から独立したものとなっており、ここでは添加剤として灯油18を貯溜させた場合を例示しているが、軽油19よりも軽質な燃料であれば、必ずしも灯油18だけに限定されるものではない。   Here, the additive tank 14 described above is independent from the fuel tank 20 for supplying the diesel engine 1 with the light oil 19 as a fuel. Here, a case where kerosene 18 is stored as an additive is illustrated. However, the fuel is not necessarily limited to kerosene 18 as long as it is lighter than light oil 19.

また、灯油18の添加位置を成す噴射ノズル13から前記改質触媒12までの間と該改質触媒12の周囲に電熱ヒータ21,22が装備されており、これら電熱ヒータ21,22により排気温度及び触媒床温度が高められるようになっている。   Further, electric heaters 21 and 22 are provided between the injection nozzle 13 forming the addition position of kerosene 18 and the reforming catalyst 12 and around the reforming catalyst 12, and exhaust temperatures are provided by these electric heaters 21 and 22. And the catalyst bed temperature can be increased.

而して、一例として図1に示している通り、ディーゼルエンジン1からの排気ガス3の主な流れを排気分配バルブ8により一方のNOx吸蔵還元触媒5Aに振り分けると共に、バイパス管11により改質触媒12を通して導いた排気ガス3を他方のNOx吸蔵還元触媒5Bに振り分け、前記燃料添加装置23により改質触媒12の入側に灯油18を還元剤として添加すると、該灯油18が電熱ヒータ21により加熱されて高濃度のHCガスが生成され、電熱ヒータ22の加熱により触媒床温度を高められた改質触媒12を前記HCガスが通る際に、雰囲気中に共存するO2と反応して雰囲気温度を上げ且つO2が消費された後に反応性の高いH2とCOとに分解されて後段のNOx吸蔵還元触媒5Bに導入されることになる。 Thus, as shown in FIG. 1 as an example, the main flow of the exhaust gas 3 from the diesel engine 1 is distributed to one NOx occlusion reduction catalyst 5A by the exhaust distribution valve 8, and the reforming catalyst by the bypass pipe 11 When the exhaust gas 3 guided through 12 is distributed to the other NOx occlusion reduction catalyst 5B and the kerosene 18 is added to the inlet side of the reforming catalyst 12 by the fuel addition device 23, the kerosene 18 is heated by the electric heater 21. When the HC gas passes through the reforming catalyst 12 in which high-concentration HC gas is generated and the catalyst bed temperature is increased by the heating of the electric heater 22, it reacts with O 2 coexisting in the atmosphere to react with the ambient temperature. And after O 2 is consumed, it is decomposed into highly reactive H 2 and CO and introduced into the NOx occlusion reduction catalyst 5B in the subsequent stage.

この結果、その導入段階から雰囲気中のO2濃度がほぼ零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒5Bの表面上で反応性の高いH2及びCOにより従来の軽油19添加での燃焼温度より低い温度からNOxが効率良くN2に還元処理される。 As a result, the concentration of O 2 in the atmosphere becomes almost zero from the introduction stage, and the decomposition and release of NOx is immediately started, and the conventional light oil is directly reacted with H 2 and CO which are highly reactive on the surface of the NO x storage reduction catalyst 5B. The NOx is efficiently reduced to N 2 from a temperature lower than the combustion temperature in 19 addition.

尚、燃料添加装置23による灯油18の添加は、主としてバイパス管11により導かれる比較的少ない流量の排気ガス3に対して行われるだけなので、従来より少ない添加量でも排気ガス3中の空気過剰率が効果的に低下することになり、必要最小限の灯油18の添加により効率良くNOx吸蔵還元触媒5Bの再生が図られる。   Note that the addition of kerosene 18 by the fuel addition device 23 is mainly performed only for the exhaust gas 3 having a relatively small flow rate guided by the bypass pipe 11, and therefore, the excess air ratio in the exhaust gas 3 even when the addition amount is smaller than the conventional amount. Is effectively reduced, and the NOx occlusion reduction catalyst 5B can be efficiently regenerated by adding the minimum amount of kerosene 18.

また、燃料タンク20の軽油19よりも軽質な灯油18を添加剤として用いているので、灯油18からH2及びCOへの分解についても、ディーゼルエンジン1の燃料である軽油19を流用して改質触媒12によりH2及びCOへ分解する場合より効率良く進むことになる。 Further, since kerosene 18 that is lighter than the light oil 19 in the fuel tank 20 is used as an additive, the light oil 19 that is the fuel of the diesel engine 1 is also used for the decomposition of the kerosene 18 into H 2 and CO. The process proceeds more efficiently than when the catalyst 12 is decomposed into H 2 and CO.

そして、このように一方のNOx吸蔵還元触媒5AでNOxの吸蔵を行わせている間に他方のNOx吸蔵還元触媒5Bを再生するようにすれば、常にNOx吸蔵還元触媒5A,5Bの一方を使用可能な状態として連続的にNOxの低減化を図りながら一対のNOx吸蔵還元触媒5A,5Bを片方ずつ交互に再生することが可能となる。   If the other NOx occlusion reduction catalyst 5B is regenerated while the NOx occlusion reduction catalyst 5A performs NOx occlusion in this way, one of the NOx occlusion reduction catalysts 5A, 5B is always used. It is possible to regenerate the pair of NOx storage reduction catalysts 5A and 5B alternately one by one while continuously reducing NOx as possible.

従って、上記形態例によれば、燃料添加装置23に対し燃料タンク20とは別の添加剤タンク14から灯油18が導かれて排気ガス3中に添加されるようにしているので、添加燃料として燃料タンク20の軽油19とは異種の軽質で安価な灯油18を採用することができ、相対的にコストが高くつく燃料タンク20の軽油19を各NOx吸蔵還元触媒5A,5Bへの添加用として使わなくて済む分だけトータルの燃費を低減して従来よりも燃費の悪化を抑制することができ、しかも、ディーゼルエンジン1の駆動に使う軽油19よりも軟質な灯油18を採用することで比較的低い温度領域から添加燃料をNOx吸蔵還元触媒5A,5Bで反応させてNOx低減効果を得ることができる。   Therefore, according to the above embodiment, the kerosene 18 is led from the additive tank 14 different from the fuel tank 20 to the fuel addition device 23 and added to the exhaust gas 3. Light and inexpensive kerosene 18 that is different from the light oil 19 in the fuel tank 20 can be used, and the light oil 19 in the fuel tank 20 that is relatively expensive is used for addition to the NOx storage reduction catalysts 5A and 5B. By reducing the total fuel consumption by the amount that is not required, the deterioration of the fuel consumption can be suppressed as compared with the prior art, and the use of kerosene 18 that is softer than the light oil 19 used to drive the diesel engine 1 is relatively From the low temperature range, the added fuel can be reacted with the NOx storage reduction catalysts 5A and 5B to obtain the NOx reduction effect.

また、特に本形態例においては、燃料添加装置23により添加した灯油18を改質触媒12にてH2とCOに分解させ、これらの反応性の高いH2及びCOにより比較的低い温度領域からNOx吸蔵還元触媒5A,5Bで反応を起こすことができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、NOx吸蔵還元触媒5A,5Bの性能を効率良く引き出すことができる。 Particularly in the present embodiment, the kerosene 18 added by the fuel addition device 23 is decomposed into H 2 and CO by the reforming catalyst 12, and these highly reactive H 2 and CO are used in a relatively low temperature range. Since the reaction can be caused by the NOx occlusion reduction catalysts 5A and 5B, even under an operating condition in which an operating state where the exhaust temperature is low and the exhaust temperature is low is easily continued, such as slow driving in a city where there is a lot of traffic. The performance of the NOx storage reduction catalysts 5A and 5B can be efficiently extracted.

図2は本発明の別の形態例を示すもので、前述した図1の形態例にて排気管4の途中に一対のNOx吸蔵還元触媒5A,5Bを後処理装置として並列に装備していたことに替えて、酸化触媒24とパティキュレートフィルタ25とを後処理装置として排気管4の途中に直列に装備してケーシング26で抱持するようにしたものであり、図1と同様に構成した燃料添加装置23により灯油18をH2及びCOに分解して前記ケーシング26の入口付近に導入し得るようにしてある。 FIG. 2 shows another embodiment of the present invention. In the embodiment of FIG. 1 described above, a pair of NOx occlusion reduction catalysts 5A and 5B are provided in parallel as an aftertreatment device in the middle of the exhaust pipe 4. Instead, the oxidation catalyst 24 and the particulate filter 25 are installed in series in the middle of the exhaust pipe 4 as an aftertreatment device and are held by the casing 26, and are configured in the same manner as in FIG. The kerosene 18 can be decomposed into H 2 and CO by the fuel adding device 23 and introduced into the vicinity of the inlet of the casing 26.

而して、パティキュレートフィルタ25の強制再生を行う必要が生じた際に、燃料添加装置23により改質触媒12の入側に灯油18を還元剤として添加すると、該灯油18が電熱ヒータ21により加熱されて高濃度のHCガスが生成され、電熱ヒータ22の加熱により触媒床温度を高められた改質触媒12を前記HCガスが通る際に、雰囲気中に共存するO2と反応して雰囲気温度を上げ且つO2が消費された後に反応性の高いH2とCOとに分解されて酸化触媒24に導入され、該酸化触媒24上での酸化反応による反応熱で前記酸化触媒24を通過する排気ガス3が昇温され、該排気ガス3の導入によりパティキュレートフィルタ25の触媒床温度が上昇されて捕集済みパティキュレートが効率良く燃焼除去されることになる。 Thus, when it becomes necessary to perform forced regeneration of the particulate filter 25, if the kerosene 18 is added as a reducing agent to the inlet side of the reforming catalyst 12 by the fuel addition device 23, the kerosene 18 is caused to flow by the electric heater 21. When the HC gas passes through the reforming catalyst 12 that is heated to generate high-concentration HC gas and the catalyst bed temperature is increased by heating of the electric heater 22, it reacts with O 2 coexisting in the atmosphere. After the temperature is raised and O 2 is consumed, it is decomposed into highly reactive H 2 and CO and introduced into the oxidation catalyst 24, and passes through the oxidation catalyst 24 by reaction heat due to the oxidation reaction on the oxidation catalyst 24. The exhaust gas 3 to be heated is heated, and the introduction of the exhaust gas 3 raises the catalyst bed temperature of the particulate filter 25, so that the collected particulates are efficiently burned and removed.

このように後処理装置として前段に酸化触媒24を備えたパティキュレートフィルタ25を採用した場合においても、燃料添加装置23に対し燃料タンク20とは別の添加剤タンク14から灯油18が導かれて排気ガス3中に添加されることになるので、添加燃料として燃料タンク20の軽油19とは異種の軽質で安価な灯油18を採用することができ、相対的にコストが高くつく燃料タンク20の軽油19をパティキュレートフィルタ25への添加用として使わなくて済む分だけトータルの燃費を低減して従来よりも燃費の悪化を抑制することができ、しかも、ディーゼルエンジン1の駆動に使う軽油19よりも軟質な灯油18を採用することで比較的低い温度領域からパティキュレートフィルタ25の良好な再生を図ることができる。   As described above, even when the particulate filter 25 including the oxidation catalyst 24 is used as the post-treatment device, the kerosene 18 is guided from the additive tank 14 different from the fuel tank 20 to the fuel addition device 23. Since it is added into the exhaust gas 3, a light and inexpensive kerosene 18 different from the light oil 19 in the fuel tank 20 can be used as the added fuel, and the fuel tank 20 is relatively expensive. It is possible to reduce the total fuel consumption as much as it is not necessary to use the light oil 19 for the addition to the particulate filter 25, and to suppress the deterioration of the fuel consumption as compared with the conventional fuel oil 19 than the light oil 19 used for driving the diesel engine 1. In addition, by using the soft kerosene 18, the particulate filter 25 can be favorably regenerated from a relatively low temperature range.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、燃料添加装置により添加される燃料は灯油に限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust purification device of the present invention is not limited to the above-described embodiment, and the fuel added by the fuel addition device is not limited to kerosene, and within the scope not departing from the gist of the present invention. Of course, various changes can be made.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
3 排気ガス
4 排気管
5A NOx吸蔵還元触媒(後処理装置)
5B NOx吸蔵還元触媒(後処理装置)
7A パティキュレートフィルタ(後処理装置)
7B パティキュレートフィルタ(後処理装置)
12 改質触媒
13 噴射ノズル
14 添加剤タンク
18 灯油
19 軽油
20 燃料タンク
21 電熱ヒータ
22 電熱ヒータ
23 燃料添加装置
24 酸化触媒(後処理装置)
25 パティキュレートフィルタ(後処理装置)
1 Diesel engine (engine)
3 Exhaust gas 4 Exhaust pipe 5A NOx storage reduction catalyst (post-treatment device)
5B NOx occlusion reduction catalyst (post-treatment device)
7A particulate filter (post-processing device)
7B particulate filter (post-processing device)
DESCRIPTION OF SYMBOLS 12 Reforming catalyst 13 Injection nozzle 14 Additive tank 18 Kerosene 19 Light oil 20 Fuel tank 21 Electric heater 22 Electric heater 23 Fuel addition apparatus 24 Oxidation catalyst (post-processing apparatus)
25 Particulate filter (post-processing device)

Claims (2)

排気管の途中に燃料添加を要する後処理装置を装備し且つ該後処理装置より上流側で排気ガス中に燃料を添加する燃料添加装置を備えた排気浄化装置において、エンジンへ燃料を供給するための燃料タンクから独立した添加剤タンクを備え、該添加剤タンクから前記燃料添加装置へ燃料を供給し得るように構成したことを特徴とする排気浄化装置。   To supply fuel to an engine in an exhaust purification apparatus equipped with a post-treatment device that requires fuel addition in the middle of an exhaust pipe and having a fuel addition device for adding fuel to exhaust gas upstream of the post-treatment device An exhaust emission control device comprising an additive tank independent of the fuel tank and configured to supply fuel from the additive tank to the fuel addition device. 燃料添加装置による燃料の添加位置と後処理装置との間に、燃料中のHC成分を排気ガス中でH2とCOに分解する改質触媒を設け、前記燃料の添加位置から前記改質触媒までの間と該改質触媒の周囲に電熱ヒータを備えたことを特徴とする請求項1に記載の排気浄化装置。 A reforming catalyst that decomposes the HC component in the fuel into H 2 and CO in the exhaust gas is provided between the fuel addition position by the fuel addition apparatus and the aftertreatment device, and the reforming catalyst is provided from the fuel addition position. The exhaust gas purification apparatus according to claim 1, further comprising an electric heater in the period up to and around the reforming catalyst.
JP2005188011A 2005-06-28 2005-06-28 Exhaust emission control device Pending JP2007009718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188011A JP2007009718A (en) 2005-06-28 2005-06-28 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188011A JP2007009718A (en) 2005-06-28 2005-06-28 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2007009718A true JP2007009718A (en) 2007-01-18

Family

ID=37748564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188011A Pending JP2007009718A (en) 2005-06-28 2005-06-28 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2007009718A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844066B1 (en) * 2006-01-18 2008-07-07 후지제롯쿠스 가부시끼가이샤 Image formation apparatus
KR100848852B1 (en) * 2000-09-13 2008-07-29 산요 덴키 가부시키가이샤 Interior permanent magnet synchronous motor
KR100865805B1 (en) * 2007-05-29 2008-10-28 대우조선해양 주식회사 Vibration reducing structure of stiffened panels
JP2008291688A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Exhaust emission control system of internal combustion engine
WO2009082035A1 (en) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2009156164A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009167942A (en) * 2008-01-17 2009-07-30 Denso Corp Exhaust emission control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848852B1 (en) * 2000-09-13 2008-07-29 산요 덴키 가부시키가이샤 Interior permanent magnet synchronous motor
KR100844066B1 (en) * 2006-01-18 2008-07-07 후지제롯쿠스 가부시끼가이샤 Image formation apparatus
JP2008291688A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Exhaust emission control system of internal combustion engine
KR100865805B1 (en) * 2007-05-29 2008-10-28 대우조선해양 주식회사 Vibration reducing structure of stiffened panels
WO2009082035A1 (en) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2009156164A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US8534051B2 (en) 2007-12-26 2013-09-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2009167942A (en) * 2008-01-17 2009-07-30 Denso Corp Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP5449009B2 (en) Exhaust purification device
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP2007291980A (en) Exhaust emission control device
KR20130087146A (en) Apparatus and controlling method of urea-scr system
US20100115930A1 (en) Exhaust after treatment system
JP2006242020A (en) Exhaust emission control device
JP2010019239A (en) Exhaust emission control device
JP2007009718A (en) Exhaust emission control device
JP2010180861A (en) Exhaust emission control device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
US8069654B2 (en) Optimized rhodium usage in LNT SCR system
US20100229539A1 (en) Hydrocarbon scr aftertreatment system
JP2009150279A (en) Exhaust gas treatment device
JP2008075610A (en) Exhaust gas treating device
KR20120036004A (en) Exhaust gas reducing device for vehicles with burner to improve purification performance
JP2007205267A (en) Exhaust emission control device
JP5112986B2 (en) Exhaust purification device
EP3607178B1 (en) Method and system for the removal of noxious compounds from engine exhaust gas
JP2013245606A (en) Exhaust gas purification system
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP2020045860A (en) Exhaust emission control device
JP5019069B2 (en) Exhaust purification device
JP4934082B2 (en) Exhaust purification device
JP2008025438A (en) Exhaust emission control device
JP2006037768A (en) Exhaust emission control device