JP2008025438A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008025438A
JP2008025438A JP2006198140A JP2006198140A JP2008025438A JP 2008025438 A JP2008025438 A JP 2008025438A JP 2006198140 A JP2006198140 A JP 2006198140A JP 2006198140 A JP2006198140 A JP 2006198140A JP 2008025438 A JP2008025438 A JP 2008025438A
Authority
JP
Japan
Prior art keywords
fuel
reducing agent
reduction catalyst
exhaust
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198140A
Other languages
Japanese (ja)
Inventor
Shin Ishii
森 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2006198140A priority Critical patent/JP2008025438A/en
Publication of JP2008025438A publication Critical patent/JP2008025438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device, improving regeneration efficiency of NOx storage reduction catalyst, and preventing degradation of fuel consumption. <P>SOLUTION: This exhaust emission control device includes: an NOx storage reduction catalyst 30 provided in the midway of an exhaust pipe 11 for circulating exhaust emission 9 from an engine 1; an oxidation catalyst 32 provided on the upstream side of the NOx storage reduction catalyst 30; a fuel-adding means 34 for adding fuel into the exhaust emission 9 on the upstream side from the oxidation catalyst 32; and a reduction agent-adding means 39 for adding a reduction agent into the exhaust emission 9 between the oxidation catalyst 32 and the NOx storage reduction catalyst 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンに適用される排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device applied to an engine.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中の酸素濃度が低下した時に未燃の炭化水素やCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。   Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. NOx occlusion reduction catalyst which has the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the inclusion of unburned hydrocarbons and CO etc. when the oxygen concentration in the exhaust gas is reduced. It has been known.

このNOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスの酸素濃度を低下させてNOxを分解放出させる必要がある。   In this NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded. Therefore, the oxygen concentration of the exhaust gas that periodically flows into the NOx occlusion reduction catalyst is reduced. It is necessary to reduce and release NOx by decomposition.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中の酸素濃度を低下し且つ排気ガス中の未燃の炭化水素やCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。   For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the oxygen concentration in the exhaust gas and unburned carbonization in the exhaust gas. Although it is possible to promote the decomposition and release of NOx by increasing reducing components such as hydrogen and CO, it is difficult to operate the engine at a rich air-fuel ratio when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine. It is.

このため、NOx吸蔵還元触媒より上流側の排気管に燃料添加手段を設置し、該燃料添加手段により排気ガス中に燃料(HC)を噴射して添加することにより、この添加燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させることで排気ガス中のO2濃度を低下させるようにしている(例えば、特許文献1参照)。 For this reason, fuel addition means is installed in the exhaust pipe upstream of the NOx storage reduction catalyst, and fuel (HC) is injected and added into the exhaust gas by the fuel addition means, so that this added fuel is used as a reducing agent. By reacting with O 2 on the NOx storage reduction catalyst, the O 2 concentration in the exhaust gas is lowered (see, for example, Patent Document 1).

又、NOx吸蔵還元触媒及び燃料添加手段を備えたものであっても、渋滞路の車両の走行により排気温度が200℃を下まわるような触媒の温度が低い場合には、触媒上での燃料の酸化反応が起こらず、燃料の添加によりNOx吸蔵還元触媒を再生制御することができないため、NOx吸蔵還元触媒の前段に酸化触媒を備えて燃料の燃焼により昇温を図ることが考えられている。   Even if the NOx occlusion reduction catalyst and the fuel addition means are provided, if the catalyst temperature is so low that the exhaust temperature falls below 200 ° C. due to running of the vehicle on the congested road, the fuel on the catalyst Since the oxidation reaction of NOx does not occur and the NOx storage reduction catalyst cannot be regenerated and controlled by adding fuel, it is considered to provide an oxidation catalyst upstream of the NOx storage reduction catalyst to increase the temperature by burning the fuel. .

以下、具体的に、ディーゼルエンジンの排気管にNOx吸蔵還元触媒、酸化触媒、及び燃料添加手段を備えたものを説明する。   In the following, a specific description will be given of a diesel engine exhaust pipe provided with a NOx storage reduction catalyst, an oxidation catalyst, and fuel addition means.

ここで、初めにディーゼルエンジンについて説明すると、図9に示す如く、ディーゼルエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた吸気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図9では直列6気筒の場合を例示している)に分配されるようになっている。   Here, the diesel engine will be described first. As shown in FIG. 9, the diesel engine 1 is provided with a turbocharger 2, and the intake air 4 guided from the air cleaner 3 is passed through the intake pipe 5 to the compressor of the turbocharger 2. The intake air 4 sent to 2a and pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7 so that the diesel engine 1 It is distributed to each cylinder 8 (FIG. 9 illustrates the case of inline 6 cylinders).

更に、このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてある。   Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b passes through the exhaust pipe 11. It is designed to be discharged outside the vehicle.

又、排気マニホールド10と、吸気マニホールド7に接続されている吸気管5との間をEGRパイプ12で接続し、排気マニホールド10から抜き出した排気ガス9の一部を水冷式のEGRクーラ13及びEGRバルブ14を介して吸気管5に再循環するようになっており、排気側から吸気側へ再循環された排気ガス9で各気筒8内での燃料の燃焼を抑制して燃焼温度を下げることによりNOxの発生を低減し得るようにしてある。   Further, the exhaust manifold 10 and the intake pipe 5 connected to the intake manifold 7 are connected by an EGR pipe 12, and a part of the exhaust gas 9 extracted from the exhaust manifold 10 is water-cooled EGR cooler 13 and EGR. The exhaust gas 9 is recirculated to the intake pipe 5 through the valve 14 and the combustion of the fuel in each cylinder 8 is suppressed by the exhaust gas 9 recirculated from the exhaust side to the intake side to lower the combustion temperature. Thus, the generation of NOx can be reduced.

一方、NOx吸蔵還元触媒15は、排気管11の途中にケーシング16を介して装備されており、ケーシング16内におけるNOx吸蔵還元触媒15の前段には、NOx吸蔵還元触媒15の昇温を図る酸化触媒17が装備されている。   On the other hand, the NOx occlusion reduction catalyst 15 is provided in the middle of the exhaust pipe 11 via a casing 16, and an oxidation for increasing the temperature of the NOx occlusion reduction catalyst 15 is provided upstream of the NOx occlusion reduction catalyst 15 in the casing 16. A catalyst 17 is equipped.

又、排気管11における酸化触媒17の入側には、図示しない燃料タンクとの間で添加燃料ライン18により接続される燃料添加手段19が備えられており、燃料添加手段19は、添加燃料ライン18の途中に装備した添加燃料ポンプ20の駆動により前記燃料タンクの燃料を電磁弁21及び噴射ノズル22を介し酸化触媒17の入側に噴射し得るようにしてある。   A fuel addition means 19 connected to a fuel tank (not shown) by an addition fuel line 18 is provided on the inlet side of the oxidation catalyst 17 in the exhaust pipe 11, and the fuel addition means 19 is connected to the addition fuel line. The fuel in the fuel tank can be injected into the inlet side of the oxidation catalyst 17 through the electromagnetic valve 21 and the injection nozzle 22 by driving the additive fuel pump 20 installed in the middle of the engine 18.

更に、酸化触媒17の入側及びNOx吸蔵還元触媒15の出側には、排気温度を検出する温度センサ23,24が装備されており、この温度センサ23,24からの温度信号は制御装置25に入力されるようになっており、酸化触媒17の入側の排気温度、及びNOx吸蔵還元触媒15の出側の排気温度に応じて燃料の添加を制御するようにしている。   Further, temperature sensors 23 and 24 for detecting the exhaust gas temperature are provided on the entry side of the oxidation catalyst 17 and the exit side of the NOx storage reduction catalyst 15, and the temperature signals from the temperature sensors 23 and 24 are supplied to the control device 25. The addition of fuel is controlled in accordance with the exhaust temperature on the inlet side of the oxidation catalyst 17 and the exhaust temperature on the outlet side of the NOx storage reduction catalyst 15.

これにより、渋滞路の車両の走行により排気温度が200℃を下まわるような触媒の温度が低い場合であっても、図10、図11の如く燃料を添加することにより、燃料を酸化触媒17で燃焼して昇温すると共に酸素を消費し、NOx吸蔵還元触媒15の再生制御を容易にするようにしている。
特開2000−282850号公報
Thus, even when the temperature of the catalyst is such that the exhaust temperature falls below 200 ° C. due to traveling of the vehicle on a congested road, the fuel is added to the oxidation catalyst 17 by adding fuel as shown in FIGS. Thus, the temperature is increased by combustion, and oxygen is consumed, so that the regeneration control of the NOx storage reduction catalyst 15 is facilitated.
JP 2000-282850 A

しかしながら、このようにNOx吸蔵還元触媒15の前段に酸化触媒17を装備して燃料を燃焼すると、図12に示す如くNOx吸蔵還元触媒15に対して還元剤となる燃料の流入量が低下し、NOx吸蔵還元触媒15の再生効率が低下するという問題があった。又、酸化触媒17による燃料の燃焼を考慮して過剰な燃料を添加すると、燃費が著しく悪化するという問題があった。   However, when the oxidation catalyst 17 is installed in the preceding stage of the NOx occlusion reduction catalyst 15 and the fuel is burned as described above, the inflow amount of the fuel as a reducing agent to the NOx occlusion reduction catalyst 15 is reduced as shown in FIG. There has been a problem that the regeneration efficiency of the NOx storage reduction catalyst 15 is lowered. Further, if excessive fuel is added in consideration of the combustion of fuel by the oxidation catalyst 17, there is a problem that fuel efficiency is remarkably deteriorated.

本発明は上述の実情に鑑みてなしたもので、NOx吸蔵還元触媒の再生効率を向上させると共に、燃費の悪化を防止する排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust purification device that improves the regeneration efficiency of the NOx storage reduction catalyst and prevents the deterioration of fuel consumption.

本発明は、エンジンからの排気ガスが流通する排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒より上流側に装備された酸化触媒と、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段19と、前記酸化触媒とNOx吸蔵還元触媒との間の排気ガス中に還元剤を添加する還元剤添加手段とを備えたことを特徴とする排気浄化装置、に係るものである。   The present invention relates to a NOx occlusion reduction catalyst equipped in the middle of an exhaust pipe through which exhaust gas from an engine flows, an oxidation catalyst equipped upstream of the NOx occlusion reduction catalyst, and an exhaust gas upstream of the oxidation catalyst. An exhaust emission control device comprising fuel addition means 19 for adding fuel to the gas, and reducing agent addition means for adding a reducing agent to the exhaust gas between the oxidation catalyst and the NOx storage reduction catalyst. , Related to

又、本発明について、還元剤添加手段は還元剤を燃料とすることが好ましい。   In the present invention, the reducing agent addition means preferably uses a reducing agent as a fuel.

而して、このようにすれば、酸化触媒により燃料を燃焼し、NOx吸蔵酸化触媒に対する燃料の流入量が低下しても、還元剤添加手段により還元剤を直接NOx吸蔵還元触媒に添加するので、NOx吸蔵還元触媒の再生効率を向上させると共に、燃料添加手段からの過剰な燃料の添加を抑制し、燃費の悪化を防止することができる。   Thus, in this way, even if the fuel is burned by the oxidation catalyst and the inflow amount of the fuel to the NOx storage oxidation catalyst is reduced, the reducing agent is directly added to the NOx storage reduction catalyst by the reducing agent addition means. In addition to improving the regeneration efficiency of the NOx storage reduction catalyst, it is possible to suppress the addition of excessive fuel from the fuel addition means and to prevent the deterioration of fuel consumption.

又、還元剤添加手段は還元剤を燃料とすると、燃料添加手段が添加する燃料と、還元剤添加手段が添加する還元剤とを同じ燃料にし、同じ供給元から供給し得るので、燃料及び還元剤の添加量を容易に算出して、NOx吸蔵還元触媒の再生効率を適切に行うことができると共に、製造コストを大幅に低減することができる。   Further, if the reducing agent addition means uses the reducing agent as fuel, the fuel added by the fuel addition means and the reducing agent added by the reducing agent addition means can be the same fuel and can be supplied from the same supply source. The addition amount of the agent can be easily calculated, the regeneration efficiency of the NOx storage reduction catalyst can be appropriately performed, and the manufacturing cost can be greatly reduced.

上記した本発明の排気浄化装置によれば、還元剤添加手段によりNOx吸蔵還元触媒の再生効率を向上させると共に、燃費の悪化を防止することができるという種々の優れた効果を奏し得る。   According to the exhaust gas purification apparatus of the present invention described above, various excellent effects can be achieved in that the reducing agent addition means can improve the regeneration efficiency of the NOx occlusion reduction catalyst and prevent deterioration of fuel consumption.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図6は本発明を実施する形態の第一例を示すもので、図中、図9と同一の符号を付した部分は同一のものを表わしている。   FIGS. 1-6 shows the 1st example of the form which implements this invention, and the part which attached | subjected the code | symbol same as FIG. 9 in the figure represents the same thing.

本発明の形態の第一例の排気浄化装置は、図1に示す如く、排気ガス9が流通する排気管11の途中に、排気空燃比がリーンの時に排気ガス9中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス9中の酸素濃度が低下した時に還元剤の介在によりNOxを分解放出するNOx吸蔵還元触媒30がケーシング31を介し装備されている。   As shown in FIG. 1, the exhaust purification apparatus of the first example of the embodiment of the present invention oxidizes NOx in the exhaust gas 9 in the middle of the exhaust pipe 11 through which the exhaust gas 9 circulates when the exhaust air-fuel ratio is lean. A NOx occlusion reduction catalyst 30 that is temporarily occluded in the form of nitrate and decomposes and releases NOx by the intervention of a reducing agent when the oxygen concentration in the exhaust gas 9 is lowered is provided via a casing 31.

又、ケーシング31内におけるNOx吸蔵還元触媒30の前段(上流側)には、燃料を燃焼して昇温する酸化触媒32が装備されている。   In addition, an oxidation catalyst 32 that burns fuel and raises the temperature is provided in the front stage (upstream side) of the NOx storage reduction catalyst 30 in the casing 31.

ここで、NOx吸蔵還元触媒30には、既にNOx吸蔵還元触媒として知られた白金・バリウム、アルミナ触媒や、イリジウム・白金・バリウム・アルミナ触媒等と変わらないものを採用して良いが、本形態例においては、NOxの吸蔵・放出の性質を特化した組成としても良い。又、酸化触媒32は、ステンレス鋼、コージェライト等のハニカム構造に、白金、パラジウム、ロジウム等の貴金属と、アルミナ、ゼオライト、チタニア、シリカ、ジルコニア等の担持体との構成としても良い。   Here, the NOx occlusion reduction catalyst 30 may be the same as platinum / barium, alumina catalyst, iridium / platinum / barium / alumina catalyst already known as NOx occlusion reduction catalyst. In the example, the composition may specialize in the properties of NOx storage / release. The oxidation catalyst 32 may have a structure of a noble metal such as platinum, palladium, rhodium and a carrier such as alumina, zeolite, titania, silica, zirconia, etc. in a honeycomb structure such as stainless steel or cordierite.

そして、排気管11における酸化触媒32の入側には、図示しない燃料タンクとの間で添加燃料ライン33により接続される燃料添加手段34が備えられており、燃料添加手段34は、添加燃料ライン33の途中に装備した添加燃料ポンプ35の駆動により、燃料タンクの燃料を第一電磁弁36及び第一噴射ノズル37を介し酸化触媒32の入側に噴射し得るようにしてある。   A fuel addition means 34 connected to a fuel tank (not shown) by an addition fuel line 33 is provided on the inlet side of the oxidation catalyst 32 in the exhaust pipe 11, and the fuel addition means 34 is connected to the addition fuel line. The fuel in the fuel tank can be injected into the inlet side of the oxidation catalyst 32 through the first electromagnetic valve 36 and the first injection nozzle 37 by driving the added fuel pump 35 provided in the middle of the engine 33.

又、排気管11における酸化触媒32とNOx吸蔵還元触媒30との間には、図示しない還元剤の供給元との間で添加還元剤ライン38により接続される還元剤添加手段39が備えられており、還元剤添加手段39は、添加還元剤ライン38の途中に装備した添加還元剤ポンプ40の駆動により、添加還元剤ライン38の還元剤を第二電磁弁41及び第二噴射ノズル42を介し酸化触媒32の出側とNOx吸蔵還元触媒30の入側の間に噴射し得るようにしてある。   Further, a reducing agent addition means 39 connected between the oxidation catalyst 32 and the NOx occlusion reduction catalyst 30 in the exhaust pipe 11 by an addition reducing agent line 38 is provided with a reducing agent supply source (not shown). The reducing agent addition means 39 drives the additive reducing agent pump 40 installed in the middle of the additive reducing agent line 38 to supply the reducing agent in the additive reducing agent line 38 via the second solenoid valve 41 and the second injection nozzle 42. Injection can be performed between the outlet side of the oxidation catalyst 32 and the inlet side of the NOx storage reduction catalyst 30.

ここで、還元剤添加手段39の還元剤は、燃料添加手段34の燃料と同じになるように、供給元を燃料添加手段34の燃料タンクと共通化しても良い。又、燃料添加手段34の燃料及び/又は還元剤添加手段39の還元剤は、燃料噴射装置8aからディーゼルエンジン1の各気筒8へ噴射する燃料と同じになるように、燃料タンクを共通化しても良い。   Here, the supply source may be shared with the fuel tank of the fuel adding means 34 so that the reducing agent of the reducing agent adding means 39 is the same as the fuel of the fuel adding means 34. Further, the fuel tank is made common so that the fuel of the fuel adding means 34 and / or the reducing agent of the reducing agent adding means 39 is the same as the fuel injected from the fuel injection device 8a to each cylinder 8 of the diesel engine 1. Also good.

そして、酸化触媒32の入側には、排気温度を検出する第一温度センサ43が装備されると共に、NOx吸蔵還元触媒30の出側には、排気温度を検出する第二温度センサ44が装備されており、第一温度センサ43及び第二温度センサ44は制御装置(制御手段)45に接続されて温度信号を入力するようになっている。   A first temperature sensor 43 that detects the exhaust temperature is provided on the entry side of the oxidation catalyst 32, and a second temperature sensor 44 that detects the exhaust temperature is provided on the exit side of the NOx storage reduction catalyst 30. The first temperature sensor 43 and the second temperature sensor 44 are connected to a control device (control means) 45 to input a temperature signal.

又、制御装置45は、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ(負荷センサ)S1と、ディーゼルエンジン1の回転数を検出する回転センサS2とに接続され、アクセルセンサS1からの負荷信号、回転センサS2からの回転数信号を受けるようになっており、酸化触媒32の入側の排気温度、NOx吸蔵還元触媒30の出側の排気温度、ディーゼルエンジン1の負荷や回転数に応じて、燃料添加手段34による燃料の添加、及び還元剤添加手段39による還元剤の添加を制御するようにしている。なお、制御装置45は、図1に示す如く、ディーゼルエンジン1の各気筒に燃料を噴射する燃料噴射装置8aに向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号が出力されるようにしても良い。   The control device 45 is connected to an accelerator sensor (load sensor) S1 for detecting the accelerator opening as a load of the diesel engine 1 and a rotation sensor S2 for detecting the rotational speed of the diesel engine 1, and from the accelerator sensor S1. The load signal and the rotation speed signal from the rotation sensor S2 are received, and the exhaust temperature on the inlet side of the oxidation catalyst 32, the exhaust temperature on the outlet side of the NOx storage reduction catalyst 30, the load and the rotation speed of the diesel engine 1 are determined. Accordingly, the addition of fuel by the fuel addition means 34 and the addition of the reducing agent by the reducing agent addition means 39 are controlled. As shown in FIG. 1, the control device 45 outputs a fuel injection signal for instructing the fuel injection timing and the injection amount toward the fuel injection device 8a for injecting fuel into each cylinder of the diesel engine 1. Also good.

以下、本発明を実施する形態の第一例の作用を説明する。   Hereinafter, the operation of the first example of the embodiment of the present invention will be described.

渋滞路の車両の走行により排気温度が200℃を下まわるようなNOx吸蔵還元触媒30の温度が低い状態で、図2に示す如く燃料添加手段34により燃料を添加した際には、酸化触媒32で燃料を燃焼して昇温し(図3)、同時に還元剤添加手段39により還元剤をNOx吸蔵還元触媒30の上流側に添加し(図4)、NO吸蔵還元触媒に対する還元用の燃料及び還元剤の流入量を最適量にする(図5)。   When the fuel is added by the fuel addition means 34 as shown in FIG. 2 in a state where the temperature of the NOx occlusion reduction catalyst 30 is low such that the exhaust temperature falls below 200 ° C. due to traveling of the vehicle on the congested road, the oxidation catalyst 32 is added. Then, the temperature of the fuel is combusted to raise the temperature (FIG. 3), and at the same time, the reducing agent is added to the upstream side of the NOx storage reduction catalyst 30 by the reducing agent addition means 39 (FIG. 4). The inflow amount of the reducing agent is set to the optimum amount (FIG. 5).

ここで、燃料添加手段34による燃料の添加量は、排気ガス9の温度、ディーゼルエンジン1の負荷や回転数に応じて制御装置45により所定の関数処理やマップ処理で算出されており、更に、還元剤添加手段39による還元剤の添加量は、先の燃料の添加量、排気ガス9の温度、ディーゼルエンジンの負荷や回転数に応じて制御装置45により所定の関数処理やマップ処理で算出される。   Here, the amount of fuel added by the fuel adding means 34 is calculated by a predetermined function process or map process by the control device 45 according to the temperature of the exhaust gas 9, the load of the diesel engine 1 and the rotational speed. The addition amount of the reducing agent by the reducing agent addition means 39 is calculated by the controller 45 by a predetermined function process or map process according to the previous fuel addition quantity, the temperature of the exhaust gas 9, the load or the rotational speed of the diesel engine. The

このように、実施の形態の第一例によれば、燃料添加手段34により添加した燃料が酸化触媒32により燃焼し、NOx吸蔵還元触媒30に対する燃料の流入量が低下しても、還元剤添加手段39により還元剤を直接NOx吸蔵還元触媒30に添加するので、NOx吸蔵還元触媒30の再生効率を向上させると共に、燃料添加手段34からの過剰な燃料の添加を抑制し、燃費の悪化を防止することができる。   Thus, according to the first example of the embodiment, even if the fuel added by the fuel addition means 34 is burned by the oxidation catalyst 32 and the inflow amount of fuel to the NOx storage reduction catalyst 30 is reduced, the reducing agent addition Since the reducing agent is directly added to the NOx occlusion reduction catalyst 30 by the means 39, the regeneration efficiency of the NOx occlusion reduction catalyst 30 is improved and the addition of excessive fuel from the fuel addition means 34 is suppressed to prevent deterioration of fuel consumption. can do.

又、還元剤添加手段39は還元剤を燃料とすると、燃料添加手段34が添加する燃料と、還元剤添加手段39が添加する還元剤とを同じ燃料にし、同じ燃料タンクから供給し得るので、燃料及び還元剤の添加量を容易に算出して、NOx吸蔵還元触媒30の再生効率を適切に行うことができると共に、製造コストを大幅に低減することができる。   Further, if the reducing agent adding means 39 uses the reducing agent as fuel, the fuel added by the fuel adding means 34 and the reducing agent added by the reducing agent adding means 39 can be made the same fuel and supplied from the same fuel tank. The addition amount of the fuel and the reducing agent can be easily calculated, the regeneration efficiency of the NOx storage reduction catalyst 30 can be appropriately performed, and the manufacturing cost can be greatly reduced.

事実、本発明者が行った実験結果によれば、図6のグラフで示す通り、実施の形態例で還元剤添加手段39を備えた場合の実施例では、NOx低減率(再生効率)が、酸化触媒32なしの排気浄化装置に対して約1割以上向上し、酸化触媒32ありの排気浄化装置に対しても向上することが明らかである。なお、ここでの実験条件は所定の審査モードによるものである。   In fact, according to the results of experiments conducted by the present inventor, as shown in the graph of FIG. 6, in the example in which the reducing agent addition means 39 is provided in the embodiment, the NOx reduction rate (regeneration efficiency) is It is apparent that the exhaust purification device without the oxidation catalyst 32 is improved by about 10% or more, and the exhaust purification device with the oxidation catalyst 32 is also improved. The experimental conditions here are based on a predetermined examination mode.

図7は本発明を実施する形態の第二例を示すもので、図中、図1と同一の符号を付した部分は同一のものを表わしている。   FIG. 7 shows a second example of the embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

本発明の形態の第二例の排気浄化装置は、図7に示す如く、排気ガス9が流通する排気管11の途中に、ケーシング50を介して装備されたNOx吸蔵還元触媒30と、NOx吸蔵還元触媒30の上流側に位置するように他のケーシング51を介して装備された酸化触媒32とを備えている。ここでNOx吸蔵還元触媒30及び酸化触媒32は第一例と略同じものである。   As shown in FIG. 7, the exhaust purification apparatus of the second example of the embodiment of the present invention includes a NOx occlusion reduction catalyst 30 equipped via a casing 50 in the middle of an exhaust pipe 11 through which exhaust gas 9 circulates, and NOx occlusion. The oxidation catalyst 32 is provided via another casing 51 so as to be positioned on the upstream side of the reduction catalyst 30. Here, the NOx storage reduction catalyst 30 and the oxidation catalyst 32 are substantially the same as in the first example.

そして、排気管11における酸化触媒32の入側には、図示しない燃料タンクとの間で添加燃料ライン33により接続される第一例と同様な燃料添加手段34が備えられると共に、排気管11における酸化触媒32とNOx吸蔵還元触媒30との間には、図示しない還元剤の供給元との間で添加還元剤ライン38により接続される第一例と同様な還元剤添加手段39が備えられている。ここで、還元剤添加手段39の還元剤は、燃料添加手段34の燃料と同じになるように、供給元を燃料添加手段34の燃料タンクと共通化しても良い。又、燃料添加手段34の燃料及び/又は還元剤添加手段39の還元剤は、燃料噴射装置8aからディーゼルエンジン1の各気筒8へ噴射する燃料と同じになるように、燃料タンクを共通化しても良い。   The exhaust pipe 11 is provided on the inlet side of the oxidation catalyst 32 with a fuel addition means 34 similar to that in the first example connected to the fuel tank (not shown) by the addition fuel line 33, and in the exhaust pipe 11. Between the oxidation catalyst 32 and the NOx occlusion reduction catalyst 30, there is provided a reducing agent addition means 39 similar to that in the first example connected to a reducing agent supply source (not shown) by an addition reducing agent line 38. Yes. Here, the supply source may be shared with the fuel tank of the fuel adding means 34 so that the reducing agent of the reducing agent adding means 39 is the same as the fuel of the fuel adding means 34. Further, the fuel tank is made common so that the fuel of the fuel adding means 34 and / or the reducing agent of the reducing agent adding means 39 is the same as the fuel injected from the fuel injection device 8a to each cylinder 8 of the diesel engine 1. Also good.

そして、酸化触媒32の入側及び出側には、排気温度を検出する第一温度センサ52及び第二温度センサ53が装備されると共に、NOx吸蔵還元触媒30の入側及び出側には、排気温度を検出する第三温度センサ54及び第四温度センサ55が装備されており、第一温度センサ52、第二温度センサ53、第三温度センサ54、第四温度センサ55は制御装置(制御手段)56に接続されて温度信号を入力するようになっている。   A first temperature sensor 52 and a second temperature sensor 53 for detecting the exhaust temperature are provided on the entry side and the exit side of the oxidation catalyst 32, and on the entry side and the exit side of the NOx storage reduction catalyst 30, A third temperature sensor 54 and a fourth temperature sensor 55 for detecting the exhaust temperature are provided. The first temperature sensor 52, the second temperature sensor 53, the third temperature sensor 54, and the fourth temperature sensor 55 are controlled by a control device (control). Means) 56 is connected to input a temperature signal.

又、制御装置56は、第一例と同様にアクセルセンサ(負荷センサ)S1及び回転センサS2とに接続され、アクセルセンサS1からの負荷信号、回転センサS2からの回転数信号を受けるようになっており、酸化触媒32の両側の排気温度、及びNOx吸蔵還元触媒30の両側の排気温度、ディーゼルエンジン1の状況に応じて燃料添加手段34による燃料の添加、及び還元剤添加手段39による還元剤の添加を制御するようにしている。   The control device 56 is connected to the accelerator sensor (load sensor) S1 and the rotation sensor S2 as in the first example, and receives the load signal from the accelerator sensor S1 and the rotation speed signal from the rotation sensor S2. Depending on the exhaust temperature on both sides of the oxidation catalyst 32, the exhaust temperature on both sides of the NOx storage reduction catalyst 30, the situation of the diesel engine 1, the addition of fuel by the fuel addition means 34, and the reducing agent by the reducing agent addition means 39 The addition of is controlled.

以下、本発明を実施する形態の第二例の作用を説明する。   Hereinafter, the operation of the second example of the embodiment of the present invention will be described.

渋滞路の車両の走行により排気温度が200℃を下まわるようなNOx吸蔵還元触媒30の温度が低い状態で、燃料添加手段34により燃料を添加した際には、第一例と略同様に、酸化触媒32で燃料を燃焼して昇温し、同時に還元剤添加手段39により還元剤をNOx吸蔵還元触媒30の上流側に添加し、NO吸蔵還元触媒に対する還元用の燃料の不足を防止する。   When fuel is added by the fuel addition means 34 in a state where the temperature of the NOx occlusion reduction catalyst 30 such that the exhaust temperature falls below 200 ° C. due to traveling of a vehicle on a congested road is substantially the same as in the first example, Fuel is burned by the oxidation catalyst 32 and the temperature is raised. At the same time, a reducing agent is added to the upstream side of the NOx storage reduction catalyst 30 by the reducing agent addition means 39 to prevent a shortage of fuel for reduction with respect to the NO storage reduction catalyst.

ここで、燃料添加手段34による燃料の添加量は、排気ガス9の温度、エンジンの負荷や回転数に応じて制御手段により所定の関数処理やマップ処理で算出されており、更に、還元剤添加手段39による還元剤の添加量は、先お燃料の添加量、排気ガス9の温度、エンジンの負荷や回転数に応じて制御手段により所定の関数処理やマップ処理で算出される。   Here, the amount of fuel added by the fuel adding means 34 is calculated by a predetermined function process or map process by the control means in accordance with the temperature of the exhaust gas 9, the engine load and the rotational speed, and further, the reducing agent addition The amount of reducing agent added by the means 39 is calculated by predetermined function processing or map processing by the control means in accordance with the amount of fuel added in advance, the temperature of the exhaust gas 9, the engine load and the rotational speed.

このように、実施の形態の第二例によれば、第一例と同様な作用効果を得ることができる。又、第一温度センサ52、第二温度センサ53、第三温度センサ54、第四温度センサ55を備えるので、排気ガス9の温度状況を詳細に調べて燃料の添加量及び/又は還元剤の添加量を緻密の制御し、結果的に、NOx吸蔵還元触媒30の再生効率を一層向上させると共に、燃料添加手段34からの過剰な燃料の添加を抑制し、燃費の悪化を好適に防止することができる。   Thus, according to the second example of the embodiment, the same operational effects as the first example can be obtained. Further, since the first temperature sensor 52, the second temperature sensor 53, the third temperature sensor 54, and the fourth temperature sensor 55 are provided, the temperature state of the exhaust gas 9 is examined in detail, and the amount of fuel added and / or the reducing agent The addition amount is precisely controlled, and as a result, the regeneration efficiency of the NOx occlusion reduction catalyst 30 is further improved, and addition of excess fuel from the fuel addition means 34 is suppressed, so that deterioration of fuel consumption is suitably prevented. Can do.

図8は本発明を実施する形態の第三例を示すもので、図中、図1と同一の符号を付した部分は同一のものを表わしている。   FIG. 8 shows a third example of the embodiment for carrying out the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

本発明の形態の第三例の排気浄化装置は、図8に示す如く、排気ガス9が流通する排気管11の途中に、ケーシング50を介して装備されたNOx吸蔵還元触媒30を備えると共に、NOx吸蔵還元触媒30の上流側でターボチャージャ2のタービン2bに近接するように他のケーシング51を介して装備された酸化触媒32とを備えている。ここでNOx吸蔵還元触媒30及び酸化触媒32は第一例と略同じものである。   The exhaust purification apparatus of the third example of the embodiment of the present invention includes a NOx occlusion reduction catalyst 30 equipped via a casing 50 in the middle of the exhaust pipe 11 through which the exhaust gas 9 flows, as shown in FIG. An oxidation catalyst 32 is provided on the upstream side of the NOx storage reduction catalyst 30 via another casing 51 so as to be close to the turbine 2b of the turbocharger 2. Here, the NOx storage reduction catalyst 30 and the oxidation catalyst 32 are substantially the same as in the first example.

そして、排気マニホールド10からターボチャージャ2のタービン2bまでの排気管11aの途中には、酸化触媒32の入側に位置するよう、図示しない燃料タンクとの間で添加燃料ライン33により接続される第一例と同様な燃料添加手段34が備えられると共に、排気管11における酸化触媒32とNOx吸蔵還元触媒30との間に位置には、図示しない還元剤の供給元との間で添加還元剤ライン38により接続される第一例と同様な還元剤添加手段39が備えられている。ここで、還元剤添加手段39の還元剤は、燃料添加手段34の燃料と同じになるように、供給元を燃料添加手段34の燃料タンクと共通化しても良い。又、燃料添加手段34の燃料及び/又は還元剤添加手段39の還元剤は、燃料噴射装置8aからディーゼルエンジン1の各気筒8へ噴射する燃料と同じになるように、燃料タンクを共通化しても良い。   Then, in the middle of the exhaust pipe 11 a from the exhaust manifold 10 to the turbine 2 b of the turbocharger 2, a second fuel line 33 is connected to a fuel tank (not shown) so as to be positioned on the entry side of the oxidation catalyst 32. A fuel addition means 34 similar to that of the example is provided, and an addition reductant line is provided between the oxidation catalyst 32 and the NOx occlusion reduction catalyst 30 in the exhaust pipe 11 and a reductant supply source (not shown). The same reducing agent addition means 39 as that of the first example connected by 38 is provided. Here, the supply source may be shared with the fuel tank of the fuel adding means 34 so that the reducing agent of the reducing agent adding means 39 is the same as the fuel of the fuel adding means 34. Further, the fuel tank is made common so that the fuel of the fuel adding means 34 and / or the reducing agent of the reducing agent adding means 39 is the same as the fuel injected from the fuel injection device 8a to each cylinder 8 of the diesel engine 1. Also good.

そして、酸化触媒32の入側及び出側には、排気温度を検出する第一温度センサ52及び第二温度センサ53が装備されると共に、NOx吸蔵還元触媒30の入側及び出側には、排気温度を検出する第三温度センサ54及び第四温度センサ55が装備されており、第一温度センサ52、第二温度センサ53、第三温度センサ54、第四温度センサ55は制御装置(制御手段)56に接続されて温度信号を入力するようになっている。   A first temperature sensor 52 and a second temperature sensor 53 for detecting the exhaust temperature are provided on the entry side and the exit side of the oxidation catalyst 32, and on the entry side and the exit side of the NOx storage reduction catalyst 30, A third temperature sensor 54 and a fourth temperature sensor 55 for detecting the exhaust temperature are provided. The first temperature sensor 52, the second temperature sensor 53, the third temperature sensor 54, and the fourth temperature sensor 55 are controlled by a control device (control). Means) 56 is connected to input a temperature signal.

又、制御装置56は、第一例と同様にアクセルセンサ(負荷センサ)S1及び回転センサS2とに接続され、アクセルセンサS1からの負荷信号、回転センサS2からの回転数信号を受けるようになっており、酸化触媒32の両側の排気温度、及びNOx吸蔵還元触媒30の両側の排気温度、ディーゼルエンジン1の状況に応じて燃料添加手段34による燃料の添加、及び還元剤添加手段39による還元剤の添加を制御するようにしている。   The control device 56 is connected to the accelerator sensor (load sensor) S1 and the rotation sensor S2 as in the first example, and receives the load signal from the accelerator sensor S1 and the rotation speed signal from the rotation sensor S2. Depending on the exhaust temperature on both sides of the oxidation catalyst 32, the exhaust temperature on both sides of the NOx storage reduction catalyst 30, the situation of the diesel engine 1, the addition of fuel by the fuel addition means 34, and the reducing agent by the reducing agent addition means 39 The addition of is controlled.

以下、本発明を実施する形態の第三例の作用を説明する。   Hereinafter, the operation of the third example of the embodiment of the present invention will be described.

渋滞路の車両の走行により排気温度が200℃を下まわるようなNOx吸蔵還元触媒30の温度が低い状態で、燃料添加手段34により燃料を添加した際には、第一例と略同様に、酸化触媒32で燃料を燃焼して昇温し、同時に還元剤添加手段39により還元剤をNOx吸蔵還元触媒30の上流側に添加し、NO吸蔵還元触媒に対する還元用の燃料の不足を防止する。   When fuel is added by the fuel addition means 34 in a state where the temperature of the NOx occlusion reduction catalyst 30 such that the exhaust temperature falls below 200 ° C. due to traveling of a vehicle on a congested road is substantially the same as in the first example, Fuel is burned by the oxidation catalyst 32 and the temperature is raised. At the same time, a reducing agent is added to the upstream side of the NOx storage reduction catalyst 30 by the reducing agent addition means 39 to prevent a shortage of fuel for reduction with respect to the NO storage reduction catalyst.

ここで、燃料添加手段34による燃料の添加量は、排気ガス9の温度、エンジンの負荷や回転数に応じて制御手段により所定の関数処理やマップ処理で算出されており、更に、還元剤添加手段39による還元剤の添加量は、燃料の添加量、排気ガス9の温度、エンジンの負荷や回転数に応じて制御手段により所定の関数処理やマップ処理で算出される。   Here, the amount of fuel added by the fuel adding means 34 is calculated by a predetermined function process or map process by the control means in accordance with the temperature of the exhaust gas 9, the engine load and the rotational speed, and further, the reducing agent addition The addition amount of the reducing agent by the means 39 is calculated by a predetermined function process or map process by the control means in accordance with the fuel addition quantity, the temperature of the exhaust gas 9, the engine load and the rotational speed.

このように、実施の形態の第三例によれば、第一例、第二例と同様な作用効果を得ることができる。又、燃料添加手段34は、ターボチャージャ2のタービン2bの上流側に位置するので、タービン2bにより燃料を均等に拡散させ、燃料添加手段34からの過剰な燃料の添加を抑制し、燃費の悪化を好適に防止することができる。   Thus, according to the third example of the embodiment, the same operational effects as the first example and the second example can be obtained. Further, since the fuel addition means 34 is located upstream of the turbine 2b of the turbocharger 2, the fuel is evenly diffused by the turbine 2b, the excessive fuel addition from the fuel addition means 34 is suppressed, and the fuel consumption is deteriorated. Can be suitably prevented.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、燃料添加手段や還元剤添加手段の構成は、燃料や還元剤を適切に添加し得るならば特に限定されるものではないこと、還元剤は、燃料添加手段の燃料と同じものが好ましいが、別ラインとしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and the configuration of the fuel addition means and the reducing agent addition means is particularly limited as long as the fuel and the reducing agent can be added appropriately. However, the reducing agent is preferably the same as the fuel of the fuel adding means, but it may be a separate line, and other various modifications can be made without departing from the scope of the present invention. is there.

本発明を実施する形態の第一例を示す概略図である。It is the schematic which shows the 1st example of the form which implements this invention. 燃料添加手段より燃料を酸化触媒の上流側に添加した状態を示す概略図である。It is the schematic which shows the state which added the fuel to the upstream of the oxidation catalyst from the fuel addition means. 燃料が酸化触媒により燃焼して昇温する状態を示す概略図である。It is the schematic which shows the state which a fuel burns with an oxidation catalyst and heats up. 還元剤添加手段より還元剤をNOx吸蔵還元触媒の上流側に添加した状態を示す概略図である。It is the schematic which shows the state which added the reducing agent to the upstream of the NOx storage reduction catalyst from the reducing agent addition means. NOx吸蔵還元触媒に十分な還元剤を確保している状態を示す概略図である。It is the schematic which shows the state which has ensured sufficient reducing agent for the NOx storage reduction catalyst. NOx低減率の比較を示すグラフである。It is a graph which shows the comparison of NOx reduction rate. 本発明を実施する形態の第二例を示す概略図である。It is the schematic which shows the 2nd example of the form which implements this invention. 本発明を実施する形態の第三例を示す概略図である。It is the schematic which shows the 3rd example of the embodiment which implements this invention. NOx吸蔵還元触媒、酸化触媒、燃料添加手段を備えた従来の排気浄化装置を示す概略図である。1 is a schematic view showing a conventional exhaust purification device provided with a NOx storage reduction catalyst, an oxidation catalyst, and fuel addition means. 燃料添加手段より燃料を酸化触媒の上流側に添加した状態を示す概略図である。It is the schematic which shows the state which added the fuel to the upstream of the oxidation catalyst from the fuel addition means. 燃料が酸化触媒により燃焼して昇温する状態を示す概略図である。It is the schematic which shows the state which a fuel burns with an oxidation catalyst and heats up. 酸化触媒での燃料の燃焼によりNOx吸蔵還元触媒で燃料が不足している状態を示す概略図である。It is the schematic which shows the state in which fuel is insufficient with a NOx storage reduction catalyst by combustion of the fuel with an oxidation catalyst.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
9 排気ガス
11 排気管
11a 排気管
30 NOx吸蔵還元触媒
32 NOx吸蔵酸化触媒
32 酸化触媒
34 燃料添加手段
39 還元剤添加手段
1 Diesel engine (engine)
DESCRIPTION OF SYMBOLS 9 Exhaust gas 11 Exhaust pipe 11a Exhaust pipe 30 NOx occlusion reduction catalyst 32 NOx occlusion oxidation catalyst 32 Oxidation catalyst 34 Fuel addition means 39 Reductant addition means

Claims (2)

エンジンからの排気ガスが流通する排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒より上流側に装備された酸化触媒と、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段と、前記酸化触媒とNOx吸蔵還元触媒との間の排気ガス中に還元剤を添加する還元剤添加手段とを備えたことを特徴とする排気浄化装置。   NOx occlusion reduction catalyst installed in the middle of an exhaust pipe through which exhaust gas from the engine circulates, an oxidation catalyst installed upstream from the NOx occlusion reduction catalyst, and fuel in exhaust gas upstream from the oxidation catalyst An exhaust emission control device comprising: a fuel addition means for adding a reducing agent; and a reducing agent addition means for adding a reducing agent to the exhaust gas between the oxidation catalyst and the NOx storage reduction catalyst. 還元剤添加手段は還元剤を燃料とすることを特徴とする請求項1に記載の排気浄化装置。   2. The exhaust emission control device according to claim 1, wherein the reducing agent adding means uses a reducing agent as fuel.
JP2006198140A 2006-07-20 2006-07-20 Exhaust emission control device Pending JP2008025438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198140A JP2008025438A (en) 2006-07-20 2006-07-20 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198140A JP2008025438A (en) 2006-07-20 2006-07-20 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2008025438A true JP2008025438A (en) 2008-02-07

Family

ID=39116334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198140A Pending JP2008025438A (en) 2006-07-20 2006-07-20 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2008025438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106325A (en) * 2009-11-17 2011-06-02 Mitsubishi Motors Corp Exhaust emission control device
JP2012012944A (en) * 2010-06-29 2012-01-19 Hino Motors Ltd Exhaust emission control device
KR101487178B1 (en) * 2010-02-17 2015-01-29 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 On-vehicle nitrogen oxide aftertreatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106325A (en) * 2009-11-17 2011-06-02 Mitsubishi Motors Corp Exhaust emission control device
KR101487178B1 (en) * 2010-02-17 2015-01-29 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 On-vehicle nitrogen oxide aftertreatment system
JP2012012944A (en) * 2010-06-29 2012-01-19 Hino Motors Ltd Exhaust emission control device

Similar Documents

Publication Publication Date Title
KR101921885B1 (en) METHOD FOR REGENERATING NOx STORAGE CATALYTIC CONVERTERS OF DIESEL ENGINES WITH LOW-PRESSURE EGR
JP2018127990A (en) Abnormality diagnostic device for exhaust emission control device for internal combustion engine
JP5155718B2 (en) Exhaust purification device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2007291980A (en) Exhaust emission control device
JP2006242020A (en) Exhaust emission control device
EP2738363B1 (en) Exhaust purification device of internal combustion engine
JP4216673B2 (en) Exhaust purification equipment
JP4327445B2 (en) Exhaust purification equipment
JP2007009718A (en) Exhaust emission control device
JP2007205267A (en) Exhaust emission control device
JP2008025438A (en) Exhaust emission control device
JP2010196551A (en) Exhaust emission control device of internal combustion engine
GB2564833A (en) An after treatment system, engine assembly and associated methods
JP5310166B2 (en) Engine exhaust purification system
JP2010185369A (en) Fuel supply device of engine
JP2006299967A (en) Exhaust emission control system for internal combustion engine
JP2012087703A (en) Exhaust gas treating device of internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2006037768A (en) Exhaust emission control device
JP2007127069A (en) Exhaust emission control device
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP5774300B2 (en) Exhaust purification equipment
JP2006037857A (en) Exhaust emission control device
JP5085393B2 (en) Exhaust purification device