JP5085393B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP5085393B2
JP5085393B2 JP2008097678A JP2008097678A JP5085393B2 JP 5085393 B2 JP5085393 B2 JP 5085393B2 JP 2008097678 A JP2008097678 A JP 2008097678A JP 2008097678 A JP2008097678 A JP 2008097678A JP 5085393 B2 JP5085393 B2 JP 5085393B2
Authority
JP
Japan
Prior art keywords
fuel
oxidation catalyst
catalyst
exhaust
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097678A
Other languages
Japanese (ja)
Other versions
JP2009250091A (en
Inventor
卓俊 古川
悦弘 舩山
浩 平林
正敏 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2008097678A priority Critical patent/JP5085393B2/en
Publication of JP2009250091A publication Critical patent/JP2009250091A/en
Application granted granted Critical
Publication of JP5085393B2 publication Critical patent/JP5085393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、自動車のディーゼルエンジン等では、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOxの発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)を採用したものがある。   Conventionally, in a diesel engine of an automobile, a part of the exhaust gas is extracted from the exhaust side and returned to the intake side, and the exhaust gas returned to the intake side suppresses the combustion of fuel in the engine to reduce the combustion temperature. Some of them adopt so-called exhaust gas recirculation (EGR), which reduces the generation of NOx by lowering.

ただし、排気ガスの再循環によりNOxの低減化を図ることは、気筒内での燃焼不良により黒煙を発生してしまうこととトレードオフの関係にあるので、黒煙の発生を抑制する観点から排気ガスの再循環量に制限がかかるという不具合があり、単純に排気ガスの再循環を行うだけで大幅なNOxの低減化を図ることは困難である。   However, reducing NOx by exhaust gas recirculation is in a trade-off relationship with the generation of black smoke due to poor combustion in the cylinder, so from the viewpoint of suppressing the generation of black smoke. There is a problem in that the amount of exhaust gas recirculation is limited, and it is difficult to significantly reduce NOx simply by recirculating exhaust gas.

このため、近年においては、通常であれば圧縮上死点近辺で行われるべき燃料噴射を圧縮上死点より早いタイミングで行い、気筒内への燃料の先行投入により燃料の予混合化を促進してから着火燃焼させて黒煙の発生を抑制するようにした予混合圧縮着火の採用が検討されている(例えば、特許文献1参照)。   For this reason, in recent years, fuel injection that should normally be performed near the compression top dead center is performed at a timing earlier than the compression top dead center, and fuel premixing is promoted by prior injection of fuel into the cylinder. Adoption of premixed compression ignition that suppresses the generation of black smoke by igniting and burning after that has been studied (for example, see Patent Document 1).

即ち、このような予混合圧縮着火を採用して燃焼を行うと、燃料が良好に分散混合して均等に薄まった状態で燃焼が行われることになるので、燃焼温度が比較的低く抑制されてNOxの発生が少なくなり、しかも、局所的に燃料の濃い部分が生じ難くなって黒煙の発生を抑制する上でも有効となる。   That is, if combustion is performed using such premixed compression ignition, combustion is performed in a state where the fuel is well dispersed and mixed and evenly diluted, so the combustion temperature is suppressed to a relatively low level. The generation of NOx is reduced, and moreover, it is difficult to produce a fuel-rich portion locally, which is effective in suppressing the generation of black smoke.

尚、予混合圧縮着火を採用するに際しては、燃料の投入タイミングを圧縮上死点より早めても、その着火については圧縮上死点付近で行われることが望ましいが、通常のエンジンの圧縮比では、圧縮上死点より早いタイミングで着火する過早着火が起こって燃焼騒音の悪化や熱効率的な損失が生じるという問題があり、特にエンジン温度が高くなる高負荷の運転条件では、圧縮に伴い混合気の温度が早期に着火温度に達してしまうので、圧縮上死点よりもかなり早いタイミングで過早着火が起こって大幅な燃焼騒音の悪化を招いてしまう結果となり、現状では軽負荷の運転条件でしか予混合圧縮着火を採用する目処が立っていない。
特開平11−107792号公報
When adopting premixed compression ignition, it is desirable that the ignition be performed near the compression top dead center even if the fuel injection timing is advanced from the compression top dead center. There is a problem that pre-ignition occurs at a timing earlier than the compression top dead center, resulting in deterioration of combustion noise and loss of heat efficiency, especially in high-load operating conditions where the engine temperature is high, mixing with compression As the temperature of the air reaches the ignition temperature early, pre-ignition occurs at a timing much earlier than the compression top dead center, resulting in a significant deterioration in combustion noise. However, there is no prospect of adopting premixed compression ignition.
Japanese Patent Application Laid-Open No. 11-107772

しかしながら、前述した如き予混合圧縮着火の運転においては、NOxを低減できる背反として大量のHCとCOが発生してしまうという不具合があり、これらのHC及びCOが車外へ排出されてしまわないよう排気管途中に酸化触媒を設置する必要があるが、一般的に予混合圧縮着火が適用される軽負荷の運転領域では排気温度が低く、酸化触媒に良好な触媒活性を発揮させることができないことから十分な排気浄化性能が得られないという問題があった。   However, in the operation of the premixed compression ignition as described above, there is a problem that a large amount of HC and CO is generated as a contradiction that can reduce NOx, and the exhaust is performed so that these HC and CO are not discharged outside the vehicle. Although it is necessary to install an oxidation catalyst in the middle of the pipe, the exhaust temperature is generally low in the light load operation region where premixed compression ignition is applied, and the oxidation catalyst cannot exhibit good catalytic activity. There was a problem that sufficient exhaust purification performance could not be obtained.

本発明は上述の実情に鑑みてなしたもので、予混合圧縮着火の適用により生じたHC及びCOを効率良く且つ確実に浄化し、同時にNOxを効率良く低減し得るようにした排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an exhaust purification device that can efficiently and reliably purify HC and CO generated by the application of premixed compression ignition and at the same time efficiently reduce NOx. It is intended to provide.

本発明は、少なくとも軽負荷時に圧縮上死点より早いタイミングで燃料噴射を実行し、燃料の予混合化を促進してから燃焼室内で着火燃焼させる予混合圧縮着火を行うことで黒煙の発生を抑制し得るようにしたディーゼルエンジンの排気浄化装置であって、ディーゼルエンジンの排気管上流部にHCよりもCOを優先して酸化処理するプレ酸化触媒を設け、該プレ酸化触媒の下流側に酸素共存下でも選択的にNOxをHCと反応させる触媒機能とNOx吸着能とを備えた選択還元型触媒を設け、該選択還元型触媒と前記プレ酸化触媒との間に排気ガス中に燃料を添加する燃料添加手段を設け、該燃料添加手段により予混合圧縮着火が適用されない運転領域で燃料の添加を行わせるように構成したことを特徴とするものである。 The present invention generates black smoke by performing fuel injection at a timing earlier than the compression top dead center at the time of light load, promoting premixing of fuel, and performing premixed compression ignition in which combustion is performed in a combustion chamber. An exhaust emission control device for a diesel engine, which is capable of suppressing the pre-oxidation catalyst that preferentially oxidizes CO over HC at the upstream portion of the exhaust pipe of the diesel engine, and is disposed downstream of the pre-oxidation catalyst. A selective reduction type catalyst having a catalytic function for selectively reacting NOx with HC even in the presence of oxygen and an NOx adsorption capability is provided, and fuel is introduced into the exhaust gas between the selective reduction type catalyst and the pre-oxidation catalyst. The fuel adding means to be added is provided , and the fuel adding means is configured to cause the fuel to be added in an operation region where premixed compression ignition is not applied .

このようにすれば、排気温度の低い軽負荷時等に予混合圧縮着火が適用されてHCとCOが大量に発生したとしても、排気管上流部に設けられているプレ酸化触媒は、ディーゼルエンジンから排出された直後の高温の排気ガスに晒されてCO,HCを酸化処理するに十分な触媒活性を既に得ているので、このプレ酸化触媒にてCOとHCが酸化処理され、その酸化反応熱により排気ガスの昇温化が図られることになる。   In this way, even if premixed compression ignition is applied at a light load with a low exhaust temperature and a large amount of HC and CO is generated, the pre-oxidation catalyst provided in the upstream portion of the exhaust pipe is a diesel engine. Since it has been exposed to high-temperature exhaust gas immediately after being discharged from the catalyst and has already obtained sufficient catalytic activity to oxidize CO and HC, CO and HC are oxidized by this pre-oxidation catalyst, and the oxidation reaction The temperature of the exhaust gas is increased by heat.

この際、COはHCよりも反応性が高く、COからCO2への酸化処理の反応速度も速いため、プレ酸化触媒を排気管上流部に設けておくだけで得られる触媒活性だけでもCOの大半を酸化処理することが可能であるが、反応速度の遅いHCの多くをプレ酸化触媒で酸化処理することは困難であり、HCの多くはプレ酸化触媒を通り抜けて下流側へ向かうことになる。 At this time, CO is more reactive than HC, and the reaction rate of the oxidation treatment from CO to CO 2 is fast. Therefore, the catalytic activity obtained only by providing a pre-oxidation catalyst upstream of the exhaust pipe is sufficient for CO. Although most of the HC can be oxidized, it is difficult to oxidize most of the slow HC with the pre-oxidation catalyst, and most of the HC passes through the pre-oxidation catalyst and goes downstream. .

そして、このプレ酸化触媒を通り抜けたHCは、該プレ酸化触媒で昇温された排気ガスと共に下流側の選択還元型触媒に到り、これまでに選択還元型触媒に吸着されたNOxを還元浄化するための還元剤として利用される。   The HC passing through the pre-oxidation catalyst reaches the downstream selective reduction catalyst together with the exhaust gas heated by the pre-oxidation catalyst, and reduces and purifies NOx adsorbed on the selective reduction catalyst so far. It is used as a reducing agent.

即ち、下流側の選択還元型触媒では、予混合圧縮着火によりNOxの低減化が図られる前からのNOxの吸着が進んでいるので、プレ酸化触媒で昇温された排気ガスに晒されて触媒床温度が上げられた選択還元型触媒にHCが導かれてくると、このHCを還元剤として吸着NOxの還元浄化が図られる。   That is, in the selective catalytic reduction catalyst on the downstream side, NOx adsorption has progressed before the reduction of NOx by premixed compression ignition, so the catalyst is exposed to the exhaust gas heated by the pre-oxidation catalyst. When HC is led to the selective catalytic reduction catalyst whose bed temperature has been raised, the reduced purification of adsorbed NOx is achieved using this HC as a reducing agent.

尚、選択還元型触媒へのNOxの吸着は、雰囲気中のCOの存在により阻害される(吸着NOxの放出が促される)ことが本発明者らの知見として得られているが、プレ酸化触媒により先行してCOを除去しておけば、このような懸念を払拭して選択還元型触媒のNOx吸着能を最大限に利用することが可能となる。   Although the present inventors have obtained that NOx adsorption on the selective catalytic reduction catalyst is inhibited by the presence of CO in the atmosphere (the release of adsorbed NOx is promoted), the pre-oxidation catalyst If CO is removed in advance, it is possible to eliminate such a concern and make maximum use of the NOx adsorption ability of the selective catalytic reduction catalyst.

また、一般的に予混合圧縮着火が適用されない中高負荷時等においては、燃料添加手段により燃料を添加し、この添加燃料から生じたHCを還元剤として選択還元型触媒でNOxの還元浄化を行わせるようにすれば良い。   In addition, generally at the time of medium and high loads where premixed compression ignition is not applied, fuel is added by the fuel addition means, and NOx is reduced and purified by the selective reduction catalyst using HC generated from the added fuel as a reducing agent. You can make it.

更に、本発明においては、選択還元型触媒の前段にパティキュレートフィルタを設けると共に、該パティキュレートフィルタの更に前段にメイン酸化触媒を設け、該メイン酸化触媒とプレ酸化触媒との間に燃料添加手段を配置して前記パティキュレートフィルタの強制再生時にも燃料添加を行わせるように構成することが好ましい。 Furthermore, in the present invention, a particulate filter is provided in the preceding stage of the selective reduction catalyst, and a main oxidation catalyst is provided in the further preceding stage of the particulate filter, and fuel adding means is provided between the main oxidation catalyst and the pre-oxidation catalyst. It is preferable to arrange so that fuel is added even during forced regeneration of the particulate filter .

このようにすれば、NOxとパティキュレートの同時低減を図ることが可能となり、しかも、パティキュレートフィルタの強制再生を行う必要が生じた際に、燃料添加手段により燃料を添加すると、この添加燃料から生じた高濃度のHCがメイン酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In this way, it is possible to simultaneously reduce NOx and particulates. Moreover, when it is necessary to perform forced regeneration of the particulate filter, if fuel is added by the fuel addition means, the added fuel is The generated high-concentration HC undergoes an oxidation reaction while passing through the main oxidation catalyst, and the inflow of exhaust gas heated by the reaction heat raises the catalyst bed temperature of the particulate filter immediately after that to burn out the particulates. Thus, regeneration of the particulate filter is achieved.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、排気温度の低い軽負荷時等に予混合圧縮着火の適用により生じたHC及びCOを効率良く且つ確実に浄化することができるので、これらHC及びCOの車外への排出を抑制しながら予混合圧縮着火と選択還元型触媒とによる良好なNOx低減を図ることができる。   (I) According to the invention described in claim 1 of the present invention, HC and CO generated by applying premixed compression ignition at the time of a light load with a low exhaust temperature can be efficiently and reliably purified. Thus, it is possible to achieve a good NOx reduction by the premixed compression ignition and the selective reduction catalyst while suppressing the discharge of HC and CO to the outside of the vehicle.

(II)本発明の請求項2に記載の発明によれば、NOxとパティキュレートの同時低減を図ることができ、しかも、予混合圧縮着火を適用しない場合に選択還元型触媒への還元剤として燃料を添加するための燃料添加手段を流用してパティキュレートフィルタの強制再生を実施することができる。   (II) According to the invention described in claim 2 of the present invention, NOx and particulates can be simultaneously reduced, and as a reducing agent for the selective catalytic reduction catalyst when premixed compression ignition is not applied. The forced regeneration of the particulate filter can be performed by diverting the fuel addition means for adding the fuel.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図中1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では直列6気筒の場合を例示している)に分配されるようになっている。   FIG. 1 shows an example of an embodiment of the present invention. In FIG. 1, reference numeral 1 shows a diesel engine equipped with a turbocharger 2, and intake air 4 guided from an air cleaner 3 passes through an intake pipe 5 and the turbocharger. 2, the intake air 4 pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7. 1 is distributed to each cylinder 8 (FIG. 1 illustrates the case of inline 6 cylinders).

また、前記ディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてある。   Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b passes through the exhaust pipe 11. It is designed to be discharged outside the vehicle.

そして、前記排気管11におけるタービン2bの出口(排気管11の上流部)には、HCよりもCOを優先して酸化処理するプレ酸化触媒12が装備されており、このプレ酸化触媒12は、例えば、Pt/Pd/アルミナを原料として担持させた酸化触媒とすれば良い。   A pre-oxidation catalyst 12 that preferentially oxidizes CO over HC is provided at the outlet of the turbine 2b in the exhaust pipe 11 (upstream portion of the exhaust pipe 11). For example, an oxidation catalyst in which Pt / Pd / alumina is supported as a raw material may be used.

更に、このプレ酸化触媒12より下流側の排気管11には、酸素共存下でも選択的にNOxをHCと反応させる触媒機能とNOx吸着能とを備えた選択還元型触媒13が介装されており、この選択還元型触媒13は、例えば、Pt/ゼオライト触媒等により構成されている。   Further, the exhaust pipe 11 downstream of the pre-oxidation catalyst 12 is provided with a selective reduction catalyst 13 having a catalytic function for selectively reacting NOx with HC and coexisting with NOx even in the presence of oxygen. The selective reduction catalyst 13 is composed of, for example, a Pt / zeolite catalyst.

また、特に本形態例においては、選択還元型触媒13の前段に、酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ14が収容されており、このパティキュレートフィルタ14は、セラミックから成る多孔質のハニカム構造を有し、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガス9のみが下流側へ排出されるようにしてある。尚、このパティキュレートフィルタ14には、例えば、Pt/Pd/アルミナにセリア(CeO2)を加えた酸化触媒等を一体的に担持させておけば良い。 In particular, in the present embodiment, a catalyst regeneration type particulate filter 14 that integrally supports an oxidation catalyst is accommodated in the preceding stage of the selective reduction catalyst 13, and the particulate filter 14 is made of ceramic. So that the inlets of the respective flow paths partitioned in a lattice pattern are alternately sealed, and the outlets of the flow paths that are not sealed are sealed. Thus, only the exhaust gas 9 that has permeated through the porous thin wall partitioning each flow path is discharged to the downstream side. The particulate filter 14 may be integrally supported with, for example, an oxidation catalyst obtained by adding ceria (CeO 2 ) to Pt / Pd / alumina.

更に、このパティキュレートフィルタ14の前段には、フロースルー型のメイン酸化触媒15が装備されており、このメイン酸化触媒15には、例えば、Pt/アルミナにセリア(CeO2)を加えた原料を担持させておけば良い。 Further, a flow-through type main oxidation catalyst 15 is provided in the preceding stage of the particulate filter 14, and the main oxidation catalyst 15 is made of, for example, a raw material obtained by adding ceria (CeO 2 ) to Pt / alumina. It only has to be supported.

また、メイン酸化触媒15とプレ酸化触媒12との間には、排気ガス9中に燃料を添加する燃料添加手段として燃料添加弁16が装備されており、この燃料添加弁16には、所要場所に配置された燃料タンク17から導いた燃料添加ライン18が接続されており、該燃料添加ライン18の途中に装備したポンプ19の駆動により燃料タンク17内の燃料が抜き出されて前記燃料添加弁16に向けて供給され、該燃料添加弁16のノズル先端から排気管11内に噴射されるようになっている。   Further, a fuel addition valve 16 is provided between the main oxidation catalyst 15 and the pre-oxidation catalyst 12 as a fuel addition means for adding fuel to the exhaust gas 9. A fuel addition line 18 led from a fuel tank 17 disposed in the fuel addition line 18 is connected, and fuel in the fuel tank 17 is extracted by driving a pump 19 provided in the middle of the fuel addition line 18 so that the fuel addition valve is connected. 16 and is injected into the exhaust pipe 11 from the nozzle tip of the fuel addition valve 16.

そして、前記ディーゼルエンジン1には、各気筒8毎に装備されたインジェクタ20から成る燃料噴射装置21が搭載されており、該燃料噴射装置21における各インジェクタ20の電磁弁が、図示しないエンジン制御コンピュータ(ECU:Electronic Control Unit)により負荷や回転数に基づいて噴射タイミングや噴射量(開弁時間)を適切に制御されるようにしてあるが、特に軽負荷時においては、圧縮上死点近辺で行われるべきメイン噴射を圧縮上死点より早いタイミングで行う予混合圧縮着火が適用されるようになっている。   The diesel engine 1 is equipped with a fuel injection device 21 composed of an injector 20 provided for each cylinder 8, and the solenoid valve of each injector 20 in the fuel injection device 21 is an engine control computer (not shown). (ECU: Electronic Control Unit) properly controls the injection timing and injection amount (valve opening time) based on the load and rotation speed, but especially at light loads, near the compression top dead center. Premixed compression ignition in which main injection to be performed is performed at a timing earlier than the compression top dead center is applied.

また、排気マニホールド10における各気筒8の並び方向の一端部と、吸気マニホールド7に接続されている吸気管5の一端部との間がEGRライン22で接続されており、排気マニホールド10から抜き出した排気ガス9の一部をEGR用酸化触媒25に通して排気ガス9のHCとSOF分(Soluble Organic Fraction:可溶性有機成分)を酸化浄化し、次いで、水冷式のEGRクーラ23で冷却してEGRバルブ24を介し吸気管5に再循環するようにしてある。   Further, an end portion of the exhaust manifold 10 in the direction in which the cylinders 8 are arranged and an end portion of the intake pipe 5 connected to the intake manifold 7 are connected by an EGR line 22, and the exhaust manifold 10 is extracted from the exhaust manifold 10. A part of the exhaust gas 9 is passed through an oxidation catalyst 25 for EGR to oxidize and purify HC and SOF (Soluble Organic Fraction) of the exhaust gas 9, and then cooled by a water-cooled EGR cooler 23 to EGR The air is recirculated to the intake pipe 5 through the valve 24.

而して、このように排気浄化装置を構成すれば、排気温度の低い軽負荷時に前記EGRライン22による排気ガス9の再循環を併用して着火タイミングの調整を行いつつ予混合圧縮着火を適用し、これによりディーゼルエンジン1からの排気ガス9にHCとCOが大量に発生したとしても、排気管11の上流部に設けられているプレ酸化触媒12は、ディーゼルエンジン1から排出された直後の高温の排気ガス9に晒されてCO,HCを酸化処理するに十分な触媒活性を既に得ているので、このプレ酸化触媒12にてCOとHCが酸化処理され、その酸化反応熱により排気ガス9の昇温化が図られることになる。   Thus, if the exhaust gas purification apparatus is configured in this way, premixed compression ignition is applied while adjusting the ignition timing by using the recirculation of the exhaust gas 9 by the EGR line 22 at the time of a light load with a low exhaust temperature. Thus, even if a large amount of HC and CO is generated in the exhaust gas 9 from the diesel engine 1, the pre-oxidation catalyst 12 provided in the upstream portion of the exhaust pipe 11 is immediately after being discharged from the diesel engine 1. Since catalytic activity sufficient to oxidize CO and HC has already been obtained by exposure to the high-temperature exhaust gas 9, CO and HC are oxidized by the pre-oxidation catalyst 12, and the exhaust gas is generated by the oxidation reaction heat. The temperature of 9 will be increased.

この際、COはHCよりも反応性が高く、COからCO2への酸化処理の反応速度も速いため、プレ酸化触媒12を排気管11上流部に設けておくだけで得られる触媒活性だけでもCOの大半を酸化処理することが可能であるが、反応速度の遅いHCの多くをプレ酸化触媒12で酸化処理することは困難であり、HCの多くはプレ酸化触媒12を通り抜けて下流側へ向かうことになる。 At this time, CO is more reactive than HC, and the reaction rate of the oxidation treatment from CO to CO 2 is also fast. Although it is possible to oxidize most of CO, it is difficult to oxidize most of the slow HC with the pre-oxidation catalyst 12, and most of the HC passes through the pre-oxidation catalyst 12 and goes downstream. Will head.

そして、このプレ酸化触媒12を通り抜けたHCは、該プレ酸化触媒12で昇温された排気ガス9と共に下流側の選択還元型触媒13に到り、これまでに選択還元型触媒13に吸着されたNOxを還元浄化するための還元剤として利用される。   The HC passing through the pre-oxidation catalyst 12 reaches the selective reduction catalyst 13 on the downstream side together with the exhaust gas 9 heated by the pre-oxidation catalyst 12, and has been adsorbed by the selective reduction catalyst 13 so far. It is used as a reducing agent for reducing and purifying NOx.

即ち、下流側の選択還元型触媒13では、予混合圧縮着火によりNOxの低減化が図られる前からのNOxの吸着が進んでいるので、プレ酸化触媒12で昇温された排気ガス9に晒されて触媒床温度が上げられた選択還元型触媒13にHCが導かれてくると、このHCを還元剤として吸着NOxの還元浄化が図られる。   That is, in the selective catalytic reduction catalyst 13 on the downstream side, NOx adsorption has progressed before NOx reduction is achieved by premixed compression ignition, so that it is exposed to the exhaust gas 9 heated by the pre-oxidation catalyst 12. When HC is introduced to the selective catalytic reduction catalyst 13 whose catalyst bed temperature has been raised, the reduced purification of adsorbed NOx is achieved using this HC as a reducing agent.

尚、選択還元型触媒13へのNOxの吸着は、雰囲気中のCOの存在により阻害される(吸着NOxの放出が促される)ことが本発明者らの知見として得られているが、プレ酸化触媒12により先行してCOを除去しておけば、このような懸念を払拭して選択還元型触媒13のNOx吸着能を最大限に利用することが可能となる。   It has been obtained by the present inventors that NOx adsorption to the selective catalytic reduction catalyst 13 is inhibited by the presence of CO in the atmosphere (release of adsorbed NOx is promoted). If CO is removed in advance by the catalyst 12, such a concern can be eliminated and the NOx adsorption ability of the selective catalytic reduction catalyst 13 can be utilized to the maximum extent.

また、予混合圧縮着火が適用されない中高負荷時においては、燃料添加弁16により燃料を添加し、この添加燃料から生じたHCを還元剤として選択還元型触媒13でNOxの還元浄化を行わせるようにすれば良い。   Further, at the time of medium and high loads where premixed compression ignition is not applied, fuel is added by the fuel addition valve 16, and NOx is reduced and purified by the selective reduction catalyst 13 using HC generated from the added fuel as a reducing agent. You can do it.

更に、本形態例においては、選択還元型触媒13の前段にパティキュレートフィルタ14を設けると共に、該パティキュレートフィルタ14の更に前段にメイン酸化触媒15を設け、該メイン酸化触媒15とプレ酸化触媒12との間に燃料添加弁16が配置されるように構成しているので、NOxとパティキュレートの同時低減を図ることが可能となり、しかも、パティキュレートフィルタ14の強制再生を行う必要が生じた際に、燃料添加弁16により燃料を添加すると、この添加燃料から生じた高濃度のHCがメイン酸化触媒15を通過する間に酸化反応し、その反応熱で昇温した排気ガス9の流入により直後のパティキュレートフィルタ14の触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタ14の再生化が図られることになる。   Further, in the present embodiment, a particulate filter 14 is provided in front of the selective catalytic reduction catalyst 13, and a main oxidation catalyst 15 is provided further in front of the particulate filter 14, and the main oxidation catalyst 15 and the pre-oxidation catalyst 12 are provided. Since the fuel addition valve 16 is arranged between the NOx and the particulates, it is possible to simultaneously reduce NOx and the particulates, and when the particulate filter 14 needs to be forcibly regenerated. In addition, when fuel is added by the fuel addition valve 16, high-concentration HC generated from the added fuel undergoes an oxidation reaction while passing through the main oxidation catalyst 15, and immediately after the exhaust gas 9 heated by the reaction heat flows in. The catalyst bed temperature of the particulate filter 14 is raised, the particulates are burned out, and the particulate filter 14 Will be regenerated.

従って、上記形態例によれば、排気温度の低い軽負荷時に予混合圧縮着火の適用により生じたHC及びCOを効率良く且つ確実に浄化することができるので、これらHC及びCOの車外への排出を抑制しながら予混合圧縮着火と選択還元型触媒13とによる良好なNOx低減を図ることができる。   Therefore, according to the above embodiment, HC and CO generated by the application of premixed compression ignition at the time of light load with low exhaust temperature can be purified efficiently and reliably. The NOx reduction by the premixed compression ignition and the selective catalytic reduction catalyst 13 can be achieved while suppressing the above.

事実、本発明者らが検証実験を実施したところでは、仮に本形態例の構成からプレ酸化触媒12を無くしてしまうと、図2のグラフに示す如く、排気温度の低い軽負荷時に予混合圧縮着火が開始されて所要時間が経過し、メイン酸化触媒15,パティキュレートフィルタ14,選択還元型触媒13の触媒床温度が低下して触媒活性が失われた途端に、曲線Aで示すHCリークガス濃度と、曲線Bで示すCOリークガス濃度とが急激に上昇してしまうことが確認された。   In fact, when the present inventors conducted a verification experiment, if the pre-oxidation catalyst 12 is eliminated from the configuration of the present embodiment, the premix compression is performed at a light load with a low exhaust temperature as shown in the graph of FIG. As soon as the required time has elapsed since the ignition was started and the catalyst bed temperatures of the main oxidation catalyst 15, the particulate filter 14, and the selective catalytic reduction catalyst 13 were lowered and the catalytic activity was lost, the HC leak gas shown by the curve A It was confirmed that the concentration and the CO leak gas concentration indicated by the curve B increased rapidly.

他方、プレ酸化触媒12を設置した場合には、図3に同様のグラフで示す如く、排気温度の低い軽負荷時に予混合圧縮着火が開始されて所要時間が経過しても、メイン酸化触媒15,パティキュレートフィルタ14,選択還元型触媒13の触媒床温度が活性温度域に保持され、曲線Aで示すHCリークガス濃度と、曲線Bで示すCOリークガス濃度とが低減された状態のまま保持されることが確認された。   On the other hand, when the pre-oxidation catalyst 12 is installed, as shown by the same graph in FIG. 3, even if the premixed compression ignition is started at a light load with a low exhaust temperature and the required time has elapsed, the main oxidation catalyst 15 , The particulate filter 14 and the catalyst bed temperature of the selective catalytic reduction catalyst 13 are maintained in the active temperature range, and the HC leak gas concentration indicated by the curve A and the CO leak gas concentration indicated by the curve B are maintained in a reduced state. It was confirmed.

更に、本形態例では、NOxとパティキュレートの同時低減を図ることができ、しかも、予混合圧縮着火を適用しない場合に選択還元型触媒13への還元剤として燃料を添加するための燃料添加弁16を流用してパティキュレートフィルタ14の強制再生を実施することができる。   Furthermore, in this embodiment, NOx and particulates can be reduced simultaneously, and a fuel addition valve for adding fuel as a reducing agent to the selective catalytic reduction catalyst 13 when premixed compression ignition is not applied. The forced regeneration of the particulate filter 14 can be performed by diverting 16.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. プレ酸化触媒無しの場合のHCとCOのリークガス濃度を示すグラフである。It is a graph which shows the leak gas density | concentration of HC and CO when there is no pre-oxidation catalyst. プレ酸化触媒有りの場合のHCとCOのリークガス濃度を示すグラフである。It is a graph which shows the leak gas density | concentration of HC and CO in the case of having a pre-oxidation catalyst.

符号の説明Explanation of symbols

1 ディーゼルエンジン
9 排気ガス
11 排気管
12 プレ酸化触媒
13 選択還元型触媒
14 パティキュレートフィルタ
15 メイン酸化触媒
16 燃料添加弁(燃料添加手段)
DESCRIPTION OF SYMBOLS 1 Diesel engine 9 Exhaust gas 11 Exhaust pipe 12 Pre oxidation catalyst 13 Selective reduction type catalyst 14 Particulate filter 15 Main oxidation catalyst 16 Fuel addition valve (fuel addition means)

Claims (2)

少なくとも軽負荷時に圧縮上死点より早いタイミングで燃料噴射を実行し、燃料の予混合化を促進してから燃焼室内で着火燃焼させる予混合圧縮着火を行うことで黒煙の発生を抑制し得るようにしたディーゼルエンジンの排気浄化装置であって、ディーゼルエンジンの排気管上流部にHCよりもCOを優先して酸化処理するプレ酸化触媒を設け、該プレ酸化触媒の下流側に酸素共存下でも選択的にNOxをHCと反応させる触媒機能とNOx吸着能とを備えた選択還元型触媒を設け、該選択還元型触媒と前記プレ酸化触媒との間に排気ガス中に燃料を添加する燃料添加手段を設け、該燃料添加手段により予混合圧縮着火が適用されない運転領域で燃料の添加を行わせるように構成したことを特徴とする排気浄化装置。 The fuel injection is executed at a timing earlier than the compression top dead center at the time of light load, and the premixed compression ignition in which the fuel is premixed and then ignited and combusted in the combustion chamber can suppress the generation of black smoke. An exhaust emission control device for a diesel engine, wherein a pre-oxidation catalyst that preferentially oxidizes CO over HC is provided at an upstream portion of an exhaust pipe of the diesel engine, and the downstream side of the pre-oxidation catalyst is also in the presence of oxygen. A fuel addition for providing a selective reduction type catalyst having a catalytic function for selectively reacting NOx with HC and an NOx adsorption capability, and adding fuel into the exhaust gas between the selective reduction type catalyst and the pre-oxidation catalyst An exhaust emission control device characterized by comprising means for adding fuel in an operating region where premixed compression ignition is not applied by the fuel addition means. 選択還元型触媒の前段にパティキュレートフィルタを設けると共に、該パティキュレートフィルタの更に前段にメイン酸化触媒を設け、該メイン酸化触媒とプレ酸化触媒との間に燃料添加手段を配置して前記パティキュレートフィルタの強制再生時にも燃料添加を行わせるように構成したことを特徴とする請求項1に記載の排気浄化装置。 A particulate filter is provided in front of the selective reduction catalyst, a main oxidation catalyst is further provided in front of the particulate filter, and fuel addition means is disposed between the main oxidation catalyst and the pre-oxidation catalyst. The exhaust emission control device according to claim 1, wherein fuel is added even during forced regeneration of the filter .
JP2008097678A 2008-04-04 2008-04-04 Exhaust purification device Active JP5085393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097678A JP5085393B2 (en) 2008-04-04 2008-04-04 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097678A JP5085393B2 (en) 2008-04-04 2008-04-04 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2009250091A JP2009250091A (en) 2009-10-29
JP5085393B2 true JP5085393B2 (en) 2012-11-28

Family

ID=41311038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097678A Active JP5085393B2 (en) 2008-04-04 2008-04-04 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5085393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763294B2 (en) * 2009-11-25 2015-08-12 いすゞ自動車株式会社 Exhaust purification equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204699A (en) * 2002-12-24 2004-07-22 Hino Motors Ltd Exhaust gas purifying device
JP2005030284A (en) * 2003-07-10 2005-02-03 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006299955A (en) * 2005-04-21 2006-11-02 Idemitsu Kosan Co Ltd Power generation system of diesel engine
JP4521824B2 (en) * 2005-06-09 2010-08-11 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP2007224816A (en) * 2006-02-23 2007-09-06 Denso Corp Fuel injection device, nitrogen oxide treatment device and internal combustion engine control device
JP2009138692A (en) * 2007-12-10 2009-06-25 Toyota Central R&D Labs Inc Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
JP2009250091A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4977993B2 (en) Diesel engine exhaust purification system
US9115625B2 (en) Exhaust emission control device
JP5155718B2 (en) Exhaust purification device
JP2007291980A (en) Exhaust emission control device
JP5448310B2 (en) Exhaust purification device
US20060021335A1 (en) Exhaust treatment system having particulate filters
JP5047903B2 (en) Exhaust purification device control method
JP4784761B2 (en) Exhaust purification device
US7805931B2 (en) Self-sustaining oxy-exothermal filter regeneration system
JP2006233947A (en) Egr device
JP2004204699A (en) Exhaust gas purifying device
US20040188238A1 (en) System and method for concurrent particulate and NOx control
JP5335315B2 (en) Exhaust purification device
JP4007046B2 (en) Exhaust gas purification device for internal combustion engine
JP2009092015A (en) Exhaust emission control device
JP5112986B2 (en) Exhaust purification device
JP5085393B2 (en) Exhaust purification device
JP4934082B2 (en) Exhaust purification device
JP5053134B2 (en) Exhaust purification device
JP2008025438A (en) Exhaust emission control device
KR100999865B1 (en) Aftertreatment System Oxidation Catalyst Activation Method of Low Temperature Diesel Combustion Engine
JP2006097469A (en) Pm continuous regenerating method under low load on diesel engine
JP5266105B2 (en) Desulfurization equipment
JP2008057337A (en) Exhaust emission control device
JP4989565B2 (en) Burner equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5085393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250