JP2017106399A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2017106399A
JP2017106399A JP2015241781A JP2015241781A JP2017106399A JP 2017106399 A JP2017106399 A JP 2017106399A JP 2015241781 A JP2015241781 A JP 2015241781A JP 2015241781 A JP2015241781 A JP 2015241781A JP 2017106399 A JP2017106399 A JP 2017106399A
Authority
JP
Japan
Prior art keywords
temperature
urea
scrf
catalyst
influence index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015241781A
Other languages
Japanese (ja)
Other versions
JP6512535B2 (en
Inventor
友博 上野
Tomohiro Ueno
友博 上野
窪島 司
Tsukasa Kuboshima
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015241781A priority Critical patent/JP6512535B2/en
Priority to DE102016123417.6A priority patent/DE102016123417B4/en
Publication of JP2017106399A publication Critical patent/JP2017106399A/en
Application granted granted Critical
Publication of JP6512535B2 publication Critical patent/JP6512535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit accumulation of urea-derived deposit onto a front end of a catalyst support filter formed by supporting a selective reduction catalyst for selectively reducing NOx on a filter correcting PMs from causing a temperature rise for burning the PMs.SOLUTION: An ECU 1 acquires a temperature of an SCRF 7 serving as a catalyst support filter and urea addition amount added from an addition valve 5. Based on the temperature and the addition amount, an impact index that indicates a degree of an impact of a differential pressure before and after the SCRF 7 caused by accumulation of urea-derived deposit onto a front end of the SCRF 7 is calculated. Based on an NOx elimination ratio of the SCRF 7 and recent engine stop time, the impact index is corrected. When a differential pressure detected by a differential pressure sensor 8 is a threshold value or larger, whether or not the calculated impact index is equal to or larger than the threshold value is determined. When the impact index is smaller than the threshold value, temperature rise processing for PM removal is performed. When the impact index is the threshold value or larger, instead of the temperature rise processing for PM removal, temperature rise processing for removing the urea-derived deposit is performed.SELECTED DRAWING: Figure 1

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

従来、内燃機関から排出される排気を浄化するシステムの一つに尿素SCR(Selective Catalytic Reduction)システムが知られている。尿素SCRシステムでは、内燃機関の排気管に、尿素から生成されたアンモニアを貯蔵してそのアンモニアにより排気中のNOxを選択的に還元する選択還元触媒(SCR触媒)と、その選択還元触媒の排気上流側に尿素を添加する添加弁とが設けられる(例えば特許文献1参照)。   Conventionally, a urea SCR (Selective Catalytic Reduction) system is known as one of systems for purifying exhaust gas discharged from an internal combustion engine. In the urea SCR system, a selective reduction catalyst (SCR catalyst) that stores ammonia generated from urea in an exhaust pipe of an internal combustion engine and selectively reduces NOx in the exhaust by the ammonia, and exhaust gas of the selective reduction catalyst An addition valve for adding urea is provided on the upstream side (see, for example, Patent Document 1).

また、排気管には、排気中の粒子状物質(パティキュレートマター、PM)を捕集するフィルタが設けられることがある。このフィルタに一定量以上の粒子状物質が堆積した場合には、フィルタを昇温させて堆積した粒子状物質を燃焼させる再生処理が実施される。再生処理としては、例えば内燃機関のトルクを得るためのメイン噴射に後続して、排気の温度を上げるためのアフター噴射やポスト噴射を実施する。また、フィルタに粒子状物質の堆積量が多くなるにしたがってフィルタの前後差圧(圧損)が次第に大きくなっていく。そこで、再生処理を実施するか否かは、例えばフィルタの前後の差圧を取得する差圧センサを設けて、その差圧センサが取得した値に基づき判断している。   The exhaust pipe may be provided with a filter that collects particulate matter (particulate matter, PM) in the exhaust. When a certain amount or more of particulate matter is deposited on the filter, a regeneration process is performed in which the particulate matter deposited is burned by raising the temperature of the filter. As the regeneration process, for example, after the main injection for obtaining the torque of the internal combustion engine, after injection or post injection for increasing the temperature of the exhaust gas is performed. Moreover, the differential pressure (pressure loss) of the filter gradually increases as the amount of particulate matter deposited on the filter increases. Therefore, whether or not to perform the regeneration process is determined based on a value acquired by the differential pressure sensor provided with a differential pressure sensor that acquires the differential pressure before and after the filter, for example.

特開2010−270624号公報JP 2010-270624 A

ところで、尿素SCRシステムでは、添加弁から添加された尿素の添加量や選択還元触媒の温度等の条件によっては、排気管の内壁や選択還元触媒の前端などに、尿素や中間生成物(シアヌル酸、メラミン、メルムなど)の析出固形物である尿素由来デポジットが堆積することがある。   By the way, in the urea SCR system, urea and intermediate products (cyanuric acid) are formed on the inner wall of the exhaust pipe or the front end of the selective reduction catalyst depending on the conditions such as the amount of urea added from the addition valve and the temperature of the selective reduction catalyst. , Melamine, melm, etc.) may be deposited as urea-derived deposits.

一方で、上記フィルタに上記選択還元触媒が担持された触媒担持フィルタがある。この触媒担持フィルタを採用した場合、触媒担持フィルタの上流から尿素水を添加するため、尿素水由来のデポジットが排気管内やミキサー、触媒前端に堆積する。触媒担持フィルタの前端に尿素由来デポジットが堆積した場合、尿素由来デポジットにより触媒担持フィルタの前後差圧が増加する。尿素由来デポジットの堆積による差圧増加により、触媒担持フィルタへの粒子状物質の堆積量が少ない時にも粒子状物質を燃焼させるための昇温が実施され、無駄な昇温が繰り返されることにより燃費が悪化するという問題がある。   On the other hand, there is a catalyst-carrying filter in which the selective reduction catalyst is carried on the filter. When this catalyst-carrying filter is employed, urea water is added from the upstream side of the catalyst-carrying filter, so that a deposit derived from urea water accumulates in the exhaust pipe, the mixer, and the catalyst front end. When urea-derived deposits accumulate on the front end of the catalyst-carrying filter, the differential pressure across the catalyst-carrying filter increases due to the urea-derived deposit. Due to the increase in differential pressure due to the deposition of urea-derived deposits, even when the amount of particulate matter deposited on the catalyst-carrying filter is small, the temperature rises for burning the particulate matter, and the wasteful temperature rise is repeated to improve fuel efficiency. There is a problem that gets worse.

本発明は上記問題に鑑みてなされたものであり、触媒担持フィルタの前端への尿素由来デポジットの堆積により、粒子状物質を燃焼させるための昇温を頻繁に実施してしまうのを抑制できる内燃機関の排気浄化装置を提供することを課題とする。   The present invention has been made in view of the above problems, and is an internal combustion engine capable of suppressing frequent temperature increase for burning particulate matter due to deposition of urea-derived deposits on the front end of a catalyst-carrying filter. It is an object of the present invention to provide an exhaust emission control device for an engine.

上記課題を解決するため、本発明の内燃機関の排気浄化装置は、
内燃機関(2)の排気管(3)に設けられ、前記内燃機関の排気中の粒子状物質を捕集するフィルタに、排気中のNOxを選択的に還元する選択還元触媒が担持された触媒担持フィルタ(7)と、
前記触媒担持フィルタの排気上流側に、前記触媒担持フィルタにおいてNOxを還元させるための尿素を添加する添加弁(5)と、
前記触媒担持フィルタの前後の差圧を取得する差圧センサ(8)と、
前記差圧センサが取得した値に基づいて前記触媒担持フィルタの再生実施を判断する判断部(S31、1)と、
前記触媒担持フィルタの前端への尿素由来デポジットの堆積による前記差圧への影響の大きさを示した影響指標を検出する指標検出部(S1、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が所定値未満のときに、前記触媒担持フィルタに堆積した粒子状物質が燃焼するよう前記触媒担持フィルタを昇温させる第1再生処理を実施する第1の再生制御部(S32、S34、S4、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が前記所定値以上のときには、前記第1再生処理に代えて、前記触媒担持フィルタに堆積した尿素由来デポジットを除去する第2再生処理を実施する第2の再生制御部(S32、S33、S5、1)と、
を備える。
In order to solve the above problems, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes:
A catalyst provided on an exhaust pipe (3) of an internal combustion engine (2), on which a selective reduction catalyst for selectively reducing NOx in the exhaust is supported on a filter that collects particulate matter in the exhaust of the internal combustion engine A carrier filter (7);
An addition valve (5) for adding urea for reducing NOx in the catalyst-carrying filter to the exhaust upstream side of the catalyst-carrying filter;
A differential pressure sensor (8) for acquiring a differential pressure before and after the catalyst-carrying filter;
A determination unit (S31, 1) that determines execution of regeneration of the catalyst-carrying filter based on a value acquired by the differential pressure sensor;
An index detection unit (S1, 1) for detecting an influence index indicating the magnitude of the influence on the differential pressure by the deposition of urea-derived deposits on the front end of the catalyst-carrying filter;
When the determination unit determines to regenerate the catalyst-carrying filter, when the influence index is less than a predetermined value, the temperature of the catalyst-carrying filter is increased so that particulate matter deposited on the catalyst-carrying filter burns. A first reproduction control unit (S32, S34, S4, 1) for performing the first reproduction process;
When the determination unit determines to regenerate the catalyst-carrying filter and the influence index is equal to or greater than the predetermined value, the urea-derived deposit accumulated on the catalyst-carrying filter is removed instead of the first regeneration process. A second reproduction control unit (S32, S33, S5, 1) for performing the second reproduction process;
Is provided.

本発明によれば、触媒担持フィルタの前端への尿素由来デポジットの堆積による差圧への影響の大きさを示した影響指標を検出する。そして、触媒担持フィルタの前後の差圧に基づいて触媒担持フィルタの再生実施を判断した場合には、再生実施する前に影響指標を確認する。影響指標が所定値未満のときに、堆積した粒子状物質を燃焼させるための昇温(第1再生処理)を実施する。一方、影響指標が所定値以上のときには、第1再生処理の実施を中止して、尿素由来デポジットを除去する第2再生処理を実施するので、尿素由来デポジットの堆積により粒子状物質を燃焼させるための昇温(第1再生処理)を頻繁に実施してしまうのを抑制できる。加えて、第2再生処理により触媒担持フィルタに堆積した尿素由来デポジットを除去できるので、尿素由来デポジットの堆積により触媒担持フィルタの前後の差圧が増加してしまうのを抑制できる。   According to the present invention, the influence index indicating the magnitude of the influence on the differential pressure due to the deposition of the urea-derived deposit on the front end of the catalyst-carrying filter is detected. When it is determined to regenerate the catalyst-carrying filter based on the differential pressure before and after the catalyst-carrying filter, the influence index is confirmed before carrying out the regeneration. When the influence index is less than a predetermined value, a temperature rise (first regeneration process) for burning the accumulated particulate matter is performed. On the other hand, when the influence index is equal to or greater than the predetermined value, the first regeneration process is stopped and the second regeneration process for removing the urea-derived deposit is performed, so that the particulate matter is burned by the deposition of the urea-derived deposit. It is possible to suppress frequent temperature increase (first regeneration process). In addition, since the urea-derived deposit accumulated on the catalyst-carrying filter by the second regeneration process can be removed, it is possible to suppress an increase in the differential pressure across the catalyst-carrying filter due to the deposition of the urea-derived deposit.

内燃機関の排気浄化装置の構成図である。It is a block diagram of the exhaust gas purification device of an internal combustion engine. SCRF前端に尿素デポが堆積した状態を示した図である。It is the figure which showed the state in which the urea deposit was deposited on the SCRF front end. 差圧が閾値に達したときにおける、PM堆積による差圧と尿素デポ堆積による差圧との内訳を示した図である。It is the figure which showed the breakdown of the differential pressure by PM deposition, and the differential pressure by urea deposition when a differential pressure reaches a threshold value. SCRF前端の狭い範囲に尿素デポが堆積した状態を示した図である。It is the figure which showed the state which the urea deposit deposited in the narrow range of the SCRF front end. SCRFの再生処理を構成する各工程のブロック図である。It is a block diagram of each process which comprises SCRF reproduction processing. SCRF温度及び尿素添加量から影響指標を算出する工程を示したブロック図である。It is the block diagram which showed the process of calculating an influence parameter | index from SCRF temperature and urea addition amount. SCRF温度と影響指標との関係を示した図である。It is the figure which showed the relationship between SCRF temperature and an influence parameter | index. SCRF温度が低い時の尿素添加量と影響指標との関係を示した図である。It is the figure which showed the relationship between the urea addition amount when SCRF temperature is low, and an influence parameter | index. SCRF温度が高い時の尿素添加量と影響指標との関係を示した図である。It is the figure which showed the relationship between the urea addition amount when SCRF temperature is high, and an influence parameter | index. 上段にSCRF温度の推移を例示し、その温度の推移に対応させた形で影響指標の推移を下段に示した図である。It is the figure which illustrated transition of the SCRF temperature in the upper stage, and showed transition of the influence index in the form corresponding to the transition of the temperature. SCRF温度及び尿素添加量に加えて、NOx浄化率を考慮した影響指標を算出する工程を示したブロック図である。It is the block diagram which showed the process of calculating the influence parameter | index which considered the NOx purification rate in addition to SCRF temperature and urea addition amount. NOx浄化率と影響指標の補正項との関係を示した図である。It is the figure which showed the relationship between the NOx purification rate and the correction | amendment term of an influence parameter | index. SCRF温度とSCRFでのNOx浄化能力との関係を示した図である。It is the figure which showed the relationship between SCRF temperature and the NOx purification capability in SCRF. SCRF温度及び尿素添加量に加えて、エンジン停止時間を考慮した影響指標を算出する工程を示したブロック図である。It is the block diagram which showed the process of calculating the influence parameter | index which considered engine stop time in addition to SCRF temperature and urea addition amount. エンジン停止時間と影響指標の補正項との関係を示した図である。It is the figure which showed the relationship between an engine stop time and the correction | amendment term of an influence parameter | index. PM除去用の昇温を実施するか尿素デポ除去用の昇温を実施するかの昇温実施判定のフローチャートである。It is a flowchart of temperature rising implementation determination of whether temperature raising for PM removal is implemented, or temperature raising for urea deposit removal is implemented. SCRFの再生処理に関連する各パラメータのタイムチャートである。It is a time chart of each parameter relevant to the reproduction process of SCRF.

以下、本発明の実施形態を図面を参照しながら説明する。図1は、本発明が適用された内燃機関の排気浄化装置の構成図である。図1の排気浄化装置は車両に搭載されて、車両のエンジン2(内燃機関)から排出された排気中の有害物質を除去する装置である。排気浄化装置は、排気中のNOxを浄化する尿素SCRシステムを含んで構成される。さらに、排気浄化装置は、排気中のPM(Soot、すす)を除去する装置でもある。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine to which the present invention is applied. 1 is an apparatus that is mounted on a vehicle and removes harmful substances in the exhaust discharged from the engine 2 (internal combustion engine) of the vehicle. The exhaust purification device includes a urea SCR system that purifies NOx in the exhaust. Further, the exhaust purification device is also a device for removing PM (Soot) in the exhaust.

エンジン2は、例えば、筒内に燃料を直接噴射するインジェクタを備えて、そのインジェクタから噴射された燃料が筒内で自己着火することで、車両を駆動するためのトルクを生み出すディーゼルエンジンである。   The engine 2 is, for example, a diesel engine that includes an injector that directly injects fuel into a cylinder, and the fuel injected from the injector self-ignites in the cylinder to generate torque for driving the vehicle.

エンジン2の排気管3には、排気中の有害成分の一つであるHCやCOを酸化浄化する酸化触媒4(DOC:Diesel Oxidation Catalyst)が配置されている。酸化触媒4は、例えば、ウォールスルータイプのセラミック製ハニカムや金属製のメッシュなどに、HC、COの酸化反応を促進させる触媒成分(例えば、Pt(白金)やPd(パラジウム)など)を担持した構造となっている。また、酸化触媒4は、後述のSCRF7に堆積したPMや尿素由来デポジットを燃焼除去するために、酸化触媒4に供給された未燃燃料(未燃HC)との酸化反応により排気を昇温する役割も担っている。   An exhaust pipe 3 of the engine 2 is provided with an oxidation catalyst 4 (DOC: Diesel Oxidation Catalyst) that oxidizes and purifies HC and CO that are one of harmful components in the exhaust. The oxidation catalyst 4 carries, for example, a catalyst component (for example, Pt (platinum) or Pd (palladium)) that promotes the oxidation reaction of HC and CO on a wall-through type ceramic honeycomb or metal mesh. It has a structure. The oxidation catalyst 4 raises the temperature of the exhaust gas by an oxidation reaction with unburned fuel (unburned HC) supplied to the oxidation catalyst 4 in order to burn and remove PM and urea-derived deposits deposited on the SCRF 7 described later. It also has a role.

酸化触媒4の下流の排気管3には、排気管3内に還元剤としての尿素水を添加する添加弁5が配置されている。添加弁5は、ガソリンエンジンの筒内または吸気ポート内に燃料を噴射する燃料噴射弁(インジェクタ)と同様の構造を有している。すなわち、添加弁5は、噴孔が形成されたノズルと、電磁ソレノイド等からなる駆動部と、尿素水を流通させる尿素水通路やノズルを開閉するためのニードルとを備えた電磁式開閉弁として構成されている。そして、電磁ソレノイドが通電されると、その通電に伴いニードルが開弁方向に移動し、そのニードルの移動に伴いノズル先端に形成された噴孔から尿素水が噴射される。   An addition valve 5 for adding urea water as a reducing agent is disposed in the exhaust pipe 3 in the exhaust pipe 3 downstream of the oxidation catalyst 4. The addition valve 5 has the same structure as a fuel injection valve (injector) that injects fuel into a cylinder or an intake port of a gasoline engine. That is, the addition valve 5 is an electromagnetic on-off valve provided with a nozzle formed with an injection hole, a drive unit including an electromagnetic solenoid, and a urea water passage through which urea water flows and a needle for opening and closing the nozzle. It is configured. When the electromagnetic solenoid is energized, the needle moves in the valve opening direction along with the energization, and urea water is injected from the nozzle hole formed at the tip of the nozzle as the needle moves.

添加弁5の下流の排気管3にはミキサー6が配置されている。ミキサー6は、添加弁5から添加された尿素水を微粒化して排気中に分散させる装置である。ミキサー6は、例えば、排気の旋廻流や蛇行流を生じさせる通路として構成される。   A mixer 6 is disposed in the exhaust pipe 3 downstream of the addition valve 5. The mixer 6 is a device that atomizes the urea water added from the addition valve 5 and disperses it in the exhaust gas. The mixer 6 is configured, for example, as a passage that generates a swirling flow or a meandering flow of exhaust.

ミキサー6の下流の排気管3には、触媒担持フィルタとしてのSCRF(Selective Catalytic Reduction Filter)7が配置されている。SCRF7は、排気中のPMを捕集する、例えばウォールスルータイプのセラミック製ハニカムに構成されたフィルタ(DPF:Diesel Particulate Filter)に、排気中のNOxを選択的に還元する選択還元触媒としてのSCR触媒が担持された構造を有する。つまり、SCRF7は、PMを除去する機能と、NOxを還元浄化する機能の両方を備えている。排気は、SCRF7の多孔性の隔壁を通過しながら下流に流れ、その間に排気中のPMがSCRF7に捕集される。   An SCRF (Selective Catalytic Reduction Filter) 7 as a catalyst carrying filter is disposed in the exhaust pipe 3 downstream of the mixer 6. The SCRF 7 collects PM in exhaust gas, for example, a SCR as a selective reduction catalyst that selectively reduces NOx in exhaust gas to a filter (DPF: Diesel Particulate Filter) configured in a wall-through type ceramic honeycomb. It has a structure in which a catalyst is supported. That is, the SCRF 7 has both a function of removing PM and a function of reducing and purifying NOx. The exhaust gas flows downstream while passing through the porous partition walls of SCRF 7, while PM in the exhaust gas is collected by SCRF 7.

SCRF7に担持されているSCR触媒は、尿素水から生成されたアンモニア(NH3)とNOxとの還元反応として例えば下記式1、式2、式3の還元反応を促進させるものであり、例えばバナジウム、モリブデン、タングステン等の卑金属酸化物、ゼオライトや貴金属である。このように、排気がSCRF7を通過する間に、NOxは例えば下記式1、式2、式3により水や窒素に分解(浄化)する。
4NO+4NH3+O2→4N2+6H2O ・・・(式1)
6NO2+8NH3→7N2+3H2O ・・・(式2)
NO+NO2+2NH3→2N2+3H2O ・・・(式3)
The SCR catalyst supported on the SCRF 7 promotes the reduction reaction of, for example, the following formula 1, formula 2, and formula 3 as a reduction reaction between ammonia (NH 3) generated from urea water and NOx, such as vanadium, Base metal oxides such as molybdenum and tungsten, zeolite and noble metals. In this way, while the exhaust gas passes through the SCRF 7, NOx is decomposed (purified) into water and nitrogen by, for example, the following formula 1, formula 2, and formula 3.
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 1)
6NO2 + 8NH3 → 7N2 + 3H2O (Formula 2)
NO + NO2 + 2NH3 → 2N2 + 3H2O (Formula 3)

また、排気浄化装置には、添加弁5に尿素水を供給する尿素水供給装置(図示外)が備えられている。その尿素水供給装置は、尿素水を貯蔵する尿素水タンクと、尿素水タンクと添加弁5の間を繋ぐ配管と、尿素水タンクから尿素水を汲み上げて配管を通じて添加弁5側に吐出するポンプと、配管内の尿素水の圧力を所定圧力となるように調整するレギュレータとを備えている。   Further, the exhaust gas purification device is provided with a urea water supply device (not shown) that supplies urea water to the addition valve 5. The urea water supply device includes a urea water tank that stores urea water, a pipe that connects the urea water tank and the addition valve 5, and a pump that pumps the urea water from the urea water tank and discharges it to the addition valve 5 side through the pipe. And a regulator that adjusts the pressure of the urea water in the pipe to a predetermined pressure.

さらに、排気浄化装置には各種センサが設けられている。具体的には、SCRF7の前後の差圧(SCRF7の上流の圧力と下流の圧力との差)を検出する差圧センサ8が設けられている。また、SCRF7の上流には、SCRF7に流入する排気の温度を検出する排気温センサ9と、NOx濃度を検出する上流NOxセンサ10とが設けられている。SCRF7に流入するNOx濃度を推定する機能がECU1内にある場合には上流NOxセンサ10は無くても良い。センサ9は、ミキサー6の下流に設けられている。センサ10を搭載する場合は添加弁5の上流に設けられている。また、SCRF7の下流には、SCRF7から流出した排気中のNOx濃度を検出する下流NOxセンサ11が設けられている。さらに、エンジン2の吸気管を流れる吸気ガスの流量(例えば質量流量)を検出するエアフロメータ12、エンジン2の回転数を検出する回転数センサ13及び車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検出するアクセルペダルセンサ14などが設けられている。これらセンサ8〜14の検出値はECU1に入力されるようになっている。   Further, various sensors are provided in the exhaust purification device. Specifically, a differential pressure sensor 8 that detects a differential pressure before and after the SCRF 7 (a difference between a pressure upstream and a downstream pressure of the SCRF 7) is provided. Further, an exhaust temperature sensor 9 for detecting the temperature of the exhaust gas flowing into the SCRF 7 and an upstream NOx sensor 10 for detecting the NOx concentration are provided upstream of the SCRF 7. If the ECU 1 has a function for estimating the NOx concentration flowing into the SCRF 7, the upstream NOx sensor 10 may not be provided. The sensor 9 is provided downstream of the mixer 6. When the sensor 10 is mounted, it is provided upstream of the addition valve 5. A downstream NOx sensor 11 that detects the NOx concentration in the exhaust gas flowing out from the SCRF 7 is provided downstream of the SCRF 7. Furthermore, the air flow meter 12 that detects the flow rate (for example, mass flow rate) of the intake gas flowing through the intake pipe of the engine 2, the rotation speed sensor 13 that detects the rotation speed of the engine 2, and the vehicle driver's required torque are notified to the vehicle side. For example, an accelerator pedal sensor 14 for detecting an operation amount (depression amount) of the accelerator pedal is provided. The detection values of these sensors 8 to 14 are input to the ECU 1.

排気浄化装置は、排気浄化装置の全体制御を司るECU(Electronic Control Unit)1を備えている。そのECU1は、通常のコンピュータの構造を有するものとし、各種演算を行うCPU(図示外)や各種情報の記憶を行うROM、RAM等のメモリ15を備えている。ECU1は、例えば、上記各種センサからの検出信号を基にエンジン2の運転条件を検出し、運転条件に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、エンジン2への燃料噴射を制御する。また、ECU1は、SCRF7に流入するNOx濃度を推定する機能を有する場合もある。   The exhaust purification device includes an ECU (Electronic Control Unit) 1 that controls the entire exhaust purification device. The ECU 1 has a normal computer structure, and includes a CPU (not shown) for performing various calculations and a memory 15 such as a ROM and a RAM for storing various information. For example, the ECU 1 detects the operating conditions of the engine 2 based on detection signals from the various sensors, calculates an optimal fuel injection amount, injection timing, injection pressure, etc. according to the operating conditions, Control fuel injection. Further, the ECU 1 may have a function of estimating the NOx concentration flowing into the SCRF 7.

また、ECU1は、SCRF7でのNOx浄化に必要な尿素水の添加量を算出し、その添加量の尿素水が添加されるよう添加弁5を駆動する。尿素水の添加量の算出に関し、例えばSCRF7に流入するNOxを浄化するのに必要なアンモニア量と、これまでに添加した尿素水添加量から定まるSCRF7へのアンモニア供給量と、SCRF7でのアンモニア消費量との収支に基づいて、SCRF7でのアンモニア吸着量を算出する。そして、アンモニア吸着量と目標吸着量との偏差に応じた尿素水添加量を今回時点の添加量として算出する。なお、SCRF7でのアンモニア消費量は、例えば上流NOxセンサ10やエンジン2の運転条件(回転数センサ13から求まるエンジン回転数及びアクセルペダルセンサ14から求まるエンジン負荷(燃料噴射量)等)に基づいてSCRF7に流入するNOx量を算出し、下流NOxセンサ11からSCRF7から流出するNOx濃度を算出し、SCRF上流のNOx量とSCRF下流のNOx量とから求める。   Further, the ECU 1 calculates the addition amount of urea water necessary for NOx purification in the SCRF 7, and drives the addition valve 5 so that the addition amount of urea water is added. Regarding the calculation of the urea water addition amount, for example, the ammonia amount necessary to purify NOx flowing into the SCRF 7, the ammonia supply amount to the SCRF 7 determined from the urea water addition amount added so far, and the ammonia consumption at the SCRF 7 Based on the balance with the amount, the ammonia adsorption amount at SCRF 7 is calculated. Then, the urea water addition amount corresponding to the deviation between the ammonia adsorption amount and the target adsorption amount is calculated as the addition amount at this time. The ammonia consumption at SCRF 7 is based on, for example, the upstream NOx sensor 10 or the operating conditions of the engine 2 (engine speed determined from the rotational speed sensor 13 and engine load (fuel injection amount) determined from the accelerator pedal sensor 14). The NOx amount flowing into the SCRF 7 is calculated, the NOx concentration flowing out from the downstream NOx sensor 11 from the SCRF 7 is calculated, and obtained from the NOx amount upstream of the SCRF and the NOx amount downstream of the SCRF.

さらに、ECU1は、差圧センサ8が検出する差圧が大きくなった時に、SCRF7に堆積したPMを燃焼除去してSCRF7を再生させる再生処理を実行する。この再生処理の詳細は後述する。   Furthermore, when the differential pressure detected by the differential pressure sensor 8 becomes large, the ECU 1 executes a regeneration process in which the PM accumulated on the SCRF 7 is removed by combustion to regenerate the SCRF 7. Details of this reproduction processing will be described later.

再生処理の詳細を説明する前に、尿素由来デポジットについて説明する。添加弁5から添加された尿素水が排気熱により熱分解されることでアンモニアとシアヌル酸が生成される。ここで、尿素水からアンモニアやシアヌル酸が生成される過程で、メラミン、メルムなどの中間生成物が発生する。その中間生成物は通常は熱によって分解するが、条件によっては消滅せずに固形化することがある。また、尿素水の水分のみが蒸発し尿素が析出して固形化する場合もある。以下では、尿素や尿素由来の中間生成物の析出固形物である尿素由来デポジットを尿素デポという。尿素デポは、例えばSCRF7の温度が低温(具体的には例えば250℃以下)の時に発生しやすい。また、尿素デポは、添加弁5による尿素水添加量が多いほど発生しやすい。   Before describing the details of the regeneration process, the urea-derived deposit will be described. The urea water added from the addition valve 5 is thermally decomposed by the exhaust heat, so that ammonia and cyanuric acid are generated. Here, in the process in which ammonia or cyanuric acid is generated from urea water, intermediate products such as melamine and melm are generated. The intermediate product is usually decomposed by heat, but depending on conditions, it may solidify without disappearing. In some cases, only the water of urea water evaporates and urea precipitates and solidifies. Below, the urea origin deposit which is the precipitation solid substance of urea and the intermediate product derived from urea is called urea deposition. Urea deposits are likely to occur, for example, when the temperature of SCRF 7 is low (specifically, for example, 250 ° C. or lower). In addition, urea deposits are more likely to occur as the amount of urea water added by the addition valve 5 increases.

尿素デポは、排気管3の内壁、ミキサー6、SCRF7などに堆積する。SCRF7について言えば、図2に示すように、尿素デポは、SCRF7の前端(排気上流側の端部)に堆積しやすい。これは、SCRF7の前端までに尿素水の蒸発や分解が完了しない場合に、SCRF前端に尿素水が溜まり固形化した尿素デポが発生する。   The urea deposit is deposited on the inner wall of the exhaust pipe 3, the mixer 6, the SCRF 7, and the like. Speaking of the SCRF 7, as shown in FIG. 2, the urea deposit is likely to be deposited at the front end (end on the exhaust upstream side) of the SCRF 7. This is because when the urea water is not evaporated or decomposed by the front end of the SCRF 7, urea water is accumulated at the front end of the SCRF and solidified urea is generated.

SCRF7に尿素デポが堆積すると、その堆積により排気の流れが阻害され、その結果、SCRF7の前後の差圧(圧損)が増加する。このとき、差圧がSCRF7の再生処理(PM除去用の昇温)を実施するための判定閾値に達した場合であっても、図3に示すように、差圧の内訳としてPM量による差圧が大きく、尿素デポによる差圧が小さい場合もあれば、反対に、PM量による差圧が小さく、尿素デポによる差圧が大きい場合もある。PMを燃焼除去するための昇温は、図3の左に示す内訳のようにできるだけSCRF7に堆積したPM量が多い時に実施するのが良い。なぜなら、PMを除去するために必要な温度は尿素デポを除去するために必要な温度より高いため、排気を昇温させるのに必要な燃料が多い。そのため図3の右に示す内訳のようにPM量が少ない時にも昇温を実施すると、排気の昇温に無駄に燃料が使用され、結果、燃費の悪化につながるためである。   When urea deposits are deposited on the SCRF 7, the flow of the exhaust is inhibited by the deposition, and as a result, the differential pressure (pressure loss) before and after the SCRF 7 increases. At this time, even when the differential pressure reaches the determination threshold value for performing the regeneration process of SCRF 7 (temperature increase for PM removal), as shown in FIG. In some cases, the pressure is large and the differential pressure due to the urea depot is small. On the contrary, the differential pressure due to the PM amount is small and the differential pressure due to the urea depot is large. The temperature increase for burning and removing PM is preferably performed when the amount of PM deposited on the SCRF 7 is as large as possible as shown in the breakdown shown on the left in FIG. This is because the temperature necessary for removing PM is higher than the temperature necessary for removing urea depot, so that a large amount of fuel is required to raise the temperature of the exhaust gas. For this reason, as shown in the breakdown on the right side of FIG. 3, if the temperature is raised even when the amount of PM is small, fuel is wasted for raising the temperature of the exhaust, resulting in deterioration of fuel consumption.

なお、図4に示すように、尿素デポがSCRF7の前端の狭い範囲に堆積した場合には、図2の場合に比べて、尿素デポがSCRF7における排気の流れを阻害する程度が小さく、尿素デポによる差圧への影響は小さい。この場合、差圧が判定閾値に達したときには、図3の左の内訳になると考えられるので、それほど問題にはならない。   As shown in FIG. 4, when the urea deposit is deposited in a narrow range at the front end of the SCRF 7, the urea deposit has a smaller degree of hindering the exhaust flow in the SCRF 7, compared with the case of FIG. The effect on differential pressure is small. In this case, when the differential pressure reaches the determination threshold value, it is considered that the left breakdown in FIG.

以下に説明するSCRF7の再生処理は、図2のようにSCRF7の前端に尿素デポが堆積したことにより、図3の右の内訳のときにPM除去用の昇温を実施してしまうのを抑制することを目的として構成されている。以下、ECU1が実行するSCRF7の再生処理の詳細を説明する。   The SCRF 7 regeneration process described below suppresses the temperature increase for PM removal when the urea deposit is deposited at the front end of SCRF 7 as shown in FIG. It is configured for the purpose of doing. The details of the SCRF 7 regeneration process executed by the ECU 1 will be described below.

図5は、この再生処理を構成する各工程のブロック図を示している。図5に示す再生処理は、例えばエンジン2の始動と同時に開始し、所定周期で繰り返し実行される。図5の再生処理では、SCRF7の前端への尿素デポ堆積による差圧への影響の大きさを示した影響指標を算出する(S1)。影響指標は、別の言い方をすると、SCRF7の前端への尿素デポ堆積による差圧への寄与度を示した指標であって、値が大きいほど寄与度が大きいことを示した指標である。   FIG. 5 shows a block diagram of each process constituting the reproduction process. The regeneration process shown in FIG. 5 starts, for example, simultaneously with the start of the engine 2 and is repeatedly executed at a predetermined cycle. In the regeneration process of FIG. 5, an influence index indicating the magnitude of the influence on the differential pressure due to the urea deposit deposition on the front end of the SCRF 7 is calculated (S1). In other words, the influence index is an index indicating the contribution to the differential pressure due to urea deposition at the front end of the SCRF 7, and the larger the value, the greater the contribution.

影響指標は、具体的には図6の工程にしたがって算出する。図6において、各時点のSCRF7の温度を取得する(S11)。具体的には、SCRF7の温度は排気の温度に応じて変化するので、例えば排気温センサ9が検出する排気の温度に基づいてSCRF7の温度を推定する。より具体的には、例えばSCRF7の内部を仮想的に上流側から下流側へ複数個の領域(セル)に分割し、各セルの温度を推定することで、SCRF7内部の温度分布を求める。そして、例えば得られた温度分布の平均値をSCRF7の温度とする。セルの分割数は、分割数が多いほど正確な温度を求めることができるが、計算量が多くなる。温度の精度と計算量とに鑑みて、セルの分割数が適宜に設定される。   Specifically, the influence index is calculated according to the process of FIG. In FIG. 6, the temperature of the SCRF 7 at each time point is acquired (S11). Specifically, since the temperature of the SCRF 7 changes according to the temperature of the exhaust, for example, the temperature of the SCRF 7 is estimated based on the temperature of the exhaust detected by the exhaust temperature sensor 9. More specifically, for example, the inside of SCRF 7 is virtually divided into a plurality of regions (cells) from the upstream side to the downstream side, and the temperature distribution in SCRF 7 is obtained by estimating the temperature of each cell. For example, the average value of the obtained temperature distribution is set as the temperature of SCRF7. As the number of cell divisions, the higher the number of divisions, the more accurate the temperature can be obtained, but the calculation amount increases. In view of the accuracy of temperature and the amount of calculation, the number of cell divisions is set appropriately.

以下、各セルの温度の推定方法を説明する。各セルの温度の推定は例えば上流側から順に行う。なお、セルの温度とはそのセル部分の基材の温度とすればよい。各時点において全てのセル温度を推定する処理を1回の処理とし、1回前に行った処理を前回の処理、現在行っている処理を今回の処理などと呼称する。また、セル温度推定の対象となる1つのセルを当該セル、当該セルに隣接する1つ上流側のセルを上流セル、当該セルに隣接する1つ下流側のセルを下流セルと呼称する。   Hereinafter, a method for estimating the temperature of each cell will be described. For example, the temperature of each cell is estimated in order from the upstream side. In addition, what is necessary is just to let the temperature of a cell be the temperature of the base material of the cell part. A process for estimating all cell temperatures at each time point is referred to as a single process, a process performed once before is referred to as a previous process, and a process currently performed is referred to as a current process. In addition, one cell that is a target of cell temperature estimation is referred to as the cell, one upstream cell adjacent to the cell is referred to as an upstream cell, and one downstream cell adjacent to the cell is referred to as a downstream cell.

具体的には、当該セルを流通する排気から当該セルへの熱伝達量Q1を求める。この熱伝達量Q1は、当該セルを流通する排気の温度(以下セルガス温度という)と当該セルの温度と当該セルを流通する排気流量と排気とセル間の熱の伝わりやすさを示す熱伝達係数とにより得られる。排気流量はエアフロメータ12の検出値により得られる。セルガス温度は前回の処理にて得られた値又は今回の処理において得られた上流セルにおけるセルガス温度を用いれば良い。なお、セルガス温度の求め方は後述する。また、当該セルの温度は、前回の処理にて得られた値を用いれば良い。熱伝達係数は、予め定められた固定値であっても良いし、排気流量に応じた値であっても良い。セルガス温度、当該セルの温度及び排気流量と、熱伝達量Q1との関係を予め求めておいて、例えばマップとしてメモリ15に記憶しておき、そのマップを用いて熱伝達量Q1を算出する。   Specifically, the heat transfer amount Q1 from the exhaust gas flowing through the cell to the cell is obtained. The heat transfer amount Q1 is a heat transfer coefficient indicating the temperature of exhaust gas flowing through the cell (hereinafter referred to as cell gas temperature), the temperature of the cell, the flow rate of exhaust gas flowing through the cell, and the ease of heat transfer between the exhaust gas and the cell. And obtained. The exhaust flow rate is obtained from the detected value of the air flow meter 12. The cell gas temperature may be the value obtained in the previous process or the cell gas temperature in the upstream cell obtained in the current process. The method for obtaining the cell gas temperature will be described later. Moreover, what is necessary is just to use the value obtained by the last process for the temperature of the said cell. The heat transfer coefficient may be a predetermined fixed value or a value corresponding to the exhaust flow rate. The relationship between the cell gas temperature, the temperature and exhaust flow rate of the cell, and the heat transfer amount Q1 is obtained in advance and stored in the memory 15 as a map, for example, and the heat transfer amount Q1 is calculated using the map.

また、当該セルの上下流に隣接するセルから当該セルへの熱伝達量Q2を求める。この熱伝達量Q2は、上流セルの温度、下流セルの温度、当該セルの温度及びSCRF7内の熱の伝わりやすさを示す熱伝導係数により得られる。上流セルの温度は、上流のセルから順にセル温度を求めるとして、今回の処理により得られる値を用いれば良い。下流セルの温度及び当該セルの温度は前回の処理により得られる値を用いれば良い。熱伝導係数は予め定められた固定値とすれば良い。上流セルの温度、下流セルの温度及び当該セルの温度と、熱伝達量Q2との関係を予め求めておいて、例えばマップとしてメモリ15に記憶しておき、そのマップを用いて熱伝達量Q2を算出する。   Further, a heat transfer amount Q2 from the cell adjacent to the cell upstream and downstream to the cell is obtained. This heat transfer amount Q2 is obtained from the temperature of the upstream cell, the temperature of the downstream cell, the temperature of the cell, and the heat conduction coefficient indicating the ease of heat transfer in the SCRF 7. As the temperature of the upstream cell, the value obtained by the current process may be used, assuming that the cell temperature is obtained in order from the upstream cell. A value obtained by the previous process may be used for the temperature of the downstream cell and the temperature of the cell. The heat conduction coefficient may be a predetermined fixed value. The relationship between the temperature of the upstream cell, the temperature of the downstream cell, the temperature of the cell, and the heat transfer amount Q2 is obtained in advance and stored in the memory 15 as a map, for example, and the heat transfer amount Q2 is stored using the map. Is calculated.

得られた2つの熱伝達量Q1、Q2の合計値を算出する。これにより、当該セルへ伝達される全熱量が求められる。次に、当該セルへの熱伝達量の合計値から、当該セルの温度上昇値を算出する。この算出では、熱伝達量の合計値を予め定められたセルの熱容量で除算すれば良い。さらに、求まった温度上昇値を前回算出した当該セルの温度に加算する。これにより、当該セルの今回の温度が求まる。   The total value of the two obtained heat transfer amounts Q1 and Q2 is calculated. Thereby, the total amount of heat transferred to the cell is obtained. Next, the temperature rise value of the cell is calculated from the total value of the heat transfer amount to the cell. In this calculation, the total amount of heat transfer may be divided by a predetermined heat capacity of the cell. Further, the obtained temperature rise value is added to the previously calculated temperature of the cell. Thereby, the current temperature of the cell is obtained.

次に、各セルの温度を求めるために必要なセルガス温度の求め方を説明する。当該セルのセルガス温度の算出の基本的な考え方は、当該セルを流通するガスから当該セルへの熱伝達量Q1による温度低下分(熱伝達量Qを、ガスの熱容量で除算することにより得られる)を、上流セルのセルガス温度から減算するというものである。つまり、当該セルのセルガス温度は、熱伝達量Q1及び上流セルのセルガス温度により得られる。熱伝達量Q1及び上流セルのセルガス温度は今回の処理において既に得られている。なお、当該セルより上流にセルが無い場合、つまり当該セルが最上流のセルである場合には、上流セルのセルガス温度として排気温センサ9の検出値を用いれば良い。熱伝達量Q1及び上流セルのセルガス温度と、当該セルのセルガス温度との関係を予め求めておいて例えばマップとしてメモリ15に記憶しておき、そのマップを用いて当該セルのセルガス温度を算出する。   Next, how to obtain the cell gas temperature necessary for obtaining the temperature of each cell will be described. The basic idea for calculating the cell gas temperature of the cell is obtained by dividing the temperature drop due to the heat transfer amount Q1 from the gas flowing through the cell to the cell (the heat transfer amount Q is divided by the heat capacity of the gas). ) Is subtracted from the cell gas temperature of the upstream cell. That is, the cell gas temperature of the cell is obtained from the heat transfer amount Q1 and the cell gas temperature of the upstream cell. The heat transfer amount Q1 and the cell gas temperature of the upstream cell have already been obtained in this process. When there is no cell upstream from the cell, that is, when the cell is the most upstream cell, the detected value of the exhaust temperature sensor 9 may be used as the cell gas temperature of the upstream cell. The relationship between the heat transfer amount Q1 and the cell gas temperature of the upstream cell and the cell gas temperature of the cell is obtained in advance and stored in the memory 15 as a map, for example, and the cell gas temperature of the cell is calculated using the map. .

結局、SCRF7の温度は、SCRF7に流入する排気の温度及び流量に応じた値となる。したがって、S11では、排気の温度及び流量に基づくSCRF7の温度の推定モデルをメモリ15に記憶しておき、その推定モデルに基づいてSCRF7の温度を推定することを意味する。   Eventually, the temperature of SCRF7 becomes a value corresponding to the temperature and flow rate of the exhaust gas flowing into SCRF7. Therefore, in S11, it means that an estimated model of the temperature of the SCRF 7 based on the exhaust gas temperature and the flow rate is stored in the memory 15 and the temperature of the SCRF 7 is estimated based on the estimated model.

なお、上記ではSCRF7に堆積したPMが燃焼しないものとしてSCRF7の温度の算出を説明したが、SCRF7の温度が高くPMが燃焼した場合には、その燃焼による発熱量によってもSCRF7の温度が変化する。したがって、PM燃焼による発熱量も考慮してSCRF7の温度を推定しても良い。また、図6のS11の工程では、SCRF7の内部に温度センサを設けて、その温度センサの検出値を、SCRF7の温度として取得しても良い。   In the above description, the calculation of the temperature of the SCRF 7 is described on the assumption that the PM deposited on the SCRF 7 does not burn. However, when the temperature of the SCRF 7 is high and the PM burns, the temperature of the SCRF 7 also changes depending on the amount of heat generated by the combustion. . Therefore, the temperature of SCRF 7 may be estimated in consideration of the amount of heat generated by PM combustion. In the step of S11 in FIG. 6, a temperature sensor may be provided inside the SCRF 7, and the detection value of the temperature sensor may be acquired as the temperature of the SCRF 7.

図6の説明に戻り、各時点において添加弁5から添加される単位時間当たりの尿素添加量を取得する(S12)。尿素添加量は、ECU1自身が各時点において求めた添加弁5への添加量指令値とすれば良い。   Returning to FIG. 6, the urea addition amount per unit time added from the addition valve 5 at each time point is acquired (S12). The urea addition amount may be an addition amount command value to the addition valve 5 obtained by the ECU 1 itself at each time point.

S11、S12で得られた各時点のSCRF7の温度及び尿素添加量(尿素デポ堆積に関係する条件)に基づいて、各時点における尿素デポによる差圧への影響指標を算出する(S13)。ここで算出する影響指標は、各時点におけるSCRF7への尿素デポ堆積量の単位時間当たりの変化量、すなわち尿素デポの堆積率に相当する指標である。言い換えると、S13の影響指標は、各時点におけるSCRF7への尿素デポの堆積のしやすさを示した指標である。   Based on the temperature of the SCRF 7 at each time point and the urea addition amount (conditions related to urea deposition) obtained in S11 and S12, an influence index on the differential pressure due to the urea depot at each time point is calculated (S13). The influence index calculated here is an index corresponding to the change amount per unit time of the urea deposition amount on the SCRF 7 at each time point, that is, the urea deposition rate. In other words, the influence index of S13 is an index indicating the ease of urea deposition on the SCRF 7 at each time point.

ここで、図7〜図9は、SCRF温度又は尿素添加量と影響指標との関係を例示している。尿素デポは温度が低温の時に発生しやすく、高温になると分解してしまう。したがって、図7に示すように、SCRF温度が低温の領域では影響指標が大きい値となっており、SCRF温度が高温になるほど影響指標は小さくなる。また、SCRF温度がある程度高温になると、堆積していた尿素デポが分解して消滅する。そのため、図7においては、SCRF温度が所定温度以上の領域では、影響指標は、尿素デポが消滅することを示したマイナス値となる。影響指標は、プラス側に大きい値ほど尿素デポの堆積量が多いことを示し、マイナス側に大きい値ほど堆積した尿素デポが分解して消滅する量が多いことを示している。   Here, FIGS. 7 to 9 illustrate the relationship between the SCRF temperature or urea addition amount and the influence index. Urea deposits tend to occur when the temperature is low, and decompose when the temperature is high. Therefore, as shown in FIG. 7, the influence index has a large value in the region where the SCRF temperature is low, and the influence index becomes smaller as the SCRF temperature becomes higher. Further, when the SCRF temperature becomes high to some extent, the deposited urea deposit is decomposed and disappears. Therefore, in FIG. 7, in the region where the SCRF temperature is equal to or higher than the predetermined temperature, the influence index is a negative value indicating that the urea depot disappears. The influence index indicates that the larger the value on the positive side, the greater the amount of accumulated urea depot, and the greater the value on the negative side, the greater the amount of the urea depot deposited and dissociated.

また、図8、図9に示すように、尿素添加量が多いほど影響指標が大きくなる。これは、尿素添加量が多いほど尿素デポの原因となる中間生成物の発生量が多くなるためである。また、尿素添加量が多いと、少ない場合に比べて、SCRF7に供給された尿素水によりSCRF7の温度が低下しやすくなり、その温度低下により尿素デポが発生しやすくなるためである。   Also, as shown in FIGS. 8 and 9, the influence index increases as the urea addition amount increases. This is because the larger the amount of urea added, the greater the amount of intermediate product that causes urea deposition. Further, when the urea addition amount is large, the temperature of the SCRF 7 is likely to decrease due to the urea water supplied to the SCRF 7 as compared with the case where the urea addition amount is small, and urea deposition is likely to occur due to the temperature decrease.

図8と図9とを比較すると、図8のSCRF温度が低い時には尿素添加量の増加に対する影響指標の増加度合いが大きいのに対し、図9のSCRF温度が高い時にはその増加度合いは小さい。言い換えると、同じ尿素水添加量であっても、図8のSCRF温度が低い時の影響指標のほうが、図9のSCRF温度が高い時の影響指標よりも大きい値となる。これは、図7で説明したように、SCRF温度が低いと尿素デポが発生しやすくなるためである。なお、図8、図9においても、影響指標はマイナス値を取り得る。例えば、尿素添加量が少ない時には、尿素デポの新たな堆積よりも、SCRF温度の影響で既に堆積した尿素デポの分解のほうが優位となる。この場合、影響指標はマイナス値となる。   Comparing FIG. 8 and FIG. 9, when the SCRF temperature in FIG. 8 is low, the degree of increase in the influence index with respect to the increase in the urea addition amount is large, whereas when the SCRF temperature in FIG. 9 is high, the degree of increase is small. In other words, even when the urea water addition amount is the same, the influence index when the SCRF temperature is low in FIG. 8 is larger than the influence index when the SCRF temperature is high in FIG. As described with reference to FIG. 7, this is because urea deposition tends to occur when the SCRF temperature is low. In FIGS. 8 and 9, the influence index can take a negative value. For example, when the amount of urea added is small, the decomposition of the urea deposit already deposited due to the influence of the SCRF temperature is superior to the new deposition of the urea deposit. In this case, the impact index is a negative value.

S13の工程では、SCRF温度及び尿素添加量と影響指標との関係を予め求めておいて例えばマップ101(図6参照)としてメモリ15に記憶しておく。そして、このマップ101とS11、S12で求めたSCRF温度及び尿素添加量とから、時点毎にSCRF温度及び尿素添加量に応じた影響指標を算出する。マップ101は、図7〜図9の関係を統合したものに相当する。   In step S13, the relationship between the SCRF temperature and urea addition amount and the influence index is obtained in advance and stored in the memory 15 as a map 101 (see FIG. 6), for example. Then, from this map 101 and the SCRF temperature and urea addition amount obtained in S11 and S12, an influence index corresponding to the SCRF temperature and urea addition amount is calculated for each time point. The map 101 corresponds to the integrated relationship of FIGS.

S13の工程を実施した後、次に、S13で得られた各時点における影響指標を積算する(S14)。すなわち、現時点のS13で得られた影響指標を、前回時点までにS14で得られた影響指標の積算値に加えて、現時点における積算値とする。この積算値は、SCRF7の前端に堆積した尿素デポの積算量に相当する。S14により得られた積算値を、図5のS1の工程における出力値とする。なお、積算値は、例えば下限をゼロ、上限を所定値(例えば100)として、それら下限、上限間で変化する。   After performing the process of S13, next, the influence index in each time obtained by S13 is integrated | accumulated (S14). That is, the influence index obtained in S13 at the present time is added to the integrated value of the influence index obtained in S14 up to the previous time point, and is set as the integrated value at the present time. This integrated value corresponds to the integrated amount of urea deposits accumulated at the front end of SCRF7. The integrated value obtained in S14 is set as the output value in the step S1 in FIG. The integrated value varies between the lower limit and the upper limit, for example, assuming that the lower limit is zero and the upper limit is a predetermined value (for example, 100).

ここで、図10は、S1の工程(図6の工程)で得られる影響指標の時間に対する推移を例示した図であり、詳しくは、上段に、SCRF温度の推移を例示し、その温度の推移に対応させた形で影響指標の推移を下段に示している。なお、図10の符号「m」は、図6のS13で算出する影響指標を示している。図10の例では、SCRF温度が低い時には、時間の経過にしたがって次第に影響指標(積算値)が増加していき、単位時間当たりの増加量(各時点での影響指標m)は、SCRF温度が中程度又は高い時に比べて大きくなっている。また、SCRF温度が中程度の時には、時間の経過にしたがって次第に影響指標(積算値)が増加していくが、単位時間当たりの増加量は、SCRF温度が低い時に比べて小さくなっている。また、SCRF温度が高い時には、時間の経過にしたがって次第に影響指標(積算値)が減少していく。このように、影響指標の積算値は、時間の経過にしたがって単調に増加し続けるわけではなく、SCRF温度及び尿素添加量の条件によっては、増加率が変わったり、逆に減少したりする。   Here, FIG. 10 is a diagram exemplifying the transition with respect to time of the influence index obtained in the process of S1 (process of FIG. 6). Specifically, the upper stage illustrates the transition of the SCRF temperature, and the transition of the temperature. The transition of the impact index is shown in the bottom row in a form corresponding to Note that the symbol “m” in FIG. 10 indicates the influence index calculated in S13 in FIG. In the example of FIG. 10, when the SCRF temperature is low, the influence index (integrated value) gradually increases with the passage of time, and the increase amount per unit time (the influence index m at each time point) Larger than medium or high. Further, when the SCRF temperature is medium, the influence index (integrated value) gradually increases with the passage of time, but the increase amount per unit time is smaller than when the SCRF temperature is low. Further, when the SCRF temperature is high, the influence index (integrated value) gradually decreases with the passage of time. Thus, the integrated value of the influence index does not continue to increase monotonously as time elapses, and the rate of increase changes or decreases depending on the conditions of the SCRF temperature and urea addition amount.

なお、図10の影響指標の積算の開始点(ゼロ点)つまり図6のS13の影響指標の算出及びS14の積算の開始時は、後述の図5のS4によるPM除去用の昇温を実施した時、又はS5の尿素デポ除去用の昇温を実施した時とする。すなわち、S1の工程では、前回にS4又はS5の昇温を実施してから現時点までの影響指標の積算値を算出する。これは、昇温を実施することで、SCRF7に堆積した尿素デポは除去されて、影響指標がゼロにリセットされるためである。   Note that at the start of the influence index integration in FIG. 10 (zero point), that is, at the time of calculation of the influence index in S13 of FIG. 6 and the start of integration in S14, a temperature increase for PM removal is performed in S4 of FIG. Or when the temperature is increased for removing the urea depot in S5. That is, in the process of S1, the integrated value of the influence index from the previous temperature increase of S4 or S5 to the current time is calculated. This is because the urea deposition deposited on the SCRF 7 is removed and the influence index is reset to zero by increasing the temperature.

このように、図6においては、各時点におけるSCRF温度及び尿素添加量から影響指標を求めており、これを別の言い方をすると、SCRF温度の履歴と尿素添加量の履歴とに基づいて影響指標を求めている。   As described above, in FIG. 6, the influence index is obtained from the SCRF temperature and the urea addition amount at each time point. In other words, the influence index is based on the history of the SCRF temperature and the history of the urea addition amount. Seeking.

ところで、尿素デポは、SCRF温度及び尿素添加量の他に、SCRF7でのNOx浄化率や最近のエンジン停止時間によっても影響する。そこで、SCRF温度及び尿素添加量に加えて、以下に説明するようにNOx浄化率やエンジン停止時間も考慮して、影響指標を求めても良い。   By the way, the urea deposit is influenced not only by the SCRF temperature and the urea addition amount but also by the NOx purification rate at SCRF 7 and the recent engine stop time. Therefore, in addition to the SCRF temperature and the urea addition amount, the influence index may be obtained in consideration of the NOx purification rate and the engine stop time as described below.

先ず、NOx浄化率を考慮した影響指標の算出を説明する。SCRF7の前端に図2のように尿素デポが堆積すると、その堆積によりSCRF7での排気の流通範囲が狭くなって、結果、NOx浄化率が想定よりも低下する。逆に言うと、NOx浄化率が想定よりも低い場合には、尿素デポ堆積の影響が大きいと考えることができる。この考え方をもとに、SCRF温度及び尿素添加量から求めた影響指標をNOx浄化率に応じて補正する。   First, calculation of an influence index considering the NOx purification rate will be described. When urea deposits are deposited at the front end of the SCRF 7 as shown in FIG. 2, the accumulation range of the exhaust gas in the SCRF 7 is narrowed due to the deposition, and as a result, the NOx purification rate is lower than expected. Conversely, when the NOx purification rate is lower than expected, it can be considered that the influence of urea deposition is large. Based on this concept, the influence index obtained from the SCRF temperature and the urea addition amount is corrected according to the NOx purification rate.

図11は、図6の各工程に、NOx浄化率による補正に関連する工程を追加したブロック図である。図11においてSCRF7での各時点でのNOx浄化率を取得する(S15)。NOx浄化率は、SCRF7に流入するNOx量B1と、SCRF7から流出するNOx量B2とを取得して、それらNOx量B1、B2の差分を流入NOx量B1で除算することで得られる。つまり、NOx浄化率=(B1−B2)/B1を計算する。ここで、流入NOx量B1は、例えば上流NOxセンサ10の検出値から求めても良いし、エンジン運転条件(エンジン回転数、エンジン負荷等)から推定しても良い。また、流出NOx量B2は例えば下流NOxセンサ11の検出値から求める。エンジン運転条件から流入NOx量B1を推定する場合、エンジン運転条件としてのエンジン回転数は回転数センサ13から得られる。エンジン負荷は、アクセルペダルセンサ14の検出値(アクセルペダルの操作量)及びエンジン回転数等に基づいてECU1自身が設定したインジェクタへの燃料噴射量の指令値とすれば良い。エンジン運転条件と流入NOx量B1との関係を予め求めておいて例えばマップとしてメモリ15に記憶しておき、このマップに基づいて流入NOx量B1を得ることができる。   FIG. 11 is a block diagram in which steps related to correction by the NOx purification rate are added to each step of FIG. In FIG. 11, the NOx purification rate at each time point in SCRF7 is acquired (S15). The NOx purification rate is obtained by acquiring the NOx amount B1 flowing into the SCRF 7 and the NOx amount B2 flowing out from the SCRF 7, and dividing the difference between the NOx amounts B1 and B2 by the inflowing NOx amount B1. That is, NOx purification rate = (B1-B2) / B1 is calculated. Here, the inflow NOx amount B1 may be obtained from, for example, a detection value of the upstream NOx sensor 10, or may be estimated from engine operating conditions (engine speed, engine load, etc.). Further, the outflow NOx amount B2 is obtained from the detection value of the downstream NOx sensor 11, for example. When the inflow NOx amount B1 is estimated from the engine operating condition, the engine speed as the engine operating condition is obtained from the speed sensor 13. The engine load may be a command value for the fuel injection amount to the injector set by the ECU 1 itself based on the detected value (accelerator pedal operation amount) of the accelerator pedal sensor 14 and the engine speed. The relationship between the engine operating condition and the inflow NOx amount B1 is obtained in advance and stored in the memory 15, for example, as a map, and the inflow NOx amount B1 can be obtained based on this map.

次に、NOx浄化率に基づいてS11〜S14の工程で得られる影響指標を補正するための補正項(補正係数)を算出する(S16)。なお、補正項は、影響指標に乗算することで影響指標を増加側に補正するための係数であり、1以上の値に設定される。補正項=1の場合には、影響指標の補正が行われないことを意味する。   Next, a correction term (correction coefficient) for correcting the influence index obtained in steps S11 to S14 based on the NOx purification rate is calculated (S16). The correction term is a coefficient for correcting the influence index to the increase side by multiplying the influence index, and is set to a value of 1 or more. When the correction term = 1, it means that the influence index is not corrected.

ここで、図12はNOx浄化率と補正項との関係を示している。図12において、ライン103はSCRF温度が高い時の関係を示し、ライン104はSCRF温度が低い時の関係を示している。また、図13は、SCRF温度とSCRF7でのNOx浄化能力(NOx浄化率)との関係を示している。図13に示すように、SCRF温度が低温の領域(温度T1以下の領域)では、SCRF7での触媒の活性度が低いため、NOx浄化能力は低い。また、SCRF温度がある程度高くなると、触媒の活性度が上がるため、NOx浄化能力が高くなる。ただし、SCRF温度が高温になりすぎると(温度T2以上の領域)、NOx浄化能力が低下する。   Here, FIG. 12 shows the relationship between the NOx purification rate and the correction term. In FIG. 12, line 103 shows the relationship when the SCRF temperature is high, and line 104 shows the relationship when the SCRF temperature is low. FIG. 13 shows the relationship between the SCRF temperature and the NOx purification capacity (NOx purification rate) at SCRF7. As shown in FIG. 13, in the region where the SCRF temperature is low (region where the temperature is T1 or less), the catalyst activity at SCRF 7 is low, so the NOx purification capacity is low. Further, when the SCRF temperature is increased to some extent, the activity of the catalyst is increased, so that the NOx purification capability is increased. However, if the SCRF temperature becomes too high (region of temperature T2 or higher), the NOx purification capacity is reduced.

SCRF温度が高い時(図13の例では温度がT1からT2の間)には通常ならばNOx浄化能力が高いにもかかわらず、実際のNOx浄化率が低いということは、SCRF7への尿素デポ堆積の影響でNOx浄化率が低下していると考えることができる。また、NOx浄化率が低いほど尿素デポ堆積による影響度が高いと考えることができる。この考え方のもと、図12のライン103では、NOx浄化率が低いほど補正項が大きくなっている。一方で、SCRF温度が高い時にNOx浄化率が高い場合には、もともとNOx浄化能力が高く(図13参照)、SCRF温度及び尿素水添加量から得られる影響指標の補正が必要な程の尿素デポ堆積ではないとして、ライン103ではNOx浄化率がある値以上の領域では補正項が1となっている。   When the SCRF temperature is high (in the example of FIG. 13, the temperature is between T1 and T2), the NOx purification rate is low even though the NOx purification capacity is normally high. It can be considered that the NOx purification rate is lowered due to the influence of deposition. Further, it can be considered that the lower the NOx purification rate, the higher the degree of influence due to urea deposition. Based on this concept, in the line 103 of FIG. 12, the correction term increases as the NOx purification rate decreases. On the other hand, when the NOx purification rate is high when the SCRF temperature is high, the NOx purification capacity is originally high (see FIG. 13), and the urea depot that requires correction of the influence index obtained from the SCRF temperature and the urea water addition amount is required. In the line 103, the correction term is 1 in the region where the NOx purification rate is equal to or greater than a certain value.

また、SCRF温度が低い時(図13では温度T1以下)には、もともとNOx浄化能力が低いので、実際のNOx浄化率が低いからといって尿素デポ堆積による影響が大きいと判断することはできない。そのため、図12のライン104では、ライン103に比べて補正項が小さく設定されている。   Also, when the SCRF temperature is low (temperature T1 or lower in FIG. 13), the NOx purification capacity is originally low, so it cannot be determined that the effect of urea deposition is large just because the actual NOx purification rate is low. . Therefore, the correction term is set smaller in the line 104 in FIG.

S16の工程では、図12の関係つまりSCRF温度及びNOx浄化率と補正項との関係を予め求めておいてマップ102(図11参照)としてメモリ15に記憶しておく。そして、マップ102と、S11及びS15の工程で取得したSCRF温度及びNOx浄化率とに基づいて補正項を算出する。なお、図12では、SCRF温度が高い時の関係103と低い時の関係104との2つを例示したが、マップ102は2つより多くのSCRF温度の領域ごとにNOx浄化率と補正項との関係が設定されたマップである。なお、SCRF温度が高い時にNOx浄化率が低い場合に影響指標を補正する必要性が特に高いので、マップ102を図12のライン103のみから構成して、S11で取得したSCRF温度が所定値以上の場合にS16の補正項の算出及び後述のS17による補正を実施し、SCRF温度が所定値未満の場合にはS16、S17の工程を省略しても良い。   In step S16, the relationship shown in FIG. 12, that is, the relationship between the SCRF temperature and NOx purification rate, and the correction term is obtained in advance and stored in the memory 15 as a map 102 (see FIG. 11). Then, a correction term is calculated based on the map 102 and the SCRF temperature and NOx purification rate obtained in the steps S11 and S15. In FIG. 12, two examples of the relationship 103 when the SCRF temperature is high and the relationship 104 when the SCRF temperature is low are illustrated, but the map 102 shows the NOx purification rate and the correction term for each region of more than two SCRF temperatures. It is a map in which the relationship is set. Note that it is particularly necessary to correct the influence index when the NOx purification rate is low when the SCRF temperature is high. Therefore, the map 102 is configured only from the line 103 in FIG. 12, and the SCRF temperature acquired in S11 is equal to or higher than a predetermined value. In this case, the calculation of the correction term in S16 and the correction in S17 described later may be performed. If the SCRF temperature is less than a predetermined value, the steps S16 and S17 may be omitted.

S16の工程で補正項を算出した後、次に、その補正項を、S14の工程で得られた影響指標に乗算することで、影響指標を補正する(S17)。これによって、SCRF温度及び尿素添加量に加えて、NOx浄化率も考慮した影響指標を得ることができる。例えば、SCRF温度が高く、NOx浄化率が低い場合には、影響指標が増加する方向に補正される。補正後の影響指標を、図5のS1の工程における出力値とする。   After calculating the correction term in the step S16, the influence index is corrected by multiplying the correction term by the influence index obtained in the step S14 (S17). Thereby, in addition to the SCRF temperature and the urea addition amount, it is possible to obtain an influence index considering the NOx purification rate. For example, when the SCRF temperature is high and the NOx purification rate is low, the influence index is corrected to increase. The corrected influence index is set as the output value in the step S1 in FIG.

次に、最近のエンジン停止時間を考慮した影響指標の算出を説明する。エンジン2が停止するとSCRF温度が低下するが、エンジン停止時間が長いほど、つまりSCRF温度が低下した状態が長く継続するほど、尿素デポが発生しやすい。そこで、SCRF温度及び尿素添加量から求めた影響指標を、最近のエンジン停止時間に応じて補正する。   Next, calculation of an influence index considering recent engine stop time will be described. When the engine 2 stops, the SCRF temperature decreases. However, the longer the engine stop time, that is, the longer the state in which the SCRF temperature decreases, the more likely urea depots are generated. Therefore, the influence index obtained from the SCRF temperature and the urea addition amount is corrected according to the latest engine stop time.

具体的には、図14に示すように、最近のエンジン停止時間を取得する(S18)。ECU1は、時計を有しており、エンジン2が停止する度にその時計によりエンジン2が停止してから次に始動するまでの時間であるエンジン停止時間を算出して、メモリ15に記憶しておく。S18の工程では、メモリ15に記憶されたエンジン停止時間を読み出す。   Specifically, as shown in FIG. 14, the latest engine stop time is acquired (S18). The ECU 1 has a clock. Every time the engine 2 stops, the ECU 1 calculates an engine stop time, which is a time from when the engine 2 is stopped to the next start by the clock, and stores it in the memory 15. deep. In step S18, the engine stop time stored in the memory 15 is read.

次に、エンジン停止時間に基づいてS11〜S14の工程で得られる影響指標を補正するための補正項(補正係数)を算出する(S19)。この補正項も、S16で算出する補正項と同様に、影響指標に乗算することで影響指標を増加側に補正するための係数であり、1以上の値に設定される。   Next, a correction term (correction coefficient) for correcting the influence index obtained in steps S11 to S14 based on the engine stop time is calculated (S19). Similarly to the correction term calculated in S16, this correction term is a coefficient for correcting the influence index to the increase side by multiplying the influence index, and is set to a value of 1 or more.

ここで、図15はエンジン停止時間と補正項との関係を示している。図15に示すようにエンジン停止時間が短い領域では補正項は、1又は1に近い値となっているが、エンジン停止時間が長くなると補正項は急激に増加する。これは、信号待ち等でエンジンが自動停止するアイドルストップ機能によるエンジン停止などエンジン停止時間が短い場合には、エンジン停止中に尿素デポが発生することはほとんど無い。これに対し、車両を一晩中停止していた場合などエンジン停止時間が長い場合には、エンジン停止前に添加弁5から供給されSCRF7に残留している尿素が、エンジン作動時では固形化しない尿素添加量であったとしても、SCRF温度が低い状態が長時間継続することで、固形化する場合がある。このとき、エンジン停止の終了時(エンジン始動時)におけるSCRF7の前後差圧は、エンジン停止前における前後差圧から、エンジン停止中に発生した尿素デポ堆積量に応じた分だけ増加した値となる。この増加分が、図15の補正項に相当する。   Here, FIG. 15 shows the relationship between the engine stop time and the correction term. As shown in FIG. 15, in the region where the engine stop time is short, the correction term is 1 or a value close to 1, but when the engine stop time becomes long, the correction term increases rapidly. This is because urea depot hardly occurs during the engine stop when the engine stop time is short such as the engine stop by the idle stop function in which the engine automatically stops by waiting for a signal or the like. On the other hand, when the engine is stopped for a long time such as when the vehicle is stopped overnight, urea supplied from the addition valve 5 and remaining in the SCRF 7 before the engine is stopped does not solidify when the engine is operating. Even if it is the amount of urea addition, it may solidify because a state with a low SCRF temperature continues for a long time. At this time, the differential pressure before and after SCRF 7 at the end of engine stop (when the engine is started) is a value that is increased from the differential pressure before and after the engine is stopped by an amount corresponding to the amount of accumulated urea deposits during engine stop. . This increase corresponds to the correction term in FIG.

S19の工程では、図15の関係を予め求めておいてこれをマップ105(図14参照)としてメモリ15に記憶しておく。そして、マップ105とS18で取得したエンジン停止時間とに基づいて補正項を算出する。   In step S19, the relationship shown in FIG. 15 is obtained in advance and stored in the memory 15 as a map 105 (see FIG. 14). Then, a correction term is calculated based on the map 105 and the engine stop time acquired in S18.

次に、S19の工程で求めた補正項を、S14の工程で得られた影響指標に乗算することで、影響指標を補正する(S20)。これによって、SCRF温度及び尿素添加量に加えて、最近のエンジン停止時間をも考慮した影響指標を得ることができる。例えば、エンジン停止時間が長い場合には、影響指標が増加する方向に補正される。補正後の影響指標を、図5のS1の工程における出力値とする。   Next, the influence index is corrected by multiplying the influence index obtained in the step S14 by the correction term obtained in the step S19 (S20). As a result, in addition to the SCRF temperature and the urea addition amount, it is possible to obtain an influence index that considers the recent engine stop time. For example, when the engine stop time is long, the influence index is corrected to increase. The corrected influence index is set as the output value in the step S1 in FIG.

なお、S15で取得するエンジン停止時間が、同一時刻に発生したエンジン停止に対するエンジン停止時間である限りにおいては、該エンジン停止時間に基づくS20の補正は1回のみ行う。すなわち、例えばある時刻t1でエンジン停止した場合には、そのエンジン停止に対するエンジン停止時間に基づくS20の補正は1回のみ実施する。その後、別の時刻t2でエンジン停止した場合には、そのエンジン停止に対するエンジン停止時間に基づくS20の補正も1回のみ実施する。   As long as the engine stop time acquired in S15 is the engine stop time for the engine stop that occurred at the same time, the correction of S20 based on the engine stop time is performed only once. That is, for example, when the engine is stopped at a certain time t1, the correction of S20 based on the engine stop time for the engine stop is performed only once. Thereafter, when the engine is stopped at another time t2, the correction of S20 based on the engine stop time for the engine stop is also performed only once.

また、アイドルストップ機能に基づくエンジン停止の場合には、エンジン停止時間が非常に短く、エンジン停止中に尿素デポが発生することはほとんど無い。そのため、S18〜S20の工程では、アイドルストップ機能によるエンジン停止を除外した、車両のキーオフに基づくエンジン停止のみを考慮して、影響指標の補正を行っても良い。この場合、S18の工程では、車両のキーオフに基づくエンジン停止のうち最近のエンジン停止におけるエンジン停止時間を取得する。なお、アイドルストップ機能に基づくエンジン停止も考慮して補正する場合であっても、アイドルストップ機能に基づくエンジン停止時間は非常に短いので、S19で算出する補正項は1となって、実質的には影響指標の補正を行わないようにしても良い。   Further, when the engine is stopped based on the idle stop function, the engine stop time is very short, and urea depot is hardly generated while the engine is stopped. Therefore, in the steps S18 to S20, the influence index may be corrected in consideration of only engine stop based on vehicle key-off excluding engine stop by the idle stop function. In this case, in the process of S18, the engine stop time at the latest engine stop among the engine stops based on the key-off of the vehicle is acquired. Even when the correction is performed in consideration of the engine stop based on the idle stop function, the engine stop time based on the idle stop function is very short. May not correct the influence index.

なお、NOx浄化率に基づく影響指標の補正と、エンジン停止時間に基づく影響指標の補正はいずれか一方のみ実施しても良いし、両方実施しても良い。両方実施する場合には、例えば、図11のS16で算出した補正項と、図14のS19で算出した補正項の両方をS14で算出した影響指標に乗算する。または、図11のマップ102と、図14のマップ105とを統合した、SCRF温度、NOx浄化率及びエンジン停止時間と補正項とのマップを求めてこれをメモリ15に記憶しておく。そして、このマップに基づいてSCRF温度、NOx浄化率及びエンジン停止時間に応じた一つの補正項を算出して、この補正項に基づいて影響指標を補正しても良い。   Note that only one or both of the correction of the influence index based on the NOx purification rate and the correction of the influence index based on the engine stop time may be performed. When both are implemented, for example, both the correction term calculated in S16 of FIG. 11 and the correction term calculated in S19 of FIG. 14 are multiplied by the influence index calculated in S14. Alternatively, a map of the SCRF temperature, the NOx purification rate, the engine stop time, and the correction term obtained by integrating the map 102 of FIG. 11 and the map 105 of FIG. 14 is obtained and stored in the memory 15. Then, one correction term corresponding to the SCRF temperature, the NOx purification rate, and the engine stop time may be calculated based on this map, and the influence index may be corrected based on this correction term.

このように、SCRF温度及び尿素添加量に加えて、NOx浄化率やエンジン停止時間も考慮することで、高精度の影響指標を得ることができる。   Thus, in addition to the SCRF temperature and the urea addition amount, the NOx purification rate and the engine stop time are also taken into consideration, whereby a highly accurate influence index can be obtained.

以上が図5のS1の工程の内容である。なお、S1の工程を実行するECU1が指標検出部に相当する。また、S11の工程を実行するECU1が温度取得部に相当する。S12の工程を実行するECU1が添加量取得部に相当する。S13の工程を実行するECU1が算出部に相当する。S14の工程を実行するECU1が積算部に相当する。S15の工程を実行するECU1が浄化率取得部に相当する。S16及びS17の工程を実行するECU1が補正部に相当する。S18の工程を実行するECU1が停止時間取得部に相当する。S19及びS20の工程を実行するECU1が補正部に相当する。   The above is the content of the process of S1 of FIG. In addition, ECU1 which performs the process of S1 is equivalent to a parameter | index detection part. Moreover, ECU1 which performs the process of S11 corresponds to a temperature acquisition part. ECU1 which performs the process of S12 is equivalent to an addition amount acquisition part. ECU1 which performs the process of S13 is equivalent to a calculation part. The ECU 1 that executes the process of S14 corresponds to an integrating unit. ECU1 which performs the process of S15 is equivalent to a purification rate acquisition part. ECU1 which performs the process of S16 and S17 is equivalent to a correction | amendment part. ECU1 which performs the process of S18 is equivalent to a stop time acquisition part. ECU1 which performs the process of S19 and S20 corresponds to a correction | amendment part.

図5の説明に戻り、差圧センサ8からSCRF7の前後差圧を取得する(S2)。S1及びS2で影響指標及び差圧を取得した後、次に、これらに基づいてPM除去用の昇温を実施するか、尿素デポ除去用の昇温を実施するかの昇温実施判定を行う(S3)。具体的には、図16のフローチャートの処理を実行する。   Returning to the description of FIG. 5, the differential pressure across the SCRF 7 is acquired from the differential pressure sensor 8 (S2). After acquiring the influence index and the differential pressure in S1 and S2, next, based on these, it is determined whether to perform the temperature increase for PM removal or the temperature increase for urea depot removal (S3). Specifically, the process of the flowchart in FIG. 16 is executed.

図16において、先ずS2の工程で取得した差圧が予め定められた閾値以上か否かを判断する(S31)。なお、差圧は、同一のPM量が堆積されている場合であっても、SCRF7を通過する排気の流量によって変化し、具体的には高流量ほど差圧が大きくなる。そこで、S31では、排気の流量による差圧の影響を除外するために、例えば排気の流量に応じた閾値を設定する。この閾値は高流量ほど大きい値に設定される。排気の流量はエアフロメータ12とSCRF上流の排気温センサ9、差圧センサ8により得られる。そして、流量に応じた閾値と、差圧とを比較する。または、排気の流量に基づいて、差圧センサ8の検出値を単位流量当たりの差圧に変換して、その単位流量当たりの差圧と閾値とを比較しても良い。なお、S31の工程を実施するECU1が判断部に相当する。   In FIG. 16, it is first determined whether or not the differential pressure acquired in the step S2 is equal to or greater than a predetermined threshold (S31). Note that the differential pressure varies depending on the flow rate of the exhaust gas passing through the SCRF 7 even when the same PM amount is accumulated, and specifically, the differential pressure increases as the flow rate increases. Therefore, in S31, for example, a threshold corresponding to the exhaust gas flow rate is set in order to exclude the influence of the differential pressure due to the exhaust gas flow rate. This threshold is set to a larger value as the flow rate is higher. The flow rate of the exhaust gas is obtained by the air flow meter 12, the exhaust gas temperature sensor 9 and the differential pressure sensor 8 upstream of the SCRF. Then, the threshold corresponding to the flow rate is compared with the differential pressure. Alternatively, the detection value of the differential pressure sensor 8 may be converted into a differential pressure per unit flow rate based on the exhaust flow rate, and the differential pressure per unit flow rate may be compared with a threshold value. In addition, ECU1 which implements the process of S31 is equivalent to a judgment part.

差圧が閾値未満の場合には(S31:No)、差圧が閾値以上になるまで待機する。差圧が閾値以上になった場合には(S31:Yes)、次に、S1の工程で求めた影響指標が予め定められた閾値以上か否かを判断する。閾値未満の場合には(S32:No)、尿素デポ堆積による差圧への影響が小さく、差圧の内訳が図3の左の内訳であるとして、PM除去用の昇温実施を判定する(S34)。その後、図16の処理を終了する。   When the differential pressure is less than the threshold value (S31: No), the process waits until the differential pressure becomes equal to or greater than the threshold value. If the differential pressure is equal to or greater than the threshold (S31: Yes), it is next determined whether or not the influence index obtained in the step S1 is equal to or greater than a predetermined threshold. If it is less than the threshold value (S32: No), it is determined that the temperature increase for PM removal is performed on the assumption that the influence on the differential pressure due to urea deposition is small and the breakdown of the differential pressure is the breakdown on the left in FIG. S34). Thereafter, the process of FIG. 16 is terminated.

一方、影響指標が閾値以上の場合には(S32:Yes)、尿素デポ堆積による差圧への影響が大きく、差圧の内訳が図3の右の内訳であるとして、尿素デポ除去用の昇温実施を判定する(S33)。その後、図16の処理を終了する。   On the other hand, if the influence index is equal to or greater than the threshold (S32: Yes), the effect on the differential pressure due to urea deposition is large, and the breakdown of the differential pressure is the breakdown on the right in FIG. The temperature implementation is determined (S33). Thereafter, the process of FIG. 16 is terminated.

図5に戻って、S3の実施判定の結果に基づいて、PM除去用の昇温(S4)又は尿素デポ除去用の昇温(S5)のいずれか一方を実施する。具体的には、図16のS34でPM除去用の昇温実施を判定した場合には、PM除去用の昇温を実施する(S4)。この昇温は、例えばエンジン2のトルクを得るためのメイン噴射に後続して、アフター噴射やポスト噴射を実施する。ここで、アフター噴射は、排気の温度を高めることを目的にメイン噴射の直後に行う少量の燃料噴射である。ポスト噴射は、未燃燃料を排気管3に送り込むため排気バルブが開く直前に行う少量の燃料噴射である。また、排気管3の酸化触媒4の上流に燃料を添加する燃料添加弁を設けて、この燃料添加弁により未燃燃料を排気管3内に直接添加しても良い。   Returning to FIG. 5, based on the result of the execution determination in S3, either the temperature increase for PM removal (S4) or the temperature increase for urea depot removal (S5) is performed. Specifically, when it is determined in S34 in FIG. 16 that the temperature removal for PM removal is performed, the temperature removal for PM removal is performed (S4). For example, after the main injection for obtaining the torque of the engine 2, this temperature increase is performed after injection or post injection. Here, the after injection is a small amount of fuel injection performed immediately after the main injection for the purpose of increasing the temperature of the exhaust gas. The post-injection is a small amount of fuel injection performed immediately before the exhaust valve is opened in order to send unburned fuel into the exhaust pipe 3. Further, a fuel addition valve for adding fuel may be provided upstream of the oxidation catalyst 4 in the exhaust pipe 3, and unburned fuel may be added directly into the exhaust pipe 3 by this fuel addition valve.

アフター噴射、ポスト噴射又は燃料添加弁による燃料添加によって、酸化触媒4に未燃燃料が供給され、酸化触媒4において未燃燃料が酸化反応することで排気の温度が昇温する。昇温した排気がSCRF7に流入することで、SCRF温度が昇温する。PM除去用の昇温時におけるSCRF温度の目標温度は、後述のデポ除去用の昇温時における目標温度より高温に設定され、具体的にはPMが燃焼除去する温度(600℃〜700℃程度)に設定される。ECU1は、PM除去用の昇温を実施中、SCRF温度を監視して、SCRF温度が目標温度となるようにポスト噴射量などを調整する。例えば、SCRF温度が目標温度より低温の場合にはポスト噴射量を増量し、反対に目標温度より高温の場合にはポスト噴射量を減量する。なお、SCRF温度の監視(取得)は、図11のS11の工程と同様に行えばよい。また、SCRF温度は排気温度に相関するので、排気温センサ9の検出値が目標温度となるように噴射量を調整しても良い。このように、SCRF温度を監視しながら昇温を実施することで、SCRF7が過昇温となるのを抑制でき、過昇温によってSCRF7が熱で溶けてしまうのを抑制できる。   Unburnt fuel is supplied to the oxidation catalyst 4 by after-injection, post-injection, or fuel addition by a fuel addition valve, and the unburnt fuel undergoes an oxidation reaction in the oxidation catalyst 4 to raise the temperature of the exhaust gas. The exhaust gas whose temperature has risen flows into SCRF 7, whereby the SCRF temperature rises. The target temperature of the SCRF temperature at the time of temperature increase for PM removal is set to be higher than the target temperature at the time of temperature increase for depot removal, which will be described later. ). The ECU 1 monitors the SCRF temperature during the temperature rise for PM removal, and adjusts the post injection amount and the like so that the SCRF temperature becomes the target temperature. For example, when the SCRF temperature is lower than the target temperature, the post injection amount is increased. Conversely, when the SCRF temperature is higher than the target temperature, the post injection amount is decreased. The monitoring (acquisition) of the SCRF temperature may be performed in the same manner as the step S11 of FIG. Further, since the SCRF temperature correlates with the exhaust temperature, the injection amount may be adjusted so that the detected value of the exhaust temperature sensor 9 becomes the target temperature. In this way, by performing the temperature increase while monitoring the SCRF temperature, it is possible to suppress the SCRF 7 from being excessively heated, and it is possible to suppress the SCRF 7 from being melted by heat due to the excessive temperature increase.

また、PM除去用の昇温は、予め定められた固定時間(例えば20分〜30分)継続しても良いし、差圧センサ8の検出値が所定値(図16のS31の閾値よりも小さい値)以下となるまで継続しても良い。PM除去用の昇温の継続時間は、尿素デポ除去用の昇温の継続時間よりも長い。   Further, the temperature increase for PM removal may be continued for a predetermined fixed time (for example, 20 minutes to 30 minutes), or the detection value of the differential pressure sensor 8 is a predetermined value (than the threshold value of S31 in FIG. 16). You may continue until it becomes less than (small value). The duration of temperature rise for removing PM is longer than the duration of temperature raising for removing urea depot.

このように、PM除去用の昇温を実施することで、SCRF7に堆積したPMを燃焼除去できる。加えて、尿素デポはPMよりも低温で燃焼するので、尿素デポも燃焼除去できる。   In this way, the PM deposited on the SCRF 7 can be burned and removed by raising the temperature for removing the PM. In addition, since the urea depot burns at a lower temperature than PM, the urea depot can also be removed by combustion.

一方、図16のS33で尿素デポ除去用の昇温実施を判定した場合には、尿素デポ除去用の昇温を実施する(S5)。この昇温も、PM除去用の昇温と同様に、例えばアフター噴射、ポスト噴射又は燃料添加弁による燃料添加を実施する。ただし、SCRF温度の目標温度や、昇温の継続時間が、PM除去用の昇温とは異なっている。具体的には、尿素デポ除去用の昇温時におけるSCRF温度の目標温度は、PM除去用の昇温時における目標温度より低温に設定され、具体的には、PMは燃焼除去されないことを許容しつつ、尿素デポは燃焼除去される温度(例えば350℃〜400℃程度)に設定される。   On the other hand, if it is determined in S33 in FIG. 16 that the temperature increase for urea depot removal is determined, the temperature increase for urea depot removal is performed (S5). This temperature increase is performed, for example, after injection, post injection, or fuel addition by a fuel addition valve, similarly to the temperature increase for PM removal. However, the target temperature of the SCRF temperature and the duration of the temperature increase are different from the temperature increase for PM removal. Specifically, the target temperature of the SCRF temperature at the time of temperature increase for urea depot removal is set to be lower than the target temperature at the time of temperature increase for PM removal, and specifically, PM is allowed not to be removed by combustion. However, the urea deposit is set to a temperature at which combustion is removed (for example, about 350 ° C. to 400 ° C.).

尿素デポ除去用の昇温においては、SCRF温度が過昇温となるのは想定しにくいので、例えばポスト噴射等の燃料噴射量は、目標温度となるように運転条件ごとに予め定められた固定値とする。つまり、昇温処理中のSCRF温度の監視及びSCRF温度に基づく噴射量の調整は行わない。なお、PM除去用の昇温と同様に、SCRF温度を監視して、SCRF温度が目標温度となるように噴射量を調整するようにしても良い。   In the temperature increase for urea depot removal, it is difficult to assume that the SCRF temperature becomes excessively high. For example, the fuel injection amount such as post injection is fixed in advance for each operating condition so as to become the target temperature. Value. That is, the monitoring of the SCRF temperature during the temperature raising process and the adjustment of the injection amount based on the SCRF temperature are not performed. Similarly to the temperature increase for PM removal, the SCRF temperature may be monitored and the injection amount may be adjusted so that the SCRF temperature becomes the target temperature.

また、尿素デポ除去用の昇温の継続時間は、PM除去用の継続時間よりも短い時間(例えば5分〜10分程度)に設定される。つまり、尿素デポ除去用の昇温は、PM除去用の昇温の継続時間より短い、予め定められた固定時間継続した後、終了する。なお、尿素デポ除去用の昇温の継続時間は、影響指標に応じた時間に設定しても良く、具体的には影響指標が大きいほど長い時間に設定しても良い。影響指標に応じて継続時間を設定する場合であっても、PM除去用の昇温における継続時間より短い時間に設定する。このように、影響指標に応じて継続時間を設定することで、SCRF7に堆積した尿素デポを完全に燃焼除去する前に昇温が終了してしまうのを抑制でき、また、尿素デポの燃焼除去が完了したにもかかわらず無駄に昇温を継続してしまうのを抑制できる。このように、尿素デポ除去用の昇温を実施することで、SCRF7に堆積した尿素デポを燃焼除去できる。   In addition, the duration of the temperature increase for urea deposition removal is set to a time shorter than the duration for PM removal (for example, about 5 to 10 minutes). That is, the temperature increase for urea deposition removal ends after a predetermined fixed time that is shorter than the temperature increase duration for PM removal. It should be noted that the duration of the temperature increase for urea deposition removal may be set to a time corresponding to the influence index, and specifically may be set to a longer time as the influence index is larger. Even when the duration is set according to the influence index, the duration is set to be shorter than the duration in the temperature increase for PM removal. Thus, by setting the duration according to the influence index, it is possible to suppress the temperature rise from being completed before the urea depot accumulated on the SCRF 7 is completely burned and removed, and the urea depot is burned and removed. However, it is possible to prevent the temperature increase from being unnecessarily continued despite the completion of. In this way, by performing the temperature increase for removing the urea deposit, the urea deposit deposited on the SCRF 7 can be removed by combustion.

なお、S32、S34及びS4の工程を実行するECU1が第1の再生制御部に相当する。S32、S33及びS5の工程を実行するECU1が第2の再生制御部に相当する。また、PM除去用の昇温が第1再生処理に相当し、尿素デポ除去用の昇温が第2再生処理に相当する。   In addition, ECU1 which performs the process of S32, S34, and S4 corresponds to a 1st reproduction | regeneration control part. The ECU 1 that executes the processes of S32, S33, and S5 corresponds to a second regeneration control unit. Further, the temperature increase for PM removal corresponds to the first regeneration process, and the temperature increase for urea deposition removal corresponds to the second regeneration process.

ここで、図17は、本実施形態の作用を説明する図であり、SCRF7の再生処理に関連する各パラメータのタイムチャートを示している。詳しくは、図17は、上から、SCRFの前後の差圧(同図(a))、SCRF内のPM量(同図(b))、SCRF前端への尿素デポによる差圧(影響指標)(同図(c))、SCRF温度(同図(d))、及び昇温用の噴射量(同図(e))のタイムチャートを示している。また、図17では、点線が本実施例を示し、実線が従来例を示している。   Here, FIG. 17 is a diagram for explaining the operation of the present embodiment, and shows a time chart of each parameter related to the reproduction processing of SCRF7. Specifically, FIG. 17 shows, from the top, the differential pressure before and after the SCRF (FIG. (A)), the PM amount in the SCRF (FIG. (B)), and the differential pressure due to urea depot to the front end of the SCRF (influence index) (FIG. 3C), SCRF temperature (FIG. 4D), and temperature increase injection amount (FIG. 2E) are time charts. In FIG. 17, the dotted line indicates the present example, and the solid line indicates the conventional example.

図17に示すように、差圧が閾値に達した場合に、従来では図17(d)、(e)の実線で示されるように必ずPM除去用の昇温を実施するのに対し、本実施例では、昇温を実施する前にSCRF前端への尿素デポによる影響指標を確認する。その影響指標が所定値に達していた場合には(図17(c)参照)、PM除去用の昇温に代えて、尿素デポ除去用の昇温を実施する(図17(d)、(e)の点線参照)。尿素デポ除去用の昇温を実施することで、SCRF内のPM量が減少しないものの(図17(b)の点線参照)、尿素デポによる差圧は減少する(図17(c)参照)。その結果、図17(a)の点線で示される差圧は、図17(c)の差圧が減少した分だけ減少する。ただし、PM量が燃焼除去されるわけではないので、図17(a)の点線は、実線よりも高くなっている。   As shown in FIG. 17, when the differential pressure reaches the threshold value, the temperature rise for PM removal is always performed as shown by the solid lines in FIGS. In the embodiment, an influence index due to urea deposition on the front end of the SCRF is confirmed before the temperature is raised. When the influence index has reached a predetermined value (see FIG. 17C), the temperature increase for urea depot removal is performed instead of the temperature increase for PM removal (FIGS. 17D and 17D). (See the dotted line in e)). Although the amount of PM in the SCRF does not decrease by performing the temperature increase for urea deposition removal (see the dotted line in FIG. 17B), the differential pressure due to the urea deposition decreases (see FIG. 17C). As a result, the differential pressure indicated by the dotted line in FIG. 17A decreases by the amount that the differential pressure in FIG. However, since the PM amount is not burned and removed, the dotted line in FIG. 17A is higher than the solid line.

以上、本実施形態によれば、SCRF前端への尿素デポ堆積による影響指標を算出し、差圧が閾値に達した場合にはその影響指標を確認し、影響指標が閾値以上の場合には、PM除去用の昇温に代えて、尿素デポ除去用の昇温を実施する。これにより、尿素デポ堆積の影響でPM除去用の昇温が頻繁に実施されてしまうのを抑制できる。尿素デポ除去用の昇温は、PM除去用の昇温に比べて、目標温度が低く、継続時間が短いので、燃費が良い昇温である。PM除去用の昇温が頻繁に実施されるのを抑制できることで、燃費の悪化を抑制できる。また、尿素デポ除去用の昇温を実施することで、SCRFに堆積した尿素デポを除去でき、尿素デポ堆積による差圧の増加を抑制できる。   As described above, according to the present embodiment, the influence index due to urea deposition at the SCRF front end is calculated, and when the differential pressure reaches the threshold, the influence index is confirmed. Instead of the temperature increase for PM removal, the temperature increase for urea depot removal is performed. Thereby, it can suppress that the temperature increase for PM removal will be implemented frequently by the influence of urea deposition. The temperature increase for urea deposition removal is a temperature increase with good fuel consumption because the target temperature is lower and the duration is shorter than the temperature increase for PM removal. Since it can suppress that the temperature rise for PM removal is implemented frequently, deterioration of a fuel consumption can be suppressed. Further, by performing the temperature increase for removing the urea deposit, the urea deposit deposited on the SCRF can be removed, and an increase in the differential pressure due to urea deposit deposition can be suppressed.

また、SCRFへの尿素デポの堆積量を正確に検出することは困難であるが、本実施形態では、差圧センサの検出値と影響指標の両方を用いているので、図2のようなSCRF前端への尿素デポの堆積量が多く、尿素デポによる差圧が大きい状態を精度よく捉えることができる。また、図4のようにSCRF前端の狭い範囲に尿素デポが堆積し尿素デポによる差圧が小さい時にも尿素デポ除去用の昇温を実施してしまう可能性がある。この場合には、車両性能やSCRF触媒性能への影響が小さいにもかかわらず、尿素デポ除去用の昇温が頻繁に実施されることとなり、燃費が悪化してしまう。本実施形態では、尿素デポ除去用の昇温が頻繁に(無駄に)実施されてしまうのも抑制できる。   In addition, although it is difficult to accurately detect the amount of urea deposit deposited on the SCRF, in this embodiment, since both the detected value of the differential pressure sensor and the influence index are used, the SCRF as shown in FIG. It is possible to accurately capture a state in which the amount of urea deposition deposited on the front end is large and the differential pressure due to urea deposition is large. Also, as shown in FIG. 4, there is a possibility that the temperature for removing the urea depot may be increased even when the urea depot accumulates in a narrow range at the front end of the SCRF and the differential pressure due to the urea depot is small. In this case, although the influence on the vehicle performance and the SCRF catalyst performance is small, the temperature increase for urea deposition removal is frequently performed, and the fuel consumption is deteriorated. In the present embodiment, it is possible to prevent the temperature increase for removing urea deposits from being frequently (wastely) performed.

なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、SCRFに堆積した尿素デポを除去する手段として、ポスト噴射等に基づくSCRF温度の昇温処理を例示したが、例えば排気の流量が増加させて、排気流によって尿素デポをSCRFから飛ばしても良い。排気の流量増加は、例えばエンジンを高回転数、高負荷の条件で運転させるようにする。   In addition, this invention is not limited to the said embodiment, A various change is possible to the limit which does not deviate from description of a claim. For example, in the above embodiment, the temperature increase process of the SCRF temperature based on post injection or the like is exemplified as a means for removing the urea deposit deposited on the SCRF. However, for example, the urea flow rate is increased by increasing the exhaust gas flow rate, You may skip from SCRF. The increase in the exhaust gas flow rate is caused, for example, by operating the engine under conditions of a high rotational speed and a high load.

また、上記実施形態では、SCRFの上流に酸化触媒を配置した例を示したが、SCRFの基材に酸化触媒を担持しても良い。これによっても、SCRFに担持された酸化触媒に未燃燃料を供給することで、SCRF温度を昇温させることができる。   Moreover, although the example which arrange | positioned the oxidation catalyst upstream of SCRF was shown in the said embodiment, you may carry | support an oxidation catalyst on the base material of SCRF. Also by this, the SCRF temperature can be raised by supplying unburned fuel to the oxidation catalyst supported on the SCRF.

1 ECU(判断部、指標検出部、温度取得部、添加量取得部、算出部、積算部、浄化率取得部、停止時間取得部、補正部、第1の再生制御部、第2の再生制御部)
2 エンジン(内燃機関)
3 排気管
5 添加弁
7 SCRF(触媒担持フィルタ)
8 差圧センサ
1 ECU (determination unit, index detection unit, temperature acquisition unit, addition amount acquisition unit, calculation unit, integration unit, purification rate acquisition unit, stop time acquisition unit, correction unit, first regeneration control unit, second regeneration control Part)
2 Engine (Internal combustion engine)
3 Exhaust pipe 5 Addition valve 7 SCRF (Catalyst carrying filter)
8 Differential pressure sensor

Claims (7)

内燃機関(2)の排気管(3)に設けられ、前記内燃機関の排気中の粒子状物質を捕集するフィルタに、排気中のNOxを選択的に還元する選択還元触媒が担持された触媒担持フィルタ(7)と、
前記触媒担持フィルタの排気上流側に、前記触媒担持フィルタにおいてNOxを還元させるための尿素を添加する添加弁(5)と、
前記触媒担持フィルタの前後の差圧を取得する差圧センサ(8)と、
前記差圧センサが取得した値に基づいて前記触媒担持フィルタの再生実施を判断する判断部(S31、1)と、
前記触媒担持フィルタの前端への尿素由来デポジットの堆積による前記差圧への影響の大きさを示した影響指標を検出する指標検出部(S1、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が所定値未満のときに、前記触媒担持フィルタに堆積した粒子状物質が燃焼するよう前記触媒担持フィルタを昇温させる第1再生処理を実施する第1の再生制御部(S32、S34、S4、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が前記所定値以上のときには、前記第1再生処理に代えて、前記触媒担持フィルタに堆積した尿素由来デポジットを除去する第2再生処理を実施する第2の再生制御部(S32、S33、S5、1)と、
を備える内燃機関の排気浄化装置。
A catalyst provided on an exhaust pipe (3) of an internal combustion engine (2), on which a selective reduction catalyst for selectively reducing NOx in the exhaust is supported on a filter that collects particulate matter in the exhaust of the internal combustion engine A carrier filter (7);
An addition valve (5) for adding urea for reducing NOx in the catalyst-carrying filter to the exhaust upstream side of the catalyst-carrying filter;
A differential pressure sensor (8) for acquiring a differential pressure before and after the catalyst-carrying filter;
A determination unit (S31, 1) that determines execution of regeneration of the catalyst-carrying filter based on a value acquired by the differential pressure sensor;
An index detection unit (S1, 1) for detecting an influence index indicating the magnitude of the influence on the differential pressure by the deposition of urea-derived deposits on the front end of the catalyst-carrying filter;
When the determination unit determines to regenerate the catalyst-carrying filter, when the influence index is less than a predetermined value, the temperature of the catalyst-carrying filter is increased so that particulate matter deposited on the catalyst-carrying filter burns. A first reproduction control unit (S32, S34, S4, 1) for performing the first reproduction process;
When the determination unit determines to regenerate the catalyst-carrying filter and the influence index is equal to or greater than the predetermined value, the urea-derived deposit accumulated on the catalyst-carrying filter is removed instead of the first regeneration process. A second reproduction control unit (S32, S33, S5, 1) for performing the second reproduction process;
An exhaust gas purification apparatus for an internal combustion engine.
前記指標検出部は、前記触媒担持フィルタの温度と、前記添加弁から添加される尿素の添加量とを取得して、前記温度と前記添加量とに基づき前記影響指標を算出する請求項1に記載の内燃機関の排気浄化装置。   The index detection unit acquires the temperature of the catalyst-carrying filter and the amount of urea added from the addition valve, and calculates the influence index based on the temperature and the amount of addition. An exhaust gas purification apparatus for an internal combustion engine as described. 前記指標検出部は、
前記触媒担持フィルタの各時点での温度を取得する温度取得部(S11)と、
前記添加弁から添加される各時点での尿素の添加量を取得する添加量取得部(S12)と、
時点毎に前記温度と前記添加量とに応じた前記影響指標を算出する算出部(S13)と、
前記算出部が算出した時点毎の前記影響指標を積算する積算部(S14)とを備え、
前記第1の再生制御部は、前記積算部により得られた積算の前記影響指標が前記所定値未満のときに基づき前記第1再生処理を実施し、
前記第2の再生制御部は、前記積算部により得られた積算の前記影響指標が前記所定値以上のときに前記第2再生処理を実施する請求項2に記載の内燃機関の排気浄化装置。
The index detection unit
A temperature acquisition unit (S11) for acquiring the temperature at each time of the catalyst-carrying filter;
An addition amount acquisition unit (S12) for acquiring the addition amount of urea at each time point added from the addition valve;
A calculation unit (S13) for calculating the influence index according to the temperature and the addition amount for each time point;
An integration unit (S14) that integrates the influence index for each time point calculated by the calculation unit;
The first regeneration control unit performs the first regeneration process based on when the influence index of integration obtained by the integration unit is less than the predetermined value,
The exhaust purification device for an internal combustion engine according to claim 2, wherein the second regeneration control unit performs the second regeneration process when the influence index of integration obtained by the integration unit is equal to or greater than the predetermined value.
前記指標検出部は、
前記触媒担持フィルタでのNOx浄化率を取得する浄化率取得部(S15)と、
前記浄化率取得部が取得したNOx浄化率に基づいて前記影響指標を補正する補正部(S16、S17)とを備える請求項2又は3に記載の内燃機関の排気浄化装置。
The index detection unit
A purification rate acquisition unit (S15) for acquiring a NOx purification rate in the catalyst-carrying filter;
The exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 3, further comprising a correction unit (S16, S17) that corrects the influence index based on the NOx purification rate acquired by the purification rate acquisition unit.
前記指標検出部は、
前記内燃機関の最近の停止時間を取得する停止時間取得部(S18)と、
前記停止時間取得部が取得した停止時間に基づいて前記影響指標を補正する補正部(S19、S20)とを備える請求項2〜4のいずれか1項に記載の内燃機関の排気浄化装置。
The index detection unit
A stop time acquisition unit (S18) for acquiring a recent stop time of the internal combustion engine;
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 2 to 4, further comprising a correction unit (S19, S20) that corrects the influence index based on the stop time acquired by the stop time acquisition unit.
前記第2再生処理は、尿素由来デポジットが燃焼するよう前記触媒担持フィルタを昇温させる処理であり、前記第2再生処理の実施時における前記触媒担持フィルタの目標温度は、前記第1再生処理の実施時における前記触媒担持フィルタの目標温度より低温である請求項1〜5のいずれか1項に記載の内燃機関の排気浄化装置。   The second regeneration process is a process of raising the temperature of the catalyst-carrying filter so that urea-derived deposits are combusted, and the target temperature of the catalyst-carrying filter when the second regeneration process is performed is the same as that of the first regeneration process. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5, wherein the temperature is lower than a target temperature of the catalyst-carrying filter during operation. 前記第2の再生制御部は、前記第2再生処理を所定時間継続した後、終了する請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置。
The exhaust purification device for an internal combustion engine according to any one of claims 1 to 6, wherein the second regeneration control unit ends the second regeneration process after continuing for a predetermined time.
JP2015241781A 2015-12-11 2015-12-11 Exhaust purification system for internal combustion engine Active JP6512535B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015241781A JP6512535B2 (en) 2015-12-11 2015-12-11 Exhaust purification system for internal combustion engine
DE102016123417.6A DE102016123417B4 (en) 2015-12-11 2016-12-05 Exhaust gas purification device of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241781A JP6512535B2 (en) 2015-12-11 2015-12-11 Exhaust purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017106399A true JP2017106399A (en) 2017-06-15
JP6512535B2 JP6512535B2 (en) 2019-05-15

Family

ID=58773676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241781A Active JP6512535B2 (en) 2015-12-11 2015-12-11 Exhaust purification system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6512535B2 (en)
DE (1) DE102016123417B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190134943A (en) * 2018-05-24 2019-12-05 현대자동차주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
CN117418924A (en) * 2023-12-18 2024-01-19 潍柴动力股份有限公司 Transient NO x Original row correction method and device, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339912B (en) * 2018-10-22 2020-07-03 北京工业大学 Method and device suitable for controlling nitrogen oxides of high-power diesel engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115775A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2009057964A (en) * 2007-08-29 2009-03-19 Ford Global Technologies Llc Method of regenerating particulate filter and device having the particulate filter
JP2016118182A (en) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 Failure diagnosis device of filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270624A (en) 2009-05-19 2010-12-02 Toyota Motor Corp Exhaust device for internal combustion engine
US9140170B2 (en) 2013-08-27 2015-09-22 GM Global Technology Operations LLC System and method for enhancing the performance of a selective catalytic reduction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115775A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2009057964A (en) * 2007-08-29 2009-03-19 Ford Global Technologies Llc Method of regenerating particulate filter and device having the particulate filter
JP2016118182A (en) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 Failure diagnosis device of filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190134943A (en) * 2018-05-24 2019-12-05 현대자동차주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
KR102518593B1 (en) 2018-05-24 2023-04-05 현대자동차 주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
CN117418924A (en) * 2023-12-18 2024-01-19 潍柴动力股份有限公司 Transient NO x Original row correction method and device, electronic equipment and storage medium
CN117418924B (en) * 2023-12-18 2024-04-16 潍柴动力股份有限公司 Transient NO x Original row correction method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
DE102016123417A1 (en) 2017-06-14
JP6512535B2 (en) 2019-05-15
DE102016123417B4 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP2008274952A (en) Regeneration method for selective contact reduction catalyst, and regeneration system
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2019035370A (en) Exhaust emission control device and vehicle comprising the same
JP5884920B2 (en) Exhaust gas purification system for internal combustion engine
JP2013002283A (en) Exhaust emission control device
JP2018193953A (en) Engine and control method for the same
JP2010101237A (en) Exhaust emission control device
JP6344259B2 (en) Urea addition control device, learning device
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
WO2014102932A1 (en) Exhaust purification system for internal combustion engine
JP6512535B2 (en) Exhaust purification system for internal combustion engine
US10132256B2 (en) Particulate filter device monitoring system for an engine
JP6287539B2 (en) Exhaust purification system
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP4697463B2 (en) Engine oil dilution state estimation device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP6069820B2 (en) Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine
JP6121974B2 (en) Exhaust gas purification device for internal combustion engine
JP2008138537A (en) Exhaust emission control device for internal combustion engine
JP2013253540A (en) Exhaust cleaning system for internal combustion engine
JP2010150979A (en) Exhaust emission control device for engine
JP6398401B2 (en) Exhaust purification system
JP2009030509A (en) Exhaust emission control device for internal combustion engine
JP2014080881A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6512535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190331

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250