JP2011057506A - 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子 - Google Patents

波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子 Download PDF

Info

Publication number
JP2011057506A
JP2011057506A JP2009209089A JP2009209089A JP2011057506A JP 2011057506 A JP2011057506 A JP 2011057506A JP 2009209089 A JP2009209089 A JP 2009209089A JP 2009209089 A JP2009209089 A JP 2009209089A JP 2011057506 A JP2011057506 A JP 2011057506A
Authority
JP
Japan
Prior art keywords
glass
wavelength conversion
phosphor
glass member
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209089A
Other languages
English (en)
Inventor
Naoyuki Fukumoto
直之 福本
Yoshihito Taguchi
禄人 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009209089A priority Critical patent/JP2011057506A/ja
Publication of JP2011057506A publication Critical patent/JP2011057506A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

【課題】蛍光体の劣化を抑制しながら、所定量の蛍光体を容易かつ確実に封止することができ、耐久性に優れた波長変換用ガラス部材の製造方法等を提供する。
【解決手段】第1のガラス素材131の表面に、凹部と凸部の配列からなる所定のパターンを形成し、凹部に蛍光体を充填し、凹部に蛍光体が充填された第1のガラス素材131の上に第2のガラス素材132を供給した後、第1のガラス素材131と第2のガラス素材132とを加圧成形して一体化する。
【選択図】図1

Description

本発明は波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子に関し、特に、光源からの光の一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子に関する。
発光ダイオード素子の1種である白色発光ダイオード(以下、白色LEDともいう)は、低消費電力、小型軽量、発熱が少ない、水銀フリー、光量の調節が容易などといった優れた特徴を備えていることから、白熱電球、蛍光ランプ、高圧放電ランプなどを代替可能な次世代省エネルギー型照明光源として期待されている。
LEDを用いて白色光を発光させる方法として、(1)3色以上のLEDチップを組み合わせて白色光を得る方法(特許文献1参照)や、(2)青色LEDチップ又は近紫外LEDチップと、蛍光体とを組み合わせて白色光を得る方法(特許文献2、3参照)が知られている。このうち、(1)の方法は各色LEDチップの発光強度のバランスを取るのが困難であることから、(2)のようにLEDチップと蛍光体とを組み合わせて白色光を得る方法が注目されている。
特許文献2、3には、LEDチップからの光の波長を変換するための蛍光体を、エポキシ樹脂やシリコーン樹脂等の樹脂材料に分散させて固定する構成が記載されている。しかしながら、このような樹脂材料は、LEDチップからの光や、LEDチップ及び蛍光体の発熱などによって着色等の劣化が進行し易く、長期使用に耐えうるだけの耐久性を得ることができないという問題があった。特に、車のヘッドライト用LEDのように単位面積当たりの明るさを要求される場合には、蛍光体を分散させた樹脂材料の劣化が顕著であり問題となっていた。
そのため、樹脂材料に代えて、より耐久性に優れるガラスを用いて蛍光体を固定する方法の開発が望まれている。しかし、溶融ガラス中に蛍光体を混練する方法では、蛍光体が長時間にわたって高温の溶融ガラス中におかれることになるため、高温による分解や溶融ガラスの成分との反応が進行して蛍光体が著しく劣化してしまう。このような課題に対して、蛍光体の劣化を抑制するため、所定成分のガラス粉末と蛍光体粉末とを混合して焼結させることによりガラス中に蛍光体を分散させる方法が提案されている(特許文献4参照)。
特開2003−45206号公報 特開平10−242513号公報 特開2002−314142号公報 特開2003−258308号公報
しかしながら、特許文献4に記載の方法では、使用できるガラスの種類が限定される上、工程が非常に複雑になるという問題がある。また、焼結の際に蛍光体が少なからず劣化してしまうという問題もある。
本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、蛍光体の劣化を抑制しながら、所定量の蛍光体を容易かつ確実に封止することができ、耐久性に優れた波長変換用ガラス部材の製造方法を提供することである。また、本発明の別の目的は、劣化の抑制された所定量の蛍光体が確実に封止され、耐久性に優れた波長変換用ガラス部材及びそれを用いた発光ダイオード素子を提供することである。
上記の課題を解決するために、本発明は以下の特徴を有するものである。
1.光源からの光の一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法であって、
第1のガラス素材の表面に、凹部と凸部の配列からなる所定のパターンを形成する工程と、
前記凹部に前記蛍光体を充填する工程と、
前記凹部に前記蛍光体が充填された前記第1のガラス素材の上に第2のガラス素材を供給する工程と、
前記第1のガラス素材と前記第2のガラス素材とを加圧成形して一体化する工程と、を有することを特徴とする波長変換用ガラス部材の製造方法。
2.前記凹部は、対応する凸部を有する成形型で前記第1のガラス素材を加圧成形することにより形成することを特徴とする前記1に記載の波長変換用ガラス部材の製造方法。
3.第1の溶融ガラス滴を滴下する工程と、
滴下された前記第1の溶融ガラス滴が冷却されて固化する前に、前記凸部を有する成形型で加圧成形して前記凹部を形成する工程と、を有することを特徴とする前記2に記載の波長変換用ガラス部材の製造方法。
4.前記所定のパターンは、前記第1のガラス素材の表面における所定の方向に対して、前記凹部と前記凸部とが交互に配列したパターンであることを特徴とする前記1から3の何れか1項に記載の波長変換用ガラス部材の製造方法。
5.前記凹部は筒状形状であり、
前記所定のパターンは、複数の前記凹部が配列したパターンであることを特徴とする前記4に記載の波長変換用ガラス部材の製造方法。
6.前記凹部は直線状の溝であり、
前記所定のパターンは、複数の前記溝が配列したパターンであることを特徴とする前記4に記載の波長変換用ガラス部材の製造方法。
7.前記凹部の底面に、前記光源からの光の反射を抑制するモスアイ構造を形成することを特徴とする前記1から5の何れか1項に記載の波長変換用ガラス部材の製造方法。
8.前記凹部に前記蛍光体が充填された前記第1のガラス素材の上に第2の溶融ガラス滴を滴下する工程と、
滴下された前記第2の溶融ガラス滴が冷却されて固化する前に、前記第1のガラス素材と前記第2の溶融ガラス滴とを加圧成形して一体化する工程と、を有することを特徴とする前記1から6の何れか1項に記載の波長変換用ガラス部材の製造方法。
9.前記光源はLEDチップであり、
前記第1のガラス素材と前記第2のガラス素材とを加圧成形することにより、前記LEDチップをはめ込むためのはめ込み部を前記第2のガラス素材の上面に形成することを特徴とする前記1から7の何れか1項に記載の波長変換用ガラス部材の製造方法。
10.光源からの光の一部の波長を変換するための蛍光体を有する波長変換用ガラス部材であって、
前記蛍光体は、ガラス素材の内部の所定の面に沿って封止され、かつ、前記光源からの光の一部が前記蛍光体を通過し、残りの部分が前記蛍光体の無い間隙部分を通過するよう、前記面に沿った所定の領域に局在して封止されていることを特徴とする波長変換用ガラス部材。
11.前記面に沿った所定の方向に対して、前記蛍光体が局在する領域と前記間隙部分とが交互に配列していることを特徴とする前記10に記載の波長変換用ガラス部材。
12.前記ガラス素材は、第1のガラス素材と第2のガラス素材とが一体化されたものであり、
前記所定の面は、前記第1のガラス素材と前記第2のガラス素材の境界面であることを特徴とする前記10又は11に記載の波長変換用ガラス部材。
13.所定の波長の光を発光するLEDチップと、
前記LEDチップからの光の一部の波長を変換するための、前記10から12の何れか1項に記載の波長変換用ガラス部材と、を有することを特徴とする発光ダイオード素子。
本発明の方法によれば、第1のガラス素材の表面に形成した凹部に蛍光体を充填し、第1のガラス素材の上に第2のガラス素材を供給して加圧成形するため、凹部の容積に応じた所定量の蛍光体を容易かつ確実に封止することができる。また、溶融ガラス中に蛍光体を混練する場合と比べて蛍光体が高温のガラスと長時間接触することがなく、製造時における蛍光体の劣化を十分に抑制することができる。更に、蛍光体はガラス部材の内部に封止され、外部環境の影響を直接受けることがないため耐久性に優れている。
波長変換用ガラス部材を備えた白色LEDを模式的に示す断面図である。 本実施形態の波長変換用ガラス部材の製造方法を示すフローチャートである。 本実施形態の各工程を模式的に示す図である。 本実施形態の各工程を模式的に示す図である。 凹部に蛍光体を充填する方法を示す図である。 凹部に蛍光体を充填する方法を示す図である。 第1のガラス素材に形成する凹部の形状の例を示す図である。 底面にモスアイ構造を有する凹部を示す模式図である。
以下、本発明の実施の形態について図1〜図8を参照しつつ詳細に説明するが、本発明は該実施の形態に限られるものではない。
図1(a)、(b)は、本実施形態の発光ダイオード素子である白色LED10の例を模式的に示す断面図である。白色LED10は、所定の波長の光を発光する光源であるLEDチップ12と、LEDチップ12からの光の一部の波長を変換するための波長変換用ガラス部材13を備えている。波長変換用ガラス部材13は、凹部34が形成された第1のガラス素材131と、第2のガラス素材132とが加圧成形によって一体化されたものであり、凹部34にはLEDチップ12からの光の一部の波長を変換するための蛍光体33が充填されている。蛍光体33は第1のガラス素材131と第2のガラス素材132の境界面15に沿って封止され、LEDチップ12から上方に出射する光(例えば、青色光)のうち、一部が蛍光体33を通過することによって波長が変換され(例えば、黄色光)、残りが蛍光体33の無い間隙部分16を通過するよう、凹部34に局在して封止されている。そのため、波長変換用ガラス部材13から出射する光は、蛍光体33によって波長が変換された光(蛍光)と、間隙部分16を通過した光とが合成されて白色光となる。
このように、本実施形態の波長変換用ガラス部材13は、蛍光体33がガラス素材の内部に封止されているため、外部環境の影響を直接受けることがなく、耐久性に優れている。更に、光源からの光がそのまま透過する領域(間隙部分16)と、蛍光体が充填された領域(凹部34)とを分離させ、境界面15に沿った所定の方向(図1では、紙面に平行な方向)に対して、蛍光体33が局在する領域と間隙部分16とが交互に配列する構成としているため、これらの面積比等を変えることにより、光源からの光と蛍光との混合比率を容易に変えることができ、発光色を容易に制御できるという利点がある。
LEDチップ12は青色LEDチップでもよいし、紫外又は近紫外LEDチップでもよい。図1(a)に示す白色LED10は、波長変換用ガラス部材13にLEDチップ12をはめ込むための凹形状のはめ込み部36が設けられ、波長変換用ガラス部材13とLEDチップ12とが当接する構成となっている。このような構成とすることにより、LEDチップ12からの光が波長変換用ガラス部材13に入射する際の損失を最小限に抑えることができ、白色LED10の発光効率を高めることができる。
波長変換用ガラス部材13の形状はこれに限定されるものではなく、両面とも平面の平板形状でもよいし、凸面や凹面を有していてもよい。凸面や凹面の場合は、球面でもよいし、非球面成分を有する形状でもよい。また、いわゆる砲弾形状でもよい。例えば、図1(b)に示す白色LED10は、半球状の波長変換用ガラス部材13が、台板14の上に配置されたLEDチップ12を囲むように配置されている。本実施形態の波長変換用ガラス部材13はガラス素材を加圧成形して製造するため、用途に応じた集光特性を有する種々の形状の波長変換用ガラス部材13を容易に製造することができる。
次に、波長変換用ガラス部材13の製造方法について、図2〜図8を参照しながら説明する。図2は本実施形態の波長変換用ガラス部材13の製造方法を示すフローチャートであり、図3及び図4は本実施形態の各工程を模式的に示す図である。図5及び図6は凹部34に蛍光体33を充填する方法を示す図であり、(A−1)〜(A−3)及び(A−11)〜(A−14)はガラス成形体を上方から見た図を、(B−1)〜(B−3)及び(B−11)〜(B−14)はガラス成形体のA−A断面図を、それぞれ示している。また、図7は第1のガラス素材131に形成する凹部の形状の例を示す図、図8は底面にモスアイ構造を有する凹部34を示す模式図である。
波長変換用ガラス部材13は、第1のガラス素材の表面に凹部と凸部の配列からなる所定のパターンを形成する工程と、凹部に蛍光体を充填する工程と、凹部に蛍光体が充填された第1のガラス素材の上に第2のガラス素材を供給する工程と、第1のガラス素材と第2のガラス素材とを加圧成形して一体化する工程とにより製造できる。ここでは、第1のガラス素材及び第2のガラス素材として溶融ガラス滴を用いる場合を例に挙げて説明するが、これらは溶融ガラス滴に限定されるものではなく、所定の体積の溶融ガラスを固化して作製したガラス素材を用いることもできる。また、固化したガラスを、球や平板など所望の形状に加工したものを用いることも好ましい。第1のガラス素材や第2のガラス素材として固化したガラスを用いる場合は、加圧成形の際、成形型と共に、加圧成形が可能な温度まで加熱して用いればよい。一方、溶融ガラス滴を用いる場合は、滴下された溶融ガラス滴が冷却されて固化する前に加圧成形すればよいため、成形型を溶融ガラス滴と同じ温度まで加熱する必要はない。そのため、成形型を比較的低い温度に保ったまま、多数の波長変換用ガラス部材を繰り返し製造することができ、非常に効率よく製造できるという利点がある。
以下、本実施形態の波長変換用ガラス部材の製造方法の一例として、溶融ガラス滴を用いて図1(a)に示した平板形状の波長変換用ガラス部材を製造する場合を例に挙げて、図2に示すフローチャートに従い各工程について順を追って説明する。
図3及び図4に示すように、本実施形態で用いる製造装置は、溶融状態のガラスを貯留する溶融槽の下部に接続され、先端より溶融ガラス滴(第1の溶融ガラス滴31a、第2の溶融ガラス滴31b)を滴下するための滴下ノズル23と、滴下ノズル23を所定温度に加熱するためのヒータ27と、加圧成形のための成形型である下型21、第1の上型22a及び第2の上型22bとを備えている。第1の上型22aは、第1のガラス素材131の表面に、図5(A−1)及び(B−1)に示すような凹部34と凸部35の配列からなる所定のパターンを形成するための成形型であり、凹部34に対応する凹部成形部24と、凸部35に対応する凸部成形部25とを有している。また、第2の上型22bは第1のガラス素材131と第2のガラス素材132とを一体化するための成形型であり、はめ込み部36を形成するための突起部26を有している。
下型21は、図示しない駆動手段により、滴下ノズル23の下方で溶融ガラス滴を受けるための位置(滴下位置)と、第1の上型22a又は第2の上型22bと対向して加圧成形するための位置(加圧位置)との間で移動可能に構成されている。また、第1の上型22a及び第2の上型22bは、図示しない駆動手段により上下方向に移動することで、下型21との間で溶融ガラス滴等を加圧成形できるように構成されている。
成形型の材質は、加圧成形によってガラス成形体を製造するための成形型として公知の材質の中から適宜選択して用いることができる。例えば、各種耐熱合金(ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含んだ複合材料等が挙げられる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。下型21、第1の上型22a及び第2の上型22bを全て同一の材質としてもよいし、それぞれ別の材質としてもよい。
成形型の耐久性向上やガラスとの融着防止などのため、成形面に被覆層を設けておくことも好ましい。被覆層の材質に特に制限はなく、例えば、種々の金属(クロム、アルミニウム、チタン等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。被覆層の成膜方法にも制限はなく、公知の成膜方法の中から適宜選択して用いればよい。例えば、真空蒸着、スパッタ、CVD等が挙げられる。
また、成形型は、図示しない加熱手段によって所定温度に加熱できるように構成されている。下型21、第1の上型22a及び第2の上型22bをそれぞれ独立して温度制御することができる構成とすることが好ましい。加熱手段は、公知の加熱手段を適宜選択して用いることができる。例えば、成形型の内部に埋め込んで使用するカートリッジヒータや、成形型の外側に接触させて使用するシート状のヒータ、赤外線加熱装置、高周波誘導加熱装置等を用いることができる。
先ず、成形型である下型21、第1の上型22a及び第2の上型22bをそれぞれ所定の温度に加熱する(工程S110)。所定の温度とは、滴下する溶融ガラス滴の温度よりも低く、加圧成形によって溶融ガラス滴が冷却されて固化する温度であって、用いるガラスや蛍光体の種類等に応じて適宜選択すればよい。一般的に、成形型の温度が低すぎるとガラス成形体の表面にしわが生じ易く、高い形状精度を得ることが困難になってくる。逆に、必要以上に温度を高くしすぎると、表面の酸化等により成形型の寿命が短くなり易い。これらの観点から、通常は、使用するガラスのガラス転移温度をTgとしたとき、Tg−100℃からTg+100℃程度の範囲に設定することが好ましい。下型21、第1の上型22a及び第2の上型22bの加熱温度は全て同じであってもよいし、異なっていてもよい。
成形型の加熱温度は工程毎に変化させてもよいが、工程S170でガラス成形体(波長変換用ガラス部材13)を回収するまでの間、制御温度を一定に保っておくことで高い製造効率を確保することができる。また、成形型の制御温度を一定に保ったまま、複数のガラス成形体を繰り返し製造することもできる。従って、1つのガラス成形体を製造する毎に成形型の昇温と冷却を繰り返す必要はなく、極めて短時間で効率よく光学素子を製造することができる。ここで、成形型の制御温度を一定に保つというのは、成形型を加熱するための温度制御における目標設定温度を一定に保つという意味であり、各工程実施中において、溶融ガラス滴との接触等による温度変動を完全に防止しなければならないという意味ではない。
次に、下型21を滴下位置に配置して、下型21に第1の溶融ガラス滴31aを滴下する(工程S120)(図3(a)、(b)参照)。溶融ガラス滴の滴下は、溶融状態のガラスを収容する溶融槽(不図示)に接続されたパイプ状の滴下ノズル23を、ヒータ27によって所定温度に加熱することにより行う。滴下ノズル23を所定温度に加熱すると、溶融ガラスは自重によって滴下ノズル23の先端部に供給され、表面張力によって液滴状に溜まる。滴下ノズル23の先端部に溜まった溶融ガラスが一定の質量になると、重力によって滴下ノズル23から自然に分離し、溶融ガラス滴となって下方に落下する。
滴下ノズル23から滴下する溶融ガラス滴の質量は、滴下ノズル23の先端部の外径などによって調整可能であり、ガラスの種類等によるが、0.1g〜2g程度の溶融ガラス滴を滴下させることができる。重力のみによって滴下ノズル23から分離させる方法の他、溶融ガラスを加圧して押し出す方法や、気流や振動等の外力を加えて分離させる方法でもよい。また、滴下ノズル23から滴下した溶融ガラス滴を、一旦、貫通細孔を設けた部材に衝突させ、衝突した溶融ガラス滴の一部を貫通細孔を通過させることによって微小化し、微小化された溶融ガラス滴を下型21に滴下してもよい。このような方法を用いることによって、例えば0.01gといった微小な溶融ガラス滴を得ることができるため、滴下ノズル23から滴下する溶融ガラス滴をそのまま下型21で受ける場合よりも、微小な素子の製造が可能となる。
使用できるガラスの種類に特に制限はなく、公知のガラスを用途に応じて選択して用いることができる。例えば、ホウケイ酸塩ガラス、ケイ酸塩ガラス、リン酸塩ガラス、ランタン系ガラス等の光学ガラスが挙げられる。
次に、下型21を加圧位置に移動して、滴下された第1の溶融ガラス滴31aが冷却されて固化する前に第1の上型22aで加圧成形し、第1のガラス素材131の表面に凹部34と凸部35の配列からなるパターンを形成する(工程S130)(図3(c)参照)。
第1の溶融ガラス滴31aは成形型と接触することによって冷却、固化して、表面に凹部34を有する第1のガラス素材131となる。加圧を開始してからガラスが固化するまでの時間は、ガラスの種類やサイズ等によるが、通常は数秒〜数十秒の範囲である。溶融ガラス滴を加圧するために加える荷重は一定であってもよいし、時間的に変化させてもよい。荷重の大きさは、製造するガラス素材のサイズ等に応じて適宜設定すればよい。通常は、数百〜数千Nの範囲で設定すればよい。また、第1の上型22aを上下移動させる駆動手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータ等の公知の駆動手段を適宜選択して用いることができる。
図5の(A−1)及び(B−1)に、表面に凹部34と凸部35の配列からなるパターンが形成された第1のガラス素材131を示している。ここでは、多数の円筒形の凹部34を、第1のガラス素材131の表面に所定の間隔でマトリックス状に形成している。凹部34の深さや凹部34と凸部35の面積比等を適切に設定することにより、発光色を容易に調整することができる。例えば、凸部35に対する凹部34の面積比(凹部34の面積/凸部の面積)を大きくすれば、光源からの光(青色光)に対する蛍光(黄色光)の強度が大きくなり、逆に凸部35に対する凹部34の面積比を小さくすれば、光源からの光(青色光)に対する蛍光(黄色光)の強度が小さくなる。また、凹部34の深さを深くするほど充填される蛍光体33の量が増えるため、生じる蛍光の強度も増加する。そのため、凹部34の深さを変えることによって発光色を調整することもできる。
図5では、円筒形の凹部34が多数配列したパターンの場合を例に挙げて図示しているが、第1のガラス素材131に形成するパターンはこれに限られるものではない。例えば、周囲を凸部35に囲まれた単一の凹部34からなるパターンであってもよい。その場合でも、凹部の容積に応じた所定量の蛍光体を容易かつ確実に封止することができる。
図7は第1のガラス素材131に形成する凹部34の形状の別の例を示す模式図である。(a)〜(d)は、第1のガラス素材131を、パターンの形成された表面の側から見た図であり、ハッチングが付された領域が凹部34、その周辺が凸部35である。(a)は、矩形の開口を有する四角筒形の凹部34が所定の間隔で配列したパターンである。このように、凹部34は、円筒形や四角筒形の他、三角筒形、半円筒形など、任意の断面形状を有する筒状形状とすることができる。凹凸を逆転させて、(b)のように矩形の凸部35が所定の間隔で配列したパターンでもよい。また、(c)のように所定の幅を有する直線状の溝からなる凹部34が所定の間隔で配列したパターンでもよいし、直線上の溝を縦横に配列した格子形状としてもよい。更に、(d)のように凹部34を一筆書き状に形成したパターンでもよいし、面積や深さのそれぞれ異なる多数の凹部34と凸部35をランダムに配置させたパターンでもよい。
図5や、図7(a)〜(d)に示すように、第1のガラス素材131の表面における所定の方向に対して、凹部34と凸部35とが交互に配列したパターンとすることで、発光色の均質性を更に高めることができるとともに、凹部34の深さや凹部34と凸部35の面積比等を適切に設定することにより、発光色を容易に調整することができるという利点がある。この場合、何れかの方向に対して凹部34と凸部35とが交互に配列していればよく、凹部34が複数あってもよいし(図5、図7(a)、(c))、1つでもよい(図7(b)、(d))。
更に、図8に示すように、凹部34の底面に、LEDチップ12からの光や蛍光体33からの光の反射を抑制するモスアイ構造37を形成することも好ましい。モスアイ構造37は、波長以下のスケールの規則的な突起配列を有する構造であり、凹部34の底面と蛍光体33とに隙間が生じた場合でも、ガラスと空気の界面における光の反射を抑制することができるため、高い発光効率を得ることができるという利点がある。モスアイ構造37は、第1の上型22aの凹部成形部24に、対応する突起配列を設けておくことにより形成することができる。
なお、本実施形態では、溶融ガラス滴を加圧成形して第1のガラス素材131に凹部34と凸部35の配列からなるパターンを形成しているが、パターンを形成する方法はこれに限定されるものではない。例えば、予め平板状に加工したガラス素材の表面に、フォトリソグラフィーの技術を用いて所定のパターンを形成することもできる。また、多軸精密加工機やレーザー加工機によって所定のパターンを形成することもできる。
次に、第1のガラス素材131の凹部34に蛍光体33を充填する(工程S140)(図3(d)参照)。
蛍光体33は、製造する波長変換用ガラス部材13の用途や種類に応じて適宜選択して用いればよい。LEDチップ12として青色LEDチップを用いる場合は、例えば、青色光を黄色光に波長変換する(青色光で励起され黄色光を発光する)黄色蛍光体を用いて、青色LED+黄色蛍光体という構成にすることで白色光を得ることができる。2種類以上の蛍光体を用いて、例えば、青色LED+黄色蛍光体+赤色蛍光体という構成や、青色LED+緑色蛍光体+赤色蛍光体という構成にすることもできる。また、LEDチップ12として紫外又は近紫外LEDチップを用いる場合は、青色蛍光体+黄色蛍光体という構成や、青色蛍光体+緑色蛍光体+赤色蛍光体という構成にすることで白色光を得ることができる。
好適な蛍光体として、YAG系蛍光体、シリケート系蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体、サルファイド系蛍光体、チオガレート系蛍光体、アルミネート系蛍光体などが挙げられる。
蛍光体33は、粉体の状態で凹部34に充填してもよいし、液体やゲル状のバインダに分散させた状態で充填してもよい。バインダに分散させる場合は、製造する波長変換用ガラス部材に不要なバインダが残留しないように、低温で気化又は熱分解するバインダを用いることが好ましい。例えば、エタノール、アセトンなどの有機溶媒や、合成樹脂等が好適である。合成樹脂は、ポリスチレンやポリプロピレンなど、熱分解によって残さが残りにくいものがより好ましい。
例えば、表面に凹部34が形成された第1のガラス素材131(図5(A−1)、(B−1)参照)の表面に粉体の蛍光体33をふりかけた後、凹部34からはみ出した余分な蛍光体33をはけで掃いて除去することにより、多数の凹部34に均一に蛍光体33を充填させることができる(図5(A−2)、(B−2)参照)。このように、本実施形態の方法によれば、第1のガラス素材131の表面に形成された凹部34に蛍光体33を充填するため、凹部34の容積に応じた所定量の蛍光体33を容易かつ確実に供給することができ、所望の波長変換特性を有する波長変換用ガラス部材を容易に得ることができる。また、バインダを用いずに、粉末の状態の蛍光体33を充填することも容易であり、残存するバインダ成分による汚染が問題となるような用途に用いる波長変換用ガラス部材の製造にも適している。
凹部34に蛍光体33を充填する別の具体例を図6を参照しながら説明する。先ず、工程S130で表面に凹部34が形成された第1のガラス素材131の表面に、凹部34にちょうど重なる位置に貫通孔の設けられたマスク板38を重ね(図6(A−11)、(B−11)参照)、表面に粉体の蛍光体33をふりかけて凹部34に充填する(図6(A−12)、(B−12)参照)。そして、マスク板38をずらして貫通孔の位置をずらし、凹部34をマスク板で塞いだ状態で余分な蛍光体33をはけで掃いて除去した後(図6(A−13)、(B−13)参照)、マスク板38を外す(図6(A−14)、(B−14)参照)。このような方法により、蛍光体33をより容易かつ確実に凹部34に充填することができる。
なお、蛍光体33の充填は、第1のガラス素材131が下型21の上に配置された状態のままで行ってもよいし、工程S130の後、凹部34が形成された第1のガラス素材131を下型21から回収して別の場所で蛍光体33を充填し、その後、蛍光体33の充填された第1のガラス素材131を下型21の上に戻してもよい。
次に、下型21を滴下位置に移動し、凹部34に蛍光体33が充填された第1のガラス素材131の上に、第2のガラス素材である第2の溶融ガラス滴31bを滴下する(工程S150)(図4(a)、(b)参照)。
溶融ガラス滴の滴下は、上述の工程S120と同様の方法で行えばよい。第2の溶融ガラス滴31bの質量や温度は、第1の溶融ガラス滴31aと同じでもよいし、異なるものでもよい。例えば、凹部34に充填されている蛍光体33の劣化を効果的に抑制するため、第2の溶融ガラス滴31bの温度を第1の溶融ガラス滴31aより低く設定することも好ましい。更に、第2の溶融ガラス滴31bは、第1の溶融ガラス滴31aと異なる種類のガラスを用いてもよい。例えば、屈折率や分散の異なるガラスを用いれば、波長変換用ガラス部材13に、接合レンズのような光学特性を付加させることができる。
次に、下型21を加圧位置に移動して、滴下された第2の溶融ガラス滴31bが冷却されて固化する前に、第2の上型22bで第1のガラス素材131と第2の溶融ガラス滴31bとを加圧成形して一体化する(工程S160)(図4(c)参照)。
第2の溶融ガラス滴31bは、加圧成形によって冷却され、第1のガラス素材131と一体化して波長変換用ガラス部材13となる(図5(A−3)及び(B−3)参照)。加圧を開始してからガラスが固化するまでの時間は、ガラスの種類やサイズ等によるが、通常は数秒〜数十秒の範囲である。加圧する荷重は一定であってもよいし、時間的に変化させてもよい。また、図4(c)では、第2の上型22bのみを加圧方向に移動して加圧成形を行っているが、このような構成に限定されるものではなく、第2の上型22bは固定しておいて下型21のみを加圧方向に移動して加圧成形を行ってもよいし、下型21と第2の上型22bの両方を移動して加圧成形を行ってもよい。
第2の上型22bは、製造する波長変換用ガラス部材13に対応した種々の形状のものを用いることができる。例えば、図4(c)に示すように、LEDチップ12をはめ込むためのはめ込み部36を形成するための突起部26を備えていることも好ましい。加圧成形によって形成されたはめ込み部36にLEDチップ12をはめ込み、波長変換用ガラス部材13とLEDチップ12とが当接する構成とすることで、LEDチップ12からの光が波長変換用ガラス部材13に入射する際の損失を最小限に抑えることができ、白色LED10の発光効率を高めることができる。
なお、ここでは第2の上型22bに突起部26を設け、波長変換用ガラス部材13の上面側(第2の上型22bの転写によって形成される面)にはめ込み部36を形成しているが、下型21に突起部26を設け、波長変換用ガラス部材13の下面側(下型21の転写によって形成される面)にはめ込み部36を形成しても同様の効果を得ることができる。
このように、本実施形態の方法によれば、凹部に蛍光体が充填された第1のガラス素材と第2のガラス素材とを加圧成形によって一体化するため、溶融ガラス中に蛍光体を混練する場合と比べて蛍光体が高温のガラスと長時間接触することがなく、製造時における蛍光体の劣化を十分に抑制することができる。中でも、上述のように、第2のガラス素材として第2の溶融ガラス滴を滴下し、滴下された第2の溶融ガラス滴が冷却されて固化する前に加圧成形を行う方法の場合、滴下から数秒〜数十秒適度でガラスが固化するため、蛍光体と溶融ガラスとの接触時間が非常に短く、蛍光体の劣化をより効果的に抑制することができる。
最後に、加圧を解除し、得られた波長変換用ガラス部材13を回収する(工程S170)(図4(d)参照)。波長変換用ガラス部材13の回収は、例えば、真空吸着を利用した離型装置を用いて行えばよい。回収の後、引き続いて波長変換用ガラス部材13の製造を行う場合は、下型21を再び滴下位置に移動し、工程S120以降の工程を繰り返せばよい。
回収された波長変換用ガラス部材13は、白色LED用の波長変換用ガラス部材13としてそのまま使用してもよいし、外径加工やアニール処理などの後処理を行ってから使用してもよい。本実施形態の方法により製造された波長変換用ガラス部材13は、蛍光体33がガラス部材の内部に封止されて外部環境の影響を直接受けることがないため耐久性に優れている。
10 白色LED
12 LEDチップ
13 波長変換用ガラス部材
14 台板
15 境界面
16 間隙部分
21 下型
22a 第1の上型
22b 第2の上型
23 滴下ノズル
24 凹部成形部
25 凸部成形部
27 ヒータ
26 突起部
31a 第1の溶融ガラス滴
31b 第2の溶融ガラス滴
33 蛍光体
34 凹部
35 凸部
36 はめ込み部
37 モスアイ構造
38 マスク板
131 第1のガラス素材
132 第2のガラス素材

Claims (13)

  1. 光源からの光の一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法であって、
    第1のガラス素材の表面に、凹部と凸部の配列からなる所定のパターンを形成する工程と、
    前記凹部に前記蛍光体を充填する工程と、
    前記凹部に前記蛍光体が充填された前記第1のガラス素材の上に第2のガラス素材を供給する工程と、
    前記第1のガラス素材と前記第2のガラス素材とを加圧成形して一体化する工程と、を有することを特徴とする波長変換用ガラス部材の製造方法。
  2. 前記凹部は、対応する凸部を有する成形型で前記第1のガラス素材を加圧成形することにより形成することを特徴とする請求項1に記載の波長変換用ガラス部材の製造方法。
  3. 第1の溶融ガラス滴を滴下する工程と、
    滴下された前記第1の溶融ガラス滴が冷却されて固化する前に、前記凸部を有する成形型で加圧成形して前記凹部を形成する工程と、を有することを特徴とする請求項2に記載の波長変換用ガラス部材の製造方法。
  4. 前記所定のパターンは、前記第1のガラス素材の表面における所定の方向に対して、前記凹部と前記凸部とが交互に配列したパターンであることを特徴とする請求項1から3の何れか1項に記載の波長変換用ガラス部材の製造方法。
  5. 前記凹部は筒状形状であり、
    前記所定のパターンは、複数の前記凹部が配列したパターンであることを特徴とする請求項4に記載の波長変換用ガラス部材の製造方法。
  6. 前記凹部は直線状の溝であり、
    前記所定のパターンは、複数の前記溝が配列したパターンであることを特徴とする請求項4に記載の波長変換用ガラス部材の製造方法。
  7. 前記凹部の底面に、前記光源からの光の反射を抑制するモスアイ構造を形成することを特徴とする請求項1から5の何れか1項に記載の波長変換用ガラス部材の製造方法。
  8. 前記凹部に前記蛍光体が充填された前記第1のガラス素材の上に第2の溶融ガラス滴を滴下する工程と、
    滴下された前記第2の溶融ガラス滴が冷却されて固化する前に、前記第1のガラス素材と前記第2の溶融ガラス滴とを加圧成形して一体化する工程と、を有することを特徴とする請求項1から6の何れか1項に記載の波長変換用ガラス部材の製造方法。
  9. 前記光源はLEDチップであり、
    前記第1のガラス素材と前記第2のガラス素材とを加圧成形することにより、前記LEDチップをはめ込むためのはめ込み部を前記第2のガラス素材の上面に形成することを特徴とする請求項1から7の何れか1項に記載の波長変換用ガラス部材の製造方法。
  10. 光源からの光の一部の波長を変換するための蛍光体を有する波長変換用ガラス部材であって、
    前記蛍光体は、ガラス素材の内部の所定の面に沿って封止され、かつ、前記光源からの光の一部が前記蛍光体を通過し、残りの部分が前記蛍光体の無い間隙部分を通過するよう、前記面に沿った所定の領域に局在して封止されていることを特徴とする波長変換用ガラス部材。
  11. 前記面に沿った所定の方向に対して、前記蛍光体が局在する領域と前記間隙部分とが交互に配列していることを特徴とする請求項10に記載の波長変換用ガラス部材。
  12. 前記ガラス素材は、第1のガラス素材と第2のガラス素材とが一体化されたものであり、
    前記所定の面は、前記第1のガラス素材と前記第2のガラス素材の境界面であることを特徴とする請求項10又は11に記載の波長変換用ガラス部材。
  13. 所定の波長の光を発光するLEDチップと、
    前記LEDチップからの光の一部の波長を変換するための、請求項10から12の何れか1項に記載の波長変換用ガラス部材と、を有することを特徴とする発光ダイオード素子。
JP2009209089A 2009-09-10 2009-09-10 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子 Pending JP2011057506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209089A JP2011057506A (ja) 2009-09-10 2009-09-10 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209089A JP2011057506A (ja) 2009-09-10 2009-09-10 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子

Publications (1)

Publication Number Publication Date
JP2011057506A true JP2011057506A (ja) 2011-03-24

Family

ID=43945598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209089A Pending JP2011057506A (ja) 2009-09-10 2009-09-10 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子

Country Status (1)

Country Link
JP (1) JP2011057506A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110368A (ko) * 2013-03-07 2014-09-17 포항공과대학교 산학협력단 Uv led칩을 이용하는 백색 발광소자
WO2016021132A1 (ja) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 発光装置の製造方法、発光装置、および発光装置の製造装置
KR101762223B1 (ko) 2016-03-23 2017-07-27 주식회사 베이스 형광체를 포함하는 led 칩 봉지부재의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110368A (ko) * 2013-03-07 2014-09-17 포항공과대학교 산학협력단 Uv led칩을 이용하는 백색 발광소자
KR102103881B1 (ko) 2013-03-07 2020-04-23 포항공과대학교 산학협력단 Uv led칩을 이용하는 백색 발광소자
WO2016021132A1 (ja) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 発光装置の製造方法、発光装置、および発光装置の製造装置
KR101762223B1 (ko) 2016-03-23 2017-07-27 주식회사 베이스 형광체를 포함하는 led 칩 봉지부재의 제조 방법
WO2017164461A1 (ko) * 2016-03-23 2017-09-28 주식회사 베이스 형광체를 포함하는 엘이디 칩 봉지부재, 이를 포함하는 엘이디 칩 패키지 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2010140417A1 (ja) 波長変換用ガラス部材の製造方法
US20140127464A1 (en) Method For Producing A Conversion Element, And Conversion Element
EP2984686B1 (en) Method of fabricating led with high thermal conductivity particles in phosphor conversion layer
CN102652166B (zh) 具有光源和波长转换元件的照明设备
KR102139777B1 (ko) Led 응용들을 위한 무기 바인더 내의 형광체
WO2011065322A1 (ja) 発光ダイオードユニットの製造方法
CN103403894A (zh) 发光模块、灯、照明器和显示装置
TW200809256A (en) Methods of making LED extractor arrays
CN101427388B (zh) 发光装置
CN103797597A (zh) 发光模块、灯、照明器和显示装置
CN110272208B (zh) 一种绿色荧光玻璃陶瓷及其制备方法和应用
CN101064357A (zh) 图案化的光提取片及其制造方法
TW201142355A (en) Composite film for light emitting apparatus, light emitting apparatus and method for fabricating the same
KR20130023208A (ko) 반도체 칩 및 변환 소자를 구비한 방사선 방출 컴포넌트 그리고 방사선 방출 컴포넌트를 제조하기 위한 방법
KR102321632B1 (ko) 3d 프린터를 이용한 엘이디 조명 히트싱크 제조방법
JP5505864B2 (ja) 半導体発光素子デバイスの製造方法
JP2011057506A (ja) 波長変換用ガラス部材の製造方法、波長変換用ガラス部材及び発光ダイオード素子
WO2010140416A1 (ja) 波長変換用ガラス部材の製造方法
CN105280802A (zh) 一种具备多热流通道的白光led模组及其制备方法
WO2011065321A1 (ja) 発光ダイオードユニットの製造方法
CN102721003A (zh) Led荧光灯罩的制造方法及led荧光灯罩
CN202791789U (zh) Led荧光灯罩
CN105764658B (zh) 制造陶瓷光透射屏障单元的方法和由其产生的屏障单元
JP2011155187A (ja) 発光ダイオードユニットの製造方法
JP2010280537A (ja) 波長変換用ガラス部材の製造方法