JP2011052630A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2011052630A
JP2011052630A JP2009203703A JP2009203703A JP2011052630A JP 2011052630 A JP2011052630 A JP 2011052630A JP 2009203703 A JP2009203703 A JP 2009203703A JP 2009203703 A JP2009203703 A JP 2009203703A JP 2011052630 A JP2011052630 A JP 2011052630A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
combustion engine
internal combustion
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009203703A
Other languages
Japanese (ja)
Inventor
Takashi Sasajima
崇司 笹嶋
Daisaku Sawada
大作 澤田
Eiichi Kamiyama
栄一 神山
Shigeto Tatsuta
成人 龍田
Kazuhisa Yano
一久 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009203703A priority Critical patent/JP2011052630A/en
Priority to PCT/IB2010/002213 priority patent/WO2011027214A2/en
Publication of JP2011052630A publication Critical patent/JP2011052630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/06Porous ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/02Surface coverings for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Exhaust Silencers (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine including a constructional member having an improved heat insulation property. <P>SOLUTION: Heat insulation material 26 is arranged adjacently to the inner wall of an exhaust passage 22. High-temperature working gas (exhaust gas) flows along a flow passage formed of the heat insulation material 26. In the heat insulation material 26, particles of MSS (Mesoporous-Silica-Sphere) particles 26a of a mean diameter of 0.1-3 μm are layered through joint material 26b so that the particles are compacted. A great number of mesopores 26c of a mean pore diameter of 1-10 nm are formed in the MSS particles 26a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、内燃機関に関し、より詳細には、燃焼室等を構成する構造部材の一部に断熱材を採用した内燃機関に関する。   The present invention relates to an internal combustion engine, and more particularly, to an internal combustion engine that employs a heat insulating material as part of a structural member that constitutes a combustion chamber or the like.

従来、内燃機関の構造部材に断熱材を使用すると、構造部材による冷却損失が低減され、熱効率が上昇することが知られている。例えば特許文献1には、シリンダブロックのライナー部を多孔質構造のセラミック材で形成したシリンダが開示されている。このセラミック材は多孔質材料であることから断熱性能が高いと考えられる。したがって、この従来のシリンダを用いれば、内燃機関の熱効率を上昇させることができるので、出力や燃費の向上が期待できる。   Conventionally, when a heat insulating material is used for a structural member of an internal combustion engine, it is known that a cooling loss due to the structural member is reduced and thermal efficiency is increased. For example, Patent Literature 1 discloses a cylinder in which a liner portion of a cylinder block is formed of a porous ceramic material. Since this ceramic material is a porous material, it is considered that the heat insulating performance is high. Therefore, if this conventional cylinder is used, the thermal efficiency of the internal combustion engine can be increased, so that an improvement in output and fuel consumption can be expected.

特開平6−10757号公報JP-A-6-10757

ところで、内燃機関の構造部材に対しては、その断熱性能の更なる向上が求められている。この為の一つの手段として、構造部材の断熱部の空孔率を増加させることが挙げられる。断熱部の空孔率を増加させることは即ち、断熱部の内部空間を増加させることである。空気の熱伝導率は比較的小さいので、内部空間を増加させれば、断熱性能が向上する。ところが、内部空間を増加させると、断熱材の体積当たりの強度は低下してしまう。加えて、内部空間を増加させると、断熱材を構成する空間の分布を均一に構成することが困難になる。このため、断熱材に強度を要求する環境では断熱材の内部空間をたくさんとることができず、均一に高い断熱性を得ることができなかった。   By the way, further improvement of the heat insulation performance is required for the structural members of the internal combustion engine. One means for this is to increase the porosity of the heat insulating portion of the structural member. Increasing the porosity of the heat insulating part means that the internal space of the heat insulating part is increased. Since the thermal conductivity of air is relatively small, increasing the internal space improves the heat insulation performance. However, when the internal space is increased, the strength per volume of the heat insulating material decreases. In addition, when the internal space is increased, it is difficult to uniformly configure the distribution of the space constituting the heat insulating material. For this reason, in an environment where strength is required for the heat insulating material, a large amount of the internal space of the heat insulating material cannot be taken, and uniform high heat insulating properties cannot be obtained.

この発明は、上述のような課題を解決するためになされたもので、断熱性を向上させた構造部材を備える内燃機関を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object thereof is to provide an internal combustion engine including a structural member with improved heat insulation.

第1の発明は、上記の目的を達成するため、内燃機関であって、
平均孔径1〜10nmの細孔を有し、平均粒径が0.1〜3μmの粒径の揃った球状多孔質材の集合体からなる断熱材と、前記断熱材に隣接して配置された基材と、を有する構造部材を備えることを特徴とする。
In order to achieve the above object, a first invention is an internal combustion engine,
A heat insulating material composed of an aggregate of spherical porous materials having pores with an average pore diameter of 1 to 10 nm and an average particle diameter of 0.1 to 3 μm, and disposed adjacent to the heat insulating material And a structural member having a base material.

また、第2の発明は、第1の発明において、
前記細孔が前記球状多孔質材の中心部から表面部に向かって放射状に形成される構成であると共に、前記断熱材が内燃機関に吸入されたガスの流通経路の内壁の少なくとも一部を構成することを特徴とする。
The second invention is the first invention, wherein
The pores are configured to be radially formed from the central portion to the surface portion of the spherical porous material, and the heat insulating material configures at least a part of the inner wall of the flow path of the gas sucked into the internal combustion engine It is characterized by doing.

また、第3の発明は、第2の発明において、
前記断熱材におけるガス接触面と前記基材における断熱材隣接面とが、前記球状多孔質材の粒間の隙間及び、その細孔を介して連通され、前記断熱材の厚みが、0.5mm以下であることを特徴とする。
The third invention is the second invention, wherein
The gas contact surface in the heat insulating material and the heat insulating material adjacent surface in the base material communicate with each other through the gaps between the spherical porous material grains and the pores, and the thickness of the heat insulating material is 0.5 mm. It is characterized by the following.

また、第4の発明は、第1乃至第3何れか1つの発明において、
前記球状多孔質材が、球状メソポーラスシリカであることを特徴とする。
The fourth invention is the invention according to any one of the first to third inventions,
The spherical porous material is spherical mesoporous silica.

第1の発明によれば、球状多孔質材は平均粒径が0.1〜3μmの範囲にあり、断熱材は前記球状多孔質材のうち、粒径の揃ったものの集合体である為、比較的均質になる。前記球状多孔質材そのものが高強度に加えて、粒の揃ったものを集合させるので断熱材は高強度になる。
また、内燃機関の燃焼室に利用する場合では、燃焼室内には、高圧場が形成され、そこに存在するガス分子の熱伝導率が大きくなり、細孔内のガス分子による熱の移動量が無視できなくなる。加えて、高圧場では、ガスの平均自由行程そのものが小さくなるので、細孔を十分に小さくする必要がある。
第1の発明によれば、球状多孔質材の細孔径は1〜10nmであり、高圧場におけるガスの平均自由行程より十分に小さいので、細孔内のガス分子による熱の移動を抑制できる。加えて、粒同士の隙間も小さくなるのでこのような効果の一部を利用できる。したがって、単に空間を確保して断熱するよりも断熱性能を上げられる。
According to the first invention, since the spherical porous material has an average particle diameter in the range of 0.1 to 3 μm, and the heat insulating material is an aggregate of the spherical porous materials having a uniform particle diameter, It becomes relatively homogeneous. In addition to high strength, the spherical porous material itself gathers together a set of grains, so that the heat insulating material has high strength.
In addition, when used in a combustion chamber of an internal combustion engine, a high-pressure field is formed in the combustion chamber, the thermal conductivity of gas molecules existing there is increased, and the amount of heat transferred by the gas molecules in the pores is increased. It cannot be ignored. In addition, in the high-pressure field, the mean free path of the gas itself becomes small, so the pores need to be made sufficiently small.
According to the first invention, since the pore diameter of the spherical porous material is 1 to 10 nm and is sufficiently smaller than the mean free path of the gas in the high-pressure field, it is possible to suppress the movement of heat due to the gas molecules in the pores. In addition, since the gap between grains becomes small, a part of such effects can be used. Therefore, the heat insulation performance can be improved rather than simply securing a space and performing heat insulation.

第2の発明によれば、放射状細孔を有する球状多孔質材は、粒子に加わる応力を効果的に分散できる。加えて、その集合体である断熱材は粒径の揃ったこれら粒子が高密度で配置された構成にできるので高剛性にできる。
また、第3の発明によれば、ガス接触面と前記基材における断熱材接触面とが、前記球状多孔質材の粒間の隙間及び、その細孔を介して連通させることができる。したがって、内燃機関に吸入されたガス圧力が変化するような環境にも順応できる0.5mm以下の薄い断熱材を有する構造部材とすることができる。
According to the second invention, the spherical porous material having radial pores can effectively disperse the stress applied to the particles. In addition, the heat insulating material that is the aggregate can have a high rigidity because these particles having a uniform particle diameter can be arranged at high density.
According to the third invention, the gas contact surface and the heat insulating material contact surface of the base material can be communicated with each other through the gaps between the particles of the spherical porous material and the pores. Therefore, it can be set as the structural member which has the thin heat insulating material of 0.5 mm or less which can adapt also to the environment where the gas pressure inhaled by the internal combustion engine changes.

第4の発明によれば、球状メソポーラスシリカにより断熱性能を向上させた構造部材を備える内燃機関を提供することができる。   According to the fourth invention, it is possible to provide an internal combustion engine including a structural member whose heat insulating performance is improved by spherical mesoporous silica.

実施の形態の内燃機関を説明するための図である。It is a figure for demonstrating the internal combustion engine of embodiment. 図1の排気通路の一部を拡大した図である。It is the figure which expanded a part of exhaust path of FIG. 1000℃、1MPaにおける空間のサイズと熱伝導率との関係を示す図である。It is a figure which shows the relationship between the size of the space in 1000 degreeC and 1 Mpa, and thermal conductivity.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is simplified or omitted.

図1は、本発明の実施の形態である内燃機関の構成を説明する為の図である。内燃機関10の構成部材の中にはシリンダ12、シリンダヘッド14がある。また、シリンダ12の内径には、ピストン16が上下方向に摺動自在に挿入配置されている。シリンダ12の内周面とシリンダヘッド14の下面と、ピストン16の頂面とで囲まれた部分により燃焼室18が形成されている。   FIG. 1 is a diagram for explaining a configuration of an internal combustion engine according to an embodiment of the present invention. Among the constituent members of the internal combustion engine 10 are a cylinder 12 and a cylinder head 14. A piston 16 is inserted into the inner diameter of the cylinder 12 so as to be slidable in the vertical direction. A combustion chamber 18 is formed by a portion surrounded by the inner peripheral surface of the cylinder 12, the lower surface of the cylinder head 14, and the top surface of the piston 16.

シリンダヘッド14には、外部から吸入されるガスを燃焼室18に導入するための吸気通路20が連結されている。また、シリンダヘッド14には、燃焼室18から排出されるガスを外部に排出するための排気通路22が連結されている。排気通路22の途中には、排気通路22を流れるガスの一部を吸気通路20に還流するための還流通路24が接続されている。   The cylinder head 14 is connected to an intake passage 20 for introducing gas sucked from outside into the combustion chamber 18. The cylinder head 14 is connected to an exhaust passage 22 for discharging the gas discharged from the combustion chamber 18 to the outside. In the middle of the exhaust passage 22, a reflux passage 24 for returning a part of the gas flowing through the exhaust passage 22 to the intake passage 20 is connected.

また、図1に太線で示すように、燃焼室18の内壁には、断熱材26が設けられている。断熱材26は、排気通路22の内壁及び還流通路24の内壁の一部に設けることも有効である。断熱材26は、それぞれの内壁上に0.2〜0.5mmの厚みをもって設けられている。   Further, as indicated by a thick line in FIG. 1, a heat insulating material 26 is provided on the inner wall of the combustion chamber 18. It is also effective to provide the heat insulating material 26 on a part of the inner wall of the exhaust passage 22 and the inner wall of the reflux passage 24. The heat insulating material 26 is provided with a thickness of 0.2 to 0.5 mm on each inner wall.

(断熱材26)
図1に示した排気通路22の断面の一部(拡大)を図2に示す。図2に示すように、排気通路22の内壁に隣接して断熱材26が配置されている。高温の作動ガス(排気ガス)は、断熱材26が形成する流路に沿って流れている。断熱材26は、MSS(Mesoporous-Silica-Sphere;球状メソポーラスシリカ)粒子26aの各粒子が接合材26bを介して粒同士が密集した状態で積層されている。接合材26bは、MSS粒子26aの粒子間を接点で連結するように配置されている。
(Insulation 26)
FIG. 2 shows a part (enlarged) of a cross section of the exhaust passage 22 shown in FIG. As shown in FIG. 2, a heat insulating material 26 is disposed adjacent to the inner wall of the exhaust passage 22. The high temperature working gas (exhaust gas) flows along the flow path formed by the heat insulating material 26. The heat insulating material 26 is laminated in a state where each particle of MSS (Mesoporous-Silica-Sphere; spherical mesoporous silica) particles 26a is closely packed through a bonding material 26b. The bonding material 26b is disposed so as to connect the MSS particles 26a with a contact.

このように、MSS粒子26aの各粒子の粒経が揃っているので粒子間の隙間を小さくしながら均質に粒子を配置できる。一般にガス圧が変動する場では、圧力落差により、ガスが粒子間の隙間に入り込むが、粒同士が隙間を小さくして均質に配置されているため、熱を保持すべき側のガスが直接、基盤の表面に到達して熱を伝えることはほとんどなく、したがって断熱性が確保される。
ここで、「粒径が揃っている」とは、同一条件下で製造された複数個(好ましくは20個以上)の粒子を顕微鏡観察した場合において、単分散度が10%以下であることを意味するものとする。この単分散度は、粒径の標準偏差を平均粒径で除すことにより表される。また、粒径は、走査型電子顕微鏡(SEM)による観察像の解析にて求められる。
Thus, since the particle diameters of the MSS particles 26a are uniform, the particles can be arranged uniformly while reducing the gaps between the particles. In general, when the gas pressure fluctuates, the gas enters the gap between the particles due to the pressure drop, but since the particles are arranged uniformly with a small gap, the gas on the side that should hold the heat is directly Very little heat is transferred to the surface of the substrate, thus ensuring thermal insulation.
Here, “the particle size is uniform” means that the monodispersity is 10% or less when a plurality of particles (preferably 20 particles or more) manufactured under the same conditions are observed with a microscope. Shall mean. This monodispersity is expressed by dividing the standard deviation of the particle size by the average particle size. The particle size is determined by analysis of an observation image using a scanning electron microscope (SEM).

(MSS粒子26a)
断熱材26を構成するMSS粒子26aは、その名の示すとおり、メソ孔26cを有する球状シリカの粒子である。球状の粒子であることに加え、粒経が極めて均一なので粒同士を密に隙間無く積層することができ、剛性を備えた排気通路22を形成することができる。ここで、「球状」とは、同一条件下で製造された複数個(好ましくは、20個以上)の粒子を顕微鏡観察した場合において、各粒子の真球度の平均値が13%以下であることをいう。また、「真球度」とは、各粒子の外形の真円からのずれの程度を表す指標であって、粒子の表面に接する最小の外接円の半径(r)に対する、外接円と粒子表面の各点との半径方向の距離の最大値(Δrmax)の割合(=Δrmax×100/r(%))で表される値をいう。
(MSS particle 26a)
As the name indicates, the MSS particles 26a constituting the heat insulating material 26 are spherical silica particles having mesopores 26c. In addition to the spherical particles, the particle diameter is extremely uniform, so that the particles can be densely stacked without gaps, and the exhaust passage 22 having rigidity can be formed. Here, “spherical” means that when a plurality of (preferably 20 or more) particles produced under the same conditions are observed with a microscope, the average value of sphericity of each particle is 13% or less. That means. The “sphericity” is an index representing the degree of deviation of the outer shape of each particle from the perfect circle, and the circumscribed circle and the particle with respect to the radius (r 0 ) of the smallest circumscribed circle in contact with the particle surface. This is a value represented by the ratio (= Δr max × 100 / r 0 (%)) of the maximum value (Δr max ) of the distance in the radial direction from each point on the surface.

MSS粒子26aは、その中心部から表面部に向かって無数に形成されたメソ孔26cを有する。無数に形成されたメソ孔26cを有することで、成形体としたときに70%以上の高い空孔率を実現することができる。したがって、断熱性の高い排気通路22を構成することができる。また、無数のメソ孔26cがその中心部から表面部に向かって形成されている、すなわち、メソ孔26cが放射状に形成されていることで、個々の粒子レベルにおいても断熱性能の均一性を担保することができる。また、このメソ孔26cが放射状に形成されていることで、どの方向からの変形に対しても孔の長さ方向に外力を受けることになり、各粒子の剛性が高い。したがって、空孔率を高くすることによる体積当りの強度低下を補償することもできる。   The MSS particles 26a have innumerable mesopores 26c formed from the center to the surface. By having innumerable mesopores 26c, a high porosity of 70% or more can be realized when formed into a molded body. Therefore, it is possible to configure the exhaust passage 22 having high heat insulation. Further, the innumerable mesopores 26c are formed from the central portion toward the surface portion, that is, the mesopores 26c are formed in a radial shape, thereby ensuring the uniformity of the heat insulating performance even at the individual particle level. can do. In addition, since the meso holes 26c are formed in a radial shape, an external force is received in the length direction of the hole with respect to deformation from any direction, and the rigidity of each particle is high. Therefore, it is possible to compensate for a decrease in strength per volume caused by increasing the porosity.

ところで、内燃機関の燃焼室は、ピストンの上下動や、燃料混合気の急激な燃焼によって圧力の変動が生じる。そのうち、特に高圧の場合は、これら機関内に存在するガス分子の平均自由行程そのものが短くなる。   By the way, in the combustion chamber of the internal combustion engine, the pressure fluctuates due to the vertical movement of the piston or the rapid combustion of the fuel mixture. Among these, especially in the case of high pressure, the mean free path itself of gas molecules existing in these engines is shortened.

図3は、例えば、空気の1000℃、1MPaにおける空間サイズと熱伝導率との関係を示す図である。横軸に空間のサイズ(nm)を、縦軸に熱伝導率(W/mK)をそれぞれ示す。図3に示すように、空間のサイズを小さくすると、空気の熱伝導率は小さくなる。空間サイズを空気の平均自由行程(28nm)以下にすると、空気の熱伝導は十分小さくできる。   FIG. 3 is a diagram showing the relationship between the space size of air at 1000 ° C. and 1 MPa, for example, and the thermal conductivity. The horizontal axis represents the space size (nm), and the vertical axis represents the thermal conductivity (W / mK). As shown in FIG. 3, when the size of the space is reduced, the thermal conductivity of air is reduced. If the space size is made equal to or less than the mean free path (28 nm) of air, the heat conduction of air can be made sufficiently small.

本実施の形態における、燃焼室内のガス成分は大体が空気と同じであり、本発明のMSSにおけるメソ孔26cの孔径は、ガス分子の熱伝導率を小さくする効果を得るのに十分小さいサイズである。具体的には、メソ孔26cの孔径は1〜10nm(平均)と十分に、平均自由行程以下であり、燃焼室内のような高圧環境においても断熱材の内部空間に存在するガス分子による熱伝導を抑制できる。なお、孔径は、窒素ガスの吸着法による細孔分布曲線から算出する方法で求められる。   In this embodiment, the gas component in the combustion chamber is almost the same as air, and the diameter of the mesopores 26c in the MSS of the present invention is small enough to obtain the effect of reducing the thermal conductivity of the gas molecules. is there. Specifically, the mesopores 26c have a hole diameter of 1 to 10 nm (average), which is sufficiently below the mean free path, and heat conduction by gas molecules existing in the internal space of the heat insulating material even in a high pressure environment such as a combustion chamber Can be suppressed. The pore diameter is determined by a method of calculating from a pore distribution curve by a nitrogen gas adsorption method.

また、上述したように、MSS粒子26aの各粒子は、放射状に形成されたメソ孔26cを有し、粒子そのものの断熱性が高いことに加え、各粒子が接合材26bによって接点で連結されており、構造体としての断熱性は極めて高い。したがって、この断熱材は薄くしても十分な断熱性を確保できる。薄くできるので、燃焼室内の圧力変動場における断熱材の粒子間隙間へのガスの流入、流出による負担が少なくなり、ガス流動に起因する断熱材の疲労破壊を回避できる。   Moreover, as described above, each particle of the MSS particle 26a has the mesopores 26c formed in a radial shape, and in addition to the high heat insulating property of the particle itself, each particle is connected at the contact point by the bonding material 26b. Therefore, the heat insulation as a structure is extremely high. Therefore, even if the heat insulating material is thin, sufficient heat insulating properties can be secured. Since the thickness can be reduced, the burden caused by the inflow and outflow of gas into the interparticle gap of the heat insulating material in the pressure fluctuation field in the combustion chamber is reduced, and fatigue damage of the heat insulating material due to gas flow can be avoided.

(接合材26b)
断熱材26を構成する接合材26bは、シリカから構成される。ただし、接合材26bは、例えばアルミナ、チタニア、マグネシア、ジルコニアといった遷移金属元素や典型金属元素の酸化物でもよい。また、接合材26bは、シリカやこれらの金属元素の酸化物の2種類以上を用いた混合物でもよい。
(Joint material 26b)
The bonding material 26b constituting the heat insulating material 26 is made of silica. However, the bonding material 26b may be an oxide of a transition metal element or a typical metal element such as alumina, titania, magnesia, or zirconia. Further, the bonding material 26b may be a mixture using two or more kinds of silica and oxides of these metal elements.

接合材26bは、MSS粒子26aの各粒子間を接点で連結するものであるため、その形状が特に限定されるものではない。しかしながら、各粒子間を接点で連結するためには、その表面積が、MSS粒子26aの表面積に比べて小さいことが望ましい。断熱材26が低い熱伝導率や高い剛性を発揮するためには、MSS粒子26aの表面積に対する接合材26bの表面積の比は、1/4以下であることが望ましく、1/10以下であることがより望ましい。   Since the bonding material 26b connects each particle of the MSS particles 26a with a contact point, the shape thereof is not particularly limited. However, in order to connect each particle with a contact point, the surface area is desirably smaller than the surface area of the MSS particle 26a. In order for the heat insulating material 26 to exhibit low thermal conductivity and high rigidity, the ratio of the surface area of the bonding material 26b to the surface area of the MSS particles 26a is preferably 1/4 or less, and 1/10 or less. Is more desirable.

ピストン16への断熱材26の接合には様々な方法があるが、例えば、ピストン加工後に本断熱材を接合する方法がある。その製造方法は、(1)基材成形工程、(2)基材切削工程、(3)断熱材作製工程、(4)接合工程を備えている。   There are various methods for joining the heat insulating material 26 to the piston 16. For example, there is a method of joining the heat insulating material after processing the piston. The manufacturing method includes (1) a base material forming step, (2) a base material cutting step, (3) a heat insulating material manufacturing step, and (4) a joining step.

(1)基材成形工程では、ピストン基材の所定形状に対応する鋳型を準備し、その鋳型にアルミニウム合金等の溶融金属を注入する。そして、この状態で所定の時間冷却し、脱型することによりピストン基材を得る。   (1) In the base material forming step, a mold corresponding to a predetermined shape of the piston base material is prepared, and molten metal such as an aluminum alloy is injected into the mold. And it cools for a predetermined time in this state, and a piston base material is obtained by demolding.

続いて(2)基材切削工程では、(1)基材成形工程で得られたピストン基材に所定の切削加工を施す。   Subsequently, in the (2) base material cutting step, a predetermined cutting process is performed on the piston base material obtained in the (1) base material forming step.

一方、(1)基材成形工程、(2)基材切削工程とは別に、断熱材26を作製する((3)断熱材作製工程)。この工程は、(3−1)混合工程と、(3−2)成形工程と、(3−3)反応工程と、(3−4)除去工程と、を備えている。   On the other hand, the heat insulating material 26 is produced separately from (1) the base material forming step and (2) the base material cutting step ((3) heat insulating material producing step). This step includes (3-1) a mixing step, (3-2) a molding step, (3-3) a reaction step, and (3-4) a removal step.

(3−1)混合工程では、細孔内にマスキング物質が充填されたMSSに、少量の反応性結合剤及び第3成分を混合する工程である。ここで、マスキング物質は、MSSの製造(後述)の際に使用する界面活性剤や拡径剤をそのまま用いるが、これら界面活性剤等を一旦除去した後に別途用いてもよい。
マスキング物質としては、オクタデシルトリメチルアンモニウムクロリド(C18TMACl)及びトリメチルベンゼン(TMB)を用いるが、このC18TMAClを単独で用いてもよく、他の有機物、例えばフルフリルアルコールを用いてもよい。つまり、マスキング物質は、分解除去可能な物質であれば特に限定されない。
また、反応性結合剤としては、テトラエトキシシラン(TEOS)を用いるが、テトラメトキシシラン(TMOS)といったシリカの原料をはじめ、チタンテトライソプロポキシド(((CHCHO)Ti)等の金属元素を含むアルコキシドといったシリカ表面のシラノール基と結合可能な官能基を有し、熱や光などの外部刺激によって重合して金属酸化物を形成できる化合物を用いてもよい。
反応性結合剤の混合は、液体状態あるいは反応性結合剤を含んだ溶液の状態で混合される。こうすることで、MSSの間に反応性結合剤を偏在させて、MSSの各粒子間を接点で結合させることができる。
なお、混合に際しては、MSS100重量部に対して接合材26bが20重量部以下となるように反応性結合剤の量を調節することが望ましい。
また、第3成分としては、ポリテトラフルオロエチレン(PTFE)を用いる。このPTFEは、MSSの各粒子間が反応性結合剤で強固に連結されるまでの間、MSSの各粒子間を一時的に結合させておくためのバインダーとして用いられる。なお、第3成分の混合量は最適な量を選択できる。
(3-1) In the mixing step, a small amount of the reactive binder and the third component are mixed in the MSS in which the masking substance is filled in the pores. Here, as the masking substance, a surfactant and a diameter expanding agent used in the production of MSS (described later) are used as they are. However, these surfactants and the like may be removed and used separately.
As the masking substance, octadecyltrimethylammonium chloride (C 18 TMACl) and trimethylbenzene (TMB) are used, but this C 18 TMACl may be used alone or another organic substance such as furfuryl alcohol may be used. That is, the masking substance is not particularly limited as long as it is a substance that can be decomposed and removed.
Further, tetraethoxysilane (TEOS) is used as the reactive binder, but silica raw materials such as tetramethoxysilane (TMOS), titanium tetraisopropoxide (((CH 3 ) 2 CHO) 4 Ti), and the like are used. A compound that has a functional group capable of binding to a silanol group on the silica surface, such as an alkoxide containing the above metal element, and can be polymerized by an external stimulus such as heat or light to form a metal oxide may be used.
The reactive binder is mixed in a liquid state or a solution containing the reactive binder. By carrying out like this, a reactive binder can be unevenly distributed between MSS, and each particle | grain of MSS can be combined with a contact.
In mixing, it is desirable to adjust the amount of the reactive binder so that the bonding material 26b is 20 parts by weight or less with respect to 100 parts by weight of MSS.
Further, polytetrafluoroethylene (PTFE) is used as the third component. This PTFE is used as a binder for temporarily bonding the MSS particles until the MSS particles are firmly connected with the reactive binder. Note that the optimum amount of the third component can be selected.

(3−2)成形工程では、(3−1)混合工程で得られた混合物を所定形状の金型に流し込んで圧縮成形する工程である。圧縮する際の圧力は20MPaとするが、例えば60MPaとしてもよく、材料の組成、金型の形状、成形方法等を考慮して最適な条件で行うことができる。   In the (3-2) molding step, the mixture obtained in the (3-1) mixing step is poured into a mold having a predetermined shape and compression molded. The pressure at the time of compression is 20 MPa, but may be 60 MPa, for example, and can be performed under optimum conditions in consideration of the composition of the material, the shape of the mold, the molding method, and the like.

(3−3)反応工程では、(3−2)成形工程で得られた成形体に熱や光などの外部刺激を加えることで、MSSの各粒子の間に偏在する反応性結合剤を反応させる工程である。具体的には、得られた成形体に熱を加えることでTEOSを重合させてMSSの各粒子を結合する。   In the (3-3) reaction step, the reactive binder that is unevenly distributed among the MSS particles is reacted by applying external stimuli such as heat and light to the molded body obtained in the (3-2) molding step. It is a process to make. Specifically, TEOS is polymerized by applying heat to the obtained molded body to bind the MSS particles.

(3−4)除去工程では、(3−3)反応工程で得られた成形体を焼成することで、MSSの粒子からマスキング物質を除去する工程である。本工程を経ることで、MSS粒子の各粒子間を接点で連結する接合材が配置された断熱材26が作製できる。本工程は、成形体を550℃、6時間、空気中で焼成することにより行われるが、マスキング物質の種類に応じて最適な焼成温度、時間、焼成雰囲気等を選択して行うことができる。   The (3-4) removal step is a step of removing the masking substance from the MSS particles by firing the molded body obtained in the (3-3) reaction step. By passing through this process, the heat insulating material 26 in which the bonding material for connecting the MSS particles with the contacts is arranged can be produced. This step is performed by firing the molded body in air at 550 ° C. for 6 hours, and can be performed by selecting an optimum firing temperature, time, firing atmosphere and the like according to the type of the masking substance.

上記(3−1)〜(3−4)の工程において、各種製造条件を最適化することにより、粒径の揃ったMSSの各粒子を密集状態で積層した断熱材を作製できる。このようにして作製された断熱材は、その熱伝導率が0.1W/mK以下の優れた断熱性能を有する。   In the steps (3-1) to (3-4), by optimizing various manufacturing conditions, it is possible to produce a heat insulating material in which MSS particles having a uniform particle size are stacked in a dense state. Thus, the produced heat insulating material has the outstanding heat insulation performance whose heat conductivity is 0.1 W / mK or less.

(4)接合工程では、(2)基材切削工程で得られたピストン基材と、(3)断熱材作製工程で得られた断熱材26とを接合する。接合には例えば、適当な接着剤を用いてピストン基材に断熱材26を貼り付けてもよい。本工程を経ることで表面に断熱材26を設けたピストン16が製造できる。   (4) In the joining step, (2) the piston base material obtained in the base material cutting step and (3) the heat insulating material 26 obtained in the heat insulating material producing step are joined. For joining, for example, the heat insulating material 26 may be attached to the piston base material using an appropriate adhesive. Through this step, the piston 16 provided with the heat insulating material 26 on the surface can be manufactured.

次に、MSSの製造方法について説明する。MSSは、(1)シリカ原料と界面活性剤とを含む原料を溶媒中で混合し、所定の温度条件下で反応させる。反応に際し、自己組織化により、界面活性剤はロッドミセルを形成し、ロッドミセルがヘキサゴナルな対称性を保ちながら、放射状に配向する。これはシリカを形成する際の鋳型となる。次いで、(2)この界面活性剤を含んだ状態の前駆体粒子に拡径剤を添加し、所定の温度条件下で前駆体の細孔径を拡大し、(3)前駆体粒子から界面活性剤及び拡径剤を除去する。上記(1)〜(3)の製造条件を最適化することにより、平均孔径1〜10nmの細孔が放射状に形成され、平均粒径が0.1〜3.0μmの粒径の揃ったMSS粒子を製造できる。   Next, a method for manufacturing MSS will be described. In MSS, (1) a raw material containing a silica raw material and a surfactant is mixed in a solvent and reacted under a predetermined temperature condition. During the reaction, the surfactant forms rod micelles by self-organization, and the rod micelles are oriented radially while maintaining hexagonal symmetry. This is a template for forming silica. Next, (2) a diameter expanding agent is added to the precursor particles containing the surfactant, and the pore diameter of the precursor is expanded under a predetermined temperature condition, and (3) the surfactant particles are converted into the surfactant. And the sizing agent is removed. By optimizing the production conditions (1) to (3) above, MSS having pores having an average pore diameter of 1 to 10 nm formed radially and having an average particle diameter of 0.1 to 3.0 μm. Particles can be produced.

10 内燃機関
14 シリンダヘッド
16 ピストン
22 排気通路
24 還流通路
26 断熱材
26a 粒子
26b 接合材
26c メソ孔
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 14 Cylinder head 16 Piston 22 Exhaust passage 24 Recirculation passage 26 Heat insulation material 26a Particle | grain 26b Joining material 26c Meso hole

Claims (4)

平均孔径1〜10nmの細孔を有し、平均粒径が0.1〜3μmの粒径の揃った球状多孔質材の集合体からなる断熱材と、前記断熱材に隣接して配置された基材と、を有する構造部材を備えることを特徴とする内燃機関。   A heat insulating material composed of an aggregate of spherical porous materials having pores with an average pore diameter of 1 to 10 nm and an average particle diameter of 0.1 to 3 μm, and disposed adjacent to the heat insulating material An internal combustion engine comprising a structural member having a base material. 前記細孔が前記球状多孔質材の中心部から表面部に向かって放射状に形成される構成であると共に、前記断熱材が内燃機関に吸入されたガスの流通経路の内壁の少なくとも一部を構成することを特徴とする請求項1に記載の内燃機関。   The pores are configured to be radially formed from the central portion to the surface portion of the spherical porous material, and the heat insulating material configures at least a part of the inner wall of the flow path of the gas sucked into the internal combustion engine The internal combustion engine according to claim 1. 前記断熱材におけるガス接触面と前記基材における断熱材隣接面とが、前記球状多孔質材の粒間の隙間及び、その細孔を介して連通され、前記断熱材の厚みが0.5mm以下であることを特徴とする請求項2に記載の内燃機関。   The gas contact surface in the heat insulating material and the heat insulating material adjacent surface in the base material communicate with each other through the gaps between the spherical porous material grains and the pores, and the thickness of the heat insulating material is 0.5 mm or less. The internal combustion engine according to claim 2, wherein 前記球状多孔質材が、球状メソポーラスシリカであることを特徴とする請求項1乃至3何れか1項に記載の内燃機関。   The internal combustion engine according to any one of claims 1 to 3, wherein the spherical porous material is spherical mesoporous silica.
JP2009203703A 2009-09-03 2009-09-03 Internal combustion engine Pending JP2011052630A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009203703A JP2011052630A (en) 2009-09-03 2009-09-03 Internal combustion engine
PCT/IB2010/002213 WO2011027214A2 (en) 2009-09-03 2010-09-02 Internal combustion engine and method for manufacturing thermal insulator for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203703A JP2011052630A (en) 2009-09-03 2009-09-03 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011052630A true JP2011052630A (en) 2011-03-17

Family

ID=43502879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203703A Pending JP2011052630A (en) 2009-09-03 2009-09-03 Internal combustion engine

Country Status (2)

Country Link
JP (1) JP2011052630A (en)
WO (1) WO2011027214A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225407A (en) * 2010-04-22 2011-11-10 Toyota Motor Corp Porous heat insulating member and internal combustion engine with the same
WO2013081150A1 (en) 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path
WO2013125704A1 (en) 2012-02-22 2013-08-29 日本碍子株式会社 Engine combustion chamber structure and inner wall structure of flow path
WO2013129430A1 (en) 2012-02-27 2013-09-06 日本碍子株式会社 Heat-insulating member and engine combustion chamber structure
JP2013189960A (en) * 2012-03-15 2013-09-26 Isuzu Motors Ltd Method for producing heat-shielding film, heat-shielding film, and internal combustion engine
WO2013191263A1 (en) 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure
WO2015076098A1 (en) 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulation film, and heat-insulation-film structure
WO2015076176A1 (en) * 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulation film, and heat-insulation-film structure
WO2015080065A1 (en) 2013-11-26 2015-06-04 日本碍子株式会社 Porous material and heat insulating film
WO2015115667A1 (en) 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler
JP2015175285A (en) * 2014-03-14 2015-10-05 マツダ株式会社 Method of forming heat insulating layer
JP2019108857A (en) * 2017-12-19 2019-07-04 トヨタ自動車株式会社 Internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114613B1 (en) 2020-09-25 2022-09-16 Renault Sas THERMAL COATING FOR A SPARK-IGNITION INTERNAL COMBUSTION ENGINE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211138A (en) * 1986-03-12 1987-09-17 日立金属株式会社 Heat-insulating member
JP2004245655A (en) * 2003-02-12 2004-09-02 National Institute Of Advanced Industrial & Technology Method and device for evaluating size of pore by using positron annihilation method under gas adsorption
JP2004277195A (en) * 2003-03-13 2004-10-07 National Institute Of Advanced Industrial & Technology Surface coating method for porous material using radiation
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
JP2008150696A (en) * 2006-12-20 2008-07-03 Toyota Central R&D Labs Inc Magnetic material and manufacturing method of magnetic material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030451A (en) * 1983-07-29 1985-02-16 Hino Motors Ltd Heat insulating device for engine
JPH0610757A (en) 1992-06-29 1994-01-18 Isuzu Motors Ltd Cylinder body having ceramic liner and manufacture thereof
JP4749093B2 (en) * 2005-09-06 2011-08-17 旭化成株式会社 NOx purification catalyst carrier
JP4233572B2 (en) * 2006-02-08 2009-03-04 旭化成株式会社 Honeycomb catalyst for exhaust gas purification
JP5112966B2 (en) * 2008-06-20 2013-01-09 旭化成株式会社 Lean burn exhaust gas purification catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211138A (en) * 1986-03-12 1987-09-17 日立金属株式会社 Heat-insulating member
JP2004245655A (en) * 2003-02-12 2004-09-02 National Institute Of Advanced Industrial & Technology Method and device for evaluating size of pore by using positron annihilation method under gas adsorption
JP2004277195A (en) * 2003-03-13 2004-10-07 National Institute Of Advanced Industrial & Technology Surface coating method for porous material using radiation
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
JP2008150696A (en) * 2006-12-20 2008-07-03 Toyota Central R&D Labs Inc Magnetic material and manufacturing method of magnetic material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225407A (en) * 2010-04-22 2011-11-10 Toyota Motor Corp Porous heat insulating member and internal combustion engine with the same
US9284911B2 (en) 2011-12-02 2016-03-15 Ngk Insulators, Ltd. Engine combustion chamber structure, and inner wall structure of through channel
WO2013081150A1 (en) 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path
WO2013125704A1 (en) 2012-02-22 2013-08-29 日本碍子株式会社 Engine combustion chamber structure and inner wall structure of flow path
WO2013129430A1 (en) 2012-02-27 2013-09-06 日本碍子株式会社 Heat-insulating member and engine combustion chamber structure
JP2013189960A (en) * 2012-03-15 2013-09-26 Isuzu Motors Ltd Method for producing heat-shielding film, heat-shielding film, and internal combustion engine
WO2013191263A1 (en) 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure
US10385801B2 (en) 2012-06-20 2019-08-20 Ngk Insulators, Ltd. Heat-insulation film, and heat-insulation-film structure
JPWO2015076176A1 (en) * 2013-11-19 2017-03-16 日本碍子株式会社 Thermal insulation film and thermal insulation film structure
WO2015076176A1 (en) * 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulation film, and heat-insulation-film structure
JPWO2015076098A1 (en) * 2013-11-19 2017-03-16 日本碍子株式会社 Thermal insulation film and thermal insulation film structure
WO2015076098A1 (en) 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulation film, and heat-insulation-film structure
WO2015080065A1 (en) 2013-11-26 2015-06-04 日本碍子株式会社 Porous material and heat insulating film
US10315961B2 (en) 2013-11-26 2019-06-11 Ngk Insulators, Ltd. Porous material and heat insulating film
WO2015115667A1 (en) 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler
US10442739B2 (en) 2014-01-31 2019-10-15 Ngk Insulators, Ltd. Porous plate-shaped filler
JP2015175285A (en) * 2014-03-14 2015-10-05 マツダ株式会社 Method of forming heat insulating layer
JP2019108857A (en) * 2017-12-19 2019-07-04 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
WO2011027214A3 (en) 2011-05-19
WO2011027214A2 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP2011052630A (en) Internal combustion engine
US10267260B2 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
JP4870657B2 (en) Ceramic honeycomb structure and manufacturing method thereof
US8114184B2 (en) Honeycomb ceramic particulate filtration substrate, a particulate filter and a filtration system as well as production methods thereof
US20210370216A1 (en) Ceramic honeycomb bodies, honeycomb extrusion dies, and methods of making ceramic honeycomb bodies
JP6285225B2 (en) Honeycomb structure
JP2010501467A (en) Low back pressure porous cordierite ceramic honeycomb article and manufacturing method thereof
JP5431942B2 (en) Corner-reinforced monolithic member for particle filter
JPWO2013191263A1 (en) Porous plate filler, coating composition, heat insulating film, and heat insulating film structure
CN1642615A (en) Filter for exhaust gas decontamination
JP6467284B2 (en) Water recovery equipment
EP3075719B1 (en) Porous material and heat insulating film
JP2017178722A (en) Honeycomb structure and method for producing honeycomb structure
CN105777181A (en) Large-sized cordierite honeycomb ceramic carrier for diesel engine
JP2014087743A (en) Honeycomb filter
JP5771484B2 (en) Honeycomb catalyst body
JP6348404B2 (en) Thermal / sonic conversion parts and thermal / sonic conversion units
JP2011225407A (en) Porous heat insulating member and internal combustion engine with the same
JP2009269763A (en) Honeycomb structure
JP2007117829A (en) Honeycomb structure
JP6373866B2 (en) Thermal insulation film and thermal insulation film structure
JP6144946B2 (en) Honeycomb filter
JP2011122509A (en) Method for manufacturing piston
JP6084497B2 (en) Honeycomb filter
US11214524B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018