JP2011225407A - Porous heat insulating member and internal combustion engine with the same - Google Patents

Porous heat insulating member and internal combustion engine with the same Download PDF

Info

Publication number
JP2011225407A
JP2011225407A JP2010099079A JP2010099079A JP2011225407A JP 2011225407 A JP2011225407 A JP 2011225407A JP 2010099079 A JP2010099079 A JP 2010099079A JP 2010099079 A JP2010099079 A JP 2010099079A JP 2011225407 A JP2011225407 A JP 2011225407A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating member
porous heat
porous
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099079A
Other languages
Japanese (ja)
Inventor
Takashi Sasajima
崇司 笹嶋
Daisaku Sawada
大作 澤田
Hideo Yamashita
英男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010099079A priority Critical patent/JP2011225407A/en
Publication of JP2011225407A publication Critical patent/JP2011225407A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a porous heat insulating member and an internal combustion engine with the same, which can prevent the occurrence of damage.SOLUTION: There is provided the porous heat insulating member 10 in which the tensile strength of an outer periphery 38 is larger than that of a central part 40, for example, porous particles 42 are connected by binders 44 and an amount of the binders 44 in the outer periphery 38 is larger than the amount of the binders 44 in the central part 40. According to the invention, the porous heat insulating member 10 can prevent the occurrence of damage.

Description

本発明は、多孔質断熱部材およびこれを備えた内燃機関に関する。   The present invention relates to a porous heat insulating member and an internal combustion engine including the same.

内燃機関の燃焼室の壁面に断熱部材を設けることで、低負荷時における冷却損失を低減させる技術が提案されている。その一方で、内燃機関の燃焼室の壁面に断熱部材を設けて燃焼室を断熱すると、高負荷時において燃焼室の壁温が高くなり、ノッキングや異常燃焼などが発生する場合がある。ノッキングなどの発生を抑制するために、例えば、特許文献1には、ピストンの頂面の一部分にのみ多孔質の断熱部材を設けることが記載されている。   There has been proposed a technique for reducing a cooling loss at a low load by providing a heat insulating member on a wall surface of a combustion chamber of an internal combustion engine. On the other hand, when a heat insulating member is provided on the wall surface of the combustion chamber of the internal combustion engine to insulate the combustion chamber, the wall temperature of the combustion chamber becomes high at a high load, and knocking or abnormal combustion may occur. In order to suppress the occurrence of knocking or the like, for example, Patent Document 1 describes that a porous heat insulating member is provided only on a part of the top surface of the piston.

特開平11−193721号公報JP-A-11-193721

多孔質の断熱部材は、例えば低熱伝導率かつ低熱容量の断熱特性を有する。このような断熱特性を有する多孔質断熱部材を燃焼室の壁面に設けると、多孔質断熱部材は、燃焼室内に発生する燃焼ガスの温度に追従して温度変化する。この温度変化に起因して、多孔質断熱部材の外周部で破損が発生する場合がある。この破損は、時間経過と共に多孔質断熱部材全体に進行してしまう場合がある。   The porous heat insulating member has, for example, heat insulating properties with low thermal conductivity and low heat capacity. When the porous heat insulating member having such heat insulating properties is provided on the wall surface of the combustion chamber, the temperature of the porous heat insulating member changes following the temperature of the combustion gas generated in the combustion chamber. Due to this temperature change, damage may occur in the outer peripheral portion of the porous heat insulating member. This breakage may progress to the entire porous heat insulating member over time.

本発明は、上記課題に鑑みなされたものであり、破損の発生が抑制可能な多孔質断熱部材およびこれを備えた内燃機関を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a porous heat insulating member capable of suppressing the occurrence of breakage and an internal combustion engine including the same.

上記目的は、外周部の引っ張り強度が中央部の引っ張り強度よりも大きいことを特徴とする多孔質断熱部材によって達成できる。これによれば、多孔質断熱部材の破損の発生を抑制できる。   The above object can be achieved by a porous heat insulating member characterized in that the tensile strength of the outer peripheral portion is larger than the tensile strength of the central portion. According to this, generation | occurrence | production of the damage of a porous heat insulation member can be suppressed.

上記構成において、多孔質粒子がバインダによって連結された構造を有し、前記外周部における前記バインダの量が、前記中央部における前記バインダの量に比べて多い構成とすることができる。この構成によれば、多孔質断熱部材の熱伝導率および熱容量の増加を抑制しつつ、多孔質断熱部材の破損の発生を抑制できる。   The said structure WHEREIN: It has a structure where the porous particle was connected with the binder, and it can be set as the structure where the quantity of the said binder in the said outer peripheral part is large compared with the quantity of the said binder in the said center part. According to this structure, generation | occurrence | production of the failure | damage of a porous heat insulation member can be suppressed, suppressing the increase in the heat conductivity and heat capacity of a porous heat insulation member.

上記構成において、熱伝導率が0.05〜0.5W/mkである場合において、前記外周部であって表面からの深さが50μm〜200μmの間の領域における前記バインダの量が、前記中央部における前記バインダの量に比べて多い構成とすることができる。この構成によれば、多孔質断熱部材の破損を抑制しつつ、多孔質断熱部材の熱伝導率および熱容量の増加をより抑制できる。   In the above configuration, when the thermal conductivity is 0.05 to 0.5 W / mk, the amount of the binder in the region of the outer peripheral portion and the depth from the surface is between 50 μm and 200 μm is the center. The configuration can be larger than the amount of the binder in the section. According to this configuration, it is possible to further suppress an increase in the thermal conductivity and heat capacity of the porous heat insulating member while suppressing damage to the porous heat insulating member.

上記目的は、燃焼室の壁面に請求項1から3のいずれか一項記載の多孔質断熱部材を備えることを特徴とする内燃機関によって達成できる。   The above object can be achieved by an internal combustion engine comprising the porous heat insulating member according to any one of claims 1 to 3 on a wall surface of a combustion chamber.

本発明によれば、多孔質断熱部材の破損の発生を抑制できる。   According to the present invention, the occurrence of breakage of the porous heat insulating member can be suppressed.

図1は、比較例に係る多孔質断熱部材の断面模式図の例である。FIG. 1 is an example of a schematic cross-sectional view of a porous heat insulating member according to a comparative example. 図2は、多孔質断熱部材の表面温度変化を示す模式図の例である。FIG. 2 is an example of a schematic diagram showing changes in the surface temperature of the porous heat insulating member. 図3(a)から図3(d)は、多孔質断熱部材の深さ方向の温度を示す模式図の例である。FIG. 3A to FIG. 3D are examples of schematic views showing the temperature in the depth direction of the porous heat insulating member. 図4は、実施例1に係る多孔質断熱部材を備えた内燃機関の構成を示す模式図の例である。FIG. 4 is an example of a schematic diagram illustrating a configuration of the internal combustion engine including the porous heat insulating member according to the first embodiment. 図5(a)は、図4におけるピストンの断面模式図の例であり、図5(b)は上面模式図の例である。Fig.5 (a) is an example of the cross-sectional schematic diagram of the piston in FIG. 4, FIG.5 (b) is an example of an upper surface schematic diagram. 図6は、実施例1に係る多孔質断熱部材を示す模式図の例である。FIG. 6 is an example of a schematic diagram illustrating the porous heat insulating member according to the first embodiment. 図7は、実施例2に係る多孔質断熱部材を示す模式図の例である。FIG. 7 is an example of a schematic diagram illustrating the porous heat insulating member according to the second embodiment.

まず初めに、本発明が解決しようとする課題について詳細に説明する。図1は、比較例の係る多孔質断熱部材を示す断面模式図の例である。図1のように、内燃機関の燃焼室の壁面60に低熱伝導率かつ低熱容量の多孔質断熱部材62が設けられている。多孔質断熱部材62は、例えば多孔質シリカである。内燃機関では、クランク角度に応じて、例えば吸気行程、圧縮行程、燃焼・膨張行程、排気行程の動作が行われる。吸気行程は、ピストンを下降させ、シリンダ内に混合ガスを流入する。圧縮行程は、ピストンを上昇させ、シリンダ内の混合ガスを圧縮する。燃焼・膨張行程は、混合ガスに着火し、燃焼ガスを発生させてピストンを押し下げる。排気行程は、ピストンを上昇させ、シリンダ内の燃焼ガスを排出する。このような4行程が行われることで、燃焼室内のガス温度は変化する。多孔質断熱部材62は低熱容量であることから、燃焼室内のガス温度の変化に追従して温度が変化する。   First, problems to be solved by the present invention will be described in detail. FIG. 1 is an example of a schematic cross-sectional view showing a porous heat insulating member according to a comparative example. As shown in FIG. 1, a porous heat insulating member 62 having a low thermal conductivity and a low heat capacity is provided on a wall surface 60 of a combustion chamber of an internal combustion engine. The porous heat insulating member 62 is, for example, porous silica. In an internal combustion engine, for example, an intake stroke, a compression stroke, a combustion / expansion stroke, and an exhaust stroke are performed according to the crank angle. In the intake stroke, the piston is lowered, and the mixed gas flows into the cylinder. The compression stroke raises the piston and compresses the mixed gas in the cylinder. In the combustion / expansion stroke, the mixed gas is ignited, combustion gas is generated, and the piston is pushed down. In the exhaust stroke, the piston is raised and the combustion gas in the cylinder is discharged. By performing such four strokes, the gas temperature in the combustion chamber changes. Since the porous heat insulating member 62 has a low heat capacity, the temperature changes following the change in the gas temperature in the combustion chamber.

図2は、多孔質断熱部材62の表面温度変化を示す模式図の例であり、横軸はクランク角[°CA]、縦軸は多孔質断熱部材62の表面温度[K]である。なお、多孔質断熱部材62の表面とは、燃焼室に露出している側の面のことをいう。図2のように、クランク角度に応じて吸気行程、圧縮行程、燃焼・膨張行程、排気行程の4行程が推移するため、クランク角度に応じて多孔質断熱部材62の表面温度は変化する。例えば、クランク角が0[°CA]から180[°CA]の間は吸気行程であり、シリンダ内に混合ガスが流入されるため、多孔質断熱部材62の表面温度は混合ガスの温度に追従して低下する。クランク角が180[°CA]から360[°CA]の間は圧縮行程である。この間も多孔質断熱部材62は混合ガスに曝されているため、表面温度は低下する。クランク角が360[°CA]から540[°CA]の間は燃焼・膨張行程である。シリンダ内の混合ガスに着火することで燃焼ガスが発生し、多孔質断熱部材62の表面温度は急激に上昇する。その後の膨張行程では、多孔質断熱部材62の表面温度は徐々に低下する。クランク角が540[°CA]から720[°CA]は排気行程である。排気行程の間も、多孔質断熱部材62の表面温度は徐々に低下する。   FIG. 2 is an example of a schematic diagram showing changes in the surface temperature of the porous heat insulating member 62, where the horizontal axis is the crank angle [° CA] and the vertical axis is the surface temperature [K] of the porous heat insulating member 62. In addition, the surface of the porous heat insulating member 62 refers to the surface exposed to the combustion chamber. As shown in FIG. 2, since the four strokes of the intake stroke, the compression stroke, the combustion / expansion stroke, and the exhaust stroke change according to the crank angle, the surface temperature of the porous heat insulating member 62 changes according to the crank angle. For example, when the crank angle is between 0 [° CA] and 180 [° CA], the intake stroke is performed and the mixed gas flows into the cylinder. Therefore, the surface temperature of the porous heat insulating member 62 follows the temperature of the mixed gas. Then drop. When the crank angle is between 180 [° CA] and 360 [° CA], the compression stroke is performed. Since the porous heat insulating member 62 is also exposed to the mixed gas during this time, the surface temperature decreases. When the crank angle is between 360 [° CA] and 540 [° CA], the combustion / expansion stroke is performed. Combustion gas is generated by igniting the mixed gas in the cylinder, and the surface temperature of the porous heat insulating member 62 rapidly increases. In the subsequent expansion stroke, the surface temperature of the porous heat insulating member 62 gradually decreases. A crank angle of 540 [° CA] to 720 [° CA] is an exhaust stroke. Also during the exhaust stroke, the surface temperature of the porous heat insulating member 62 gradually decreases.

図3(a)から図3(d)は、多孔質断熱部材62の深さ方向の温度を示す模式図の例であり、横軸は多孔質断熱部材62の深さ(μm)であり、縦軸は多孔質断熱部材62の温度(K)である。図3(a)は図2におけるクランク角200[°CA](図2の領域70)での、図3(b)はクランク角354[°CA](図2の領域72)での、図3(c)はクランク角405[°CA](図2の領域74)での、図3(d)はクランク角500[°CA](図2の領域76)での、多孔質断熱部材62の深さ方向の温度を示している。   FIG. 3A to FIG. 3D are examples of schematic views showing the temperature in the depth direction of the porous heat insulating member 62, and the horizontal axis is the depth (μm) of the porous heat insulating member 62. The vertical axis represents the temperature (K) of the porous heat insulating member 62. 3A is a diagram at a crank angle 200 [° CA] (region 70 in FIG. 2) in FIG. 2, and FIG. 3B is a diagram at a crank angle 354 [° CA] (region 72 in FIG. 2). 3 (c) shows a porous heat insulating member 62 at a crank angle 405 [° CA] (region 74 in FIG. 2), and FIG. 3 (d) shows a crank angle 500 [° CA] (region 76 in FIG. 2). The temperature in the depth direction is shown.

図3(a)から図3(d)のように、多孔質断熱部材62の内部の温度はあまり変化していないのに対し、多孔質断熱部材62の表面温度は大きく変化している。図1における多孔質断熱部材62の表面中央部64では、例えば多孔質断熱部材62を構成する多孔質粒子がその周りに位置する多孔質粒子に拘束されているため、温度変化が発生すると圧縮応力と引っ張り応力とが生じる。図3(b)および図3(c)に示されているように、圧縮応力の方が引っ張り応力よりも大きいが、多孔質断熱部材62が例えば多孔質シリカのような多孔質セラミック材からなる場合、多孔質セラミック材は引っ張り強度よりも圧縮強度の方が大きいため、上記の圧縮応力には十分耐え得る。   As shown in FIGS. 3A to 3D, the temperature inside the porous heat insulating member 62 does not change much, whereas the surface temperature of the porous heat insulating member 62 changes greatly. In the center portion 64 of the surface of the porous heat insulating member 62 in FIG. 1, for example, the porous particles constituting the porous heat insulating member 62 are constrained by the porous particles positioned around the porous heat insulating member 62. And tensile stress are generated. As shown in FIGS. 3B and 3C, the compressive stress is larger than the tensile stress, but the porous heat insulating member 62 is made of a porous ceramic material such as porous silica. In this case, since the porous ceramic material has a higher compressive strength than a tensile strength, it can sufficiently withstand the above compressive stress.

一方、多孔質断熱部材62の表面の端部68(図1参照)では、例えば多孔質断熱部材62を構成する多孔質粒子は、その周りを多孔質粒子で完全には囲まれてなく、拘束がされていない状態である。このため、図3(c)のように、多孔質断熱部材62の表面温度が上昇すると、表面の端部68は熱膨張により伸長する。図1の矢印のように、多孔質断熱部材62の表面の端部68が伸長することで、この伸長に起因して、多孔質断熱部材62の表面から内部側であり且つ外周側である領域66に引っ張り応力が生じる。さらに、図3(c)のように、多孔質断熱部材62の温度変化の時間的遅れによって、多孔質断熱部材62の表面から100μm程度の内部では温度が一時的に低くなり、引っ張り応力が生じることになる。このため、多孔質断熱部材62の表面から内部側であり且つ外周側である領域66では、2重に引っ張り応力がかかることになり、破損が生じ易くなる。そこで、このような課題の解決を図り、破損の発生が抑制可能な多孔質断熱部材の実施例を以下に説明する。   On the other hand, at the end portion 68 (see FIG. 1) of the surface of the porous heat insulating member 62, for example, the porous particles constituting the porous heat insulating member 62 are not completely surrounded by the porous particles and are restrained. It is a state that has not been done. For this reason, as shown in FIG. 3C, when the surface temperature of the porous heat insulating member 62 rises, the end 68 of the surface expands due to thermal expansion. As indicated by the arrows in FIG. 1, the end portion 68 on the surface of the porous heat insulating member 62 extends, and the region that is on the inner side and on the outer peripheral side from the surface of the porous heat insulating member 62 due to the expansion. A tensile stress is generated at 66. Further, as shown in FIG. 3C, due to the time delay of the temperature change of the porous heat insulating member 62, the temperature temporarily decreases within about 100 μm from the surface of the porous heat insulating member 62, and tensile stress is generated. It will be. For this reason, in the area | region 66 which is an inner side from the surface of the porous heat insulation member 62 and is an outer peripheral side, a tensile stress will be applied twice and it will become easy to produce a damage. Therefore, an example of a porous heat insulating member capable of solving such problems and suppressing the occurrence of breakage will be described below.

図4は、実施例1に係る多孔質断熱部材10を備えた内燃機関100の構成を示す模式図の例である。図4のように、シリンダブロック12にはシリンダ14が設けられている。シリンダ14内には往復動するピストン16が設けられている。シリンダ14の側壁には円筒形状のシリンダライナ18が設けられていて、ピストン16との摺動面を形成している。   FIG. 4 is an example of a schematic diagram illustrating a configuration of the internal combustion engine 100 including the porous heat insulating member 10 according to the first embodiment. As shown in FIG. 4, the cylinder block 12 is provided with a cylinder 14. A piston 16 that reciprocates is provided in the cylinder 14. A cylindrical cylinder liner 18 is provided on the side wall of the cylinder 14 to form a sliding surface with the piston 16.

シリンダブロック12の上側にはシリンダヘッド20が配置されている。ピストン16の頂面22とシリンダヘッド20の下面24とで区画される領域が燃焼室26である。燃焼室26の壁面は、ピストン16の頂面22、シリンダヘッド20の下面24、吸気弁28および排気弁30の傘部であって燃焼室26に露出する下面32で構成されている。ピストン16の頂面22には多孔質断熱部材10が設けられている。   A cylinder head 20 is disposed on the upper side of the cylinder block 12. A region defined by the top surface 22 of the piston 16 and the lower surface 24 of the cylinder head 20 is a combustion chamber 26. The wall surface of the combustion chamber 26 includes a top surface 22 of the piston 16, a lower surface 24 of the cylinder head 20, an umbrella portion of the intake valve 28 and the exhaust valve 30, and a lower surface 32 exposed to the combustion chamber 26. A porous heat insulating member 10 is provided on the top surface 22 of the piston 16.

シリンダヘッド20には、吸気ポート34および排気ポート36が設けられている。燃焼室26と吸気ポート34との連通は、吸気弁28の開閉によって制御される。また、燃焼室26と排気ポート36との連通は、排気弁30によって制御される。燃焼室26には、吸気ポート34を通って燃焼に必要な混合ガスが流入する。また、燃焼室26で発生した燃焼ガスは、排気ポート36を通って外部に排出される。   The cylinder head 20 is provided with an intake port 34 and an exhaust port 36. Communication between the combustion chamber 26 and the intake port 34 is controlled by opening and closing the intake valve 28. Communication between the combustion chamber 26 and the exhaust port 36 is controlled by the exhaust valve 30. A mixed gas necessary for combustion flows into the combustion chamber 26 through the intake port 34. Further, the combustion gas generated in the combustion chamber 26 is discharged to the outside through the exhaust port 36.

図5(a)は、図4におけるピストン16を拡大した断面模式図の例であり、図5(b)は上面模式図の例である。図5(a)および図5(b)のように、燃焼室26の壁面であるピストン16の頂面22に多孔質断熱部材10が設けられている。多孔質断熱部材10の外周部38は中央部40に比べて引っ張り強度が大きくなっている。   Fig.5 (a) is an example of the cross-sectional schematic diagram which expanded the piston 16 in FIG. 4, FIG.5 (b) is an example of an upper surface schematic diagram. As shown in FIGS. 5A and 5B, the porous heat insulating member 10 is provided on the top surface 22 of the piston 16 that is the wall surface of the combustion chamber 26. The outer peripheral portion 38 of the porous heat insulating member 10 has a higher tensile strength than the central portion 40.

ここで、図6を用いて、多孔質断熱部材10について詳細に説明する。図6は、ピストン16の頂面22に設けられた多孔質断熱部材10を示す模式図の例である。図6のように、ピストン16の頂面22に設けられた多孔質断熱部材10は例えば多孔質シリカである。多孔質断熱部材10は、例えば球状メソポーラスシリカ粒子である多孔質粒子42が、例えば金属酸化物からなるバインダ44によって連結した構造を有する。球状メソポーラスシリカ粒子は、平均粒径が0.1〜3.0μm程度であり、粒径の揃った粒子である。また、球状メソポーラスシリカ粒子には、中心部から表面に向かって、平均孔径が例えば1〜10nm程度の無数の細孔が形成されている。このように、粒径が小さく、且つ、粒径の揃った複数の球状メソポーラスシリカ粒子がバインダによって接点で連結されているため、球状メソポーラスシリカ粒子同士は隙間なく積層されている。また、無数の細孔が球状メソポーラスシリカ粒子に形成されていることで、多孔質断熱部材10全体として70%以上の高い空孔率が実現されている。このため、多孔質断熱部材10は優れた断熱性を有する。   Here, the porous heat insulating member 10 will be described in detail with reference to FIG. FIG. 6 is an example of a schematic view showing the porous heat insulating member 10 provided on the top surface 22 of the piston 16. As shown in FIG. 6, the porous heat insulating member 10 provided on the top surface 22 of the piston 16 is, for example, porous silica. The porous heat insulating member 10 has a structure in which, for example, porous particles 42 that are spherical mesoporous silica particles are connected by a binder 44 made of, for example, a metal oxide. The spherical mesoporous silica particles are particles having an average particle size of about 0.1 to 3.0 μm and a uniform particle size. The spherical mesoporous silica particles have innumerable pores having an average pore diameter of, for example, about 1 to 10 nm from the center to the surface. As described above, since the plurality of spherical mesoporous silica particles having a small particle diameter and uniform particle diameter are connected at the contact points by the binder, the spherical mesoporous silica particles are laminated with no gap. Moreover, since the innumerable pores are formed in the spherical mesoporous silica particles, a high porosity of 70% or more is realized as the whole porous heat insulating member 10. For this reason, the porous heat insulating member 10 has excellent heat insulating properties.

多孔質断熱部材10の外周部38における多孔質粒子42を連結するバインダ44の量は、多孔質断熱部材10の中央部40における多孔質粒子42を連結するバインダ44の量に比べて多い。例えば、多孔質粒子42を100重量部とした場合に、多孔質断熱部材10の中央部40におけるバインダ44は20重量部以下であるのに対し、外周部38におけるバインダ44は20〜40重量部である。   The amount of the binder 44 that connects the porous particles 42 in the outer peripheral portion 38 of the porous heat insulating member 10 is larger than the amount of the binder 44 that connects the porous particles 42 in the central portion 40 of the porous heat insulating member 10. For example, when the porous particles 42 are 100 parts by weight, the binder 44 in the central part 40 of the porous heat insulating member 10 is 20 parts by weight or less, whereas the binder 44 in the outer peripheral part 38 is 20 to 40 parts by weight. It is.

ここで、ピストン16の頂面22に多孔質断熱部材10を形成する製造方法について説明する。製造工程は、多孔質断熱部材10の前駆体を調整する第1工程と、前駆体からなる層をピストン16の頂面22に配置する第2工程と、前駆体とピストン16の頂面22とを一体的に焼成し、ピストン16の頂面22に多孔質断熱部材10の層を形成する第3工程と、を備える。   Here, a manufacturing method for forming the porous heat insulating member 10 on the top surface 22 of the piston 16 will be described. The manufacturing process includes a first step of adjusting the precursor of the porous heat insulating member 10, a second step of disposing a layer made of the precursor on the top surface 22 of the piston 16, and the precursor and the top surface 22 of the piston 16. And a third step of forming a layer of the porous heat insulating member 10 on the top surface 22 of the piston 16.

第1工程は、例えば球状メソポーラスシリカ粒子の前駆体と、反応性結合材とを混合する工程である。第1工程を詳しく説明する。まず、シリカ原料と界面活性剤を含む原料を溶媒中で混合し、所定の温度条件以下で反応させることで、球状メソポーラスシリカ粒子の前駆体を製造する。球状メソポーラスシリカ粒子には中心部から表面に向かって無数の細孔が形成されており、この細孔内にマスキング物質が充填された状態で反応性結合材と混合する。マスキング物質として、例えば球状メソポーラスシリカ粒子の前駆体の調整に使用する界面活性剤を用いることができる。反応性結合材は、液体状態または溶液に溶解させた状態で球状メソポーラスシリカ粒子の前駆体と混合するため、反応性結合材が、表面張力によって、球状メソポーラスシリカ粒子の間に偏在し易くなり、球状メソポーラスシリカ粒子間を接点で連結し易くなる。   The first step is a step of mixing, for example, a precursor of spherical mesoporous silica particles and a reactive binder. The first step will be described in detail. First, a precursor of spherical mesoporous silica particles is produced by mixing a raw material containing a silica raw material and a surfactant in a solvent and reacting them under a predetermined temperature condition. The spherical mesoporous silica particles have innumerable pores formed from the central portion toward the surface, and are mixed with the reactive binder in a state where the pores are filled with a masking substance. As a masking substance, for example, a surfactant used for adjusting a precursor of spherical mesoporous silica particles can be used. Since the reactive binder is mixed with the precursor of the spherical mesoporous silica particles in a liquid state or dissolved in a solution, the reactive binder is likely to be unevenly distributed between the spherical mesoporous silica particles due to surface tension. It becomes easy to connect spherical mesoporous silica particles with a contact.

第2工程は、第1工程を経て調整された多孔質断熱部材10の前駆体を、ピストン16の頂面22にシート状に配置する工程である。例えば、ピストン16の頂面22に多孔質断熱部材10の前駆体を配置した後、プレッサーにより上方から多孔質断熱部材10の前駆体を一定の面圧で加圧してシート状に成型する。その後、多孔質断熱部材10の外周部38におけるバインダ44の量が、中央部40におけるバインダ44の量に比べて多くなるよう、シート状に成型した多孔質断熱部材10の前駆体の外周部に反応性結合材を追加して滴下する。   The second step is a step of arranging the precursor of the porous heat insulating member 10 adjusted through the first step on the top surface 22 of the piston 16 in a sheet shape. For example, after the precursor of the porous heat insulating member 10 is disposed on the top surface 22 of the piston 16, the precursor of the porous heat insulating member 10 is pressed from above with a certain surface pressure by a presser and molded into a sheet shape. Thereafter, the outer peripheral portion of the precursor of the porous heat insulating member 10 molded into a sheet shape so that the amount of the binder 44 in the outer peripheral portion 38 of the porous heat insulating member 10 is larger than the amount of the binder 44 in the central portion 40. Add reactive binder and drop.

第3工程は、シート状に成型した多孔質断熱部材10の前駆体とピストン16の頂面22とを一体的に焼成して、ピストン16の頂面22に多孔質断熱部材10の層を形成する工程である。多孔質断熱部材10の前駆体とピストン16の頂面22とを一体的に焼成することで、反応性結合材が重合してバインダ44となり、球状メソポーラスシリカ粒子間を接点で連結させる反応と、球状メソポーラスシリカ粒子が直接またはバインダ44を介して間接的にピストン16の頂面22と結合する反応と、細孔内に充填されたマスキング物質が除去される反応とが同時に進行する。これにより、図6に示したような、ピストン16の頂面22に多孔質断熱部材10を形成することができる。なお、ピストン16の頂面22に多孔質断熱部材10を形成する製造方法は、上記製造方法に限られるわけではなく、例えば、球状メソポーラスシリカ粒子の前駆体を用いる代わりに、粒子状で焼成済みの球状メソポーラスシリカ粒子を用いて、ピストン16の頂面22に多孔質断熱部材10を形成してもよい。   In the third step, the precursor of the porous heat insulating member 10 molded into a sheet shape and the top surface 22 of the piston 16 are integrally fired to form a layer of the porous heat insulating member 10 on the top surface 22 of the piston 16. It is a process to do. By integrally firing the precursor of the porous heat insulating member 10 and the top surface 22 of the piston 16, the reactive binder is polymerized to become a binder 44, and a reaction for connecting the spherical mesoporous silica particles at a contact point; The reaction in which the spherical mesoporous silica particles are bonded to the top surface 22 of the piston 16 directly or indirectly through the binder 44 and the reaction in which the masking substance filled in the pores is removed proceed simultaneously. Thereby, the porous heat insulating member 10 can be formed on the top surface 22 of the piston 16 as shown in FIG. In addition, the manufacturing method for forming the porous heat insulating member 10 on the top surface 22 of the piston 16 is not limited to the above-described manufacturing method. For example, instead of using a precursor of spherical mesoporous silica particles, it is burned in the form of particles. The porous heat insulating member 10 may be formed on the top surface 22 of the piston 16 using the spherical mesoporous silica particles.

このように、多孔質断熱部材10は、図6に示すように、多孔質粒子42がバインダ44によって連結された構造を有し、多孔質断熱部材10の外周部38におけるバインダ44の量が、中央部40におけるバインダ44の量に比べて多い構造をしている。バインダ44の量が多くなると、多孔質粒子42間の結合力が大きくなるため、引っ張り強度が大きくなる。したがって、図5で示したように、多孔質断熱部材10の外周部38は中央部40に比べて引っ張り強度が大きくなる。   Thus, as shown in FIG. 6, the porous heat insulating member 10 has a structure in which the porous particles 42 are connected by the binder 44, and the amount of the binder 44 in the outer peripheral portion 38 of the porous heat insulating member 10 is The structure is larger than the amount of the binder 44 in the central portion 40. When the amount of the binder 44 increases, the bonding strength between the porous particles 42 increases, and thus the tensile strength increases. Therefore, as shown in FIG. 5, the outer peripheral portion 38 of the porous heat insulating member 10 has a higher tensile strength than the central portion 40.

比較例で説明したように、多孔質断熱部材10の表面から内部側でありかつ外周側である領域には、表面温度の上昇によって表面の端部46が伸長(図6の矢印)することに起因した引っ張り応力と、温度変化の時間的遅れに起因した引っ張り応力とがかかる。このため、実施例1のように、多孔質断熱部材10の外周部38の引っ張り強度を中央部40の引っ張り強度に比べて大きくすることで、多孔質断熱部材10の表面から内部側でありかつ外周側である領域に上述の引っ張り応力がかかった場合であっても破損することを抑制できる。   As described in the comparative example, the end 46 of the surface is extended (the arrow in FIG. 6) due to the increase in the surface temperature in the region on the inner side and the outer peripheral side from the surface of the porous heat insulating member 10. The resulting tensile stress and the tensile stress due to the time delay of the temperature change are applied. For this reason, as in Example 1, the tensile strength of the outer peripheral portion 38 of the porous heat insulating member 10 is made larger than the tensile strength of the central portion 40, so that the inner side from the surface of the porous heat insulating member 10 and Even if it is a case where the above-mentioned tensile stress is applied to the area | region which is an outer peripheral side, it can suppress damaging.

また、実施例1のように、多孔質断熱部材10の外周部38におけるバインダ44の量を増加させ、中央部40におけるバインダ44の量の増加を抑制することで、多孔質断熱部材10の熱伝導率や熱容量が増加することを抑制できる。したがって、実施例1によれば、多孔質断熱部材10の熱伝導率および熱容量の増加を抑制しつつ、多孔質断熱部材10に破損が生じることを抑制できる。   Further, as in the first embodiment, the amount of the binder 44 in the outer peripheral portion 38 of the porous heat insulating member 10 is increased, and the increase in the amount of the binder 44 in the central portion 40 is suppressed, whereby the heat of the porous heat insulating member 10 is increased. An increase in conductivity and heat capacity can be suppressed. Therefore, according to Example 1, it can suppress that the porous heat insulation member 10 breaks, suppressing the increase in the heat conductivity of the porous heat insulation member 10 and a heat capacity.

実施例1において、多孔質断熱部材10の外周部38におけるバインダ44の量を増やすことで、外周部38の引っ張り強度を中央部40の引っ張り強度よりも大きくする場合を例に示したがこれに限られるわけではない。その他の方法によって、多孔質断熱部材10の外周部38における引っ張り強度を中央部40における引っ張り強度よりも大きくする場合でもよい。   In Example 1, the case where the tensile strength of the outer peripheral portion 38 is made larger than the tensile strength of the central portion 40 by increasing the amount of the binder 44 in the outer peripheral portion 38 of the porous heat insulating member 10 is shown as an example. It is not limited. The tensile strength at the outer peripheral portion 38 of the porous heat insulating member 10 may be made larger than the tensile strength at the central portion 40 by other methods.

実施例1において、多孔質粒子42は球状メソポーラスシリカ粒子であり、バインダ44は金属酸化物である場合を例に示したがこれに限られる訳ではない。バインダ44は、例えばSiなどの半金属の酸化物である場合でもよい。   In the first embodiment, the porous particles 42 are spherical mesoporous silica particles and the binder 44 is a metal oxide. However, the present invention is not limited to this. The binder 44 may be a metalloid oxide such as Si.

また、実施例1において、多孔質断熱部材10はピストン16の頂面22に備わる場合を例に示したが、例えばシリンダヘッド20の下面24や、吸気弁28および排気弁30の傘部の下面32など、燃焼室26の壁面に備わる場合が好ましい。また、多孔質断熱部材10は、内燃機関100の燃焼室26の壁面以外に備わる場合や、内燃機関100以外に装置に備わる場合でもよい。   In the first embodiment, the porous heat insulating member 10 is provided on the top surface 22 of the piston 16 as an example. For example, the lower surface 24 of the cylinder head 20 and the lower surfaces of the umbrella portions of the intake valve 28 and the exhaust valve 30 are shown. 32 is preferably provided on the wall surface of the combustion chamber 26. Further, the porous heat insulating member 10 may be provided outside the wall surface of the combustion chamber 26 of the internal combustion engine 100 or may be provided in the apparatus other than the internal combustion engine 100.

図7は、実施例2に係る多孔質断熱部材50を示す模式図の例である。実施例2に係る多孔質断熱部材50も実施例1と同様に、内燃機関100の燃焼室26の壁面であるピストン16の頂面22に備わるが、この点については、図4および図5で説明しているため、ここでは詳細な説明は省略する。   FIG. 7 is an example of a schematic diagram illustrating the porous heat insulating member 50 according to the second embodiment. Similarly to the first embodiment, the porous heat insulating member 50 according to the second embodiment is also provided on the top surface 22 of the piston 16 that is the wall surface of the combustion chamber 26 of the internal combustion engine 100. This point will be described with reference to FIGS. Since it has been described, detailed description thereof is omitted here.

図7のように、ピストン16の頂面22に設けられた多孔質断熱部材50は、多孔質断熱部材50の外周部52において、表面からの深さが50μm〜200μmの間の領域Yにおける多孔質粒子42を連結するバインダ44の量が、多孔質断熱部材50の中央部54における多孔質粒子42を連結するバインダ44の量に比べて多い構造をしている。なお、多孔質断熱部材50の表面とは、ピストン16の頂面22に接する面に対して反対側の面であり、燃焼室26に露出する面である。その他の構成については、実施例1と同じであり、図6で説明しているため、ここでは説明を省略する。また、ピストン16の頂面22に多孔質断熱部材50を形成する製造方法についても、実施例1で説明した製造方法と同様の方法を用いることができるため、ここでは説明を省略する。   As shown in FIG. 7, the porous heat insulating member 50 provided on the top surface 22 of the piston 16 is porous in a region Y having a depth from the surface of 50 μm to 200 μm at the outer peripheral portion 52 of the porous heat insulating member 50. The amount of the binder 44 that connects the porous particles 42 is larger than the amount of the binder 44 that connects the porous particles 42 in the central portion 54 of the porous heat insulating member 50. Note that the surface of the porous heat insulating member 50 is a surface opposite to the surface in contact with the top surface 22 of the piston 16 and is a surface exposed to the combustion chamber 26. The other configuration is the same as that of the first embodiment and has been described with reference to FIG. In addition, a manufacturing method for forming the porous heat insulating member 50 on the top surface 22 of the piston 16 can be the same as the manufacturing method described in the first embodiment, and thus the description thereof is omitted here.

実施例2では、多孔質断熱部材50は、多孔質断熱部材50の外周部52であって表面からの深さが50μm〜200μmの間の領域Yにおけるバインダ44の量が、中央部54におけるバインダ44の量に比べて多い構造をしている。多孔質断熱部材50の熱伝導率が0.05〜0.5W/mkの場合に、多孔質断熱部材50の表面温度の上昇により表面の端部56が伸長(図7の矢印)することに起因した引っ張り応力は、多孔質断熱部材50の表面から50〜200μm程度の間の外周部52にかかり易くなる。このため、多孔質断熱部材50の外周部52であって表面から深さが50μm〜200μmの間の領域Yは破損が発生し易くなる。したがって、領域Yでの破損を抑制するために、多孔質断熱部材50の外周部52であって表面からの深さが50μm〜200μmの間の領域Yにおけるバインダ44の量を多くして引っ張り強度を高くすることが好ましい。   In Example 2, the porous heat insulating member 50 is the outer peripheral portion 52 of the porous heat insulating member 50, and the amount of the binder 44 in the region Y whose depth from the surface is between 50 μm and 200 μm is the binder in the central portion 54. The structure is larger than the amount of 44. When the thermal conductivity of the porous heat insulating member 50 is 0.05 to 0.5 W / mk, the end portion 56 of the surface is extended (the arrow in FIG. 7) due to the increase in the surface temperature of the porous heat insulating member 50. The resulting tensile stress is likely to be applied to the outer peripheral portion 52 between about 50 to 200 μm from the surface of the porous heat insulating member 50. For this reason, it becomes easy to generate | occur | produce damage in the area | region Y which is the outer peripheral part 52 of the porous heat insulation member 50, and whose depth is 50 micrometers-200 micrometers from the surface. Therefore, in order to suppress breakage in the region Y, the tensile strength is increased by increasing the amount of the binder 44 in the outer peripheral portion 52 of the porous heat insulating member 50 and having a depth from the surface of 50 μm to 200 μm. Is preferably increased.

また、実施例2では、バインダ44の量を増やした領域が実施例1に比べて小さいため、多孔質断熱部材50の熱伝導率および熱容量の増加をより抑制することができる。よって、実施例2によれば、多孔質断熱部材50の破損を抑制しつつ、多孔質断熱部材50の熱伝導率および熱容量の増加をより抑制できる。   Moreover, in Example 2, since the area | region which increased the quantity of the binder 44 is small compared with Example 1, the increase in the heat conductivity and heat capacity of the porous heat insulation member 50 can be suppressed more. Therefore, according to the second embodiment, it is possible to further suppress the increase in the thermal conductivity and the heat capacity of the porous heat insulating member 50 while suppressing the damage of the porous heat insulating member 50.

実施例2において、バインダ44の量を増やす領域Yは、多孔質断熱部材50の表面からの深さが50μm〜200μmの間の領域である場合を例に示した。このように、多孔質断熱部材50の表面温度の上昇により表面の端部56が伸長することに起因した引っ張り応力が発生する領域のバインダ44の量を増やす場合が好ましい。よって、例えば、多孔質断熱部材50の熱伝導率が0.05W/mk以下の場合には、表面温度の上昇により表面端部が伸長することに起因した引っ張り応力は、多孔質断熱部材の表面から0μm〜50μm程度の間の外周部にかかり易くなる。よって、多孔質断熱部材50の熱伝導率が0.05W/mk以下の場合には、多孔質断熱部材の外周部であって表面からの深さが0μm〜50μmの間の領域におけるバインダの量を多くすることが好ましい。   In Example 2, the region Y in which the amount of the binder 44 is increased is an example in which the depth from the surface of the porous heat insulating member 50 is a region between 50 μm and 200 μm. As described above, it is preferable to increase the amount of the binder 44 in the region where the tensile stress is generated due to the extension of the surface end portion 56 due to the increase in the surface temperature of the porous heat insulating member 50. Therefore, for example, when the thermal conductivity of the porous heat insulating member 50 is 0.05 W / mk or less, the tensile stress resulting from the extension of the surface end due to the increase in the surface temperature is the surface of the porous heat insulating member. To about 0 μm to 50 μm. Therefore, when the thermal conductivity of the porous heat insulating member 50 is 0.05 W / mk or less, the amount of the binder in the outer peripheral portion of the porous heat insulating member and the depth from the surface is between 0 μm and 50 μm It is preferable to increase the number.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.

10 多孔質断熱部材
12 シリンダブロック
14 シリンダ
16 ピストン
18 シリンダライナ
20 シリンダヘッド
22 ピストンの頂面
26 燃焼室
28 吸気弁
30 排気弁
34 吸気ポート
36 排気ポート
38 多孔質断熱部材の外周部
40 多孔質断熱部材の中央部
42 多孔質粒子
44 バインダ
50 多孔質断熱部材
52 多孔質断熱部材の外周部
54 多孔質断熱部材の中央部
100 内燃機関
DESCRIPTION OF SYMBOLS 10 Porous heat insulation member 12 Cylinder block 14 Cylinder 16 Piston 18 Cylinder liner 20 Cylinder head 22 Piston top surface 26 Combustion chamber 28 Intake valve 30 Exhaust valve 34 Intake port 36 Exhaust port 38 Outer peripheral part of porous heat insulation member 40 Porous insulation Central part of member 42 Porous particles 44 Binder 50 Porous heat insulating member 52 Peripheral part of porous heat insulating member 54 Central part of porous heat insulating member 100 Internal combustion engine

Claims (4)

外周部の引っ張り強度が、中央部の引っ張り強度よりも大きいことを特徴とする多孔質断熱部材。   A porous heat insulating member, wherein the tensile strength of the outer peripheral portion is larger than the tensile strength of the central portion. 多孔質粒子がバインダによって連結された構造を有し、前記外周部における前記バインダの量が、前記中央部における前記バインダの量に比べて多いことを特徴とする請求項1記載の多孔質断熱部材。   The porous heat insulating member according to claim 1, wherein porous particles have a structure connected by a binder, and the amount of the binder in the outer peripheral portion is larger than the amount of the binder in the central portion. . 熱伝導率が0.05〜0.5W/mkである場合において、前記外周部であって表面からの深さが50μm〜200μmの間の領域における前記バインダの量が、前記中央部における前記バインダの量に比べて多いことを特徴とする請求項2記載の多孔質断熱部材。   In the case where the thermal conductivity is 0.05 to 0.5 W / mk, the amount of the binder in the region of the outer peripheral portion and the depth from the surface being between 50 μm and 200 μm is the binder in the central portion. The porous heat insulating member according to claim 2, wherein the porous heat insulating member is larger than the amount of. 燃焼室の壁面に請求項1から3のいずれか一項に記載の多孔質断熱部材を備えることを特徴とする内燃機関。   An internal combustion engine comprising the porous heat insulating member according to any one of claims 1 to 3 on a wall surface of a combustion chamber.
JP2010099079A 2010-04-22 2010-04-22 Porous heat insulating member and internal combustion engine with the same Pending JP2011225407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099079A JP2011225407A (en) 2010-04-22 2010-04-22 Porous heat insulating member and internal combustion engine with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099079A JP2011225407A (en) 2010-04-22 2010-04-22 Porous heat insulating member and internal combustion engine with the same

Publications (1)

Publication Number Publication Date
JP2011225407A true JP2011225407A (en) 2011-11-10

Family

ID=45041285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099079A Pending JP2011225407A (en) 2010-04-22 2010-04-22 Porous heat insulating member and internal combustion engine with the same

Country Status (1)

Country Link
JP (1) JP2011225407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118446B1 (en) * 2016-09-13 2017-04-19 神戸セラミックス株式会社 Internal combustion engine component and manufacturing method thereof
CN110461798A (en) * 2017-03-29 2019-11-15 日本碍子株式会社 Porous ceramic particle and porous ceramic structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190651A (en) * 1984-03-12 1985-09-28 Ngk Insulators Ltd Engine piston and manufacturing method thereof
JP2002166404A (en) * 2000-11-29 2002-06-11 Ibiden Co Ltd Method for manufacturing ceramic structure
JP2004277195A (en) * 2003-03-13 2004-10-07 National Institute Of Advanced Industrial & Technology Surface coating method for porous material using radiation
WO2009020206A1 (en) * 2007-08-09 2009-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine
JP2010180100A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Silica structure, method for manufacturing the same, and heat insulator
JP2011052630A (en) * 2009-09-03 2011-03-17 Toyota Motor Corp Internal combustion engine
JP2011122509A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Method for manufacturing piston

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190651A (en) * 1984-03-12 1985-09-28 Ngk Insulators Ltd Engine piston and manufacturing method thereof
JP2002166404A (en) * 2000-11-29 2002-06-11 Ibiden Co Ltd Method for manufacturing ceramic structure
JP2004277195A (en) * 2003-03-13 2004-10-07 National Institute Of Advanced Industrial & Technology Surface coating method for porous material using radiation
WO2009020206A1 (en) * 2007-08-09 2009-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine
JP2010180100A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Silica structure, method for manufacturing the same, and heat insulator
JP2011052630A (en) * 2009-09-03 2011-03-17 Toyota Motor Corp Internal combustion engine
JP2011122509A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Method for manufacturing piston

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118446B1 (en) * 2016-09-13 2017-04-19 神戸セラミックス株式会社 Internal combustion engine component and manufacturing method thereof
JP2018044476A (en) * 2016-09-13 2018-03-22 神戸セラミックス株式会社 Internal combustion engine component parts and process of manufacture for the same
CN110461798A (en) * 2017-03-29 2019-11-15 日本碍子株式会社 Porous ceramic particle and porous ceramic structure

Similar Documents

Publication Publication Date Title
JP2011052630A (en) Internal combustion engine
US9683480B2 (en) Spark ignition type internal combustion engine
JP2012072746A (en) Heat-insulating structure
JP6321934B2 (en) Method for manufacturing a heat insulating layer on a member surface facing an engine combustion chamber
JP6467284B2 (en) Water recovery equipment
CN105736141B (en) The forming method and internal combustion engine of thermal isolation film
JP2010185291A (en) Heat insulating film and method of forming the same
RU2017126108A (en) METHOD FOR PRODUCING PARTS FROM COMPOSITE MATERIAL
CN106194483A (en) A kind of insulating piston
CN108178647A (en) A kind of preparation method of the heat-insulated porous mullite fiber ceramics of high-strength light
CN109266996B (en) Column layer dual-mode structure thermal barrier coating and preparation method thereof
JP5998696B2 (en) Engine combustion chamber insulation structure
JP2011225407A (en) Porous heat insulating member and internal combustion engine with the same
WO2011002005A1 (en) Mat material and exhaust gas treatment apparatus
CN102422028A (en) Compressor comprising a piston dummy
JP2013164028A (en) Piston
WO2018198786A1 (en) Internal-combustion engine piston, and method for controlling cooling of internal-combustion engine piston
JP2012072747A (en) Heat insulating structure
CN109648931A (en) Multilayer thermal barrier
JP2013177693A (en) Heat shielding film and method for forming the same
CN102926886A (en) Steel crown aluminum piston and manufacturing method thereof
JP5531594B2 (en) Piston manufacturing method
JP2013194559A (en) Compression self ignition engine
CN104744062A (en) Method for connecting ceramic and amorphous alloy and amorphous alloy-ceramic complex
JP2019013857A (en) Honeycomb filter intermediate product, honeycomb filter and manufacturing method of these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701