JP2011049231A - Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element - Google Patents

Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element Download PDF

Info

Publication number
JP2011049231A
JP2011049231A JP2009194443A JP2009194443A JP2011049231A JP 2011049231 A JP2011049231 A JP 2011049231A JP 2009194443 A JP2009194443 A JP 2009194443A JP 2009194443 A JP2009194443 A JP 2009194443A JP 2011049231 A JP2011049231 A JP 2011049231A
Authority
JP
Japan
Prior art keywords
electrode
electrochemical element
metal oxide
electrode material
insulating metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194443A
Other languages
Japanese (ja)
Other versions
JP5287601B2 (en
Inventor
Yasuhiro Isshiki
康博 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2009194443A priority Critical patent/JP5287601B2/en
Publication of JP2011049231A publication Critical patent/JP2011049231A/en
Application granted granted Critical
Publication of JP5287601B2 publication Critical patent/JP5287601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing an electrochemical element electrode low in internal resistance with high coating efficiency. <P>SOLUTION: The method of manufacturing an electrode for electrochemical element includes: charging an electrode material including an electrode active material, a binder, a conductive aid and an insulating metal oxide; and supplying it to at least one surface of a current collector, thereby forming an electrode layer. The electrochemical element includes the electrode for electrochemical element obtained by the method. The surface charge amount C (μ×Q/g) of the insulating metal oxide is preferably within the range of 10≤¾C¾≤500. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気化学素子用電極の製造方法、これによって得られる電気化学素子用電極及びこの電極を備えた電気化学素子に関する。より詳しくは、電極厚みが薄くかつ均一で、内部抵抗を低減可能な電気化学素子用電極を生産性良く製造する製造方法、これによって得られる電気化学素子用電極及びこの電極を備えた電気化学素子に関する。   The present invention relates to a method for producing an electrode for an electrochemical element, an electrode for an electrochemical element obtained thereby, and an electrochemical element provided with this electrode. More specifically, a manufacturing method for manufacturing an electrode for an electrochemical element having a thin and uniform electrode thickness and capable of reducing internal resistance with high productivity, an electrode for an electrochemical element obtained thereby, and an electrochemical element provided with the electrode About.

リチウムイオン二次電池や電気二重層キャパシタは、エネルギーの環境問題や資源問題から、分散電源やハイブリッド自動車などの大型電源としての応用が期待されている。しかしながら、これらの電気化学素子を大電源として応用するためには、内部抵抗を低減し、大電流放電時のエネルギー損失を小さくする必要がある。   Lithium ion secondary batteries and electric double layer capacitors are expected to be applied as large power supplies such as distributed power supplies and hybrid vehicles due to environmental problems and resource problems of energy. However, in order to apply these electrochemical elements as a large power source, it is necessary to reduce internal resistance and energy loss during large current discharge.

内部抵抗の低減のためには、電極厚みを薄くかつ均一にすることが一般的に行われており、薄膜電極を生産性良く製造することが求められている。   In order to reduce internal resistance, it is generally performed to make the electrode thickness thin and uniform, and it is required to manufacture a thin film electrode with high productivity.

電極の製造方法としては、電極活物質、結着剤などを含む電極材料をスラリーとし、集電体に塗布、乾燥する方法;電極材料を、混練して、圧延ロールにて目標の厚みまで延展する方法;電極材料をそのまま、あるいは複合粒子状にして加圧成形する方法などが挙げられる。この中でも電極材料を加圧成形する方法は、生産性の点で好ましく、そのための電極材料の供給方法が様々提案されている。   As an electrode manufacturing method, an electrode material containing an electrode active material, a binder, etc. is made into a slurry, and applied to a current collector and dried; the electrode material is kneaded and extended to a target thickness with a rolling roll. A method of pressure forming the electrode material as it is or in the form of composite particles. Among these, the method of pressure-molding the electrode material is preferable in terms of productivity, and various methods for supplying the electrode material have been proposed.

電極材料の供給方法として電極材料を帯電させて、静電的に付着させるという方法がある。この方法は、薄く均等に電極材料を供給でき、付着しなかった電極材料を回収して再利用できる可能性があり、生産性の面でも優れている。   As a method for supplying the electrode material, there is a method in which the electrode material is charged and electrostatically attached. In this method, the electrode material can be supplied thinly and evenly, and the electrode material that has not adhered can be recovered and reused, which is excellent in terms of productivity.

電極材料を帯電させる方法としては、電極材料を摩擦により帯電させる方法や、コロナ放電を利用し電極材料に直接電圧を印加して帯電させる方法が挙げられる。   Examples of the method of charging the electrode material include a method of charging the electrode material by friction, and a method of charging by directly applying a voltage to the electrode material using corona discharge.

例えば特許文献1には、結着剤および電極活物質を含む粉末状電極材料を集電体上に供給し、その粉末状電極材料を加熱することにより、前記集電体上に電気化学デバイス用電極を形成する方法が開示されている。そして、粉末状電極材料を集電体上に供給する方法として、静電吹き付け法や静電流動浸漬法など静電気により付着させる方法が例示されている。この方法によれば、電気化学デバイス用電極を連続的に量産することが可能とされている。
また、特許文献2には、集電体の表面に電極活物質、導電助剤および結着剤からなる活物質層を、粉体塗装法により形成することを特徴とする電極の製造方法が開示されている。粉体塗装法として、静電力により被処理物に付着させる電界流動静電塗装法が例示されている。この方法によれば膜厚精度が高く負荷特性の良い活物質層を形成することができるとされている。
また、特許文献3には、帯電体の表面を帯電させる帯電工程と、帯電体の表面上に活性炭粉末と熱硬化性樹脂とを含む電極用粉体原料を静電的に付着させる静電付着工程と、該静電付着工程において前記帯電体表面に付着させられた電極用粉体原料を薄紙や有機繊維材料から成る基体上に転写する転写工程と、該転写工程により電極用粉体原料が転写された基体を加熱処理することにより該電極用粉体原料に含まれる熱硬化性樹脂を炭化させて前記活性炭粉末を結合させる炭化工程とを、含むことと特徴とする固体活性炭電極の製造方法が開示されている。そして、電極用粉体原料の表面改質剤としてコロイダルシリカ、酸化チタン、アルミナなどの微粒子を添加する方法が例示されている。この方法によれば極めて薄い固体活性炭電極を安定して製造できるとされている。
For example, in Patent Document 1, a powdered electrode material containing a binder and an electrode active material is supplied onto a current collector, and the powdered electrode material is heated, whereby an electrochemical device is used on the current collector. A method of forming an electrode is disclosed. And as a method for supplying the powdered electrode material onto the current collector, a method of adhering by static electricity such as an electrostatic spraying method or an electrostatic fluid immersion method is exemplified. According to this method, it is possible to continuously mass-produce electrodes for electrochemical devices.
Patent Document 2 discloses an electrode manufacturing method characterized in that an active material layer comprising an electrode active material, a conductive additive and a binder is formed on the surface of a current collector by a powder coating method. Has been. Examples of the powder coating method include an electric field flow electrostatic coating method in which an electrostatic force is applied to an object to be processed. According to this method, an active material layer having high film thickness accuracy and good load characteristics can be formed.
Patent Document 3 discloses a charging process for charging the surface of a charged body, and electrostatic adhesion for electrostatically attaching a powder material for an electrode including activated carbon powder and a thermosetting resin on the surface of the charged body. A transfer step of transferring the electrode powder raw material attached to the surface of the charged body in the electrostatic attachment step onto a substrate made of thin paper or an organic fiber material, and the electrode powder raw material by the transfer step A carbonization step of carbonizing a thermosetting resin contained in the electrode powder raw material by heat-treating the transferred substrate to bond the activated carbon powder, and a method for producing a solid activated carbon electrode, Is disclosed. And the method of adding microparticles | fine-particles, such as colloidal silica, a titanium oxide, an alumina, as a surface modifier of the powder raw material for electrodes is illustrated. According to this method, it is said that an extremely thin solid activated carbon electrode can be manufactured stably.

国際公開2004/077467号公報International Publication No. 2004/077467 特開2001−351616号公報JP 2001-351616 A 特開2001−223142号公報JP 2001-223142 A

薄膜電極を生産性良く製造するための課題として、連続的に安定した電極材料の供給が求められる。このような課題に対して、電極材料を静電的に供給する方法は有効である。しかしながら、電極材料を静電的に供給する場合、塗着効率の向上は生産性の面で重要である。このような課題に対して、特許文献1および特許文献2に記載のような方法では塗着効率を十分に高く出来ないという問題があった。
また、特許文献3に記載の方法では帯電工程と、静電付着工程と、転写工程と、炭化工程という複数の工程を有しているため塗着効率を十分に高くできない問題があった。
従って本発明は、高い塗着効率で安定して電気化学素子用電極を製造する方法を提供することを目的とする。
As a problem for manufacturing a thin film electrode with high productivity, it is required to continuously supply a stable electrode material. For such a problem, a method of electrostatically supplying an electrode material is effective. However, when the electrode material is supplied electrostatically, improvement of the coating efficiency is important in terms of productivity. With respect to such a problem, there has been a problem that the coating efficiency cannot be sufficiently increased by the methods described in Patent Document 1 and Patent Document 2.
Further, the method described in Patent Document 3 has a problem that the coating efficiency cannot be sufficiently increased because it includes a plurality of steps of a charging step, an electrostatic adhesion step, a transfer step, and a carbonization step.
Therefore, an object of this invention is to provide the method of manufacturing the electrode for electrochemical elements stably with high coating efficiency.

本発明者は、上記課題に対して鋭意検討の結果、電極活物質、結着剤、導電助剤及び絶縁性金属酸化物を含んでなる電極材料を、帯電させ、集電体上の少なくとも一面上に供給して電極層を形成させることにより、電極材料を効率良くかつ均一に帯電させることができるので、電極材料を集電体上に均一な厚みでかつ効率良く供給することができ、長時間安定して電気化学素子用電極の製造が可能となることを見出し、これらの知見に基づき以下の本発明を完成させるに至った。   As a result of earnest studies on the above problems, the present inventor has charged an electrode material comprising an electrode active material, a binder, a conductive additive and an insulating metal oxide, and has at least one surface on the current collector. Since the electrode material can be efficiently and uniformly charged by supplying the electrode layer to the upper surface, the electrode material can be efficiently supplied to the current collector in a uniform thickness and long. The inventors have found that it is possible to manufacture an electrode for an electrochemical element with time stability, and have completed the following present invention based on these findings.

かくして本発明によれば、電極活物質、結着剤、導電助剤及び絶縁性金属酸化物を含んでなる電極材料を、帯電させ、集電体上の少なくとも一面上に供給することにより電極層を形成させることを特徴とする電気化学素子用電極の製造方法が提供される。
本発明の電気化学素子用電極の製造方法において、絶縁性金属酸化物の表面帯電量C(μ・クーロン/g)が、10≦|C|≦500の範囲にあることが好ましい。
また、本発明の電気化学素子用電極製造方法において、絶縁性金属酸化物が表面処理されていることが好ましい。
更に、本発明の電気化学素子用電極の製造方法において、絶縁性金属酸化物の含有量が、電極活物質100重量部に対して、0.01〜20重量部の範囲内であることが好ましい。
更に、本発明の電気化学素子用電極の製造方法において、電極材料が複合粒子であることが好ましい。
更に、本発明の電気化学素子用電極の製造方法において、集電体が、金属であることが好ましい。
本発明によれば、前記製造方法により得られる電気化学素子用電極が提供される。
また、本発明によれば、前記電気化学素子用電極を用いてなる電気化学素子が提供される。
更に、本発明によれば、電気化学素子が電気二重層キャパシタであることが好ましい。
Thus, according to the present invention, an electrode material comprising an electrode active material, a binder, a conductive additive, and an insulating metal oxide is charged and supplied to at least one surface on the current collector. There is provided a method for producing an electrode for an electrochemical device, characterized in that
In the method for producing an electrode for an electrochemical element of the present invention, the surface charge amount C (μ · coulomb / g) of the insulating metal oxide is preferably in the range of 10 ≦ | C | ≦ 500.
In the method for producing an electrode for an electrochemical element of the present invention, the insulating metal oxide is preferably surface-treated.
Furthermore, in the method for producing an electrode for an electrochemical element of the present invention, the content of the insulating metal oxide is preferably in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the electrode active material. .
Furthermore, in the method for producing an electrode for an electrochemical element of the present invention, the electrode material is preferably composite particles.
Furthermore, in the method for producing an electrode for an electrochemical element of the present invention, the current collector is preferably a metal.
According to this invention, the electrode for electrochemical elements obtained by the said manufacturing method is provided.
Moreover, according to this invention, the electrochemical element formed using the said electrode for electrochemical elements is provided.
Furthermore, according to the present invention, the electrochemical element is preferably an electric double layer capacitor.

本発明によれば、電極材料が絶縁性金属酸化物を含むことにより、電極材料を効率良く、かつ均一に帯電させることができる。それによって、長時間安定して、集電体上に均一な厚みで、かつ効率良く電極材料を供給することが可能となり、その結果、厚みが均一で内部抵抗の低い電気化学素子用電極を生産性よく製造することが可能である。本発明は、特に電気二重層キャパシタ用電極、ハイブリットキャパシタ用電極、リチウムイオン二次電池用電極の製造方法として好適に用いることができる。   According to the present invention, since the electrode material contains an insulating metal oxide, the electrode material can be charged efficiently and uniformly. As a result, the electrode material can be efficiently supplied with a uniform thickness on the current collector for a long period of time, and as a result, an electrode for an electrochemical element having a uniform thickness and a low internal resistance is produced. It is possible to manufacture with good performance. The present invention can be suitably used particularly as a method for producing an electrode for an electric double layer capacitor, an electrode for a hybrid capacitor, and an electrode for a lithium ion secondary battery.

本発明の電気化学素子用電極の製造方法は、電極活物質、結着剤、導電助剤及び絶縁性金属酸化物を含んでなる電極材料を、帯電させ、集電体上の少なくとも一面上に供給することにより電極層を形成させることを特徴とする。   In the method for producing an electrode for an electrochemical element of the present invention, an electrode material comprising an electrode active material, a binder, a conductive additive, and an insulating metal oxide is charged, on at least one surface on a current collector. An electrode layer is formed by supplying.

<電極材料>
本発明に用いる電極材料とは、電極活物質、導電助剤、結着剤、絶縁性金属酸化物、及びその他の電極を構成するのに必要な材料であって、通常は固体粒子状の形態をなしているものを言う。
<Electrode material>
The electrode material used in the present invention is an electrode active material, a conductive additive, a binder, an insulating metal oxide, and other materials necessary for constituting an electrode, and is usually in the form of solid particles. Say what you are doing.

(電極活物質)
本発明の製造方法により得られる電気化学素子用電極に用いる電極活物質は、電極が利用される電気化学素子に応じて選択すればよい。
(Electrode active material)
What is necessary is just to select the electrode active material used for the electrode for electrochemical elements obtained by the manufacturing method of this invention according to the electrochemical element in which an electrode is utilized.

本発明の製造方法により得られる電気化学素子用電極を、電気二重層キャパシタ用電極やハイブリッドキャパシタの正極用電極に用いる場合には、電極活物質としては、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。   When the electrode for an electrochemical element obtained by the production method of the present invention is used for an electrode for an electric double layer capacitor or a positive electrode for a hybrid capacitor, an allotrope of carbon is usually used as the electrode active material. Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used. A preferred electrode active material is activated carbon, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.

本発明の製造方法により得られる電気化学素子用電極を、リチウムイオン二次電池の正極用電極に用いる場合においては、電極活物質としては、具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化物が例示される。さらに、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子が挙げられる。好ましくは、リチウム含有複合金属酸化物である。 In the case where the electrode for an electrochemical element obtained by the production method of the present invention is used as a positive electrode for a lithium ion secondary battery, specifically, as an electrode active material, LiCoO 2 , LiNiO 2 , LiMnO 2 , Lithium-containing composite metal oxides such as LiMn 2 O 4 , LiFePO 4 and LiFeVO 4 ; transition metal sulfides such as TiS 2 , TiS 3 and amorphous MoS 3 ; Cu 2 V 2 O 3 and amorphous V 2 O · P 2 O 5, transition metal oxides such as MoO 3, V 2 O 5, V 6 O 13 and the like. Furthermore, conductive polymers such as polyacetylene and poly-p-phenylene are listed. Preferred is a lithium-containing composite metal oxide.

本発明の製造方法により得られる電気化学素子用電極を、リチウムイオン二次電池の負極用電極やハイブリッドキャパシタの負極用電極に用いる場合には、電極活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;リチウムと合金化可能なSi、Sn、Sb、Al、ZnおよびWなどが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性炭素質材料である。   When the electrode for an electrochemical element obtained by the production method of the present invention is used for a negative electrode for a lithium ion secondary battery or a negative electrode for a hybrid capacitor, the electrode active material may be amorphous carbon, graphite, natural graphite. , Mesocarbon microbeads (MCMB), and carbonaceous materials such as pitch-based carbon fibers; conductive polymers such as polyacene; Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium. Crystalline carbonaceous materials such as graphite, natural graphite, and mesocarbon microbeads (MCMB) are preferable.

本発明に用いる電極活物質の体積平均粒子径は、通常、0.1〜100μm、好ましくは1〜50μm、より好ましくは3〜20μmである。これらの電極活物質は、単独でまたは二種類以上を組み合わせて用いることが出来る。   The volume average particle diameter of the electrode active material used in the present invention is usually 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 3 to 20 μm. These electrode active materials can be used alone or in combination of two or more.

(導電助剤)
本発明に用いる導電助剤は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
(Conductive aid)
The conductive auxiliary agent used in the present invention is composed of an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer, and specifically includes furnace black, acetylene black, and kettle. Examples thereof include conductive carbon black such as chain black (registered trademark of Akzo Nobel Chemicals Besloten Fennaut Shap). Among these, acetylene black and furnace black are preferable.

本発明に用いる導電助剤の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は、通常、0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmである。導電助剤の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電助剤は、単独でまたは二種類以上を組み合わせて用いることができる。導電助剤の量は、電極活物質100重量部に対して通常0.1〜50重量部、好ましくは0.5〜15重量部、より好ましくは1〜10重量部の範囲である。導電助剤の量がこの範囲にあると、得られる電気化学素子用電極を使用した電気化学素子の容量を高く且つ内部抵抗を低くすることができる。   The volume average particle diameter of the conductive auxiliary agent used in the present invention is preferably smaller than the volume average particle diameter of the electrode active material, and the range is usually 0.001 to 10 μm, preferably 0.05 to 5 μm. Preferably it is 0.01-1 micrometer. When the volume average particle diameter of the conductive additive is within this range, high conductivity can be obtained with a smaller amount of use. These conductive assistants can be used alone or in combination of two or more. The amount of the conductive assistant is usually 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When the amount of the conductive additive is within this range, the capacity of the electrochemical device using the obtained electrochemical device electrode can be increased and the internal resistance can be decreased.

(結着剤)
本発明に用いる結着剤は、電極活物質や導電助剤を相互に結着させることができる化合物であれば特に制限はない。その種類としては、フッ素系重合体、ジエン系重合体、アクリレート系重合体、セルロース系ポリマーなどが挙げられる。これらの中でも、ジエン系重合体、アクリレート系重合体または、セルロース系ポリマーが好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点で、より好ましい。また、電極材料を帯電させる方法が、フッ素含有基を有する物質との摩擦帯電である場合は、帯電列の関係を利用することにより、後述する帯電量を調整することができる。例えば、アクリレート系重合体は、ジエン系重合体よりも帯電列上はプラスに帯電し易いので、帯電量を大きくすることが出来る点で好ましい。
(Binder)
The binder used in the present invention is not particularly limited as long as it is a compound that can bind the electrode active material and the conductive additive to each other. Examples of the type include fluorine-based polymers, diene-based polymers, acrylate-based polymers, and cellulose-based polymers. Among these, a diene polymer, an acrylate polymer, or a cellulose polymer is preferable, and the diene polymer or the acrylate polymer can increase the withstand voltage and increase the energy density of the electrochemical device. It is more preferable at the point which can be performed. In addition, when the method of charging the electrode material is frictional charging with a substance having a fluorine-containing group, the charge amount described later can be adjusted by utilizing the relationship of the charge train. For example, an acrylate polymer is preferable in that the charge amount can be increased because it is easier to be positively charged on a charged column than a diene polymer.

ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体電極材料における共役ジエンの割合は、通常、30重量%以上、好ましくは40重量%以上、より好ましくは50重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;スチレン・ブタジエン・メタクリル酸共重合体や、スチレン・ブタジエン・イタコン酸共重合体などの芳香族ビニル・共役ジエン・カルボン酸基含有単量体の共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。   The diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof. The proportion of the conjugated diene in the monomer electrode material is usually 30% by weight or more, preferably 40% by weight or more, more preferably 50% by weight or more. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Copolymers of styrene / butadiene / methacrylic acid copolymer and aromatic vinyl / conjugated diene / carboxylic acid group-containing monomers such as styrene / butadiene / itaconic acid copolymer; acrylonitrile / butadiene copolymer (NBR) And vinyl cyanide / conjugated diene copolymers such as hydrogenated SBR and hydrogenated NBR.

アクリレート系重合体は、一般式(1):CH=CR−COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物の単独重合体、または前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる重合体である。一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリルなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート系重合体中の一般式(1)で表される化合物由来の単量体単位の割合は、通常50重量%以上、好ましくは70重量%以上である。前記一般式(1)で表される化合物由来の単量体単位の割合が前記範囲であるアクリレート系重合体を用いると、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗を小さくできる。 The acrylate polymer is represented by the general formula (1): CH 2 = CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group or a cycloalkyl group). Or a polymer obtained by polymerizing a monomer mixture containing the compound represented by the general formula (1). Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylates such as isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate; ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n methacrylate -Butyl, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, isodecyl methacrylate, methacrylate Le lauryl, tridecyl methacrylate include methacrylates such as such as stearyl methacrylate. Among these, acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the obtained electrode can be improved. The ratio of the monomer unit derived from the compound represented by the general formula (1) in the acrylate polymer is usually 50% by weight or more, preferably 70% by weight or more. When an acrylate polymer in which the proportion of the monomer unit derived from the compound represented by the general formula (1) is within the above range is used, the heat resistance is high and the internal resistance of the obtained electrode for an electrochemical device is reduced. it can.

前記アクリレート系重合体には、一般式(1)で表される化合物の他に、共重合可能なカルボン酸基含有単量体を用いることができる。カルボン酸基含有単量体の具体例としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体;マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体が挙げられる。なかでも、二塩基酸含有単量体が好ましく、集電体との結着性を高め、電極強度を向上できる点で、イタコン酸が特に好ましい。これらの一塩基酸含有単量体、二塩基酸含有単量体は、それぞれ単独でまたは2種以上を組み合わせて、使用できる。共重合の際の単量体混合物中のカルボン酸基含有単量体の量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。カルボン酸基含有単量体の量がこの範囲であると、集電体との結着性に優れ、得られる電極強度が高まる。   In addition to the compound represented by the general formula (1), a copolymerizable carboxylic acid group-containing monomer can be used for the acrylate polymer. Specific examples of the carboxylic acid group-containing monomer include monobasic acid-containing monomers such as acrylic acid and methacrylic acid; dibasic acid-containing monomers such as maleic acid, fumaric acid, and itaconic acid. Among these, a dibasic acid-containing monomer is preferable, and itaconic acid is particularly preferable in terms of enhancing the binding property with the current collector and improving the electrode strength. These monobasic acid-containing monomers and dibasic acid-containing monomers can be used alone or in combination of two or more. The amount of the carboxylic acid group-containing monomer in the monomer mixture at the time of copolymerization is usually 0.1 to 50 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the compound represented by the general formula (1). Is in the range of 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight. When the amount of the carboxylic acid group-containing monomer is within this range, the binding property with the current collector is excellent, and the obtained electrode strength is increased.

前記アクリレート系重合体には、一般式(1)で表される化合物の他に、共重合可能なニトリル基含有単量体を用いることができる。ニトリル基含有単量体の具体例としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、中でもアクリロニトリルが、集電体との結着性が高まり、電極強度が向上できる点で好ましい。共重合の際の単量体混合物中のアクリロニトリルの量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜40重量部、好ましくは0.5〜30重量部、より好ましくは1〜20重量部の範囲である。アクリロニトリルの量がこの範囲であると、集電体との結着性に優れ、得られる電極強度が高まる。   In addition to the compound represented by the general formula (1), a copolymerizable nitrile group-containing monomer can be used for the acrylate polymer. Specific examples of the nitrile group-containing monomer include acrylonitrile, methacrylonitrile, and the like. Among them, acrylonitrile is preferable in that the binding strength with the current collector is increased and the electrode strength can be improved. The amount of acrylonitrile in the monomer mixture at the time of copolymerization is usually 0.1 to 40 parts by weight, preferably 0.5 to 30 parts per 100 parts by weight of the compound represented by the general formula (1). Part by weight, more preferably in the range of 1 to 20 parts by weight. When the amount of acrylonitrile is within this range, the binding property with the current collector is excellent, and the obtained electrode strength is increased.

前記アクリレート系重合体には、前記単量体以外に、アルキルスチレン系モノマーやビニルエステル類などを共重合させたものであってもよい。アルキルスチレン系モノマーとしては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレンおよびオクチルスチレン等のアルキルスチレン系モノマーが挙げられる。ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル、n‐酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、パーサティック酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、安息香酸ビニル、p−t−ブチル安息香酸ビニル、サリチル酸ビニル等のビニルエステル類が挙げることができる。   The acrylate polymer may be a copolymer obtained by copolymerizing an alkyl styrene monomer or vinyl ester in addition to the monomer. Examples of the alkyl styrene monomer include alkyl styrene monomers such as styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene and octyl styrene. . Vinyl esters include vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl persate, vinyl laurate, vinyl stearate, vinyl benzoate, pt -Vinyl esters such as vinyl butylbenzoate and vinyl salicylate can be mentioned.

セルロース系ポリマーとは、セルロースのヒドロキシル基の一部もしくは全て置換させたセルロースであり、具体的には、ニトロセルロース、アセチルセルロース、セルロースエーテルなどが挙げられる。これらの中でもカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ならびにこれらアンモニウム塩またはアルカリ金属塩などのセルロースエーテルが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が、集電体との結着性が高まり、電極強度が向上できる点でより好ましい。   The cellulose polymer is cellulose in which part or all of the hydroxyl groups of cellulose are substituted, and specific examples include nitrocellulose, acetylcellulose, and cellulose ether. Among these, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and cellulose ethers such as ammonium salts or alkali metal salts thereof are preferable, and carboxymethyl cellulose or ammonium salts or alkali metal salts thereof have binding properties with the current collector. It is more preferable in that the electrode strength can be improved.

本発明に用いる結着剤の量は、電極活物質100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。結着剤の量が前記範囲にあると、得られる電極層と集電体との密着性を充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。また、結着剤の量を多くすると、後述する電極材料の帯電量を大きくすることができ、結着剤の量を少なくすると電極材料の帯電量を小さくすることができる。   The amount of the binder used in the present invention is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range. When the amount of the binder is in the above range, sufficient adhesion between the obtained electrode layer and the current collector can be secured, the capacity of the electrochemical device can be increased, and the internal resistance can be decreased. Further, when the amount of the binder is increased, the charge amount of the electrode material described later can be increased, and when the amount of the binder is decreased, the charge amount of the electrode material can be decreased.

(絶縁性金属酸化物)
本発明に用いる絶縁性金属酸化物は、絶縁性である金属酸化物であれば特に制限はない。絶縁性とはその物質の体積固有抵抗値が、通常1.0×10Ω・cm以上、好ましくは1.0×10Ω・cm以上、特に好ましくは1.0×10Ω・cm以上を示すことである。金属酸化物の体積固有抵抗値がこの範囲内にあるとき、絶縁性金属酸化物の帯電量および帯電安定性を向上させることができる。
(Insulating metal oxide)
The insulating metal oxide used in the present invention is not particularly limited as long as it is an insulating metal oxide. Insulation means that the volume resistivity of the substance is usually 1.0 × 10 6 Ω · cm or more, preferably 1.0 × 10 8 Ω · cm or more, and particularly preferably 1.0 × 10 9 Ω · cm. It is to show the above. When the volume resistivity value of the metal oxide is within this range, the charge amount and charging stability of the insulating metal oxide can be improved.

本発明に用いる絶縁性金属酸化物としては、ケイ素、アルミニウム、チタン、亜鉛、錫、カルシウム、マグネシウム、コバルト、ニッケル、クロム、鉄、バナジウム、ニオブ、タングステン、モリブデン、バリウム、ジルコニウム、セリウム、イットリウム、ランタン、ストロンチウム、および鉛からなる群より選択される1種以上の金属を含む絶縁性金属酸化物より選択される。これらの絶縁性金属酸化物は、それぞれ単独でまたは2種以上を組み合わせて、使用することができる。これらの中では二酸化ケイ素、酸化アルミニウム又は酸化チタンが好ましく、二酸化ケイ素が電気化学素子の寿命特性を向上させることができる点で特に好ましい。   Examples of the insulating metal oxide used in the present invention include silicon, aluminum, titanium, zinc, tin, calcium, magnesium, cobalt, nickel, chromium, iron, vanadium, niobium, tungsten, molybdenum, barium, zirconium, cerium, yttrium, It is selected from insulating metal oxides containing one or more metals selected from the group consisting of lanthanum, strontium, and lead. These insulating metal oxides can be used alone or in combination of two or more. Among these, silicon dioxide, aluminum oxide, or titanium oxide is preferable, and silicon dioxide is particularly preferable because it can improve the life characteristics of the electrochemical device.

本発明に用いる絶縁性金属酸化物の表面帯電量C(μ・クーロン/g)は、通常、10≦|C|≦500、好ましくは100≦|C|≦500、特に好ましくは150≦|C|≦500である。本発明における表面帯電量とは、ブローオフ帯電量測定装置(京セラケミカル製、機器名「TB−200」もしくは「TB−203」)で測定された、鉄粉キャリアに対する帯電量である。絶縁性金属酸化物の表面帯電量Cが、この範囲内にあると、電極材料の帯電量を十分に向上させることができる。   The surface charge amount C (μ · coulomb / g) of the insulating metal oxide used in the present invention is usually 10 ≦ | C | ≦ 500, preferably 100 ≦ | C | ≦ 500, particularly preferably 150 ≦ | C. | ≦ 500. The surface charge amount in the present invention is a charge amount with respect to an iron powder carrier measured by a blow-off charge amount measuring device (manufactured by Kyocera Chemical, equipment name “TB-200” or “TB-203”). When the surface charge amount C of the insulating metal oxide is within this range, the charge amount of the electrode material can be sufficiently improved.

本発明に用いる絶縁性金属酸化物は表面処理されていることが好ましい。絶縁性金属酸化物の表面処理に用いる表面処理剤は、特に制限されず、シランカップリング剤、チタンカップリング剤、脂肪酸、脂肪酸金属塩及びシリコーンオイル等が挙げられ、この中でもシランカップリング剤、シリコーンオイル等が絶縁性金属酸化物の表面帯電量を調節、帯電安定性を向上できる点で好ましい。
シランカップリング剤としては、例えば、ヘキサメチルジシラザン等のジシラザン;下記式(2に示す環状シラザン;トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ブチルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、及びビニルトリアセトキシシラン等のアルキルシラン化合物;γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、及びN−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノシラン化合物;等が挙げられる。シリコーンオイルとしては、ポリジメチルシロキサン、ポリメチルハイドロジェンシロキサン、ポリメチルフェニルシロキサン、及びアミノ変性シリコーンオイル等が挙げられる。表面処理剤は、上記のうち、1種あるいは2種以上含有してもよく、シリコーンオイル、またはシランカップリング剤を含むことが、絶縁性金属酸化物の表面帯電量を向上させることができる点で好ましい。また、良好な正帯電性を持つ絶縁性金属酸化物が得られ易いことから、アミノシラン化合物やアミノ変性シリコーンオイル等のアミノ基を含有する化合物を用いることがさらに好ましく、アミノ変性シリコーンオイルを用いることが特に好ましい。
The insulating metal oxide used in the present invention is preferably surface-treated. The surface treatment agent used for the surface treatment of the insulating metal oxide is not particularly limited, and examples thereof include silane coupling agents, titanium coupling agents, fatty acids, fatty acid metal salts, and silicone oils. Among these, silane coupling agents, Silicone oil or the like is preferable in that it can adjust the surface charge amount of the insulating metal oxide and improve the charging stability.
Examples of the silane coupling agent include disilazane such as hexamethyldisilazane; cyclic silazane represented by the following formula (2): trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, and benzyldimethylchloro. Silane, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n- Hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltri Alkylsilane compounds such as toxisilane and vinyltriacetoxysilane; γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, N -(2-aminoethyl) 3-aminopropyltrimethoxysilane, and aminosilane compounds such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane; , Polydimethylsiloxane, polymethylhydrogensiloxane, polymethylphenylsiloxane, and amino-modified silicone oil, etc. The surface treatment agent may contain one or more of the above, silicone oil, Or silane It is preferable that it contains a pulling agent in terms of improving the surface charge amount of the insulating metal oxide, and since an insulating metal oxide having good positive chargeability is easily obtained, It is more preferable to use an amino group-containing compound such as amino-modified silicone oil, and it is particularly preferable to use amino-modified silicone oil.

Figure 2011049231
Figure 2011049231

(式中、R及びRは、水素、ハロゲン、アルキル、アルコキシおよびアリールオキシからなる郡から独立に選ばれ、Rは、水素、(CH)nCH、C(O)(CH)nCH,C(O)NH、C(O)NH(CH)nCH、およびC(O)N[(CH)nCH](CH)mCH(式中、nおよびmは、0〜3の整数である)、Rは、[(CH)a(CH)b(CH)c](式中、X、YおよびZは、水素、ハロゲン、アルキル、アルコキシおよびアリールオキシからなる群から独立に選ばれ、a、bおよびcは、a+b+cが2〜6の間の整数に等しいという条件を満たす0〜6の整数である)により表される。) Wherein R 1 and R 2 are independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy and aryloxy, R 3 is hydrogen, (CH 2 ) nCH 3 , C (O) (CH 2 ) nCH 3, C (O) NH 2, C (O) NH (CH 2) nCH 3, and C (O) n [(CH 2) nCH 3] (CH 2) mCH 3 ( wherein, n and m Is an integer from 0 to 3, and R 4 is [(CH 2 ) a (CH X ) b (CH Y ) c] (where X, Y and Z are hydrogen, halogen, alkyl, alkoxy, And a, b and c are integers from 0 to 6 satisfying the condition that a + b + c is equal to an integer between 2 and 6).

本発明において、絶縁性金属酸化物を表面処理する方法としては、一般的な方法を用いることができ、乾式法、湿式法が挙げられる。具体的には、1)絶縁性金属酸化物を高速で撹拌しながら、上記表面処理剤を滴下または噴霧する方法;2)上記表面処理剤を有機溶媒に溶解し、処理剤を含む有機溶媒を撹拌しながら絶縁性金属酸化物を添加する方法等が挙げられる。前記1)の方法の場合、表面処理剤を有機溶媒等で希釈して用いてもよい。   In the present invention, a general method can be used as a method for surface-treating the insulating metal oxide, and examples thereof include a dry method and a wet method. Specifically, 1) A method in which the surface treatment agent is dropped or sprayed while stirring the insulating metal oxide at a high speed; 2) The surface treatment agent is dissolved in an organic solvent, and an organic solvent containing the treatment agent is removed. Examples thereof include a method of adding an insulating metal oxide while stirring. In the case of the method 1), the surface treatment agent may be diluted with an organic solvent or the like.

本発明に用いる絶縁性金属酸化物の使用量は、特に制限されないが、電極活物質100重量部に対して、好ましくは0.01〜20重量部、より好ましくは0.05〜10重量部、特に好ましくは0.1〜5重量部である。絶縁性金属酸化物の量が前記範囲にあると、電極材料の帯電量を向上させることができ、塗着効率を向上させることができる。
前記絶縁性金属酸化物を含有させる方法としては、特に制限されず、絶縁性金属酸化物と、他の電極材料とをヘンシェルミキサーなどの混合機に仕込み攪拌する方法;後述する噴霧乾燥造粒法において複合粒子を製造する場合において、絶縁性金属酸化物を、後述する電極活物質と、結着剤と、導電助剤と、必要に応じて分散剤およびその他の成分とを溶媒中で混合して得られる分散液中に溶解または分散させる方法等が挙げられるが、中でも、絶縁性金属酸化物と他の電極材料とをヘンシェルミキサーなどの混合機に仕込み攪拌する方法が好ましく、電極活物質を含む複合粒子と絶縁性金属酸化物とをヘンシェルミキサーなどの混合機に仕込み攪拌する方法がより好ましい。絶縁性金属酸化物を含有させる方法として、電極活物質を含む複合粒子と絶縁性金属酸化物とをヘンシェルミキサーなどの混合機に仕込み攪拌する方法を用いることにより、電極活物質を含む複合粒子の表面に絶縁性金属酸化物を付着させることができる。
The amount of the insulating metal oxide used in the present invention is not particularly limited, but is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, with respect to 100 parts by weight of the electrode active material. Particularly preferred is 0.1 to 5 parts by weight. When the amount of the insulating metal oxide is in the above range, the charge amount of the electrode material can be improved, and the coating efficiency can be improved.
The method for containing the insulating metal oxide is not particularly limited, and the insulating metal oxide and another electrode material are charged into a mixer such as a Henschel mixer and stirred; spray drying granulation method to be described later In the case of producing composite particles, an insulating metal oxide is mixed with an electrode active material, a binder, a conductive aid, and a dispersant and other components as necessary in a solvent. In particular, a method of dissolving or dispersing in the obtained dispersion liquid is preferable. Among them, a method in which an insulating metal oxide and another electrode material are charged into a mixer such as a Henschel mixer and stirred is preferable. More preferably, the composite particles and the insulating metal oxide are mixed and charged in a mixer such as a Henschel mixer. As a method of containing an insulating metal oxide, by using a method in which composite particles containing an electrode active material and an insulating metal oxide are charged into a mixer such as a Henschel mixer and stirred, the composite particles containing the electrode active material are mixed. An insulating metal oxide can be deposited on the surface.

本発明の製造方法においては、電極材料が、その他の電極を構成するのに必要な以下のような材料を含有していてもよい。   In the production method of the present invention, the electrode material may contain the following materials necessary for constituting other electrodes.

(分散剤等)
分散剤とは後述するスラリーの溶媒に溶解させて用いられ、電極活物質、導電助剤等を溶媒に均一分散させするものである。
分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン;ポリカルボン酸;酸化スターチ、リン酸スターチ、カゼイン等の各種変性デンプン;キチン;キトサン誘導体;などが挙げられる。
これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。
(Dispersant etc.)
The dispersant is used by being dissolved in a slurry solvent, which will be described later, and uniformly dispersing the electrode active material, the conductive auxiliary agent, and the like in the solvent.
Specific examples of the dispersant include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof; poly (meth) acrylates such as sodium poly (meth) acrylate Polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone; polycarboxylic acid; various modified starches such as oxidized starch, phosphate starch, and casein; chitin; chitosan derivatives;
These dispersants can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.

分散剤の使用量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、電極活物質100重量部に対して、通常は0.1〜10重量部、好ましくは0.5〜5重量部、より好ましくは1〜4重量部の範囲である。分散剤を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。また、噴霧乾燥時のアトマイザーの詰まりを防止することができるので、噴霧乾燥を安定して連続的に行うことができる。   The amount of the dispersant used can be used within a range not impairing the effects of the present invention, and is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the electrode active material. It is 0.5-5 weight part, More preferably, it is the range of 1-4 weight part. By using a dispersing agent, sedimentation and aggregation of solid content in the slurry can be suppressed. Moreover, since the clogging of the atomizer at the time of spray drying can be prevented, spray drying can be performed stably and continuously.

その他の添加剤としては、例えば、界面活性剤がある。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオンなどの両性の界面活性剤が挙げられるが、中でもアニオン性もしくはノニオン性の界面活性剤で熱分解しやすいものが好ましい。   Examples of other additives include a surfactant. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable.

界面活性剤は単独で又は二種以上を組み合わせて用いることができる。界面活性剤の量は、格別な限定はないが、電極活物質100重量部に対して0〜50重量部、好ましくは0.1〜10重量部より好ましくは0.5〜5重量部の範囲である。   Surfactant can be used individually or in combination of 2 or more types. The amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is.

本発明に使用される電極材料は、上記電極活物質、導電助剤、結着剤、絶縁性金属酸化物を好適な成分として、必要に応じて分散剤、その他添加剤を含有してなる粒子形状のもの(以下、「複合粒子」ということがある)であることが好ましい。また、電極活物質、導電助剤、結着剤を含んでなる複合粒子の表面に絶縁性金属酸化物を外添した外添粒子であることがより好ましい。電極材料が外添粒子であることにより、異なる材料間での帯電性の差をなくすことができる点において好適である。   The electrode material used in the present invention contains the above electrode active material, conductive additive, binder, and insulating metal oxide as suitable components, and particles containing a dispersant and other additives as necessary. It is preferable to have a shape (hereinafter sometimes referred to as “composite particles”). Further, it is more preferable to use externally added particles in which an insulating metal oxide is externally added to the surface of a composite particle containing an electrode active material, a conductive additive, and a binder. When the electrode material is an externally added particle, it is preferable in that the difference in chargeability between different materials can be eliminated.

複合粒子の製造方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電助剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。
噴霧乾燥造粒法は、電極活物質と、結着剤と、導電助剤と、必要に応じて分散剤およびその他の成分とを溶媒中で混合して分散液とする工程、並びに、該分散液を噴霧乾燥して複合粒子を形成する工程を含む。具体的には、複合粒子の形成工程で、噴霧乾燥機を使用して上記分散液をアトマイザから噴霧し、噴霧された分散液を乾燥塔内部で乾燥することで、分散液中に含まれる電極活物質、結着剤およびその他の成分からなる球状の複合粒子が形成される。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の電気化学素子用電極を高い生産性で得ることができる。また、該電極の内部抵抗をより低減することができる。
The production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion type drying method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder and the conductive auxiliary agent are unevenly distributed near the surface can be easily obtained.
The spray-drying granulation method includes a step of mixing an electrode active material, a binder, a conductive additive, and, if necessary, a dispersant and other components in a solvent to form a dispersion, and the dispersion Spraying the liquid to form composite particles. Specifically, in the composite particle forming step, the dispersion liquid is sprayed from an atomizer using a spray dryer, and the sprayed dispersion liquid is dried inside a drying tower, whereby an electrode contained in the dispersion liquid Spherical composite particles composed of an active material, a binder, and other components are formed. When composite particles obtained by the spray drying granulation method are used, the electrode for an electrochemical element of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.

噴霧乾燥造粒法により複合粒子を製造する場合において、前記分散液を得るために用いられる溶媒は、特に限定されないが、分散剤を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水よりも沸点の低い有機溶媒と、水とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、結着剤の分散性または分散剤の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。   In the case of producing composite particles by spray drying granulation, the solvent used for obtaining the dispersion is not particularly limited, but a solvent capable of dissolving the dispersant is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like. Among these, alcohols are preferable as the organic solvent. When an organic solvent having a lower boiling point than water and water are used in combination, the drying rate can be increased during spray drying. Further, the dispersibility of the binder or the solubility of the dispersant varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity | liquidity of a slurry can be adjusted and production efficiency can be improved.

スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1〜50質量%、好ましくは5〜50質量%、より好ましくは10〜30質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤が均一に分散するため好適である。   The amount of the solvent used when preparing the slurry is an amount such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. . When the solid content concentration is in this range, the binder is preferably dispersed uniformly.

電極活物質、結着剤、導電助剤や分散剤などの他の成分を、溶媒に分散または溶解する方法または手順は特に限定きれず、例えば、溶媒に電極活物質、結着剤、導電助剤や分散剤などの他の成分を添加し混合する方法;溶媒に分散剤を溶解した後、溶媒に分散きせた結着剤(例えば、ラテックス)を添加して混合し、最後に電極活物質及び導電助剤を添加して混合する方法;溶媒に分散させた結着剤に電極活物質および導電助剤を添加して混合し、この電極材料に溶媒に溶解させた分散剤を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温室温〜80℃の範囲で、10分間〜数時間行う。   The method or procedure for dispersing or dissolving the other components such as the electrode active material, the binder, the conductive aid and the dispersant in the solvent is not particularly limited. For example, the electrode active material, the binder, the conductive aid are dissolved in the solvent. A method of adding and mixing other components such as an agent and a dispersant; after dissolving the dispersant in the solvent, a binder (for example, latex) dispersed in the solvent is added and mixed, and finally the electrode active material And a method of adding and mixing a conductive assistant; adding and mixing an electrode active material and a conductive assistant to a binder dispersed in a solvent, and adding a dispersant dissolved in the solvent to the electrode material. The method of mixing etc. is mentioned. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually performed at room temperature to room temperature to 80 ° C. for 10 minutes to several hours.

スラリーの粘度は、室温において、通常5〜3000mPa・s、好ましくは10〜1000mPa・s、より好ましくは15〜500mPa・sの範囲である。スラリーの粘度がこの範囲にあると、複合粒子の生産性を上げることができる。また、スラリーの粘度が低いほど、噴霧液滴が小さくなり、得られる複合粒子の体積平均粒子径が小さくなる。   The viscosity of the slurry is usually in the range of 5 to 3000 mPa · s, preferably 10 to 1000 mPa · s, more preferably 15 to 500 mPa · s at room temperature. When the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Further, the lower the viscosity of the slurry, the smaller the spray droplets, and the smaller the volume average particle diameter of the resulting composite particles.

次に、上記で得たスラリーを噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大ききに依存するが、通常は5,0000〜50,000rpm、好ましくは20,000〜45,000rpmである。円盤の回転速度が高いほど、噴霧液滴が小さくなり、得られる複合粒子の重量平均粒子径が小さくなる。回転円盤方式のアトマイザーとしては、ピン型とべーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成きれている。スラリーは噴霧盤中央から導入きれ、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。   Next, the slurry obtained above is spray-dried and granulated to obtain composite particles. Spray drying is performed by spraying the slurry in hot air and drying. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk method and a pressure method. The rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time. The rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 50,000 rpm, preferably 20,000 to 45,000 rpm. The higher the rotational speed of the disk, the smaller the spray droplets and the smaller the weight average particle diameter of the resulting composite particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It is made up of. Slurry can be introduced from the center of the spray plate, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.

噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80〜250℃、好ましくは100〜200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限きれず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧きれ熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。   The temperature of the slurry to be sprayed is usually room temperature, but may be heated to room temperature or higher. Moreover, the hot air temperature at the time of spray-drying is 80-250 degreeC normally, Preferably it is 100-200 degreeC. In spray drying, the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air blows down at the top of the drying tower, and the sprayed droplet and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.

本発明に好適に用いる複合粒子の重量平均粒子径は、通常0.1〜1,000μm、好ましくは5〜500μm、より好ましくは10〜100μmの範囲である。複合粒子の重量平均粒子径がこの範囲にあるとき、複合粒子が凝集を起こしにくく、重力に対して静電気力が大きくなるので好ましい。重量平均粒子径は、レーザ回折式粒度分布測定装置を用いて測定することができる。   The weight average particle diameter of the composite particles suitably used in the present invention is usually in the range of 0.1 to 1,000 μm, preferably 5 to 500 μm, more preferably 10 to 100 μm. When the weight average particle diameter of the composite particles is within this range, the composite particles are less prone to agglomerate, and electrostatic force against gravity is increased, which is preferable. The weight average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.

また、前記複合粒子は、球状であることが好ましい。前記複合粒子が球状であるか否かの評価は、複合粒子の短軸径をLs、長軸径をLlとしたときに(Ll−Ls)/{(Ls+Ll)/2}で算出される値(以下、「球状度」という。)により行う。ここで、短軸径Lsおよび長軸径Llは、反射型電子顕微鏡を用いて複合粒子を観察した写真像より測定される100ケの任意の複合粒子についての平均値である。この数値が小さいほど球状複合粒子が真球に近いことを示す。   The composite particles are preferably spherical. Evaluation of whether the composite particles are spherical or not is a value calculated by (Ll−Ls) / {(Ls + Ll) / 2} where Ls is the short axis diameter of the composite particles and Ll is the long axis diameter. (Hereinafter referred to as “sphericity”). Here, the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. The smaller this value, the closer the spherical composite particle is to a true sphere.

たとえば、上記写真像で正方形として観察される粒子は、上記球状度は34.4%と計算されるので、34.4%を超える球状度を示す複合粒子は、少なくとも球状とはいえない。複合粒子の球状度は、好ましくは20%以下であり、さらに好ましくは15%以下である。複合粒子の球状度が、前記範囲であることにより、この複合粒子からなる電極層を形成した電気化学素子用電極を備える電気化学素子の内部抵抗が低減し、出力特性を向上させることができる。   For example, the particle observed as a square in the photographic image has a sphericity of 34.4%, so that the composite particle having a sphericity exceeding 34.4% is not at least spherical. The sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less. When the sphericity of the composite particles is within the above range, the internal resistance of the electrochemical device including the electrode for an electrochemical device in which the electrode layer made of the composite particles is formed can be reduced, and the output characteristics can be improved.

上記の製造方法で得られた複合粒子は、必要に応じて粒子製造後の後処理を実施することもできる。具体例としては、複合粒子に上記の電極活物質、導電材、結着剤、分散材あるいはその他の添加剤等と混合することによって、粒子表面を改質して、複合粒子の流動性を向上または低下させる、連続加圧成形性を向上させる、複合粒子の電気伝導性を向上させる、複合粒子の平均帯電量を調整することなどができる。   The composite particles obtained by the above production method can be subjected to post-treatment after the production of the particles, if necessary. As a specific example, the particle surface is modified by mixing the above-mentioned electrode active material, conductive material, binder, dispersing agent or other additives into the composite particle, thereby improving the fluidity of the composite particle. Alternatively, it is possible to reduce, improve the continuous pressure moldability, improve the electrical conductivity of the composite particles, and adjust the average charge amount of the composite particles.

<集電体>
本発明に用いる集電体としては、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
<Current collector>
As the current collector used in the present invention, for example, a metal, carbon, a conductive polymer, or the like can be used, and a metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.

本発明に用いる集電体の形状は、特に制限されないが、通常、フィルム状またはシート状であり、シート状集電体は、空孔を有していても良い。また、シート状集電体はエキスパンドメタル、パンチングメタル、網状などの形状を有していても良い。空孔を有するシート状集電体を用いると、得られる電極の体積当りの容量を高くすることができる。シート状集電体が空孔を有する場合の空孔の割合は、好ましくは10〜79面積%、より好ましくは20〜60面積%である。   The shape of the current collector used in the present invention is not particularly limited, but is usually a film shape or a sheet shape, and the sheet current collector may have pores. Further, the sheet-like current collector may have a shape such as an expanded metal, a punching metal, or a net. When a sheet-like current collector having pores is used, the capacity per volume of the obtained electrode can be increased. When the sheet-like current collector has holes, the ratio of the holes is preferably 10 to 79 area%, more preferably 20 to 60 area%.

集電体の厚みは、使用目的に応じて適宜選択されるが、通常は1〜200μm、好ましくは5〜100μm、より好ましくは10〜50μmである。集電体の厚みがこの範囲内にあると、電子の移動抵抗を低減でき、内部抵抗が低減できる。   Although the thickness of a collector is suitably selected according to the intended purpose, it is 1-200 micrometers normally, Preferably it is 5-100 micrometers, More preferably, it is 10-50 micrometers. When the thickness of the current collector is within this range, the resistance of electron movement can be reduced, and the internal resistance can be reduced.

本発明では、集電体の少なくとも一面上に接着剤層が形成されていることが好ましい。接着剤層は、電極層と集電体との界面抵抗を小さく出来ることから、導電性のものがより好ましい。接着剤層は集電体の表面に接着剤を塗布、乾燥することで形成することができる。
接着剤は、導電助剤の粉末と結着剤と、必要に応じ添加される分散剤とを、水または有機溶媒中に分散させたものである。導電性接着剤に用いられる導電助剤としては、銀、ニッケル、金、黒鉛、アセチレンブラック、ケッチェンブラックなどが挙げられ、好ましくは、黒鉛、アセチレンブラックである。導電性接着剤に用いられる結着剤としては、上述する電極層を構成する結着剤として例示したものをいずれも使用できる。また、水ガラス、エポキシ樹脂、ポリアミドイミド樹脂、ウレタン樹脂等も用いることができ、これらはそれぞれ単独でまたは2種以上を組み合わせて使用できる。
導電性接着剤に用いられる結着剤としては、アクリレート系重合体、カルボキシメチルセルロースのアンモニウム塩もしくはアルカリ金属塩、水ガラス、またはポリアミドイミド樹脂が好ましい。また、導電性接着剤に用いられる分散剤としては、上記本発明の製造方法の電極層に使用してもよい分散剤、または界面活性剤を用いることができる。
本発明に用いる接着剤層の形成方法は、特に制限されないが、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り、静電塗装法などによって、集電体上に形成される。
In the present invention, an adhesive layer is preferably formed on at least one surface of the current collector. The adhesive layer is more preferably conductive because it can reduce the interface resistance between the electrode layer and the current collector. The adhesive layer can be formed by applying and drying an adhesive on the surface of the current collector.
The adhesive is obtained by dispersing a conductive assistant powder, a binder, and a dispersant added as necessary in water or an organic solvent. Examples of the conductive assistant used in the conductive adhesive include silver, nickel, gold, graphite, acetylene black, and ketjen black, and graphite and acetylene black are preferable. As the binder used for the conductive adhesive, any of those exemplified as the binder constituting the electrode layer described above can be used. Moreover, water glass, an epoxy resin, a polyamide-imide resin, a urethane resin, etc. can also be used, and these can be used individually or in combination of 2 or more types, respectively.
As the binder used for the conductive adhesive, an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or a polyamideimide resin is preferable. Moreover, as a dispersing agent used for an electroconductive adhesive agent, the dispersing agent or surfactant which may be used for the electrode layer of the manufacturing method of the said invention can be used.
The method for forming the adhesive layer used in the present invention is not particularly limited. For example, by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating, an electrostatic coating method, or the like. , Formed on the current collector.

接着剤層の厚みは、通常、0.01〜20μm、好ましくは0.1〜10μm、特に好ましくは1〜5μmである。接着剤層の厚みが前記範囲であることにより、本発明の製造方法により得られる電気化学素子用電極を有する電気化学素子の内部抵抗をより低減することができる。   The thickness of the adhesive layer is usually 0.01 to 20 μm, preferably 0.1 to 10 μm, particularly preferably 1 to 5 μm. When the thickness of the adhesive layer is within the above range, the internal resistance of the electrochemical device having the electrochemical device electrode obtained by the production method of the present invention can be further reduced.

<帯電>
電極材料を帯電させるとは、電極材料に処理を施すことにより電極材料をプラスまたはマイナスに帯電させることをさす。電極材料の帯電方法としては、特に制限はないが、電極材料に直接電圧を印加して帯電させる方法や、電極材料を摩擦により帯電させる方法などが挙げられる。
<Charging>
To charge the electrode material means to charge the electrode material positively or negatively by treating the electrode material. The method for charging the electrode material is not particularly limited, and examples thereof include a method for charging by directly applying a voltage to the electrode material, a method for charging the electrode material by friction, and the like.

電極材料に直接電圧を印加して帯電させる方法としては、コロナ放電を利用した帯電方法が挙げられる。コロナ放電を利用した帯電方法は、電極材料を集電体上にスプレー噴霧するときにこれをコロナ放電電極近傍を通過させることにより帯電させる方法や、電極材料を流動化状態(流動層)にし、その中にコロナ放電電極を設置して帯電させる方法が挙げられる。   Examples of the method for charging the electrode material by directly applying a voltage include a charging method using corona discharge. The charging method using the corona discharge is a method of charging the electrode material by spraying the vicinity of the corona discharge electrode when spraying the electrode material on the current collector, or the fluidizing state (fluidized bed) of the electrode material, Among them, there is a method in which a corona discharge electrode is installed and charged.

電極材料を摩擦帯電させる方法としては、帯電列を利用して、電極材料とこれを帯電させやすい物質とを接触させて帯電させる方法が用いられる。帯電列とは、物資が固有に持つものであり、帯電しやすさを、マイナスに帯電しやすい材料からプラスに帯電しやすい材料までにわたって相対的に序列したものである。摩擦させる2つの物質が帯電列上離れているほど、それぞれが大きく帯電するので、帯電列上で、電極材料から帯電列が離れた物質と、電極材料とを接触させることで容易に電極材料を帯電させることができる。電極材料をプラスに帯電させる場合は、これとポリテトラフルオロエチレンや塩化ビニルなどとを接触させることにより、電極材料をマイナスに帯電させる場合は、これとアスベストやナイロンなどと電極材料とを接触させることにより、それぞれ帯電させることができる。   As a method for triboelectrically charging the electrode material, a method is used in which the electrode material and a substance that easily charges the electrode material are brought into contact with each other and charged using a charging train. The charged column is inherent to a material, and has a relative order of easiness of charging from a material that is easily charged negatively to a material that is easily charged positively. The more the two substances to be rubbed are apart from each other on the charged column, the more charged each becomes. Therefore, on the charged column, the electrode material can easily be brought into contact with the substance separated from the electrode material by the electrode material. Can be charged. When the electrode material is charged positively, it is brought into contact with polytetrafluoroethylene, vinyl chloride, etc. When the electrode material is charged negatively, it is brought into contact with the electrode material with asbestos, nylon, etc. Thus, each can be charged.

電極材料は、上記の複数の電極材料および絶縁性金属酸化物を混合して帯電させてもよいが、異なる材料間での帯電性の差をなくすことができるので、上記の電極材料を複合粒子化したものを帯電させるほうが好ましい。   The electrode material may be charged by mixing the plurality of electrode materials and the insulating metal oxide. However, since the difference in chargeability between different materials can be eliminated, the electrode material is mixed with composite particles. It is preferable to charge the charged one.

<電極層の形成>
(電極材料供給方法)
本発明では、上記帯電させた電極材料を、集電体上の少なくとも一面上に供給することにより電極層を形成する。帯電させた電極材料を集電体上に供給する方法に特に制限はない。例えば、静電粉体塗装のように、接地された集電体上に、帯電させた電極材料を噴霧して供給してもよいし、静電スクリーン印刷のように、設置された集電体上に帯電させた電極材料を転写させてもよい。また、本発明における帯電と、電極材料供給と、を同時に行ってもよい。
<Formation of electrode layer>
(Electrode material supply method)
In the present invention, the electrode layer is formed by supplying the charged electrode material onto at least one surface of the current collector. There is no particular limitation on the method of supplying the charged electrode material onto the current collector. For example, a charged electrode material may be sprayed and supplied onto a grounded current collector as in electrostatic powder coating, or an installed current collector as in electrostatic screen printing. The electrode material charged on top may be transferred. Further, the charging in the present invention and the electrode material supply may be performed simultaneously.

そして、前記集電体と前記供給方法によりその一面上に供給された電極材料とを一対の加熱ロールで加圧して、集電体と電極層との密着性を向上させる。この工程では、必要に応じ加温された前記電極材料が、一対のロールでシート状の電極層に成形されても良い。供給される電極材料の温度は、好ましくは40〜160℃、より好ましくは70〜140℃である。この温度範囲にある電極材料を用いると、プレス用ロールの表面で電極材料のすべりがなく、電極材料が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、電気化学素子用電極シートを得ることができる。   Then, the current collector and the electrode material supplied on the one surface by the supply method are pressurized with a pair of heating rolls to improve the adhesion between the current collector and the electrode layer. In this step, the electrode material heated as necessary may be formed into a sheet-like electrode layer with a pair of rolls. The temperature of the electrode material supplied is preferably 40 to 160 ° C, more preferably 70 to 140 ° C. When an electrode material in this temperature range is used, there is no slip of the electrode material on the surface of the press roll, and the electrode material is continuously and uniformly supplied to the press roll. An electrode sheet for an electrochemical element with small variations can be obtained.

本発明において、成形時の加熱ロールの温度は、通常、0〜200℃である、結着剤の融点またはガラス転移温度より高いことが好ましく、結着剤の融点またはガラス転移温度より20℃以上高いことがより好ましい。プレス用ロールを用いる場合の成形速度は、通常10m/分以上、成形性をより高く、薄膜化をより容易にすべく、好ましくは20〜200m/分、さらに好ましくは30〜80m/分である。またプレス用ロール間のプレス線圧は、特に規定されないが、得られる電極の電極強度を高くすることができる点で、好ましくは0.2〜30kN/cm、より好ましくは0.5〜10kN/cmである。   In the present invention, the temperature of the heating roll at the time of molding is preferably 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and 20 ° C. or higher than the melting point or glass transition temperature of the binder. Higher is more preferable. In the case of using a press roll, the forming speed is usually 10 m / min or more, preferably 20 to 200 m / min, more preferably 30 to 80 m / min, in order to make the moldability higher and to make the film easier. . Moreover, although the press linear pressure between the rolls for a press is not prescribed | regulated, Preferably it is the point which can make the electrode intensity | strength of the electrode obtained high, Preferably it is 0.2-30 kN / cm, More preferably, it is 0.5-10 kN / cm. cm.

本発明においては、前記一対の加熱ロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、前記集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に電極材料を供給することで、集電体とロールとの間隙に電極材料が供給され、加圧により電極層を形成できる。略垂直に配置する場合は、前記集電体を水平方向に搬送させ、該集電体上に電極材料を供給し、電極材料の層を形成する。供給された電極材料層を必要に応じブレード等で均した後、該集電体を一対のロール間に供給し、加圧により電極層を形成できる。   In the present invention, the arrangement of the pair of heating rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically. When arranged substantially horizontally, the current collector is continuously supplied between a pair of rolls, and the electrode material is supplied to at least one of the rolls, so that the electrode material is placed in the gap between the current collector and the rolls. The electrode layer can be formed by being supplied and pressurized. In the case of disposing substantially vertically, the current collector is conveyed in the horizontal direction, an electrode material is supplied onto the current collector, and a layer of electrode material is formed. After the supplied electrode material layer is leveled with a blade or the like as necessary, the current collector is supplied between a pair of rolls, and the electrode layer can be formed by pressurization.

成形した成形体の厚みばらつきをなくし、密度を上げて高容量化をはかるために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによるプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平衡に上下に並べ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱または、冷却等、温度調節しても良い。   In order to eliminate the thickness variation of the molded body, increase the density, and increase the capacity, further pressurization may be performed as necessary. The post-pressing method is generally a press process using a roll. In the roll press step, two cylindrical rolls are arranged vertically in a balanced manner at a narrow interval, each is rotated in the opposite direction, and the electrodes are sandwiched and pressed between them. The temperature of the roll may be adjusted by heating or cooling.

<電気化学素子用電極>
本発明の電気化学素子用電極は、本発明の電気化学素子用電極の製造方法によって得られる。
本発明の製造方法で得られる電気化学素子用電極の、電極層の厚みは、電気化学素子の種類により異なるが、通常10μm〜200μm、好ましくは30〜100μmである。電極層の厚みがこの範囲にあると、内部抵抗とエネルギー密度のバランスがとれた電気化学素子用の電極となり好ましい。
電気化学素子用電極は、集電体層、電極活物質を含有してなる電極層から構成され、必要に応じて、接着剤層、セパレータ層があってもよい。
<Electrodes for electrochemical devices>
The electrode for an electrochemical element of the present invention is obtained by the method for producing an electrode for an electrochemical element of the present invention.
The thickness of the electrode layer of the electrode for an electrochemical element obtained by the production method of the present invention varies depending on the type of electrochemical element, but is usually 10 μm to 200 μm, preferably 30 to 100 μm. When the thickness of the electrode layer is within this range, an electrode for an electrochemical element having a balance between internal resistance and energy density is preferable.
The electrode for an electrochemical device is composed of a current collector layer and an electrode layer containing an electrode active material, and may include an adhesive layer and a separator layer as necessary.

<電気化学素子>
本発明の電気化学素子は、本発明の電気化学素子用電極を備えてなる。電気化学素子としては、電気二重層キャパシタやハイブリッドキャパシタなどが挙げられるが、電気二重層キャパシタが好適である。
<Electrochemical element>
The electrochemical element of the present invention comprises the electrode for an electrochemical element of the present invention. Examples of the electrochemical element include an electric double layer capacitor and a hybrid capacitor. An electric double layer capacitor is preferable.

電気二重層キャパシタは、電極、セパレータおよび電解液で構成され、前記電極として、本発明の電気化学素子用電極を用いる。   An electric double layer capacitor is comprised with an electrode, a separator, and electrolyte solution, and uses the electrode for electrochemical elements of this invention as said electrode.

セパレータは、電極の間を絶縁でき、陽イオンおよび陰イオンを通過させることができるものであれば特に限定されない。具体的には、ポリエチレンやポリプロピレンなどのポリオレフィン、レーヨンもしくはガラス繊維製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜などを用いることができる。セパレータは、上記一対の電極層が対向するように、電極の間に配置され、素子が得られる。セパレータの厚みは、使用目的に応じて適宜選択されるが、通常は1〜100μm、好ましくは10〜80μm、より好ましくは20〜50μmである。   The separator is not particularly limited as long as it can insulate between the electrodes and allow a cation and an anion to pass therethrough. Specifically, polyolefins such as polyethylene and polypropylene, microporous membranes or nonwoven fabrics made of rayon or glass fiber, and porous membranes mainly made of pulp called electrolytic capacitor paper can be used. The separator is disposed between the electrodes so that the pair of electrode layers face each other, and an element is obtained. Although the thickness of a separator is suitably selected according to a use purpose, Usually, it is 1-100 micrometers, Preferably it is 10-80 micrometers, More preferably, it is 20-50 micrometers.

電解液は、通常、電解質と溶媒で構成される。電解質は、カチオン性であってもよく、アニオン性であってもよい。カチオン性電解質としては、以下に示すような(1)イミダゾリウム、(2)第四級アンモニウム、(3)第四級ホスホニウム、(4)リチウム等を用いることができる。
(1) イミダゾリウム
1,3−ジメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1,2,3,4−テトラメチルイミダゾリウム、1,3,4−トリメチル−エチルイミダゾリウム、1,3−ジメチル−2,4−ジエチルイミダゾリウム、1,2−ジメチル−3,4−ジエチルイミダゾリウム、1−メチル−2,3,4−トリエチルメチルイミダゾリウム、1,2,3,4−テトラエチルイミダゾリウム、1,3−ジメチル−2−エチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1,2,3−トリエチルイミダゾリウム等
(2)第四級アンモニウム
テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム等のテトラアルキルアンモニウム等
(3)第四級ホスホニウム
テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、メチルトリエチルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウム等
(4)リチウム
The electrolytic solution is usually composed of an electrolyte and a solvent. The electrolyte may be cationic or anionic. As the cationic electrolyte, (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used.
(1) Imidazolium 1,3-Dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1,3-diethylimidazolium, 1,2,3-trimethylimidazolium, 1,2,3,4-tetra Methylimidazolium, 1,3,4-trimethyl-ethylimidazolium, 1,3-dimethyl-2,4-diethylimidazolium, 1,2-dimethyl-3,4-diethylimidazolium, 1-methyl-2, 3,4-triethylmethylimidazolium, 1,2,3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1,2,3 -Triethylimidazolium, etc. (2) Quaternary ammonium tetramethylammonium, ethyltrimethylammonium, diethyl Tetraalkylammonium such as dimethylammonium, triethylmethylammonium, tetraethylammonium, trimethylpropylammonium, etc. (3) Quaternary phosphonium Tetramethylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, methyltriethylphosphonium, methyltributylphosphonium, dimethyldiethylphosphonium, etc. 4) Lithium

また、アニオン性電解質としては、PF 、BF 、AsF 、SbF 、N(RfSO2−、C(RfSO3−、RfSO (Rfはそれぞれ炭素数1〜12のフルオロアルキル基)、F、ClO 、AlCl 、AlF 等を用いることができる。これらの電解質は単独または二種類以上として使用することができる。 Examples of the anionic electrolyte include PF 6 , BF 4 , AsF 6 , SbF 6 , N (RfSO 3 ) 2− , C (RfSO 3 ) 3− , RfSO 3 (Rf is 1 carbon ˜12 fluoroalkyl groups), F , ClO 4 , AlCl 4 , AlF 4 − and the like. These electrolytes can be used alone or in combination of two or more.

電解液の溶媒は、一般に電解液の溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ−ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。   The solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution. Specifically, carbonates such as propylene car boat, ethylene carbonate and butylene carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile; These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.

上記の素子に電解液を含浸させて、本発明の電気化学素子が得られる。具体的には、キャパシタ素子を必要に応じ捲回、積層または折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。また、素子に予め電解液を含浸させたものを容器に収納してもよい。容器としては、コイン型、円筒型、角型などの公知のものをいずれも用いることができる。   The electrochemical element of the present invention is obtained by impregnating the above element with an electrolytic solution. Specifically, the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it. Further, a device in which an element is previously impregnated with an electrolytic solution may be stored in a container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples. In the examples and comparative examples, “part” and “%” are based on weight unless otherwise specified.

<試験法>
(塗着効率)
供給した電極材料の重量および、集電体上に電極材料の層を形成した電極材料の重量から下式にしたがって集電体への塗着効率を算出した。塗着効率は高いほど好ましい。
塗着効率(%)=集電体上に付着した電極材料の重量/供給した電極材料の重量×100
<Test method>
(Coating efficiency)
From the weight of the supplied electrode material and the weight of the electrode material in which the electrode material layer was formed on the current collector, the application efficiency to the current collector was calculated according to the following formula. The higher the coating efficiency, the better.
Coating efficiency (%) = weight of electrode material deposited on current collector / weight of supplied electrode material × 100

(内部抵抗)
内部抵抗は、作製したセルを24時間静置させた後に充放電の操作を行い測定した。充電は100mAの定電流で行い、放電0.1秒後の電圧降下と定電流値から内部抵抗を算出した。内部抵抗値は小さいほど好ましい。
(Internal resistance)
The internal resistance was measured by performing the charge / discharge operation after allowing the produced cell to stand for 24 hours. Charging was performed at a constant current of 100 mA, and the internal resistance was calculated from the voltage drop after 0.1 seconds of discharge and the constant current value. The smaller the internal resistance value, the better.

<実施例1>
電極活物質として比表面積1,800m/g、体積平均粒子径5μmの高純度活性炭粉末「クラレコール YP−17D」(クラレケミカル社製)100部、結着剤として、体積平均粒子径0.31μmのアクリレート系重合体(アクリル酸n−ブチル40重量%、メタクリル酸エチル40重量%、メタクリル酸n−ブチル17重量%、メタクリル酸3重量%を乳化重合した共重合体)の40%水分散体を固形分換算で5部、導電助剤として平均粒径0.7μmのアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、分散剤としてカルボキシメチルセルロースのアンモニウム塩「DN−800H」(ダイセル化学工業社製)の1.5%水溶液を固形分換算で1.4部、およびイオン交換水を348.7部加えて、「TKホモミキサー」(プライミクス社製)で攪拌混合して固形分濃度が20%のスラリーを得た。スラリーのpHは23℃で7.6であった。このスラリーを 25%アンモニア水でpH8.5に調整し、スプレー乾燥機(OC−16;大河原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数40,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で噴霧乾燥造粒を行い、電極材料の複合粒子を得た。この複合粒子の重量平均粒子径は25μm、球状度は8%であった。
前記複合粒子100部と、絶縁性金属酸化物である、ポリジメチルシロキサンとアミノ基を有する化合物とで表面処理された二酸化ケイ素粉末「H30TA」(クラリアントジャパン社製、表面帯電量+200μC/g、平均粒子径8nm)0.2部とを、ヘンシェルミキサー(三井三池社製)を用いて10分間混合し、複合粒子に絶縁性金属酸化物を付着させた粒子(外添粒子)を得た。
<Example 1>
100 parts of high-purity activated carbon powder “Kuraray Coal YP-17D” (manufactured by Kuraray Chemical Co., Ltd.) having a specific surface area of 1,800 m 2 / g and a volume average particle diameter of 5 μm as an electrode active material, 40% aqueous dispersion of 31 μm acrylate polymer (copolymer obtained by emulsion polymerization of n-butyl acrylate 40% by weight, ethyl methacrylate 40% by weight, n-butyl methacrylate 17% by weight, methacrylic acid 3% by weight) 5 parts in terms of solid content, 5 parts of acetylene black (Denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle size of 0.7 μm as a conductive auxiliary agent, and ammonium salt “DN-800H” of carboxymethyl cellulose as a dispersing agent 1.4 parts of a 1.5% aqueous solution (manufactured by Daicel Chemical Industries) in terms of solid content and 348.7 parts of ion-exchanged water were added. Kisa "solid concentration mixed with stirring at (manufactured by PRIMIX Corporation) to obtain a 20% slurry. The pH of the slurry was 7.6 at 23 ° C. This slurry was adjusted to pH 8.5 with 25% ammonia water, and using a spray dryer (OC-16; manufactured by Ogawara Chemical Co., Ltd.), a rotating disk type atomizer (diameter 65 mm) with a rotational speed of 40,000 rpm and hot air Spray drying granulation was performed under the conditions of a temperature of 150 ° C. and a particle recovery outlet temperature of 90 ° C. to obtain composite particles of an electrode material. The composite particles had a weight average particle size of 25 μm and a sphericity of 8%.
Silicon dioxide powder “H30TA” surface-treated with 100 parts of the composite particles and an insulating metal oxide, polydimethylsiloxane and an amino group-containing compound (manufactured by Clariant Japan, surface charge amount + 200 μC / g, average) 0.2 parts (particle diameter: 8 nm) were mixed for 10 minutes using a Henschel mixer (manufactured by Mitsui Miike Co., Ltd.) to obtain particles (externally added particles) in which an insulating metal oxide was adhered to the composite particles.

体積平均粒子径が0.7μmのカーボンブラック100部、分散剤であるカルボキシメチルセルロースの4.0%水溶液(DN−10L;ダイセル化学工業社製)を固形分換算で4部、結着剤である数平均粒子径が0.25μmのアクリレート系重合体の40%水分散体を固形分換算で8部およびイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤層形成用のスラリーを調製した。   100 parts of carbon black having a volume average particle size of 0.7 μm, and 4.0 parts of a carboxymethyl cellulose (DN-10L; manufactured by Daicel Chemical Industries) as a dispersant, 4 parts in terms of solid content, are a binder. A 40% aqueous dispersion of an acrylate polymer having a number average particle size of 0.25 μm is mixed with 8 parts in terms of solid content and ion-exchanged water so that the total solid content concentration becomes 30%, and a conductive adhesive layer A slurry for formation was prepared.

厚さ30μmのアルミニウム箔からなる集電体に前記導電性接着剤形成用のスラリーを塗布し、120℃で、10分間乾燥して厚み4μmの接着剤層を形成した。その後、接着剤層を表面に形成した集電体を水平に設置した。   The slurry for forming the conductive adhesive was applied to a current collector made of an aluminum foil having a thickness of 30 μm, and dried at 120 ° C. for 10 minutes to form an adhesive layer having a thickness of 4 μm. Then, the collector which formed the adhesive bond layer on the surface was installed horizontally.

次いで、旭サナック社製摩擦帯電式静電粉体塗装機MTR−100VTminiおよび旭サナック社製摩擦帯電式静電粉体手動ガンT−2mタイプL7(インナースリーブおよびアウタースリーブはポリテトラフルオロエチレン製)を用いて前記外添粒子を帯電させると共にこれを集電体上に供給して、電極層を形成して、電気化学素子用電極を得た。具体的には前記外添粒子を前記粉体塗装機のホッパー内に投入し、定量供給用スクリューフィーダーの回転数を調節し、外添粒子を90g/分で供給した。また、前記粉体手動ガンからの搬送エア圧力を0.4MPaとして前記集電体に上部より電極材料を供給した。なお、外添粒子は、前記粉体手動ガンのインナースリーブとアウタースリーブの隙間を通過させる際の摩擦により帯電させた。塗着効率は45%であった。   Next, friction charging electrostatic powder coating machine MTR-100VTmini manufactured by Asahi Sunac Co., Ltd. and friction charging electrostatic powder manual gun T-2m type L7 manufactured by Asahi Sunac Co., Ltd. (the inner sleeve and outer sleeve are made of polytetrafluoroethylene) Then, the external additive particles were charged and supplied onto a current collector to form an electrode layer to obtain an electrode for an electrochemical device. Specifically, the external additive particles were put into a hopper of the powder coating machine, the rotation speed of a screw feeder for quantitative supply was adjusted, and external additive particles were supplied at 90 g / min. Moreover, the electrode material was supplied to the said collector from the upper part by making the conveyance air pressure from the said powder manual gun into 0.4 Mpa. The external additive particles were charged by friction when passing through the gap between the inner sleeve and the outer sleeve of the powder manual gun. The coating efficiency was 45%.

この電極材料の層が形成された集電体をロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度120℃、プレス線圧4kN/cm)に供給し、ロール加圧成形によりシート状の厚密化された電極層を形成し、これを5cm正方に打ち抜いて、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。 The current collector on which this electrode material layer is formed is supplied to a roll (roll temperature 120 ° C., press linear pressure 4 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.). A sheet-like thickened electrode layer is formed by pressure forming, and this is punched out into a square of 5 cm to produce an electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 did.

<実施例2>
絶縁性金属酸化物の量を1.0部としたこと以外は実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は55%であった。
<Example 2>
An electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced in the same manner as in Example 1 except that the amount of the insulating metal oxide was 1.0 part. did. The coating efficiency was 55%.

<実施例3>
絶縁性金属酸化物として、ポリジメチルシロキサンとアミノ基を有する化合物とで表面処理された二酸化ケイ素粉末「H05TA」(クラリアントジャパン社製、表面帯電量+50μC/g、平均粒子径50nm)を3.0部としたこと以外は実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は48%であった。
<Example 3>
As an insulating metal oxide, a silicon dioxide powder “H05TA” (manufactured by Clariant Japan Co., Ltd., surface charge amount + 50 μC / g, average particle size of 50 nm), which is surface-treated with polydimethylsiloxane and a compound having an amino group, is 3.0. An electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced in the same manner as in Example 1 except that the parts were used. The coating efficiency was 48%.

<実施例4>
絶縁性金属酸化物として、ヘキシメチルジシラザンとアミノシラン化合物とで表面処理された二酸化ケイ素粉末「RA200H」(日本アエロジル社製、表面帯電量+450μC/g、平均粒子径12nm)0.5部を用いたこと以外は実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は60%であった。
<Example 4>
As an insulating metal oxide, 0.5 part of silicon dioxide powder “RA200H” (manufactured by Nippon Aerosil Co., Ltd., surface charge amount + 450 μC / g, average particle diameter 12 nm) surface-treated with hexylmethyldisilazane and an aminosilane compound An electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced in the same manner as Example 1 except that it was used. The coating efficiency was 60%.

<実施例5>
絶縁性金属酸化物の量を2.0部としたこと以外は実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は65%であった。
<Example 5>
An electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced in the same manner as in Example 1 except that the amount of the insulating metal oxide was 2.0 parts. did. The coating efficiency was 65%.

<比較例1>
絶縁性金属酸化物を添加しなかったこと以外は実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は15%であった。
<Comparative Example 1>
An electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced in the same manner as in Example 1 except that the insulating metal oxide was not added. The coating efficiency was 15%.

<比較例2>
摩擦帯電式静電粉体塗装ガンT−2mタイプL7のポリテトラフルオロオエチレン製のインナースリーブおよびアウタースリーブを同形状のステンレス鋼製のものに交換し電極材料を帯電させなかったこと以外は、実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。塗着効率は5%であった。
<Comparative Example 2>
Except that the frictional electrostatic powder coating gun T-2m type L7 polytetrafluoroethylene inner sleeve and outer sleeve were replaced with stainless steel of the same shape and the electrode material was not charged, In the same manner as in Example 1, an electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 was produced. The coating efficiency was 5%.

上記実施例や比較例で得られた電極を、室温で1時間、電解液(1.0mol/Lのテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)に含浸させ、次いで2枚の電極がセルロースセパレータ(TF40;ニッポン高度紙工業社製)を介して電極層が内側になるように対向させ、それぞれの電極が電気的に接触しないように配置して、ラミネートセル形状の電気二重層キャパシタを作製した。そして、作製した電気二重層キャパシタの内部抵抗を測定した。なお、比較例1の内部抵抗の値を100%としたとき相対値で示す。以上の実施例及び比較例の結果を表1に示す。   The electrodes obtained in the above Examples and Comparative Examples were impregnated with an electrolytic solution (1.0 mol / L of propylene carbonate solution of tetraethylammonium tetrafluoroborate) at room temperature for 1 hour, and then the two electrodes were cellulose separators ( A laminated cell-shaped electric double layer capacitor was manufactured by placing the electrodes so as to face each other through TF40 (manufactured by Nippon Kogyo Paper Industries Co., Ltd.) so that the electrodes do not come into electrical contact with each other. And the internal resistance of the produced electric double layer capacitor was measured. In addition, it shows by a relative value when the value of the internal resistance of the comparative example 1 is 100%. The results of the above examples and comparative examples are shown in Table 1.

Figure 2011049231
Figure 2011049231

表1の結果より、以下のことがわかる。本願発明によれば、実施例1〜5に示すように、電極材料として、電極活物質、結着剤、導電助剤及び絶縁性金属酸化物を含むものを用いることにより、高い塗着効率で、かつ得られる電気化学素子の内部抵抗の低減可能な電気化学素子用電極を得ることができる。
一方、比較例1は、絶縁性金属酸化物を含有していないために、塗着効率が劣り、電極層の厚みが均一にならず、内部抵抗が劣っている。比較例2は絶縁性金属酸化物を含有しているが帯電させていないために塗着効率が劣り、電極材料の供給が均一にならず内部抵抗が劣っている。
From the results in Table 1, the following can be understood. According to the invention of the present application, as shown in Examples 1 to 5, by using an electrode material containing an electrode active material, a binder, a conductive additive and an insulating metal oxide, it is possible to achieve high coating efficiency. And the electrode for electrochemical elements which can reduce the internal resistance of the electrochemical element obtained can be obtained.
On the other hand, since Comparative Example 1 does not contain an insulating metal oxide, the coating efficiency is inferior, the thickness of the electrode layer is not uniform, and the internal resistance is inferior. Comparative Example 2 contains an insulating metal oxide but is not charged, so that the coating efficiency is inferior, the supply of electrode material is not uniform, and the internal resistance is inferior.

本発明の電気化学素子用電極の製造方法は、内部抵抗に優れ、電極材料の塗着効率も高いので、生産性良く電気二重層キャパシタ電極、ハイブリッドキャパシタ電極、リチウムイオン二次電池等の電極製造に好適に使用することができる。   The method for producing an electrode for an electrochemical device according to the present invention is excellent in internal resistance and has a high coating efficiency of an electrode material. Therefore, it is possible to produce an electrode such as an electric double layer capacitor electrode, a hybrid capacitor electrode, a lithium ion secondary battery with high productivity. Can be suitably used.

以上、現時点において、最も、実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気化学素子用電極の製造方法もまた本発明の技術的範囲に含包されるものとして理解されなければならない。   While the present invention has been described in connection with the most practical and preferred embodiments at the present time, the invention is not limited to the embodiments disclosed herein. The method of manufacturing an electrode for an electrochemical device with such a change is also within the technical scope of the present invention without departing from the spirit or idea of the invention that can be read from the claims and the entire specification. It must be understood as included.

Claims (9)

電極活物質、結着剤、導電助剤及び絶縁性金属酸化物を含んでなる電極材料を、帯電させ、集電体上の少なくとも一面上に供給することにより電極層を形成させることを特徴とする電気化学素子用電極の製造方法。   It is characterized by forming an electrode layer by charging an electrode material comprising an electrode active material, a binder, a conductive additive and an insulating metal oxide, and supplying it to at least one surface of a current collector. A method for producing an electrode for an electrochemical device. 前記絶縁性金属酸化物の表面帯電量C(μ・クーロン/g)が、10≦|C|≦500の範囲にある請求項1に記載の電気化学素子用電極の製造方法。   2. The method for producing an electrode for an electrochemical element according to claim 1, wherein a surface charge amount C (μ · coulomb / g) of the insulating metal oxide is in a range of 10 ≦ | C | ≦ 500. 前記絶縁性金属酸化物が、表面処理されている絶縁性金属酸化物である請求項1または請求項2に記載の電気化学素子用電極の製造方法。   The method for producing an electrode for an electrochemical element according to claim 1, wherein the insulating metal oxide is an insulating metal oxide that has been surface-treated. 前記絶縁性金属酸化物の含有量が、電極活物質100重量部に対して、0.01〜20重量部の範囲内である請求項1〜請求項3のいずれかに記載の電気化学素子用電極の製造方法。   The content of the insulating metal oxide is in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the electrode active material. Electrode manufacturing method. 前記電極材料が、複合粒子である請求項1〜請求項4のいずれかに記載の電気化学素子用電極の製造方法。   The method for producing an electrode for an electrochemical element according to claim 1, wherein the electrode material is composite particles. 前記集電体が、金属である請求項1〜請求項5のいずれかに記載の電気化学素子用電極の製造方法。   The said current collector is a metal, The manufacturing method of the electrode for electrochemical elements in any one of Claims 1-5. 請求項1〜6のいずれかに記載の製造方法により得られる電気化学素子用電極。   The electrode for electrochemical elements obtained by the manufacturing method in any one of Claims 1-6. 請求項7に記載の電気化学素子用電極を備える電気化学素子。   An electrochemical element comprising the electrode for an electrochemical element according to claim 7. 電気化学素子が、電気二重層キャパシタである請求項8に記載の電気化学素子。   The electrochemical device according to claim 8, wherein the electrochemical device is an electric double layer capacitor.
JP2009194443A 2009-08-25 2009-08-25 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element Active JP5287601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194443A JP5287601B2 (en) 2009-08-25 2009-08-25 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194443A JP5287601B2 (en) 2009-08-25 2009-08-25 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element

Publications (2)

Publication Number Publication Date
JP2011049231A true JP2011049231A (en) 2011-03-10
JP5287601B2 JP5287601B2 (en) 2013-09-11

Family

ID=43835319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194443A Active JP5287601B2 (en) 2009-08-25 2009-08-25 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element

Country Status (1)

Country Link
JP (1) JP5287601B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221568A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Method for manufacturing positive electrode plate
JP2012243993A (en) * 2011-05-20 2012-12-10 Asahi Kasei Fibers Corp Noise absorption cloth
JP2013012327A (en) * 2011-06-28 2013-01-17 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
JP2013110097A (en) * 2011-10-27 2013-06-06 Kobe Steel Ltd Collector, electrode and secondary battery
JP2013110098A (en) * 2011-10-25 2013-06-06 Kobe Steel Ltd Collector, method for manufacturing collector, electrode and secondary battery
JP2013110100A (en) * 2011-10-26 2013-06-06 Kobe Steel Ltd Collector, electrode, secondary battery, and method for manufacturing secondary battery
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2015060703A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
WO2015166839A1 (en) * 2014-04-28 2015-11-05 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for manufacturing said material
JP2016039082A (en) * 2014-08-08 2016-03-22 日本ゼオン株式会社 Method for producing composite particle for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
KR101762519B1 (en) 2012-08-16 2017-07-27 도요타지도샤가부시키가이샤 Lithium secondary battery and method for producing same
JP2019029177A (en) * 2017-07-28 2019-02-21 花王株式会社 Resin composition for power storage device electrode
US11183693B2 (en) 2016-07-29 2021-11-23 Kao Corporation Resin composition for power storage device electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217162A (en) * 2000-02-04 2001-08-10 Power System:Kk Electric double-layer capacitor
JP2001223142A (en) * 2000-02-14 2001-08-17 Daido Steel Co Ltd Method of manufacturing solid activated-carbon electrode
JP2001351616A (en) * 2000-06-05 2001-12-21 Toyota Motor Corp Manufacturing method of electrode
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2005051123A (en) * 2003-07-30 2005-02-24 Tdk Corp Composite particle for electrode of electrochemical capacitor, its manufacturing method, electrode, its manufacturing method, electrochemical capacitor, and its manufacturing method
WO2005117043A1 (en) * 2004-05-27 2005-12-08 Zeon Corporation Method for manufacturing electrochemical device electrode and apparatus therefor
JP2006235527A (en) * 2005-02-28 2006-09-07 Nippon Zeon Co Ltd Electrophotographic toner and method for manufacturing the same
JP2008241927A (en) * 2007-03-26 2008-10-09 Nippon Zeon Co Ltd Electrostatic charge image developing positively charged toner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217162A (en) * 2000-02-04 2001-08-10 Power System:Kk Electric double-layer capacitor
JP2001223142A (en) * 2000-02-14 2001-08-17 Daido Steel Co Ltd Method of manufacturing solid activated-carbon electrode
JP2001351616A (en) * 2000-06-05 2001-12-21 Toyota Motor Corp Manufacturing method of electrode
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2005051123A (en) * 2003-07-30 2005-02-24 Tdk Corp Composite particle for electrode of electrochemical capacitor, its manufacturing method, electrode, its manufacturing method, electrochemical capacitor, and its manufacturing method
WO2005117043A1 (en) * 2004-05-27 2005-12-08 Zeon Corporation Method for manufacturing electrochemical device electrode and apparatus therefor
JP2006235527A (en) * 2005-02-28 2006-09-07 Nippon Zeon Co Ltd Electrophotographic toner and method for manufacturing the same
JP2008241927A (en) * 2007-03-26 2008-10-09 Nippon Zeon Co Ltd Electrostatic charge image developing positively charged toner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221568A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Method for manufacturing positive electrode plate
JP2012243993A (en) * 2011-05-20 2012-12-10 Asahi Kasei Fibers Corp Noise absorption cloth
JP2013012327A (en) * 2011-06-28 2013-01-17 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
US9685662B2 (en) 2011-10-25 2017-06-20 Kobe Steel, Ltd. Electrode material, electrode material manufacturing method, electrode, and secondary battery
JP2013110098A (en) * 2011-10-25 2013-06-06 Kobe Steel Ltd Collector, method for manufacturing collector, electrode and secondary battery
JP2013110100A (en) * 2011-10-26 2013-06-06 Kobe Steel Ltd Collector, electrode, secondary battery, and method for manufacturing secondary battery
JP2013110097A (en) * 2011-10-27 2013-06-06 Kobe Steel Ltd Collector, electrode and secondary battery
KR101762519B1 (en) 2012-08-16 2017-07-27 도요타지도샤가부시키가이샤 Lithium secondary battery and method for producing same
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2015060703A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
US10217993B2 (en) 2013-09-18 2019-02-26 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery
WO2015166839A1 (en) * 2014-04-28 2015-11-05 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for manufacturing said material
JPWO2015166839A1 (en) * 2014-04-28 2017-04-20 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for producing the same
US10297398B2 (en) 2014-04-28 2019-05-21 Kuraray Co., Ltd. Porous carbon material for electrode of energy storage device and method for manufacturing said material
JP2016039082A (en) * 2014-08-08 2016-03-22 日本ゼオン株式会社 Method for producing composite particle for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
US11183693B2 (en) 2016-07-29 2021-11-23 Kao Corporation Resin composition for power storage device electrode
JP2019029177A (en) * 2017-07-28 2019-02-21 花王株式会社 Resin composition for power storage device electrode

Also Published As

Publication number Publication date
JP5287601B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5287601B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
JP5549672B2 (en) Electrode for electrochemical element and electrochemical element
JP5471307B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
JP5423991B2 (en) Lithium ion capacitor electrode and lithium ion capacitor
JP2010278125A (en) Method of manufacturing electrode for electrochemical element, and electrochemical element
JP6344384B2 (en) Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
KR20080002880A (en) Composite particles for electrochemical element electrode
JP5354205B2 (en) Electrode for electrochemical element and electrochemical element
JP6380526B2 (en) Composite particles for electrochemical device electrodes
WO2013128776A1 (en) Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
JP6304236B2 (en) Method for producing composite particle for electrochemical device electrode
JP5767431B2 (en) Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
JP6281488B2 (en) Composite particle for lithium ion secondary battery electrode, method for producing composite particle for lithium ion secondary battery electrode, lithium ion secondary battery electrode material, lithium ion secondary battery electrode, and method for producing lithium ion secondary battery electrode
JP5601485B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
JPWO2013118758A1 (en) Electrochemical device electrode composite particle manufacturing apparatus and electrochemical device electrode composite particle manufacturing method
JP2011216504A (en) Method for manufacturing electrode for electrochemical element
WO2010016567A1 (en) Electrode for lithium ion capacitor and lithium ion capacitor
JP2010171212A (en) Electrode for electric double layer capacitor and method of manufacturing the same
WO2010018841A1 (en) Method for manufacturing electrode for electrochemical element and electrochemical element
JP2010157564A (en) Method of manufacturing composite particle for electrochemical element electrode
JPWO2009107716A1 (en) Method for producing electrochemical element electrode
JP5651470B2 (en) Lithium ion capacitor binder, lithium ion capacitor electrode and lithium ion capacitor
JP6467808B2 (en) Method for producing composite particle for electrochemical element electrode, method for producing electrochemical element electrode material, method for producing electrochemical element electrode, and method for producing electrochemical element
JP2013062202A (en) Electrode molding device and electrode molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250