JP2001217162A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2001217162A
JP2001217162A JP2000027046A JP2000027046A JP2001217162A JP 2001217162 A JP2001217162 A JP 2001217162A JP 2000027046 A JP2000027046 A JP 2000027046A JP 2000027046 A JP2000027046 A JP 2000027046A JP 2001217162 A JP2001217162 A JP 2001217162A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
binder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000027046A
Other languages
Japanese (ja)
Inventor
Masaaki Yamagishi
政章 山岸
Hitoshi Nakamura
仁 中村
Michio Okamura
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMURA KENKYUSHO KK
Okamura Laboratory Inc
Power System Co Ltd
Original Assignee
OKAMURA KENKYUSHO KK
Okamura Laboratory Inc
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMURA KENKYUSHO KK, Okamura Laboratory Inc, Power System Co Ltd filed Critical OKAMURA KENKYUSHO KK
Priority to JP2000027046A priority Critical patent/JP2001217162A/en
Publication of JP2001217162A publication Critical patent/JP2001217162A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor having a large electrostatic capacity. SOLUTION: This electric double-layer capacitor, which is connected with a collector is provided with a polarization electrode, formed of a mixture of at least porous particles, a conductive carbon particle, and a metal oxide particle selected from among zinc oxide, magnesium oxide, titanium oxide, aluminum oxide, and silicon oxide, and at least one kind of binder elected from among butyl rubber, ethylene-propylene-diene rubber, butadiene rubber, and nitrile rubber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサに関し、静電容量が大きな電気二重層コンデンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor having a large capacitance.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、多孔質セパレ
ータを介して一対の分極性電極を設け、電解質溶液中に
おいて分極性電極の表面に形成される電気二重層の静電
容量を利用したものであり、一般のコンデンサに比して
極めて大きな静電容量を有するものが得られることを特
徴としており、電子機器のバックアップ用の用途から電
力貯蔵用の用途まで幅広い利用が期待されている。
2. Description of the Related Art An electric double layer capacitor is provided with a pair of polarizable electrodes via a porous separator and utilizes the capacitance of an electric double layer formed on the surface of the polarizable electrode in an electrolyte solution. There is a feature that a capacitor having an extremely large capacitance as compared with a general capacitor is obtained, and wide use is expected from a backup use of an electronic device to a power storage use.

【0003】電気二重層コンデンサに用いられる分極性
電極は、電解質溶液に安定であり、比表面積が大きく、
静電容量の大きな電気二重層の形成に有利な活性炭が一
般に用いられている。分極性電極は電極形状の焼結体を
用いたもの、粒状、繊維状等の活性炭を、導電性物質お
よび結着剤とともに混練したスラリーをシート状の電極
形状に成形したもの、集電体となるアルミニウム箔等の
導電体上にスラリーを各種の塗布方法によって塗布した
塗布型電極が用いられている。とくに、塗布型電極は、
分極性電極の厚み、大きさを使用目的等に応じて調整す
ることが容易であるとともに、塗布装置により比較的容
易に製造することができるという特徴を有している。
A polarizable electrode used for an electric double layer capacitor is stable in an electrolyte solution, has a large specific surface area,
Activated carbon, which is advantageous for forming an electric double layer having a large capacitance, is generally used. The polarizable electrode is one using a sintered body in the form of an electrode, granular or fibrous activated carbon, and a slurry formed by kneading a conductive material and a binder into a sheet-like electrode, and a current collector. An application type electrode in which a slurry is applied on a conductor such as an aluminum foil by various application methods is used. In particular, coated electrodes are
It has features that the thickness and size of the polarizing electrode can be easily adjusted according to the purpose of use and the like, and that the polarizing electrode can be manufactured relatively easily by a coating device.

【0004】塗布型電極で用いられる結着剤としては、
アクリル重合体、ビニル重合体、アセタール樹脂、ポリ
アミド樹脂、ポリエステル樹脂等の熱可塑性樹脂、エポ
キシ樹脂、フェノール樹脂、アミノ樹脂等の熱硬化性樹
脂等の合成樹脂であって電気二重層コンデンサの電解液
として使用される溶媒に不溶性であるものが知られてい
る。塗布型電極においては、結着剤が活性炭粒子相互を
結着するとともに、集電体に結着することが必要であ
り、活性炭相互の結着、あるいは集電体への結着が不充
分であると接触抵抗が大きくなり、一方、活性炭粒子表
面を結着剤が広く覆うと電解液と活性炭との接触が図ら
れなくなり、充分な静電容量が得られないという問題点
がある。
[0004] As a binder used in a coating type electrode,
Synthetic resin such as thermoplastic resin such as acrylic polymer, vinyl polymer, acetal resin, polyamide resin and polyester resin, and thermosetting resin such as epoxy resin, phenol resin and amino resin. Are insoluble in the solvents used as In the coating type electrode, it is necessary that the binder binds the activated carbon particles to each other and also binds to the current collector, and the binding between the activated carbons or the binding to the current collector is insufficient. If there is, the contact resistance increases, and on the other hand, if the surface of the activated carbon particles is widely covered with the binder, there is a problem that the contact between the electrolytic solution and the activated carbon cannot be achieved and a sufficient capacitance cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、活性炭粒子
と導電性物質および結着剤からなるスラリーを集電体上
に塗布して形成した分極性電極において、活性炭粒子相
互の結着および活性炭粒子の集電体上への結着力が大き
く、活性炭粒子の表面および活性炭の細孔を被覆するこ
となく結合することによって電気的特性が良好な電気二
重層コンデンサおよびその製造方法を提供することを課
題とするものである。
SUMMARY OF THE INVENTION The present invention relates to a polarizable electrode formed by applying a slurry comprising activated carbon particles, a conductive substance and a binder on a current collector. To provide an electric double layer capacitor having good electric characteristics by binding without binding the surface of the activated carbon particles and the pores of the activated carbon, having a large binding force of the particles on the current collector, and a method for producing the same. It is an issue.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、集電体
と接合した分極性電極を有する電気二重層コンデンサに
おいて、分極性電極が、少なくとも多孔性炭素粒子、導
電性炭素粒子、および金属酸化物粒子を結着剤と混練し
た混練物によって形成したものである電気二重層コンデ
ンサによって解決することができる。また、結着剤が、
ブチルゴム、エチレンプロピレンジエンゴム、ブタジエ
ンゴム、ニトリルゴムから選ばれる少なくとも一種であ
る前記の電気二重層コンデンサである。金属酸化物粒子
が、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化ア
ルミニウム、酸化ケイ素から選ばれる少なくとも一種で
ある前記の電気二重層コンデンサである。混練物が架橋
剤を含有する前記の電気二重層コンデンサである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric double layer capacitor having a polarizable electrode joined to a current collector, wherein the polarizable electrode comprises at least porous carbon particles, conductive carbon particles, and metal. The problem can be solved by an electric double-layer capacitor formed by kneading the oxide particles with a binder. Also, the binder is
The electric double layer capacitor is at least one selected from butyl rubber, ethylene propylene diene rubber, butadiene rubber, and nitrile rubber. The electric double layer capacitor as described above, wherein the metal oxide particles are at least one selected from zinc oxide, magnesium oxide, titanium oxide, aluminum oxide, and silicon oxide. The kneaded product is the above electric double layer capacitor containing a crosslinking agent.

【0007】[0007]

【発明の実施の形態】本発明は、活性炭粒子等の多孔性
炭素粒子を結着剤等とともに混練して製造した混練物を
集電体した分極性電極が、混練物中に金属酸化物を混合
することによって、多孔性炭素粒子相互の結着力、およ
び多孔性炭素粒子と集電体との結着力を維持した状態で
多孔性炭素粒子の表面および細孔中が全面的に結着剤で
覆われることを防止することができ、静電容量が大き
く、電気抵抗が小さな電気二重層コンデンサが得られる
ことを見出したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a polarizable electrode obtained by kneading porous carbon particles such as activated carbon particles together with a binder and the like, and collecting a kneaded product. By mixing, the surface and the inside of the pores of the porous carbon particles are entirely covered with the binder while maintaining the binding force between the porous carbon particles and the binding force between the porous carbon particles and the current collector. It has been found that an electric double layer capacitor which can be prevented from being covered, has a large capacitance and a small electric resistance can be obtained.

【0008】すなわち、本発明の電気二重層コンデンサ
は、活性炭粒子をカーボンブラック等の導電性物質、結
着剤および金属酸化物粒子とともに混練した後に集電体
上に塗布してものであり、結着剤は、活性炭粒子の表面
を網状に被覆することとなり、活性炭粒子の導電性およ
び電解液の流通を阻害することはなく、特性の優れた電
気二重層コンデンサを得ることができる。活性炭粒子と
しては、椰子殻、フェノール樹脂、石油ピッチの炭化物
を水蒸気、水酸化物等で表面積を増大させる賦活処理し
た活性炭を、粒子径2μmから30μm、好ましくは1
0μm前後の大きさに整えた粒子を用いることが好まし
い。
That is, in the electric double layer capacitor of the present invention, the activated carbon particles are kneaded together with a conductive substance such as carbon black, a binder and metal oxide particles, and then applied on a current collector. The adhesive covers the surface of the activated carbon particles in a net-like manner, and does not hinder the conductivity of the activated carbon particles and the flow of the electrolytic solution, and an electric double layer capacitor having excellent characteristics can be obtained. As activated carbon particles, activated carbon obtained by activating a coconut shell, phenol resin, or charcoal of petroleum pitch to increase the surface area with water vapor, hydroxide, or the like, has a particle diameter of 2 μm to 30 μm, preferably 1 μm.
It is preferable to use particles sized to around 0 μm.

【0009】本発明において使用することができる結着
剤としては、ブチルゴム、エチレンプロピレンジエンゴ
ム、ブタジエンゴム、ニトリルゴムから選ばれる少なく
とも一種のエラストマーを挙げることができる。これら
のなかでも、ブチルゴムが好ましい。結着剤は、活性炭
粒子100重量部に対して3重量部〜20重量部を用い
ることが好ましとが好ましい。3重量部よりも少ない場
合には充分な結着が困難であり、また20重量部よりも
多い場合には、抵抗および容量にわたり悪影響を示す。
Examples of the binder that can be used in the present invention include at least one elastomer selected from butyl rubber, ethylene propylene diene rubber, butadiene rubber, and nitrile rubber. Of these, butyl rubber is preferred. The binder is preferably used in an amount of 3 to 20 parts by weight based on 100 parts by weight of the activated carbon particles. If the amount is less than 3 parts by weight, it is difficult to achieve sufficient binding, and if the amount is more than 20 parts by weight, adverse effects are exerted on resistance and capacity.

【0010】また、金属酸化物粒子としては、酸化亜
鉛、酸化マグネシウム、酸化アルミニウム、酸化ケイ
素、酸化バナジウム等の電気二重層コンデンサの使用電
位範囲において安定なものが好ましい。金属酸化物粒子
は、結着剤100重量部に対して、1〜8重量部とする
ことが好ましく、1〜5重量部とすることがより好まし
く、1〜3重量部とすることが更に好ましい。また、金
属酸化物粒子は、光散乱法による測定で平均粒子径0.
1μmないし5μmであることが好ましく、0.5μm
〜1μmであることがより好ましい。
As the metal oxide particles, zinc oxide, magnesium oxide, aluminum oxide, silicon oxide, vanadium oxide and the like which are stable in the electric potential range of the electric double layer capacitor are preferable. The metal oxide particles are preferably used in an amount of 1 to 8 parts by weight, more preferably 1 to 5 parts by weight, and still more preferably 1 to 3 parts by weight, based on 100 parts by weight of the binder. . Further, the metal oxide particles have an average particle size of 0.1 as measured by a light scattering method.
1 μm to 5 μm, preferably 0.5 μm
More preferably, it is 1 μm.

【0011】また、導電性粒子としては、カーボンブラ
ック、アセチレンブラック、黒鉛を挙げることができ、
平均粒子径0.05μm〜1.0μmであることが好ま
しく、0.1μm〜0.5μmであることがより好まし
い。また、結着剤にはエラストマーを架橋する架橋剤を
加えても良い。架橋剤を加えることによって、経時変化
が小さな電気二重層コンデンサを得ることができる。架
橋剤としては、イオウ、ジクミルパーオキサイド等の過
酸化物、テトラアルキルチウラムジスルフィド、カルバ
ミン亜鉛誘導体等のゴム用架橋剤を挙げることができ、
これらに架橋助剤を加えても良い。架橋剤は、結着剤1
00重量部に対して、0.5重量部〜8重量部を用いる
ことが好ましく、1重量部〜5重量部を用いることがよ
り好ましく、1重量部〜3重量部を用いることが更に好
ましい。
The conductive particles include carbon black, acetylene black and graphite.
The average particle size is preferably from 0.05 μm to 1.0 μm, more preferably from 0.1 μm to 0.5 μm. Further, a crosslinking agent for crosslinking the elastomer may be added to the binder. By adding a cross-linking agent, an electric double layer capacitor having a small change with time can be obtained. Examples of the crosslinking agent include sulfur, peroxides such as dicumyl peroxide, tetraalkylthiuram disulfide, rubber crosslinking agents such as carbamine zinc derivatives,
A crosslinking aid may be added to these. The crosslinking agent is a binder 1
Preferably 0.5 to 8 parts by weight, more preferably 1 to 5 parts by weight, and even more preferably 1 to 3 parts by weight, per 100 parts by weight.

【0012】また、本発明の混練物は、結着剤を活性炭
粒子、導電性物質、金属酸化物粒子等とともに有機溶剤
を加えて混練することによって製造する。有機溶剤とし
ては、エラストマーを溶解する物質であり、使用材料に
対して悪影響を及ぼさない物質であれば多くの物質を用
いることができるが、トルエン、キシレン、テトラヒド
ロフラン、シクロヘキサン、ノルマルヘキサン等が好ま
しい。また、混練は、ニーダー、ミキサー等によって行
うことができる。
The kneaded product of the present invention is produced by kneading a binder together with activated carbon particles, a conductive substance, metal oxide particles and the like, and an organic solvent. As the organic solvent, many substances can be used as long as they are substances that dissolve the elastomer and do not adversely affect the materials used, but toluene, xylene, tetrahydrofuran, cyclohexane, normal hexane and the like are preferable. The kneading can be performed by a kneader, a mixer or the like.

【0013】電気二重層コンデンサの分極性電極は、集
電体上に混練物をドクターブレード、コーター、スプレ
ー等の各種の塗布手段によって塗布して塗膜を形成した
後に乾燥し、次いでカレンダーロール等によって所定の
厚みに押圧処理することによって作製することができ
る。集電体としては、アルミニウム、ステンレス、ニッ
ケル、チタン、導電性エラストマー等からなる薄板状あ
るいは網状の基体を用いることができる。また、これら
の基体の表面には、エッチング等によって微細な凹凸を
形成して塗布層との密着性を高めても良く、表面にコロ
イダルカーボン等を塗布したものを用いていも良い。ま
た、本発明の電気二重層コンデンサにおいては、テトラ
エチルアンモニウムテトラフルオロボレート、トリメチ
ルアンモニウムテトラフルオロボレートのプロピレンカ
ーボネート溶液等を電解液とすることができる。
[0013] The polarizable electrode of the electric double layer capacitor is formed by applying a kneaded material onto a current collector by various coating means such as a doctor blade, a coater, a spray or the like to form a coating film, followed by drying, followed by calender roll or the like. To a predetermined thickness. As the current collector, a thin or net-like base made of aluminum, stainless steel, nickel, titanium, a conductive elastomer, or the like can be used. In addition, fine irregularities may be formed on the surface of these substrates by etching or the like to enhance the adhesion to the coating layer, or a substrate coated with colloidal carbon or the like may be used. Further, in the electric double layer capacitor of the present invention, a propylene carbonate solution of tetraethylammonium tetrafluoroborate, trimethylammonium tetrafluoroborate or the like can be used as the electrolyte.

【0014】[0014]

【実施例】以下に実施例を示し本発明を説明する。 実施例1 密閉式のミキサーに、ブチルゴム(日本ブチル製 II
R065)100重量部とトルエン1000重量部を加
えて80℃に加温してブチルゴムを溶解した。次に、酸
化亜鉛2.5重量部を加え2時間撹拌した。次いで、活
性炭(大阪ガスケミカル製M25 粒径10μm)80
0重量部、カーボンブラック(電気化学工業製 デンカ
ブラック 平均粒径0.53μm)5重量部、コロイダ
ルカーボン(日本黒鉛工業製バニーハイト 平均粒径
0.3μm)5重量部を加えて、24時間撹拌して完全
に分散した。得られた混練物を厚さ30μmのアルミニ
ウム箔上に幅100mmの幅で塗布し乾燥した後に、カ
レンダー処理し、膜厚150μmの分極性電極を作製し
た。
The present invention will be described below with reference to examples. Example 1 A butyl rubber (Nihon Butyl II
R065) and 100 parts by weight of toluene were added and heated to 80 ° C. to dissolve the butyl rubber. Next, 2.5 parts by weight of zinc oxide was added and stirred for 2 hours. Then, activated carbon (M25 manufactured by Osaka Gas Chemicals, particle size: 10 μm) 80
0 parts by weight, 5 parts by weight of carbon black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 0.53 μm), and 5 parts by weight of colloidal carbon (Bunny Height manufactured by Nippon Graphite Industry Co., Ltd., average particle size: 0.3 μm) are added and stirred for 24 hours. And completely dispersed. The obtained kneaded material was applied on an aluminum foil having a thickness of 30 μm with a width of 100 mm, dried, and then calendered to prepare a polarizable electrode having a thickness of 150 μm.

【0015】次いで、有効な部分の幅100mm、長さ
100mmの分極性電極をセルロースセパレータ(日本
高度紙製 MR5D50)の両面に介在させて、200
℃の真空オーブン中において25時間乾燥した。分極性
電極の表面を走査型電子顕微鏡(日本電子製 JSM−
6340F)で5kVの加速電圧で撮影し、その写真を
図1に示す。活性炭粒子は、結着剤に完全に被覆されて
おらず、電解液が活性炭粒子に充分に到達するものであ
った。次いで、セパレータを介して1対の分極性電極を
積層したものに濃度1Mのテトラエチルアンモニウムテ
トラフルオロボレートのプロピレンカーボネート溶液を
含浸した後に、アルミニウムの内側にポリエチレンフィ
ルム積層し、外側にはポリプロピレンをそれぞれ積層し
たフィルムで被覆して密閉して電気二重層コンデンサを
作製した。
Next, a polarizable electrode having a width of 100 mm and a length of 100 mm of an effective portion is interposed on both sides of a cellulose separator (MR5D50 manufactured by Nippon Kodoshi) to form a 200
Dried in a vacuum oven at 25 ° C. for 25 hours. Scan the surface of the polarizing electrode with a scanning electron microscope (JSM-JSM-
6340F) at an accelerating voltage of 5 kV, and the photograph is shown in FIG. The activated carbon particles were not completely covered with the binder, and the electrolyte sufficiently reached the activated carbon particles. Next, a laminate of a pair of polarizable electrodes via a separator is impregnated with a propylene carbonate solution of tetraethylammonium tetrafluoroborate having a concentration of 1 M, and then a polyethylene film is laminated on the inside of aluminum and polypropylene is laminated on the outside. The resultant was covered with a film and sealed to produce an electric double layer capacitor.

【0016】得られた電気二重層コンデンサに、1Aの
定電流で、2.5Vまで充電し、2.5Vで1時間保持
した後に、1Aの定電流で放電を行う充放電試験を行っ
て、充放電エネルギーを算出し、以下の式から静電容量
Cを求め、その結果を表1に示す。 E=0.5CV2 また、同時に放電時の電圧低下から電気二重層コンデン
サの内部抵抗を測定し、その結果を表1に示す。
The obtained electric double layer capacitor was charged to 2.5 V with a constant current of 1 A, held at 2.5 V for 1 hour, and then subjected to a charge / discharge test of discharging at a constant current of 1 A. The charge / discharge energy was calculated, and the capacitance C was obtained from the following equation. The results are shown in Table 1. E = 0.5 CV 2 At the same time, the internal resistance of the electric double layer capacitor was measured from the voltage drop during discharging, and the results are shown in Table 1.

【0017】比較例1 酸化亜鉛粒子を加えなかった点を除き、実施例1と同様
にして電気二重層コンデンサを作製し、実施例1と同様
に評価を行いその結果を表1に示す。
Comparative Example 1 An electric double layer capacitor was manufactured in the same manner as in Example 1 except that zinc oxide particles were not added, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0018】比較例2 結着剤をポリフッ化ビニリデンに代えるとともに、表面
状態を確認しやすくするためにた活性炭の粒径を30μ
mにした点を除き実施例1と同様に電気二重層コンデン
サを作製し、実施例1と同様に評価を行ったところ、容
量は136F、内部抵抗は0.055Ωであった。ま
た、電極表面を実施例1と同様に走査型電子顕微鏡で撮
影した結果を図2に示す。活性炭粒子表面は広く結着剤
によって覆われていた。
Comparative Example 2 The particle size of the activated carbon was changed to 30 μm in order to make it easy to confirm the surface condition while replacing the binder with polyvinylidene fluoride.
An electric double layer capacitor was fabricated in the same manner as in Example 1 except that the value was changed to m, and the evaluation was performed in the same manner as in Example 1. As a result, the capacitance was 136 F and the internal resistance was 0.055 Ω. FIG. 2 shows the result of photographing the electrode surface with a scanning electron microscope in the same manner as in Example 1. The activated carbon particle surface was widely covered with the binder.

【0019】実施例2 酸化亜鉛粒子の量を変化させて、配合量の異なる電気二
重層コンデンサを作製した点を除き、実施例1と同様に
して電気二重層コンデンサを作製し、実施例1と同様に
評価を行いその結果を表1に示す。
Example 2 An electric double layer capacitor was manufactured in the same manner as in Example 1 except that the amount of zinc oxide particles was changed to manufacture electric double layer capacitors having different blending amounts. Evaluation was performed in the same manner, and the results are shown in Table 1.

【0020】実施例3 酸化亜鉛粒子に代えて、酸化マグネシウム粒子を用いる
とともに、酸化マグネシウムの配合量を変化させて、酸
化マグネシウム粒子の配合量の異なる電気二重層コンデ
ンサを作製した点を除き、実施例1と同様にして電気二
重層コンデンサを作製し、実施例1と同様に評価を行い
その結果を表1に示す。
Example 3 Except that magnesium oxide particles were used instead of zinc oxide particles, and the amount of magnesium oxide was varied to produce electric double layer capacitors having different amounts of magnesium oxide particles. An electric double layer capacitor was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0021】実施例4 酸化亜鉛粒子に代えて、酸化ケイ素粒子を用いるととも
に、酸化ケイ素粒子の配合量を変化させて、酸化ケイ素
粒子の配合量の異なる電気二重層コンデンサを作製した
点を除き、実施例1と同様にして電気二重層コンデンサ
を作製し、実施例1と同様に評価を行いその結果を表1
に示す。
Example 4 Except that, instead of using zinc oxide particles, silicon oxide particles were used and the amount of silicon oxide particles was varied to produce electric double layer capacitors having different amounts of silicon oxide particles, An electric double layer capacitor was produced in the same manner as in Example 1, evaluated in the same manner as in Example 1, and the results were shown in Table 1.
Shown in

【0022】実施例5 酸化亜鉛粒子に代えて、酸化チタン粒子を用いるととも
に、酸化チタン粒子の配合量を変化させて、酸化チタン
粒子の配合量の異なる電気二重層コンデンサを作製した
点を除き、実施例1と同様にして電気二重層コンデンサ
を作製し、実施例1と同様に評価を行いその結果を表1
に示す。
Example 5 Except that, instead of using zinc oxide particles, titanium oxide particles were used and the amount of titanium oxide particles was varied to produce electric double layer capacitors having different amounts of titanium oxide particles. An electric double layer capacitor was produced in the same manner as in Example 1, evaluated in the same manner as in Example 1, and the results were shown in Table 1.
Shown in

【0023】実施例6 酸化亜鉛粒子に代えて、酸化アルミニウム粒子を用いる
とともに、酸化アルミニウム粒子の配合量を変化させ
て、酸化アルミニウム粒子の配合量の異なる電気二重層
コンデンサを作製した点を除き、実施例1と同様にして
電気二重層コンデンサを作製し、実施例1と同様に評価
を行いその結果を表1に示す。
Example 6 Except that aluminum oxide particles were used instead of zinc oxide particles, and the amount of aluminum oxide particles was varied to produce electric double layer capacitors having different amounts of aluminum oxide particles. An electric double layer capacitor was produced in the same manner as in Example 1, evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0024】[0024]

【表1】 金属酸化物粒子 静電容量 内部抵抗 種類 配合割合 (F) (Ω) 酸化亜鉛 0 153 0.051 1.0 221 0.036 2.5 356 0.024 5.0 361 0.023 7.5 305 0.026 10 283 0.036 酸化マク゛ネシウム 1.0 203 0.043 2.5 351 0.028 5.0 348 0.031 7.5 320 0.038 10 301 0.041 酸化ケイ素 1.0 251 0.029 2.5 368 0.021 5.0 372 0.025 7.5 351 0.032 10 325 0.039 酸化チタン 1.0 243 0.047 2.5 336 0.033 5.0 321 0.034 7.5 301 0.038 10 258 0.043 酸化アルミニウム 1.0 281 0.028 2.5 304 0.023 5.0 258 0.038 7.5 233 0.041 10 187 0.045Table 1 Metal oxide particles Capacitance Internal resistance type Mixing ratio (F) (Ω) Zinc oxide 0 153 0.051 1.0 221 0.036 2.5 356 0.024 5.0 361 0.023 7.5 305 0.026 10 283 0.036 Magnesium oxide 1.0 203 0.043 2.5 351 0.028 5.0 348 0.031 7.5 320 0.038 10 301 0.041 Silicon oxide 1 0.0 251 0.029 2.5 368 0.021 5.0 372 0.025 7.5 351 0.032 10 325 0.039 Titanium oxide 1.0 243 0.047 2.5 336 0.033 0 321 0.034 7.5 301 0.038 10 258 0.043 aluminum oxide 1.0 281 0.028 2.5 304 0.02 5.0 258 0.038 7.5 233 0.041 10 187 0.045

【0025】実施例7 酸化亜鉛粒子の混合量を5重量部とするとともに、架橋
剤としてフェノール樹脂系架橋剤(田岡化学工業製 タ
ッキロール201)の配合量を0重量部から10重量部
に変化させて、架橋剤の配合割合の異なる電気二重層コ
ンデンサを作製し、作製直後に、実施例1と同様にして
静電容量と内部抵抗を測定した後に、70℃において1
000時間保存後に同様に静電容量と内部抵抗を測定
し、作製直後の値に対する変化率を表2に示す。
Example 7 The mixing amount of zinc oxide particles was changed to 5 parts by weight, and the compounding amount of a phenolic resin-based cross-linking agent (Takkiroll 201, manufactured by Taoka Chemical Industry Co., Ltd.) was changed from 0 parts by weight to 10 parts by weight. Then, electric double layer capacitors having different mixing ratios of the cross-linking agent were produced, and immediately after the production, the capacitance and the internal resistance were measured in the same manner as in Example 1.
After storage for 000 hours, the capacitance and the internal resistance were measured in the same manner, and the rate of change with respect to the value immediately after production is shown in Table 2.

【0026】実施例8 酸化亜鉛粒子に代えて酸化マグネシウム粒子2.5重量
部を配合した点を除き、実施例6と同様に架橋剤の配合
割合の異なる電気二重層コンデンサを作製し、実施例6
と同様にして作製直後および保存後の静電容量と内部抵
抗を測定し、作製直後の値に対する変化率を表2に示
す。
Example 8 Except that 2.5 parts by weight of magnesium oxide particles were used instead of zinc oxide particles, electric double layer capacitors having different mixing ratios of the crosslinking agent were prepared in the same manner as in Example 6. 6
The capacitance and the internal resistance were measured immediately after production and after storage in the same manner as described above, and the rate of change with respect to the value immediately after production was shown in Table 2.

【0027】実施例9 酸化亜鉛粒子に代えて酸化ケイ素粒子2.5重量部を配
合した点を除き、実施例6と同様に架橋剤の配合割合の
異なる電気二重層コンデンサを作製し、実施例6と同様
にして作製直後および保存後の静電容量と内部抵抗を測
定し、作製直後の値に対する変化率を表2に示す。
Example 9 An electric double layer capacitor having a different mixing ratio of a crosslinking agent was prepared in the same manner as in Example 6, except that 2.5 parts by weight of silicon oxide particles were used instead of zinc oxide particles. The capacitance and the internal resistance immediately after production and after storage were measured in the same manner as in Example 6, and the rate of change with respect to the value immediately after production is shown in Table 2.

【0028】実施例10 酸化亜鉛粒子に代えて酸化チタン粒子2.5重量部を配
合した点を除き、実施例6と同様に架橋剤の配合割合の
異なる電気二重層コンデンサを作製し、実施例6と同様
にして作製直後および保存後の静電容量と内部抵抗を測
定し、作製直後の値に対する変化率を表2に示す。
Example 10 An electric double layer capacitor having a different blending ratio of a crosslinking agent was prepared in the same manner as in Example 6 except that 2.5 parts by weight of titanium oxide particles were blended in place of the zinc oxide particles. The capacitance and the internal resistance immediately after production and after storage were measured in the same manner as in Example 6, and the rate of change with respect to the value immediately after production is shown in Table 2.

【0029】実施例11 酸化亜鉛粒子に代えて酸化アルミニウム粒子2.5重量
部を配合した点を除き、実施例6と同様に架橋剤の配合
割合の異なる電気二重層コンデンサを作製し、実施例6
と同様にして作製直後および保存後の静電容量と内部抵
抗を測定し、作製直後の値に対する変化率を表2に示
す。
Example 11 An electric double layer capacitor having a different blending ratio of a crosslinking agent was prepared in the same manner as in Example 6, except that 2.5 parts by weight of aluminum oxide particles were used instead of zinc oxide particles. 6
The capacitance and the internal resistance were measured immediately after production and after storage in the same manner as described above, and the rate of change with respect to the value immediately after production was shown in Table 2.

【0030】[0030]

【表2】 金属酸化物粒子 架橋剤 静電容量変化率 抵抗変化率 種類 配合割合 配合割合 (%) (%) 酸化亜鉛 5.0 0 −16.1 111.3 5.0 0.5 −12.6 109.5 5.0 1.0 −10.6 108.3 5.0 2.5 −5.3 104.6 5.0 5.0 −7.2 107.4 5.0 7.5 −11.1 113.9 5.0 10 −19.6 126.8 酸化マク゛ネシウム 2.5 0 −17.2 112.8 2.5 0.5 −13.8 110.1 2.5 1.0 −8.3 107.9 2.5 2.5 −8.5 108.1 2.5 5.0 −6.8 111.9 2.5 7.5 −7.9 115.3 2.5 10 −17.3 121.6 酸化ケイ素 2.5 0 −18.6 118.2 2.5 0.5 −15.3 114.9 2.5 1.0 −9.8 106.3 2.5 2.5 −6.1 105.6 2.5 5.0 −8.9 108.1 2.5 7.5 −10.3 109.7 2.5 10 −12.6 112.3 酸化チタン 2.5 0 −17.2 118.2 2.5 0.5 −13.9 110.6 2.5 1.0 −10.1 106.3 2.5 2.5 −7.3 105.6 2.5 5.0 −8.7 108.1 2.5 7.5 −10.9 109.7 2.5 10 −14.6 112.3 酸化アルミニウム 2.5 0 −19.1 118.1 2.5 0.5 −10.6 109.9 2.5 1.0 −6.1 106.2 2.5 2.5 −0.3 110.3 2.5 5.0 −15.6 115.6 2.5 7.5 −21.3 125.3 2.5 10 −25.6 131.6Table 2 Metal oxide particles Crosslinking agent Capacitance change rate Resistance change rate Mixing ratio Mixing ratio (%) (%) Zinc oxide 5.00-16.1 111.3 5.0 0.5-12 6.6 109.5 5.0 1.0 -10.6 108.3 5.0 2.5 -5.3 104.6 5.0 5.0 -7.2 107.4 5.0 7.5 -11.1 113.9 5.0 10 -19.6 126.8 Magnesium oxide 2.50 -17.2 112.8 2.5 0.5 -13.8 110.1 2.5 1.0 -8.3 107.9 2.5 2.5 -8.5 108.1 2.5 5.0 -6.8 111.9 2.5 7.5 -7.9 115.3 2.5 10 -17.3 121.6 silicon oxide 2.5 0 -18.6 118.2 2.5 0.5 -15.3 114.9 2.5 1.0 9.8 106.3 2.5 2.5 -6.1 105.6 2.5 5.0 -8.9 108.1 2.5 7.5 -10.3 109.7 2.5 10 - 12.6 112.3 Titanium oxide 2.50-17.2 118.2 2.5 0.5-13.9 110.6 2.5 1.0-10.1 106.3 2.5 5-7.3 105.6 2.5 5.0-8.7 108.1 2.5 7.5 -10.9 109.7 2.5 10 -14.6 112.3 Aluminum oxide 2.5 0-19.1 118.1 2.5 0.5 -10.6 109.9 2.5 1.0 -6.1 106.2 2.5 2.5 -0.3 110.3 2.5 5.0-15.6 115.6 2.5 7.5-21.3 125.3 2.5 10-25.6 131.6

【0031】[0031]

【発明の効果】多孔性炭素粒子を結着剤とともに混練し
て形成した分極性電極を有する電気二重層コンデンサに
おいて、結着剤中に金属酸化物粒子を混合したことによ
って、静電容量、および内部抵抗が小さな電気二重層コ
ンデンサを得ることができた。さらに、結着剤中に架橋
剤を含有させたものにあっては、経時変化が小さな電気
二重層コンデンサを製造することができる。
As described above, in an electric double layer capacitor having a polarizable electrode formed by kneading porous carbon particles with a binder, by mixing metal oxide particles in the binder, the capacitance, An electric double layer capacitor with small internal resistance was obtained. Furthermore, in the case where the crosslinking agent is contained in the binder, it is possible to manufacture an electric double layer capacitor having a small change with time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電気二重層コンデンサの電極
表面の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of an electrode surface of an electric double layer capacitor according to an example of the present invention.

【図2】比較例の電気二重層コンデンサの電極表面の走
査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of an electrode surface of an electric double layer capacitor of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 仁 神奈川県横浜市金沢区福浦1丁目1番地の 1 株式会社パワーシステム内 (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田2丁目19番6号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jin Nakamura 1-1, Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture 1 Inside the Power System Co., Ltd. (72) Dio Okamura 2-19 Minamiota, Minami-ku, Yokohama-shi, Kanagawa No. 6

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体と接合した分極性電極を有する電
気二重層コンデンサにおいて、分極性電極が少なくとも
多孔性炭素粒子、導電性物質、および金属酸化物粒子を
結着剤と混練した混練物によって形成したものであるこ
とを特徴とする電気二重層コンデンサ。
1. An electric double-layer capacitor having a polarizable electrode joined to a current collector, wherein the polarizable electrode is a kneaded product in which at least porous carbon particles, a conductive substance, and metal oxide particles are kneaded with a binder. An electric double-layer capacitor formed by:
【請求項2】 結着剤が、ブチルゴム、エチレンプロピ
レンジエンゴム、ブタジエンゴム、ニトリルゴムから選
ばれる少なくとも一種である請求項1記載の電気二重層
コンデンサ。
2. The electric double layer capacitor according to claim 1, wherein the binder is at least one selected from butyl rubber, ethylene propylene diene rubber, butadiene rubber, and nitrile rubber.
【請求項3】 金属酸化物粒子が、酸化亜鉛、酸化マグ
ネシウム、酸化チタン、酸化アルミニウム、酸化ケイ素
から選ばれる少なくとも一種である請求項1または2記
載の電気二重層コンデンサ。
3. The electric double layer capacitor according to claim 1, wherein the metal oxide particles are at least one selected from zinc oxide, magnesium oxide, titanium oxide, aluminum oxide, and silicon oxide.
【請求項4】 混練物が架橋剤を含有することを特徴と
する請求項1ないし3のいずれかに記載の電気二重層コ
ンデンサ。
4. The electric double layer capacitor according to claim 1, wherein the kneaded material contains a crosslinking agent.
JP2000027046A 2000-02-04 2000-02-04 Electric double-layer capacitor Pending JP2001217162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027046A JP2001217162A (en) 2000-02-04 2000-02-04 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027046A JP2001217162A (en) 2000-02-04 2000-02-04 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2001217162A true JP2001217162A (en) 2001-08-10

Family

ID=18552691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027046A Pending JP2001217162A (en) 2000-02-04 2000-02-04 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2001217162A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221531A (en) * 2002-12-26 2004-08-05 Toin Gakuen Light chargeable laminated electric double-layered capacitor
JP2008252062A (en) * 2007-03-08 2008-10-16 Mitsubishi Electric Corp Method of manufacturing electrode sheet for electric double-layer capacitor, and the electric double-layer capacitor
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP2011049231A (en) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element
US7974073B2 (en) 2006-11-13 2011-07-05 Mitsubishi Electric Corporation Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
RU2578668C2 (en) * 2012-09-17 2016-03-27 Интел Корпорейшн Energy accumulation device, method of its manufacturing and mobile electronic device that comprises it
US9887048B2 (en) 2015-02-24 2018-02-06 Samsung Electronics Co., Ltd. Stretchable supercapacitor and method of manufacturing the same
CN113539701A (en) * 2020-04-14 2021-10-22 勤益科技大学 Supercapacitor electrode with silicon dioxide microspheres and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221531A (en) * 2002-12-26 2004-08-05 Toin Gakuen Light chargeable laminated electric double-layered capacitor
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US7974073B2 (en) 2006-11-13 2011-07-05 Mitsubishi Electric Corporation Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
JP2008252062A (en) * 2007-03-08 2008-10-16 Mitsubishi Electric Corp Method of manufacturing electrode sheet for electric double-layer capacitor, and the electric double-layer capacitor
JP2011049231A (en) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element
RU2578668C2 (en) * 2012-09-17 2016-03-27 Интел Корпорейшн Energy accumulation device, method of its manufacturing and mobile electronic device that comprises it
US9887048B2 (en) 2015-02-24 2018-02-06 Samsung Electronics Co., Ltd. Stretchable supercapacitor and method of manufacturing the same
CN113539701A (en) * 2020-04-14 2021-10-22 勤益科技大学 Supercapacitor electrode with silicon dioxide microspheres and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3834746B2 (en) Porous rubber electrode binder, porous rubber electrode using the same, and porous rubber electrode substrate
US7245478B2 (en) Enhanced breakdown voltage electrode
US5150283A (en) Electric double layer capacitor and method for producing the same
US7046503B2 (en) Electrode for capacitor
US20050116375A1 (en) Electrode formulation for polarized electrode and method for preparation thereof, and polarized electrode using the eletrode formulation
US20080089013A1 (en) Electrode for energy storage device
JP2004520703A (en) Electrochemical double layer capacitor with carbon powder electrode
WO2005036574A1 (en) Electrode for electric double layer capacitor, method for producing same, electric double layer capacitor, and conductive adhesive
TWI736683B (en) Carbon materials, electrode sheets for capacitors, and capacitors
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
JPH11329904A (en) Nonaqueous electric double layer capacitor and method of producing cell using the same
JP2001217162A (en) Electric double-layer capacitor
US10981794B1 (en) Stable aqueous dispersion of carbon
JP2002353074A (en) Electric double-layer capacitor, paste for electrode used for the capacitor, and elctrode
JP2993965B2 (en) Electric double layer capacitor
JP3500493B2 (en) Porous electrode and method for producing the same
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2005191425A (en) Production process of electrode for capacitor
JP2000068166A (en) Electric-double-layer capacitor
JP3900810B2 (en) Electric double layer capacitor
JP3981697B1 (en) Method for producing electrode mixture for polarizable electrode
KR100592112B1 (en) Electrode for Electric Double Layer Capacitor Fabricated Using Sulfonated Poly 2,6-dimethyl-1,4-phenylene Oxide
KR101409178B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
JP2000012404A (en) Electric double-layer capacitor
JPH01165108A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080627