JP2000068166A - Electric-double-layer capacitor - Google Patents

Electric-double-layer capacitor

Info

Publication number
JP2000068166A
JP2000068166A JP23590398A JP23590398A JP2000068166A JP 2000068166 A JP2000068166 A JP 2000068166A JP 23590398 A JP23590398 A JP 23590398A JP 23590398 A JP23590398 A JP 23590398A JP 2000068166 A JP2000068166 A JP 2000068166A
Authority
JP
Japan
Prior art keywords
layer capacitor
electric double
double layer
conductive fine
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23590398A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP23590398A priority Critical patent/JP2000068166A/en
Publication of JP2000068166A publication Critical patent/JP2000068166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make increasable the capacity of an electric-double-layer capacitor, by using in it an electrode wherein the mixture of conductive fine grains with a bonding agent containing hydrophilic/lipophilic polymers is bonded to its collector electrode. SOLUTION: By a mixer, the mixture (slurry) of conductive fine grains with a bonding agent is prepared. Hereupon, as the bonding agent, hydrophilic/ lipophilic polymers are used. Applying this slurry to a collector electrode by a roll coater, its solvent is dried to create a sheet-form active carbon electrode. As the hydrophilic/lipophilic polymers, one or more kinds of polypropylene, polyethylene, butyl rubber, ethylene propylidene rubber, natural rubber, and nitryl rubber are used. Also, the bonding agent is obtained by mixing the hydrophilic/lipophilic polymers with a bridging agent. Further, the mixing ratio of the conductive fine grains to the bonding agent is set favorably to the conductive fine grains : the bonding agent = 95:5-50:50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層コンデン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭を主な
材料とする炭素電極と液体の電解液とから構成され、通
電時これら固液界面に形成される電気二重層を利用して
電荷を蓄積する。電気二重層コンデンサは表面積の大き
な活性炭を用いることにより、材料の電気化学変化を伴
わないいわゆるコンデンサ現象を利用するデバイスとし
ては、現状最も大きな蓄電能力を持つことから、近年集
積回路のメモリーバックアップや電気自動車の回生エネ
ルギーシステムなどに利用されて注目を集めている。電
解液としてはエチレンカーボネート系溶媒、ラクトン系
溶媒にテトラアルキルアンモニウムの過塩素酸塩または
ほうフッ化塩を溶解した有機系電解液や、硫酸あるいは
水酸化カリウム水溶液の水系電解液が用いられている。
有機系電解液の方が酸化電位が高く高耐圧化できること
から、エネルギー的に有利であり、水系電解液では低耐
圧ながら抵抗を低くできることから出力的に有利である
という特徴を有する。また電気化学変化を伴わない原理
により作動することから、二次電池に比較して寿命が極
めて長いという特徴をも併せ持つ。しかしながら、リチ
ウムイオン二次電池などの二次電池に比して容量が小さ
いため単独では主電源となりにくく、更なる高容量化が
望まれていた。
2. Description of the Related Art An electric double layer capacitor is composed of a carbon electrode mainly composed of activated carbon and a liquid electrolyte, and stores electric charge by using an electric double layer formed at the solid-liquid interface when electricity is supplied. I do. Electric double-layer capacitors use activated carbon with a large surface area, and as a device utilizing the so-called capacitor phenomenon that does not involve electrochemical changes in materials, currently have the largest power storage capacity. It has been attracting attention for use in regenerative energy systems for automobiles. As the electrolyte, an organic electrolyte obtained by dissolving a tetraalkylammonium perchlorate or a borofluoride in an ethylene carbonate-based solvent or a lactone-based solvent, or an aqueous electrolyte such as an aqueous solution of sulfuric acid or potassium hydroxide is used. .
The organic electrolytic solution has a feature that it is advantageous in energy because the oxidation potential is higher and the breakdown voltage can be increased, and the aqueous electrolyte solution has an advantage in output because the resistance can be reduced while the breakdown voltage is low. In addition, since it operates according to the principle that does not involve electrochemical change, it also has the feature that its life is extremely long as compared with a secondary battery. However, since the capacity is smaller than that of a secondary battery such as a lithium ion secondary battery, it is difficult for the battery to be used alone as a main power source, and further higher capacity has been desired.

【0003】[0003]

【発明が解決しようとする課題】電気二重層コンデンサ
の容量は、主な材料である活性炭あるいはその表面積に
依存し、活性炭内に電気二重層を形成するに足る細孔径
が分布している必要がある。近年高容量化のために様々
な努力がなされ、ポリアセンなどの多孔性導電性高分子
の登場などもあり電気二重層コンデンサの容量は高容量
化してきた。しかしながら、活性炭の表面積に基づいて
電気二重層コンデンサが持ちうる最大容量を理論的に考
えれば、一般に150F/g程度の容量は実現可能であ
るが、実際の容量は10〜15F/g程度であり、活性
炭の持つ容量が十分に引き出されていない。この原因は
接着剤(バインダー)として使用されてきたポリテトラ
フルオロエチレン(PTFE)の撥水、撥油性に起因す
る。PTFEは化学的な安定性と耐酸化性の高いポリマ
ーであり、機械的な延伸により網状となり導電性微粒子
を強く縛り付け、高い導電性を確保できるという優れた
特性を有しているが、同時に電解液と活性炭との接触を
妨げてしまうという問題がある。
The capacity of an electric double layer capacitor depends on the main material, activated carbon, or its surface area, and it is necessary that the pore size sufficient to form an electric double layer be distributed in the activated carbon. is there. In recent years, various efforts have been made to increase the capacity, and with the advent of porous conductive polymers such as polyacene, the capacity of electric double layer capacitors has been increased. However, when theoretically considering the maximum capacity that an electric double layer capacitor can have based on the surface area of activated carbon, a capacity of about 150 F / g is generally feasible, but the actual capacity is about 10 to 15 F / g. However, the capacity of activated carbon has not been fully drawn out. This is due to the water and oil repellency of polytetrafluoroethylene (PTFE) used as an adhesive (binder). PTFE is a polymer with high chemical stability and high oxidation resistance, and has the excellent properties of forming a network by mechanical stretching, binding strongly conductive fine particles, and ensuring high conductivity. There is a problem that the contact between the liquid and the activated carbon is prevented.

【0004】この問題を解決するために、PTFEの導
電性微粒子に対する割合を相対的に下げることが有効で
あるが、活性炭電極に占める割合が10%未満では結合
力が弱まり抵抗が上昇し、また機械的な強度が減少する
という問題がある。
In order to solve this problem, it is effective to relatively reduce the ratio of PTFE to the conductive fine particles. However, if the ratio of the PTFE to the activated carbon electrode is less than 10%, the bonding force is weakened and the resistance increases. There is a problem that the mechanical strength is reduced.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題を解決
するために、親水性や親油性を有するポリマーを接着剤
として使用するものである。接着剤に親水性や親油性を
有するポリマーを使用することにより、ポリマーの親水
性や親油性により導電性微粒子の細孔へ電解液が浸透
し、電気二重層コンデンサの高容量化が図れる。すなわ
ち、導電性微粒子と親水性および/または親油性ポリマ
ーを含む接着剤との混合物を集電電極と結着してなる電
極を用いたことを特徴とする電気二重層コンデンサであ
る。
The present invention solves the above-mentioned problems by using a polymer having hydrophilicity or lipophilicity as an adhesive. By using a polymer having hydrophilicity or lipophilicity for the adhesive, the electrolyte permeates into the pores of the conductive fine particles due to the hydrophilicity or lipophilicity of the polymer, and the capacity of the electric double layer capacitor can be increased. That is, an electric double layer capacitor using an electrode obtained by binding a mixture of conductive fine particles and an adhesive containing a hydrophilic and / or lipophilic polymer to a current collecting electrode.

【0006】または、導電性微粒子と親水性および/ま
たは親油性ポリマーを含む接着剤とを混合し型枠を用い
て成形してなる分極電極と、集電電極とを張り合せてな
る電極を用いたことを特徴とする電気二重層コンデンサ
である。
Alternatively, a polarizing electrode formed by mixing conductive fine particles and an adhesive containing a hydrophilic and / or lipophilic polymer and molding using a mold, and an electrode obtained by laminating a current collecting electrode are used. It is an electric double layer capacitor characterized by the following.

【0007】そして上記記載の親水性および/または親
油性ポリマーが、ポリプロピレン(PP)、ポリエチレ
ン(PE)、ブチルゴム(IIR)、エチレンプロピレ
ンジエンゴム(EPDM)、天然ゴム(NR)、ニトリ
ルゴム(NBR)のうち少なくとも1種であることを特
徴とする電気二重層コンデンサである。
The above-mentioned hydrophilic and / or lipophilic polymer is selected from the group consisting of polypropylene (PP), polyethylene (PE), butyl rubber (IIR), ethylene propylene diene rubber (EPDM), natural rubber (NR), and nitrile rubber (NBR). ), Wherein the electric double layer capacitor is at least one of the following.

【0008】さらに上記導電性微粒子と接着剤との混合
比が、導電性微粒子:接着剤=5:95〜50:50で
あることを特徴とする電気二重層コンデンサである。
[0008] Further, there is provided an electric double layer capacitor, wherein the mixing ratio of the conductive fine particles and the adhesive is 5:95 to 50:50.

【0009】また上記接着剤が、親水性および/または
親油性ポリマーと架橋剤とを混合してなる電気二重層コ
ンデンサである。
Further, the above-mentioned adhesive is an electric double layer capacitor in which a hydrophilic and / or lipophilic polymer is mixed with a crosslinking agent.

【0010】そして上記集電電極が、アルミニウム、ニ
ッケル、銅のうち少なくとも1種を主成分とする箔また
はメッシュであることを特徴とする電気二重層コンデン
サである。
[0010] In the electric double layer capacitor, the current collecting electrode is a foil or a mesh mainly containing at least one of aluminum, nickel and copper.

【0011】また上記集電電極が、アルミニウム、ニッ
ケル、銅のうち少なくとも1種を主成分とする箔または
メッシュに、導電性ゴムを塗布したものであることを特
徴とする電気二重層コンデンサである。
[0011] The electric double layer capacitor is characterized in that the current collecting electrode is formed by applying a conductive rubber to a foil or a mesh mainly composed of at least one of aluminum, nickel and copper. .

【0012】そして上記集電電極が、導電性ゴムシート
であることを特徴とする電気二重層コンデンサである。
[0012] An electric double layer capacitor, wherein the current collecting electrode is a conductive rubber sheet.

【0013】さらに上記導電性微粒子が、活性炭、導電
性高分子、カーボンブラック、ケッチェンブラック、ア
セチレンブラック、ファーネスブラック、ニッケル、チ
タンナイトライド、酸化ルテニウム、五酸化バナジウム
のうち少なくとも1種であることを特徴とする電気二重
層コンデンサである。
Further, the conductive fine particles are at least one of activated carbon, conductive polymer, carbon black, ketjen black, acetylene black, furnace black, nickel, titanium nitride, ruthenium oxide and vanadium pentoxide. An electric double layer capacitor characterized by the following.

【0014】また上記記載の分極電極にアルミニウム、
ニッケル、銅のうち少なくとも1種を主成分とする金属
をプラズマ溶射して集電電極を形成してなる電気二重層
コンデンサである。
The above-mentioned polarization electrode is made of aluminum,
An electric double layer capacitor formed by forming a current collecting electrode by plasma spraying a metal containing at least one of nickel and copper as a main component.

【0015】[0015]

【発明の実施の形態】導電性微粒子の接着剤として親水
性や親油性のポリマーを使用することにより、活性炭の
細孔に電解液を浸透させ電気二重層コンデンサの高容量
化を図ることができる。また、ポリマーと架橋剤とを混
合して接着剤とした場合、架橋剤によりポリマー同士が
強く結合し収縮する傾向にあることから、炭素粉同士の
接合が改善され、低抵抗化されるという効果がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By using a hydrophilic or lipophilic polymer as an adhesive for conductive fine particles, an electrolytic solution can be permeated into the pores of activated carbon to increase the capacity of an electric double layer capacitor. . In addition, when a polymer and a cross-linking agent are mixed to form an adhesive, the cross-linking agent tends to strongly bond and shrink the polymers, thereby improving the bonding between the carbon powders and reducing the resistance. There is.

【0016】[0016]

【実施例】ミキサーにて表1の組成で導電性微粒子と接
着剤の混合物(スラリ−)を作製した。上記スラリーを
集電電極上にロールコーターを用いて塗布し、溶剤を乾
燥させシート状の活性炭電極を作製した。なお、集電電
極として、あらかじめエッチングし2V程度の化成処理
を施したアルミニウム箔を用いた。
EXAMPLE A mixture (slurry) of conductive fine particles and an adhesive was prepared with the composition shown in Table 1 using a mixer. The slurry was applied onto a collecting electrode using a roll coater, and the solvent was dried to prepare a sheet-like activated carbon electrode. Note that an aluminum foil that had been etched and subjected to a chemical conversion treatment at about 2 V in advance was used as a collecting electrode.

【0017】[0017]

【表1】 [Table 1]

【0018】作製した電極に0.01mlのプロピレン
カーボネートを滴下し、その接触角をカセトメーターで
測定した結果、表2の結果を得た。いずれの実施例にお
いても比較例に比して濡れ性が増していることが明らか
である。
[0018] 0.01 ml of propylene carbonate was dropped on the produced electrode, and the contact angle was measured with a cassette meter. The results shown in Table 2 were obtained. It is clear that the wettability of each of the examples is higher than that of the comparative example.

【0019】[0019]

【表2】 [Table 2]

【0020】次に図1に示すように、一定の面積となる
ように切り出した活性炭電極にリード線を結合した2枚
の活性炭電極をセパレータ紙を介して巻回し、コンデン
サ素子とした。コンデンサ素子を乾燥後、プロピレンカ
ーボネートとエチレンカーボネートを1:1とした溶媒
に、テトラエチルアンモニウムテトラフルオロボレート
0.6mol/l溶かした電解液をコンデンサ素子に含
浸した。アルミニウムケースとゴムパッキングを用いて
封止し、電気二重層コンデンサを各50個作製した。こ
れらの容量と抵抗を測定し表3の結果を得た。表3から
明らかなように、実施例の電気二重層コンデンサは、比
較例と比して容量が大きく、抵抗値も低いことがわか
る。これは表2の結果から、本発明による電極が、電解
液の主成分たるエチレンカーボネート系の溶媒に対し
て、濡れやすいことに起因すると思われる。またこれら
コンデンサを85℃中で2.3V印加し、特性の経時変
化を測定した。この結果を図2に示す。実施例は、比較
例と比して同等の信頼性が得られている。
Next, as shown in FIG. 1, two activated carbon electrodes each having a lead wire connected to an activated carbon electrode cut out so as to have a fixed area were wound through a separator paper to obtain a capacitor element. After drying the capacitor element, the capacitor element was impregnated with an electrolyte obtained by dissolving 0.6 mol / l of tetraethylammonium tetrafluoroborate in a solvent in which propylene carbonate and ethylene carbonate were in a ratio of 1: 1. Sealing was performed using an aluminum case and rubber packing, and 50 electric double layer capacitors were produced. The capacitance and resistance were measured, and the results shown in Table 3 were obtained. As is clear from Table 3, the electric double layer capacitor of the example has a larger capacity and a lower resistance value than the comparative example. From the results shown in Table 2, it is considered that the electrode according to the present invention is easily wetted by an ethylene carbonate-based solvent which is a main component of the electrolytic solution. Further, 2.3 V was applied to these capacitors at 85 ° C., and the change over time in the characteristics was measured. The result is shown in FIG. The embodiment has the same reliability as the comparative example.

【0021】[0021]

【表3】 [Table 3]

【0022】導電性微粒子と接着剤との混合比は、導電
性微粒子:接着剤=95:5より接着剤量が少ないと導
電性微粒子を接着できないので問題である。また、導電
性微粒子:接着剤=50:50より接着剤量が多いと電
極の抵抗が高くなりすぎるので問題である。よって、導
電性微粒子と接着剤との混合比は、導電性微粒子:接着
剤=95:5〜50:50が好ましい。
The mixing ratio between the conductive fine particles and the adhesive is a problem because if the amount of the adhesive is smaller than the conductive fine particles: adhesive = 95: 5, the conductive fine particles cannot be bonded. Also, if the amount of the adhesive is larger than 50:50 of the conductive fine particles: adhesive, the resistance of the electrode becomes too high, which is a problem. Therefore, the mixing ratio of the conductive fine particles and the adhesive is preferably from 95: 5 to 50:50.

【0023】なお、架橋剤として硫黄粉末を使用したが
その添加量はポリマーの0.1〜7.0wt%が好まし
い。更に架橋促進剤としてZnO、MgO等の金属酸化物粉
末、ヘキサメチレンテトラミン、1,3-ジフェニルグアニ
ジン、N-ブチルアルデヒドアニリン、ジ-o-トリルグア
ニジン、1-o-トリルビグアニド、N,N-ジフェニルチオ尿
素、2-メルカプトベンゾチアゾール、テトラメチルチラ
ウムジスルフィド等の一般的なゴム架橋促進剤をポリマ
ーの0.1〜3.0wt%添加してもよい。また、その
他の架橋剤として、タッキロール、ヒタノール等のフェ
ノール系熱硬化樹脂や公知の樹脂架橋剤、p-キノンジオ
キシム、2,4,6-トリメルカプト-s-トリアジン、p,p'-ジ
ベンゾイルキノンジオキシム等を挙げることができ、そ
の添加量は樹脂架橋剤がポリマーの5〜15wt%、そ
の他がポリマーの0.1〜7.0wt%が好ましい。
Although sulfur powder was used as a cross-linking agent, its addition amount is preferably 0.1 to 7.0% by weight of the polymer. Further as a crosslinking accelerator ZnO, metal oxide powder such as MgO, hexamethylenetetramine, 1,3-diphenylguanidine, N-butyraldehyde aniline, di-o-tolylguanidine, 1-o-tolylbiguanide, N, N- A general rubber cross-linking accelerator such as diphenylthiourea, 2-mercaptobenzothiazole, tetramethyltyrium disulfide or the like may be added in an amount of 0.1 to 3.0% by weight of the polymer. In addition, as other crosslinking agents, phenolic thermosetting resins such as tackylol and titanol and known resin crosslinking agents, p-quinonedioxime, 2,4,6-trimercapto-s-triazine, p, p'-diazine Benzoylquinone dioxime and the like can be mentioned, and the addition amount of the resin crosslinking agent is preferably 5 to 15% by weight of the polymer, and the others are preferably 0.1 to 7.0% by weight of the polymer.

【0024】また、スラリーを集電電極に塗布乾燥後の
活性炭電極を、5000kg/cm 2 以内の範囲でプレ
ス加工しても良い。
Further, after the slurry is applied to the collecting electrode and dried,
5000kg / cm activated carbon electrode TwoWithin the range of
May be processed.

【0025】実施例ではポリマーとして、IIR、NB
Rを用いたがPP、PE、EPDM、NRを用いても同
様の効果があり、また複数を混合して用いても良い。
In the examples, IIR, NB
Although R is used, the same effect can be obtained by using PP, PE, EPDM, and NR, and a plurality of them may be mixed and used.

【0026】実施例では導電性微粒子として、活性炭と
アセチレンブラックを用いたが、導電性高分子、カーボ
ンブラック、ケッチェンブラック、ファーネスブラッ
ク、ニッケル、チタンナイトライド、酸化ルテニウム、
五酸化バナジウムを用いても同様の効果があり、また複
数を混合して用いても良い。また、活性炭にその他の物
質を混合する場合は、活性炭量を30〜95wt%にす
るのが好ましい。
In the examples, activated carbon and acetylene black were used as the conductive fine particles. However, conductive polymers, carbon black, Ketjen black, furnace black, nickel, titanium nitride, ruthenium oxide,
The same effect is obtained by using vanadium pentoxide, and a plurality of them may be used in combination. When other substances are mixed with activated carbon, the amount of activated carbon is preferably set to 30 to 95 wt%.

【0027】実施例では集電電極として、化成したアル
ミニウム箔を用いたが、アルミニウム、ニッケル、銅の
うち少なくとも1種を主成分とする箔、メッシュ、箔や
メッシュに導電性ゴムを塗布したもの、導電性ゴムシー
ト、アルミニウム、ニッケル、銅のうち少なくとも1種
を主成分とする金属をプラズマ溶射して用いても同様の
効果がある。
In the embodiment, a chemically formed aluminum foil was used as a current collecting electrode. However, a foil, a mesh, or a foil or a mesh mainly composed of at least one of aluminum, nickel and copper coated with conductive rubber. The same effect can be obtained by using a metal having at least one of aluminum, nickel and copper as the main component by plasma spraying.

【0028】[0028]

【発明の効果】本発明からなる電気二重層コンデンサ
は、例えば実施例のように、セパレータを介した電極に
電解液を含浸するコンデンサ素子に、導電性微粒子と親
水性および/または親油性ポリマーを含む接着剤との混
合物を集電電極と結着してなる電極を使用することによ
り、導電性微粒子の細孔に電解液が浸透しやすくなり、
電気二重層コンデンサの高容量化を図ることができ、工
業的価値大なるものである。
According to the electric double layer capacitor of the present invention, for example, a conductive element and a hydrophilic and / or lipophilic polymer are added to a capacitor element in which an electrolyte is impregnated into an electrode via a separator, as in the embodiment. By using an electrode formed by binding a mixture with an adhesive containing the current collecting electrode, the electrolyte can easily penetrate into the pores of the conductive fine particles,
It is possible to increase the capacity of the electric double layer capacitor, and it is of great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層コンデンサの構成図FIG. 1 is a configuration diagram of an electric double layer capacitor.

【図2】85℃ 2.3V印加時の容量変化FIG. 2 Capacitance change at 85 ° C. and 2.3 V applied

【符号の説明】[Explanation of symbols]

1 活性炭電極 2 セパレータ紙 3 ゴムパッキング 4 リード線 5 コンデンサ素子 6 アルミニウムケース DESCRIPTION OF SYMBOLS 1 Activated carbon electrode 2 Separator paper 3 Rubber packing 4 Lead wire 5 Capacitor element 6 Aluminum case

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電性微粒子と親水性および/または親
油性ポリマーを含む接着剤との混合物を集電電極と結着
してなる電極を用いたことを特徴とする電気二重層コン
デンサ。
1. An electric double-layer capacitor using an electrode formed by binding a mixture of conductive fine particles and an adhesive containing a hydrophilic and / or lipophilic polymer to a current collecting electrode.
【請求項2】 導電性微粒子と親水性および/または親
油性ポリマーを含む接着剤とを混合し型枠を用いて成形
してなる分極電極と、集電電極とを張り合せてなる電極
を用いたことを特徴とする電気二重層コンデンサ。
2. A polarizing electrode formed by mixing conductive fine particles and an adhesive containing a hydrophilic and / or lipophilic polymer and molding using a mold, and an electrode obtained by laminating a current collecting electrode. An electric double layer capacitor.
【請求項3】 請求項1および請求項2記載の親水性お
よび/または親油性ポリマーが、ポリプロピレン(P
P)、ポリエチレン(PE)、ブチルゴム(IIR)、
エチレンプロピレンジエンゴム(EPDM)、天然ゴム
(NR)、ニトリルゴム(NBR)のうち少なくとも1
種であることを特徴とする電気二重層コンデンサ。
3. The hydrophilic and / or lipophilic polymer according to claim 1, wherein the hydrophilic and / or lipophilic polymer is polypropylene (P).
P), polyethylene (PE), butyl rubber (IIR),
At least one of ethylene propylene diene rubber (EPDM), natural rubber (NR), and nitrile rubber (NBR)
An electric double layer capacitor characterized by being a seed.
【請求項4】 請求項1および請求項2記載の導電性微
粒子と接着剤の混合比が、導電性微粒子:接着剤=9
5:5〜50:50であることを特徴とする電気二重層
コンデンサ。
4. The mixing ratio between the conductive fine particles and the adhesive according to claim 1 and 2, wherein the conductive fine particles: adhesive = 9.
An electric double layer capacitor having a ratio of 5: 5 to 50:50.
【請求項5】 請求項1および請求項2記載の接着剤
が、親水性および/または親油性ポリマーと架橋剤とを
混合してなる電気二重層コンデンサ。
5. An electric double layer capacitor comprising the adhesive according to claim 1 and a mixture of a hydrophilic and / or lipophilic polymer and a crosslinking agent.
【請求項6】 請求項1および請求項2記載の集電電極
が、アルミニウム、ニッケル、銅のうち少なくとも1種
を主成分とする箔またはメッシュであることを特徴とす
る電気二重層コンデンサ。
6. An electric double layer capacitor, wherein the current collecting electrode according to claim 1 is a foil or a mesh mainly composed of at least one of aluminum, nickel and copper.
【請求項7】 請求項1および請求項2記載の集電電極
が、アルミニウム、ニッケル、銅のうち少なくとも1種
を主成分とする箔またはメッシュに、導電性ゴムを塗布
したものであることを特徴とする電気二重層コンデン
サ。
7. The current collecting electrode according to claim 1 or 2, wherein a conductive rubber is applied to a foil or a mesh mainly composed of at least one of aluminum, nickel and copper. Characteristic electric double layer capacitor.
【請求項8】 請求項1および請求項2記載の集電電極
が、導電性ゴムシートであることを特徴とする電気二重
層コンデンサ。
8. The electric double layer capacitor according to claim 1, wherein the current collecting electrode is a conductive rubber sheet.
【請求項9】 請求項1および請求項2記載の導電性微
粒子が、活性炭、導電性高分子、カーボンブラック、ケ
ッチェンブラック、アセチレンブラック、ファーネスブ
ラック、ニッケル、チタンナイトライド、酸化ルテニウ
ム、五酸化バナジウムのうち少なくとも1種であること
を特徴とする電気二重層コンデンサ。
9. The conductive fine particles according to claim 1, wherein the conductive fine particles are activated carbon, conductive polymer, carbon black, Ketjen black, acetylene black, furnace black, nickel, titanium nitride, ruthenium oxide, pentoxide. An electric double layer capacitor comprising at least one of vanadium.
【請求項10】 請求項2記載の分極電極にアルミニウ
ム、ニッケル、銅のうち少なくとも1種を主成分とする
金属をプラズマ溶射して集電電極を形成してなる電気二
重層コンデンサ。
10. An electric double layer capacitor comprising a current collecting electrode formed by plasma spraying a metal containing at least one of aluminum, nickel and copper on the polarized electrode according to claim 2.
JP23590398A 1998-08-21 1998-08-21 Electric-double-layer capacitor Pending JP2000068166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23590398A JP2000068166A (en) 1998-08-21 1998-08-21 Electric-double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23590398A JP2000068166A (en) 1998-08-21 1998-08-21 Electric-double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2000068166A true JP2000068166A (en) 2000-03-03

Family

ID=16992951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23590398A Pending JP2000068166A (en) 1998-08-21 1998-08-21 Electric-double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2000068166A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095411A1 (en) * 2000-06-05 2001-12-13 Matsushita Electric Industrial Co., Ltd. Sealing material for electrochemical element and electrochemical element containing the same
WO2005071702A1 (en) * 2004-01-21 2005-08-04 Kyushu University, National University Corporation Electrode material for redox capacitor and process for producing the same
JP2007258746A (en) * 2007-06-05 2007-10-04 Power System:Kk Organic electrolytic solution for electric double-layer capacitor, and the electric double-layer capacitor
JP2009043667A (en) * 2007-08-10 2009-02-26 Denso Corp Manufacturing method for current collector, manufacturing method for electrode, and manufacturing device for current collector
JP2016105497A (en) * 2008-09-18 2016-06-09 パナソニックIpマネジメント株式会社 Capacitor
KR102045706B1 (en) * 2019-06-11 2019-11-18 하봉호 Plant growing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095411A1 (en) * 2000-06-05 2001-12-13 Matsushita Electric Industrial Co., Ltd. Sealing material for electrochemical element and electrochemical element containing the same
WO2005071702A1 (en) * 2004-01-21 2005-08-04 Kyushu University, National University Corporation Electrode material for redox capacitor and process for producing the same
JP2007258746A (en) * 2007-06-05 2007-10-04 Power System:Kk Organic electrolytic solution for electric double-layer capacitor, and the electric double-layer capacitor
JP2009043667A (en) * 2007-08-10 2009-02-26 Denso Corp Manufacturing method for current collector, manufacturing method for electrode, and manufacturing device for current collector
JP2016105497A (en) * 2008-09-18 2016-06-09 パナソニックIpマネジメント株式会社 Capacitor
KR102045706B1 (en) * 2019-06-11 2019-11-18 하봉호 Plant growing system

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
US8526166B2 (en) Lithium ion capacitor
JP2004520703A (en) Electrochemical double layer capacitor with carbon powder electrode
KR20120056556A (en) Multi layered electrodes and super capacitor comprising the same
US20130058008A1 (en) Electrode active material composition and electrochemical capacitor including the same
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
KR101464524B1 (en) Electrical double layer capacitor with excellent withstanding voltage property
KR101883005B1 (en) Electrode, method for preparing the same, and super capacitor using the same
KR20130024123A (en) Electrodes, and electrochemical capacitors comprising the same
KR101331966B1 (en) Electrochemical capacitor
CN106098399A (en) Combination electrode, ultracapacitor and preparation method thereof
JP2000068166A (en) Electric-double-layer capacitor
JP2012129484A (en) Hybrid solid electrolyte membrane, method of manufacturing the same, and lithium ion capacitor comprising the same
JP4487540B2 (en) Electrochemical capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2000012404A (en) Electric double-layer capacitor
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2000106327A (en) Electric double layer capacitor
WO1999038224A1 (en) Battery
KR20130030574A (en) Active agent of electrode, method for preparing the same, and electrochemical capacitors comprising the same
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode
JPH09205041A (en) Electric double layered capacitor
JP2009200368A (en) Electric double-layer capacitor
KR102157384B1 (en) Electrical double layer capacitor including granular activated carbon-carbon nanotube composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080609