JP3900810B2 - Electric double layer capacitor - Google Patents
Electric double layer capacitor Download PDFInfo
- Publication number
- JP3900810B2 JP3900810B2 JP2000262986A JP2000262986A JP3900810B2 JP 3900810 B2 JP3900810 B2 JP 3900810B2 JP 2000262986 A JP2000262986 A JP 2000262986A JP 2000262986 A JP2000262986 A JP 2000262986A JP 3900810 B2 JP3900810 B2 JP 3900810B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electric double
- double layer
- layer capacitor
- polarizable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタに関し、静電容量が大きな電気二重層キャパシタに関する。
【0002】
【従来の技術】
電気二重層キャパシタは、多孔質セパレータを介して一対の分極性電極を設け、電解質溶液中において分極性電極の表面に形成される電気二重層の静電容量を利用したものであり、一般のキャパシタに比して極めて大きな静電容量を有するものが得られることを特徴としており、電子機器のバックアップ用の用途から電力貯蔵用の用途まで幅広い利用が期待されている。
【0003】
電気二重層キャパシタに用いられる分極性電極は、電解質溶液に安定であり、比表面積が大きく、静電容量の大きな電気二重層の形成に有利な活性炭が一般に用いられている。分極性電極は電極形状の焼結体を用いたもの、粒状、繊維状等の活性炭を、導電性物質および結着剤とともに混練したスラリーをシート状の電極形状に成形したもの、集電体となるアルミニウム箔等の導電体上にスラリーを各種の塗布方法によって塗布した塗布型電極が用いられている。
【0004】
電力貯蔵、車両用の動力源等の大量の電気エネルギーを貯蔵する用途に用いられる電気二重層キャパシタにおいては、水溶液系の電解液を用いたものに比べて動作電圧を高くすることが可能な非水溶媒系の電解液を用いたものがエネルギー密度の面では優れたものと考えられている。
電気二重層キャパシタに要求される特性には、容積当たりのエネルギー密度に関係する単位容積当たりの静電容量、応答速度に影響する内部抵抗、充放電回数等の使用寿命等の各種のものがあり、いずれの特性の改良も重要であるが、特に充放電サイクルの繰り返し寿命は大量の電気エネルギーの充放電を繰り返し行う用途においては極めて重要である。
【0005】
特性の劣化する要因には各種のものがあり、製造時の品質の管理、あるいは充放電時の管理等によって対処することが可能な事項もあるが、電気二重層キャパシタの特性と結びついたものについてはその対処が困難なものもあった。
例えば、電気二重層キャパシタが、印加される電圧によって劣化する現象は、使用する電解液の選択等によってある程度は対処可能であるが、電気二重層キャパシタの作動電圧をできる限り高くして充放電に利用可能な電気容量を大きくするという要求もあり困難であった。
有機電解液を用いた電気二重層キャパシタにおいて、電気二重層キャパシタの劣化について検討したところ、特に負極側の電極が正極側の電極に比べて早期に劣化することが明かとなった。
【0006】
【発明が解決しようとする課題】
本発明は、電気二重層キャパシタにおいて、電気二重層キャパシタの劣化を防止することを課題とするものであり、特に非水系電解液を用いた電気二重層キャパシタの劣化を防止することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明の課題は、セパレータを介して正極および負極の分極性電極を対向させるとともに、該負極と同じ材料からなる電極を内部に参照電極として配置し、電解液を充填した後に封口した電気二重層キャパシタの放電開始時において、放電開始時の電流と該参照電極に対して測定した正負極の電圧から正負極の内部抵抗を求めた場合に、一方の分極性電極の内部抵抗が他方の分極性電極の内部抵抗の0.5倍ないし1.5倍の範囲内にある正極および負極を組み合わせて作製した電気二重層キャパシタによって解決することができる。
また、分極性電極の内部抵抗が導電性の多孔性物質の細孔径分布、分極性電極の密度の少なくともいずれかの調整によって行ったものである電気二重キャパシタである。
【0008】
【発明の実施の形態】
本発明は、非水系電解液を用いた電気二重層キャパシタの劣化は、正極側の電極よりも負極側の電極の方が早く劣化することが主要な原因であり、負極側の電極に印加される電圧が正極側に比べて大きなことに起因することを見いだしたものである。
その理由は定かではないが、電気二重層キャパシタにおいて非水系溶媒として用いられている、炭酸プロピレンあるいはスルホラン系溶媒等に、ホウフッ化テトラアルキルアンモニウム塩を溶解させた電解液は、電解液中においては、ホウフッ化物が溶媒和したイオンと、テトラアルキルアンモニウムの溶媒和したイオンとが存在するものと考えられる。
その結果、電圧を印加した場合には、一方の電極には、主としてホウフッ化物が溶媒和したイオンが存在し、他方の電極にはテトラアルキルアンモニウムが溶媒和したイオンが存在することとなる。
【0009】
分極性電極分極性電極を構成する多孔性炭素中の細孔径およびその充填密度は、それぞれのイオンの大きさが相違するために、正極と負極は異なる挙動を示すものと考えられる。
そして、テトラアルキルアンモニウムが溶媒和したイオンが主として存在する分極性電極である負極の電圧は、正極に加わる電圧に比べて高くなり、印加される電圧が大きな負極側が早期に劣化することとなる。一方の電極の劣化は電気二重層キャパシタ自体の劣化を意味するので、電気二重層キャパシタが早期に劣化することとなる。
【0010】
そこで、本発明はそれぞれの分極性電極の内部抵抗をほぼ等しくすることによって、分極性電極に印加される電圧を同等の値とし、一方の分極性電極が早期に劣化することを防止するものである。
正極、負極の内部抵抗は等しくすることが好ましいが、一方の値が他方の値の1.5倍の範囲にあれば本発明の目的を達することができる。
【0011】
分極性電極の内部抵抗の調整は、各種の手段によって行うことが可能であり、正極側電極と負極側電極のそれぞれに異なる特性の材料を用いることによって実現しても良いが、両電極ともに同一の材料を用い、分極性電極を製造する工程において内部抵抗が異なる分極性電極を作製しても良い。
すなわち、分極性電極の内部抵抗に影響を及ぼす要因には種々のものがあるが、分極性電極の内部を移動するイオンの移動度により影響を受けるために分極性電極の内部に形成されて電解液が進入する細孔の大小の調整によって変化させることができる。
【0012】
具体的には、同一の特性の多孔性材料を用いて、多孔性材料と結着剤からなる分極性電極の圧縮の程度の変化による分極性電極の密度の調整によって内部抵抗を変化させることができる。すなわち、相対的に大きさが大きなカチオンの移動度による影響を受ける負極の密度を小さくして、分極性電極内の空隙を大きくし、また相対的な大きさが小さなアニオンの移動度による影響を受ける正極の密度を大きくして分極性電極内の空隙を小さくすることによって、負極側および正極の内部抵抗を同等の値とすることが可能となる。
また、空隙の微細化は、内部抵抗への影響のみではなく、静電容量へも影響を与えるので、圧縮により内部抵抗を保持した状態でみかけの静電容量を増加させることも可能となる。
【0013】
本発明の電気二重層キャパシタの分極性電極は、活性炭粒子をカーボンブラック等の導電性物質、結着剤等とともに混練した混練物から分極性電極を加圧成形する際に、成形圧力を変えることによって成形して製造したものでも、あるいはアルミニウム等の集電体上に混練物をドクターブレード等によって塗布した後に、加圧し圧縮することによって製造したものであっても良い。
【0014】
活性炭粒子としては、椰子殻、フェノール樹脂、石油ピッチの炭化物を水蒸気、水酸化物等で表面積を増大させる賦活処理した活性炭を、粒子径2μmから30μm、好ましくは10μm前後の大きさに整えた粒子を用いることが好ましい。
加圧成形によって分極性電極を製造する場合には、結着剤としては、ポリテトラフルオロエチレン等を用いることができる。
また、集電体上に塗布した後に加圧成形する場合には、ポリテトラフルオロエチレンや、ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンゴム、ニトリルゴムから選ばれる少なくとも一種のエラストマーを挙げることができる。これらのなかでも、ブチルゴムが好ましい。
結着剤は、活性炭粒子100重量部に対して3重量部〜20重量部を用いることが好ましとが好ましい。3重量部よりも少ない場合には充分な結着が困難であり、また20重量部よりも多い場合には、抵抗および容量にわたり悪影響を示す。
【0015】
また、混練物を塗布して分極性電極を作製する場合には、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化バナジウム等の電気二重層キャパシタの使用電位範囲において安定な金属酸化物粒子を添加しても良く、これによって、活性炭粒子が完全に結着剤によって覆われることによる電気的特性の低下を防止することができる。
このような目的で使用する金属酸化物粒子は、結着剤100重量部に対して、1〜8重量部とすることが好ましく、1〜5重量部とすることがより好ましく、1〜3重量部とすることが更に好ましい。
また、金属酸化物粒子は、光散乱法による測定で平均粒子径0.1μmないし5μmであることが好ましく、0.5μm〜1μmであることがより好ましい。
【0016】
また、導電性粒子としては、カーボンブラック、アセチレンブラック、黒鉛を挙げることができ、平均粒子径0.05μm〜1.0μmであることが好ましく、0.1μm〜0.5μmであることがより好ましい。
また、結着剤にはエラストマーを架橋する架橋剤を加えても良い。架橋剤を加えることによって、経時変化が小さな電気二重層キャパシタを得ることができる。架橋剤としては、イオウ、ジクミルパーオキサイド等の過酸化物、テトラアルキルチウラムジスルフィド、カルバミン亜鉛誘導体等のゴム用架橋剤を挙げることができ、これらに架橋助剤を加えても良い。
架橋剤は、結着剤100重量部に対して、0.5重量部〜8重量部を用いることが好ましく、1重量部〜5重量部を用いることがより好ましく、1重量部〜3重量部を用いることが更に好ましい。
また、エラストマーを用いた場合には、エラストマーを溶解する物質であり、使用材料に対して悪影響を及ぼさない有機溶剤を用いることが好ましく、トルエン、キシレン、テトラヒドロフラン、シクロヘキサン、ノルマルヘキサン等を用いることが好ましい。
また、混練は、ニーダー、ミキサー等によって行うことができる。
【0017】
集電体としては、アルミニウム、ステンレス、ニッケル、チタン、導電性エラストマー等からなる薄板状あるいは網状の基体を用いることができる。また、これらの基体の表面には、エッチング等によって微細な凹凸を形成して塗布層との密着性を高めても良く、表面にコロイダルカーボン等を塗布したものを用いていも良い。
また、本発明の電気二重層キャパシタにおいては、テトラエチルアンモニウムテトラフルオロボレート、トリメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液等を電解液とすることができる。
【0018】
【実施例】
以下に実施例を示し本発明を説明する。
実施例1および比較例1
BET法で測定した平均細孔径が1.6nmの活性炭を82mg、カーボンブラック9mgとともにポリテトラフルオロエチレン粉末9gを混含して直径20mmの円盤状に圧粉成形し、その際に成形圧力を調整して密度0.55g/mlのものを得た。
これを真空デシケータ中で1.33Pa(10-2Torr)に減圧し110℃において4時間乾燥し分極性電極Aを得た。
また分極性電極Aと同様にして成形圧力を変化させて密度0.74g/mlの分極性電極Bを得た。
各電極を表1に示すようように組み合わせて、ガラス繊維製セパレータを介して積層するとともに、図1に、実施例の電気二重層キャパシタを示すように、負極1と正極2をセパレータ3を介して対向させるとともに、負極と同じ材料からなる電極を参照電極4として正極1と負極2の上方に配置し、アルミニウムフィルムと合成樹脂フィルムを積層した可撓性フィルムからなる容器5内に配置した後に、内部を減圧した後に、1.0Mのテトラエチルアンモニウムテトラフルオレートのプロピレンカーボネート溶液を充填した後に、封口して電気二重層キャパシタ1ないし4を作製し、5mAの定電流で2.5Vまで充電した後に、15分間保持した後に5mAの定電流で放電する充放電試験を3サイクル行い、放電開始時の電流と参照電極に対して測定した正極および負極の電圧から正極および負極の内部抵抗を求め表1に示した。
【0019】
また、充放電試験から充放電エネルギーを算出し、以下の式から静電容量Cを求め、その結果を表1に示す。
E=0.5CV2
また、第1回目の充放電サイクルで得られた容量に対する5000サイクル目の容量の減少分を容量劣化率(%)として表1に示す。
【0020】
実施例2および比較例2
密閉式のミキサーに、ブチルゴム(日本ブチル製 IIR065)5重量部とトルエン1000重量部を加えて80℃に加温してブチルゴムを溶解した。 次いで、活性炭(大阪ガスケミカル製M25 粒径10μm)100重量部、カーボンブラック(電気化学工業製 デンカブラック 平均粒径0.53μm)20重量部を加えて、24時間撹拌して完全に分散した。
得られた混練物を厚さ30μmのアルミニウム箔上に塗布し乾燥した後に、カレンダー処理し、膜厚150μmの分極性電極を作製し、圧延する際の圧力を調整することによって密度0.55g/mlの分極性電極Cと密度0.74g/mlの分極性電極Dを得た。
これらの電極を表1に示すように組み合わせて電気二重層キャパシタ5ないし8を作製し、実施例1と同様にして、充放電試験を行い、負極内部抵抗、正極内部抵抗、静電容量、容量劣化率を測定した。
【0021】
【表1】
【0022】
【発明の効果】
本発明の電気二重層キャパシタは、正極電極および負極電極のそれぞれの内部抵抗を同等の大きさとしたので、正極電極および負極電極に加わる電圧をほぼ等しくすることができるので、容量密度を向上させると共に、一方の電極が早期に劣化することがなくなり電気的特性が優れ、充放電の繰り返しによる劣化率が小さい電気二重層キャパシタを得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の実施例の電気二重層キャパシタを図である。
【符号の説明】
1…負極、2…正極、3…セパレータ、4…参照電極、5…容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor, and to an electric double layer capacitor having a large capacitance.
[0002]
[Prior art]
An electric double layer capacitor uses a capacitance of an electric double layer formed on the surface of a polarizable electrode in an electrolyte solution by providing a pair of polarizable electrodes via a porous separator. It is characterized by the fact that it has an extremely large capacitance compared to the above, and is expected to be used in a wide range of applications from backup of electronic equipment to use for power storage.
[0003]
A polarizable electrode used for an electric double layer capacitor is generally activated carbon which is stable in an electrolyte solution, has a large specific surface area, and is advantageous for forming an electric double layer having a large capacitance. A polarizable electrode is one using an electrode-shaped sintered body, a slurry obtained by kneading granular or fibrous activated carbon together with a conductive substance and a binder into a sheet-like electrode shape, a current collector and The coating type electrode which apply | coated the slurry with various application | coating methods is used on conductors, such as an aluminum foil.
[0004]
In an electric double layer capacitor used for storing a large amount of electric energy, such as power storage and a vehicle power source, the operating voltage can be made higher than that using an aqueous electrolyte. A solution using an aqueous electrolyte is considered to be excellent in terms of energy density.
There are various characteristics required for electric double layer capacitors such as electrostatic capacity per unit volume related to energy density per volume, internal resistance affecting response speed, service life such as number of charge / discharge cycles, etc. Improvement of any of these characteristics is important, but the repetitive life of the charge / discharge cycle is extremely important particularly in applications in which a large amount of electric energy is repeatedly charged / discharged.
[0005]
There are various factors that cause deterioration of characteristics, and there are items that can be dealt with by quality control during manufacturing or charge / discharge control, etc., but those related to the characteristics of electric double layer capacitors Some of them were difficult to deal with.
For example, the phenomenon that the electric double layer capacitor deteriorates due to the applied voltage can be dealt with to some extent by selecting the electrolyte to be used. However, the electric double layer capacitor can be charged and discharged with the operating voltage as high as possible. There was also a demand to increase the available electric capacity, which was difficult.
In the electric double layer capacitor using the organic electrolyte, when the deterioration of the electric double layer capacitor was examined, it was found that the electrode on the negative electrode side deteriorated earlier than the electrode on the positive electrode side.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to prevent deterioration of an electric double layer capacitor in an electric double layer capacitor, and in particular, to prevent deterioration of an electric double layer capacitor using a non-aqueous electrolyte. Is.
[0007]
[Means for Solving the Problems]
An object of the present invention is to provide an electric double layer in which a polarizable electrode of a positive electrode and a negative electrode are opposed to each other through a separator, an electrode made of the same material as the negative electrode is disposed as a reference electrode, and sealed after being filled with an electrolytic solution At the start of capacitor discharge, when the internal resistance of the positive and negative electrodes is obtained from the current at the start of discharge and the voltage of the positive and negative electrodes measured with respect to the reference electrode, the internal resistance of one polarizable electrode is the other polarizability This can be solved by an electric double layer capacitor produced by combining a positive electrode and a negative electrode in the range of 0.5 to 1.5 times the internal resistance of the electrode.
Further, the electric double capacitor is one in which the internal resistance of the polarizable electrode is adjusted by adjusting at least one of the pore size distribution of the conductive porous substance and the density of the polarizable electrode.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the deterioration of the electric double layer capacitor using the non-aqueous electrolyte is mainly caused by the deterioration of the negative electrode faster than the positive electrode, and is applied to the negative electrode. It is found that the voltage is higher than the positive side.
The reason for this is not clear, but an electrolytic solution in which a tetraalkylammonium borofluoride salt is dissolved in propylene carbonate or a sulfolane solvent, which is used as a nonaqueous solvent in an electric double layer capacitor, is used in the electrolytic solution. It is considered that solvated ions of borofluoride and solvated ions of tetraalkylammonium exist.
As a result, when a voltage is applied, ions solvated mainly with borofluoride are present on one electrode, and ions solvated with tetraalkylammonium are present on the other electrode.
[0009]
It is considered that the positive electrode and the negative electrode behave differently with respect to the pore diameter and the packing density in the porous carbon constituting the polarizable electrode polarizable electrode because the size of each ion is different.
And the voltage of the negative electrode which is a polarizable electrode in which ions solvated with tetraalkylammonium mainly exist is higher than the voltage applied to the positive electrode, and the negative electrode side where the applied voltage is large deteriorates early. Since the deterioration of one electrode means the deterioration of the electric double layer capacitor itself, the electric double layer capacitor is deteriorated at an early stage.
[0010]
Therefore, the present invention makes the voltage applied to the polarizable electrodes equal by making the internal resistances of the polarizable electrodes substantially equal, and prevents one polarizable electrode from prematurely deteriorating. is there.
The internal resistances of the positive electrode and the negative electrode are preferably equal, but the object of the present invention can be achieved if one value is in the range of 1.5 times the other value.
[0011]
The internal resistance of the polarizable electrode can be adjusted by various means, and may be realized by using materials having different characteristics for the positive electrode and the negative electrode, but both electrodes are the same. In the process of manufacturing a polarizable electrode, a polarizable electrode having a different internal resistance may be produced.
In other words, there are various factors that affect the internal resistance of the polarizable electrode, but since it is affected by the mobility of ions that move inside the polarizable electrode, it is formed inside the polarizable electrode and electrolyzed. It can be changed by adjusting the size of the pores into which the liquid enters.
[0012]
Specifically, by using a porous material having the same characteristics, the internal resistance can be changed by adjusting the density of the polarizable electrode by changing the degree of compression of the polarizable electrode composed of the porous material and the binder. it can. That is, the negative electrode density, which is affected by the mobility of relatively large cations, is reduced, the voids in the polarizable electrode are increased, and the influence of the mobility of relatively small anions is affected. By increasing the density of the received positive electrode and reducing the gap in the polarizable electrode, the internal resistance of the negative electrode side and the positive electrode can be made equal.
Further, since the micronization of the gap affects not only the internal resistance but also the electrostatic capacity, it is possible to increase the apparent electrostatic capacity while maintaining the internal resistance by compression.
[0013]
The polarizable electrode of the electric double layer capacitor of the present invention can change the molding pressure when pressure-molding the polarizable electrode from a kneaded product obtained by kneading activated carbon particles together with a conductive material such as carbon black, a binder, etc. It may be produced by molding by using a doctor blade or the like after applying the kneaded material on a current collector such as aluminum, and then pressing and compressing.
[0014]
Activated carbon particles obtained by activating activated carbon that increases the surface area of coconut shell, phenol resin, and petroleum pitch carbides with water vapor, hydroxide, etc., are adjusted to a particle size of 2 to 30 μm, preferably about 10 μm. Is preferably used.
When a polarizable electrode is produced by pressure molding, polytetrafluoroethylene or the like can be used as the binder.
In the case of applying pressure molding after coating on the current collector, at least one elastomer selected from polytetrafluoroethylene, butyl rubber, ethylene propylene diene rubber, butadiene rubber, and nitrile rubber can be used. Of these, butyl rubber is preferred.
It is preferable to use 3 to 20 parts by weight of the binder with respect to 100 parts by weight of the activated carbon particles. When the amount is less than 3 parts by weight, sufficient binding is difficult, and when the amount is more than 20 parts by weight, adverse effects are exerted over the resistance and capacity.
[0015]
In addition, when a polarizable electrode is produced by applying a kneaded material, metal oxide particles that are stable in the potential range of electric double layer capacitors such as zinc oxide, magnesium oxide, aluminum oxide, silicon oxide, and vanadium oxide are used. It may be added, and this makes it possible to prevent deterioration of electrical characteristics due to the activated carbon particles being completely covered with the binder.
The metal oxide particles used for such purposes are preferably 1 to 8 parts by weight, more preferably 1 to 5 parts by weight, and more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the binder. More preferably, it is a part.
The metal oxide particles preferably have an average particle diameter of 0.1 to 5 μm, more preferably 0.5 to 1 μm, as measured by a light scattering method.
[0016]
Examples of the conductive particles include carbon black, acetylene black, and graphite. The average particle size is preferably 0.05 μm to 1.0 μm, more preferably 0.1 μm to 0.5 μm. .
Moreover, you may add the crosslinking agent which bridge | crosslinks an elastomer to a binder. By adding a cross-linking agent, an electric double layer capacitor having a small change with time can be obtained. Examples of the crosslinking agent include peroxides such as sulfur and dicumyl peroxide, and rubber crosslinking agents such as tetraalkylthiuram disulfide and carbamine zinc derivatives, and a crosslinking aid may be added thereto.
The crosslinking agent is preferably used in an amount of 0.5 to 8 parts by weight, more preferably 1 to 5 parts by weight, more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the binder. More preferably, is used.
Further, when an elastomer is used, it is preferable to use an organic solvent that dissolves the elastomer and does not adversely affect the materials used, and toluene, xylene, tetrahydrofuran, cyclohexane, normal hexane, etc. may be used. preferable.
The kneading can be performed with a kneader, a mixer or the like.
[0017]
As the current collector, a thin plate-like or net-like substrate made of aluminum, stainless steel, nickel, titanium, conductive elastomer, or the like can be used. In addition, fine irregularities may be formed on the surface of these substrates by etching or the like to improve the adhesion to the coating layer, or a surface coated with colloidal carbon or the like may be used.
In the electric double layer capacitor of the present invention, tetraethylammonium tetrafluoroborate, a propylene carbonate solution of trimethylammonium tetrafluoroborate, or the like can be used as an electrolytic solution.
[0018]
【Example】
The following examples illustrate the invention.
Example 1 and Comparative Example 1
82 mg of activated carbon with an average pore diameter measured by the BET method of 82 mg, 9 mg of carbon black and 9 g of polytetrafluoroethylene powder are mixed and compacted into a disk shape with a diameter of 20 mm, and the molding pressure is adjusted at that time Thus, a density of 0.55 g / ml was obtained.
This was decompressed to 1.33 Pa (10 −2 Torr) in a vacuum desiccator and dried at 110 ° C. for 4 hours to obtain a polarizable electrode A.
Similarly to the polarizable electrode A, the molding pressure was changed to obtain a polarizable electrode B having a density of 0.74 g / ml.
Each electrode is combined as shown in Table 1 and laminated via a glass fiber separator, and in FIG. 1, the negative electrode 1 and the positive electrode 2 are connected via a separator 3 so as to show the electric double layer capacitor of the example. After placing the electrode made of the same material as the negative electrode as the reference electrode 4 above the positive electrode 1 and the negative electrode 2 and placing it in a container 5 made of a flexible film in which an aluminum film and a synthetic resin film are laminated. After depressurizing the interior, 1.0M tetraethylammonium tetrafluorate in propylene carbonate solution was filled and then sealed to produce electric double layer capacitors 1 to 4, which were charged to 2.5V with a constant current of 5 mA. After that, a charge / discharge test was performed for 3 cycles after holding for 15 minutes and discharging at a constant current of 5 mA. It is shown from the measured positive and the voltage of the negative electrode determined Table 1 the internal resistance of the positive electrode and the negative electrode with respect.
[0019]
In addition, charge / discharge energy was calculated from the charge / discharge test, the capacitance C was determined from the following equation, and the results are shown in Table 1.
E = 0.5CV 2
Table 1 shows the decrease in capacity at the 5000th cycle with respect to the capacity obtained in the first charge / discharge cycle as a capacity deterioration rate (%).
[0020]
Example 2 and Comparative Example 2
In a closed mixer, 5 parts by weight of butyl rubber (IIR065 made by Nippon Butyl) and 1000 parts by weight of toluene were added and heated to 80 ° C. to dissolve the butyl rubber. Next, 100 parts by weight of activated carbon (M25 particle size: 10 μm manufactured by Osaka Gas Chemical Co., Ltd.) and 20 parts by weight of carbon black (Denka Black average particle size: 0.53 μm manufactured by Denki Kagaku Kogyo Co., Ltd.) were added and completely dispersed by stirring for 24 hours.
The obtained kneaded material was applied onto an aluminum foil having a thickness of 30 μm and dried, and then calendered to prepare a polarizable electrode having a thickness of 150 μm. By adjusting the pressure at the time of rolling, a density of 0.55 g / 1 ml polarizable electrode C and 0.74 g / ml density polarizable electrode D were obtained.
These electrodes are combined as shown in Table 1 to produce electric double layer capacitors 5 to 8, and a charge / discharge test is conducted in the same manner as in Example 1 to perform negative electrode internal resistance, positive electrode internal resistance, capacitance, capacitance. The deterioration rate was measured.
[0021]
[Table 1]
[0022]
【The invention's effect】
In the electric double layer capacitor according to the present invention, the internal resistances of the positive electrode and the negative electrode are made equal to each other, so that the voltages applied to the positive electrode and the negative electrode can be made almost equal. Thus, it is possible to obtain an electric double layer capacitor in which one electrode is not deteriorated at an early stage and has excellent electrical characteristics and a small deterioration rate due to repeated charge and discharge.
[Brief description of the drawings]
FIG. 1 is a diagram showing an electric double layer capacitor according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Reference electrode, 5 ... Container
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262986A JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262986A JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002075801A JP2002075801A (en) | 2002-03-15 |
JP3900810B2 true JP3900810B2 (en) | 2007-04-04 |
Family
ID=18750584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000262986A Expired - Lifetime JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3900810B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5210613B2 (en) * | 2006-12-27 | 2013-06-12 | 株式会社半導体エネルギー研究所 | Semiconductor device |
-
2000
- 2000-08-31 JP JP2000262986A patent/JP3900810B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002075801A (en) | 2002-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3834746B2 (en) | Porous rubber electrode binder, porous rubber electrode using the same, and porous rubber electrode substrate | |
JP2020501338A (en) | Composition for polymer-stabilized electrode reinforced with conductive flakes and method for producing the same | |
KR101289521B1 (en) | Production method for electric double layer capacitor | |
CN102859625A (en) | Electrochemical capacitor having lithium containing electrolyte | |
JP2012517660A (en) | Flat electrodes for electrochemical energy storage elements with optimized power and energy density | |
JPH05275077A (en) | Negative electrode for lithium secondary battery | |
KR20160040873A (en) | A method of manufacturing a carbon electrode, an energy storage device including a carbon electrode and carbon electrode produced by this | |
JP2018106984A (en) | All-solid-state lithium ion battery | |
CN110914942B (en) | Hybrid capacitor | |
JP4620634B2 (en) | Electrode member for non-aqueous electronic parts | |
US20190288260A1 (en) | Flexible electrode-separator elements and processes for their preparation | |
JP4496727B2 (en) | Storage element and method for manufacturing the same | |
JP3900810B2 (en) | Electric double layer capacitor | |
JP2002151057A (en) | Manufacturing method of paste for positive electrode of lithium secondary battery | |
JP2018092978A (en) | Electric double layer capacitor | |
JP2001217162A (en) | Electric double-layer capacitor | |
WO2005064630A1 (en) | Method for producing electrode for capacitor | |
JP3971441B2 (en) | Electrode member for non-aqueous electronic component having two undercoat layers | |
US11575132B2 (en) | Method of preparing electrode for secondary battery, and secondary battery including the electrode | |
JP3981697B1 (en) | Method for producing electrode mixture for polarizable electrode | |
JP2008130740A (en) | Electric double-layer capacitor electrode and manufacturing method therefor | |
JPH02177525A (en) | Electric double layer capacitor | |
JPH0974052A (en) | Method for manufacturing polarizable electrode | |
KR20210135718A (en) | Cathode material, secondary battery including the same and manufacturing methods thereof | |
JP2000294459A (en) | Electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041105 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3900810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |