JP2001351616A - Manufacturing method of electrode - Google Patents

Manufacturing method of electrode

Info

Publication number
JP2001351616A
JP2001351616A JP2000167989A JP2000167989A JP2001351616A JP 2001351616 A JP2001351616 A JP 2001351616A JP 2000167989 A JP2000167989 A JP 2000167989A JP 2000167989 A JP2000167989 A JP 2000167989A JP 2001351616 A JP2001351616 A JP 2001351616A
Authority
JP
Japan
Prior art keywords
powder
active material
binder
current collector
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000167989A
Other languages
Japanese (ja)
Inventor
Toshihiko Inoue
俊彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000167989A priority Critical patent/JP2001351616A/en
Publication of JP2001351616A publication Critical patent/JP2001351616A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode in which an active material layer having high precision membrane thickness and excellent load characteristics is formed without using an active material paste. SOLUTION: An active material layer is formed on the surface of the current collector by a powder coating method using one of the following (1) to (3) method. (1) A method comprising a powder coating process in which a mixed powder made of one kind or more of active material powder, conductive material powder and a binder powder is adhered to the current collector and a melting process in which the powder adhered to the current collector is heated. (2) A method comprising a powder coating process in which a mixed powder made of one kind or more of active material powder, conductive material and a binder powder is adhere to the current collector and a melting process in which the powder adhered to the current collector is heated. (3) A method comprising a powder coating process in which at least one of active material powder and conductive material powder and a binder powder are adhered to the current collector in any order and a melting process in which the above powder adhered to the current collector is heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電極の製造方法に関
し、詳しくは、活物質ペーストを用いることなく活物質
層を形成する工程を備えた電極の製造方法に関する。本
発明の方法は、リチウムイオン電池に用いられる電極等
の製造方法として有用である。
The present invention relates to a method for manufacturing an electrode, and more particularly, to a method for manufacturing an electrode including a step of forming an active material layer without using an active material paste. The method of the present invention is useful as a method for manufacturing an electrode or the like used in a lithium ion battery.

【0002】[0002]

【従来の技術】集電体上に、活物質、導電化材および結
着剤からなる活物質層を備える電極を製造する方法とし
ては、活物質粉末、導電化材粉末および結着剤粉末と有
機溶媒とを混合してペースト状とし、この活物質ペース
トを集電体上に塗工した後、乾燥工程で有機溶媒を揮発
除去する方法が一般的である。
2. Description of the Related Art As a method for manufacturing an electrode having an active material layer composed of an active material, a conductive material and a binder on a current collector, an active material powder, a conductive material powder and a binder powder are used. A method is generally used in which an organic solvent is mixed to form a paste, the active material paste is applied on a current collector, and then the organic solvent is volatilized and removed in a drying step.

【0003】[0003]

【発明が解決しようとする課題】しかし、このようにペ
ーストを塗工し乾燥する方法によると、有機溶媒を使用
することから局所排気設備を必要とし、ペースト等の取
り扱いにも注意を要する。また、湿式のため膜厚の精密
な制御や均一な塗工が困難であり、このため内部抵抗や
容量にバラツキが生じやすい。さらに、ペーストの調整
時、各材料粉末を均一に分散させようとすると、混合時
においてこれらの材料粉末にかかるシェアが大きくな
り、その結果として材料粉末の粒子が崩れて意図したも
のとは異なる粒径分布となったり、表面処理された材料
粉末を用いる際には表面処理層が剥がれて所望の性能が
得られなくなったりする場合があった。また、活物質層
中における活物質粒子および導電化材粒子の充填密度を
高くするためには、ペーストに使用する有機溶媒量を減
らすことが望ましいが、この場合にはペーストの粘度が
高くなるためさらに塗工が困難となり、またペースト調
整時において材料粉末にかかるシェアも一層大きくなる
という問題があった。
However, according to the method of applying and drying the paste as described above, since an organic solvent is used, local exhaust equipment is required, and care must be taken in handling the paste and the like. Moreover, it is difficult to precisely control the film thickness and to perform uniform coating because of the wet method, and therefore, the internal resistance and the capacitance are likely to vary. In addition, when adjusting the paste, if each material powder is to be dispersed uniformly, the share of these material powders at the time of mixing will increase, and as a result, the particles of the material powder will collapse and become different from the intended particles. When a material powder having a diameter distribution or a surface-treated material powder is used, the surface-treated layer may be peeled off and desired performance may not be obtained. In addition, in order to increase the packing density of the active material particles and the conductive material particles in the active material layer, it is desirable to reduce the amount of the organic solvent used in the paste, but in this case, the viscosity of the paste increases. Further, there is a problem that the coating becomes difficult and the share of the material powder during the preparation of the paste is further increased.

【0004】本発明の目的は、活物質ペーストを用いる
ことなく、膜厚精度が高く負荷特性の良い活物質層を形
成することのできる電極の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing an electrode which can form an active material layer having high film thickness accuracy and good load characteristics without using an active material paste.

【0005】[0005]

【課題を解決するための手段】本発明における第1発明
の電極の製造方法は、集電体の表面に、活物質、導電化
材および結着剤からなる活物質層を、粉体塗装法により
形成することを特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing an electrode, comprising: forming an active material layer comprising an active material, a conductive material and a binder on a surface of a current collector by a powder coating method. It is characterized by being formed by.

【0006】この活物質層は、第2〜第4発明のよう
に、下記(1)〜(3)のいずれかの方法により形成す
ることが好ましい。 (1)活物質粉末、導電化材粉末および結着剤粉末の一
種以上からなる混合粉末を上記集電体に付着させる粉体
塗装工程と、上記集電体に付着された粉末を上記結着剤
の軟化温度以上に加熱する融着工程と、を含む工程によ
り形成する方法(第2発明)。 (2)活物質粉末および導電化材粉末の少なくとも一方
と結着剤粉末とを上記集電体に任意の順序で付着させる
粉体塗装工程と、上記集電体に付着された粉末を上記結
着剤の軟化温度以上に加熱する融着工程と、を含む工程
により形成する方法(第3発明)。 (3)活物質粉末および導電化材粉末の少なくとも一方
および結着剤からなる複合粒子を上記集電体に付着させ
る粉体塗装工程と、上記集電体に付着された粉末を上記
結着剤の軟化温度以上に加熱する融着工程と、を含む工
程により形成する方法(第4発明)。
This active material layer is preferably formed by any of the following methods (1) to (3), as in the second to fourth inventions. (1) a powder coating step of adhering a mixed powder comprising at least one of an active material powder, a conductive material powder, and a binder powder to the current collector; and bonding the powder adhered to the current collector to the binder. And a fusion step of heating to above the softening temperature of the agent (second invention). (2) a powder coating step of attaching at least one of the active material powder and the conductive material powder and the binder powder to the current collector in an arbitrary order; And a fusion step of heating the adhesive to a temperature higher than the softening temperature thereof (third invention). (3) a powder coating step of adhering composite particles comprising at least one of the active material powder and the conductive material powder and a binder to the current collector; and applying the powder adhered to the current collector to the binder. And a fusion step of heating to a temperature equal to or higher than the softening temperature (fourth invention).

【0007】第5発明は、セパレータ一体型の電極を製
造する方法であって、第1〜第4発明の方法により上記
活物質層が形成された活物質層付集電体にセパレータ材
料粉末を付着させた後、該セパレータ材料粉末を加熱融
着させてセパレータ層を形成する工程を備えることを特
徴とする。
A fifth invention is a method of manufacturing a separator-integrated electrode, in which a separator material powder is added to a current collector with an active material layer having the active material layer formed by the method of the first to fourth inventions. After the deposition, a step of heating and fusing the separator material powder to form a separator layer is provided.

【0008】以下、本発明を詳細に説明する。上記集電
体としては、アルミニウム箔、ニッケル箔、銅箔等の金
属箔を用いることができ、その厚さは通常5〜100μ
m程度である。集電体の形状は、電池の形状に応じて帯
状、円形状、方形状等とすることができ、またその大き
さも容量等に応じて任意のものとすることができる。こ
の集電体の表面に形成される活物質層は、少なくとも活
物質、導電化材および結着剤を含有する。
Hereinafter, the present invention will be described in detail. As the current collector, a metal foil such as an aluminum foil, a nickel foil, and a copper foil can be used, and the thickness is usually 5 to 100 μm.
m. The shape of the current collector may be a band, a circle, a square, or the like according to the shape of the battery, and the size may be arbitrary depending on the capacity or the like. The active material layer formed on the surface of the current collector contains at least an active material, a conductive material, and a binder.

【0009】上記「活物質」および「導電化材」の材質
は、本発明により製造された電極を適用する電池の種類
や正・負の別に応じて適宜選択すればよい。例えば、こ
の電極をリチウムイオン二次電池の正極として用いる場
合は活物質としてマンガン酸リチウム、ニッケル酸リチ
ウム、コバルト酸リチウム等を、導電化材としてカーボ
ンブラック、黒鉛等を採用することができる。また、上
記「結着剤」としては、加熱により融着してバインダと
しての機能を果たすものであれば特に限定なく使用する
ことができ、例えばペーストを塗布する従来の製造方法
に用いられるポリフッ化ビニリデン(PVDF)等、あ
るいはポリテトラフルオロエチレン(PTFE)等の熱
可塑性樹脂を用いることができる。活物質、導電化材お
よび結着剤の使用割合は、得られる活物質層の全体に対
して、活物質60〜99.4重量%(より好ましくは7
0〜98.5%)、導電化材0.5〜25重量%(より
好ましくは1〜20%)、結着剤0.1〜15重量%
(より好ましくは0.5〜10%)とすることができ
る。
The materials of the "active material" and the "conductive material" may be appropriately selected according to the type of the battery to which the electrode manufactured according to the present invention is applied and whether the electrode is positive or negative. For example, when this electrode is used as a positive electrode of a lithium ion secondary battery, lithium manganate, lithium nickelate, lithium cobaltate, or the like can be used as an active material, and carbon black, graphite, or the like can be used as a conductive material. Further, as the above-mentioned "binder", any material can be used without particular limitation as long as it functions as a binder by being fused by heating. For example, polyfluoride used in a conventional production method of applying a paste is used. A thermoplastic resin such as vinylidene (PVDF) or polytetrafluoroethylene (PTFE) can be used. The usage ratio of the active material, the conductive material and the binder is 60 to 99.4% by weight (more preferably 7 to 99.4% by weight) based on the whole of the obtained active material layer.
0-98.5%), conductive material 0.5-25% by weight (more preferably 1-20%), binder 0.1-15% by weight
(More preferably 0.5 to 10%).

【0010】本発明の製造方法は、この活物質層を「粉
体塗装法」により形成することを特徴とする。すなわ
ち、ペーストを塗布する従来の方法(湿式)とは異な
り、本発明の製造方法では活物質、導電化材および結着
剤はいずれも固体の状態で(乾式)粉体塗装される。こ
こで粉体塗装に用いる粉末は、活物質、導電化材および
結着剤のそれぞれ一種のみからなる粉末(以下、「単体
粉末」ともいう。)であってもよく、これらのうち二種
以上の材料からなる複合粉末であってもよく、単体粉末
と複合粉末との混合物であってもよい。この「複合粉
末」は、例えば、活物質粉末および導電化材粉末のいず
れか一方またはこれらの混合粉末に、結着剤の加熱溶融
物をスプレードライヤー法等で付着させることにより作
製することができる。
The production method of the present invention is characterized in that the active material layer is formed by a “powder coating method”. That is, unlike the conventional method of applying a paste (wet method), in the manufacturing method of the present invention, the active material, the conductive material, and the binder are all subjected to powder coating in a solid state (dry method). Here, the powder used for powder coating may be a powder composed of only one of each of an active material, a conductive material, and a binder (hereinafter, also referred to as “simple powder”), and two or more of these powders may be used. Or a mixture of a simple powder and a composite powder. This “composite powder” can be produced, for example, by adhering a hot melt of a binder to one of the active material powder and the conductive material powder or a mixed powder thereof by a spray dryer method or the like. .

【0011】これらの単体粉末および/または複合粉末
は、例えば下記(1)〜(12)の方法で行われる塗装
工程により集電体表面に付着させる(塗装する)ことが
できる。このうち、下記(1)〜(4)の方法は第2発
明に、下記(5)の方法は第3発明に、下記(6)〜
(12)の方法は第4発明に相当する例である。なお、
下記のうち二以上の粉末を「それぞれ塗装する方法」で
は、分散性を向上させるために、各粉末を任意の順序で
(結着剤を含む粉末が最も集電体側となるように設定す
ることが好ましい)、繰り返して積層することが好まし
い。一度に付着させる粉末からなる層の厚さは、例えば
1μm以下とすることができ、各粉末の平均粒子径に対
して1〜3倍とすることが好ましい。
These simple powders and / or composite powders can be adhered (painted) to the surface of the current collector by a painting process performed by, for example, the following methods (1) to (12). Among them, the following methods (1) to (4) correspond to the second invention, the method (5) corresponds to the third invention, and the following methods (6) to (4).
The method (12) is an example corresponding to the fourth invention. In addition,
In the method of coating two or more powders out of the following, in order to improve the dispersibility, in order to improve the dispersibility, each powder in any order (setting so that the powder containing the binder is the most current collector side Is preferable), and it is preferable that the layers are repeatedly laminated. The thickness of the layer made of powder to be deposited at a time can be, for example, 1 μm or less, and is preferably 1 to 3 times the average particle size of each powder.

【0012】(1)活物質粉末、導電化材粉末および結
着剤粉末の混合粉末を塗装する方法、(2)活物質粉末
および結着剤粉末の混合粉末と、導電化材粉末(単体)
とをそれぞれ塗装する方法、(3)活物質粉末(単体)
と、導電化材粉末および結着剤粉末の混合粉末とをそれ
ぞれ塗装する方法、(4)活物質粉末および結着剤粉末
の混合粉末と、導電化材粉末および結着剤粉末の混合粉
末をそれぞれ塗装する方法、
(1) A method of coating a mixed powder of an active material powder, a conductive material powder and a binder powder, (2) a mixed powder of an active material powder and a binder powder, and a conductive material powder (single)
And (3) Active material powder (simple)
And (4) mixing a mixed powder of the active material powder and the binder powder and a mixed powder of the conductive material powder and the binder powder. How to paint each,

【0013】(5)活物質粉末、導電化材粉末および結
着剤粉末をそれぞれ単体粉末として塗装する方法、
(5) a method of coating each of the active material powder, the conductive material powder and the binder powder as a single powder,

【0014】(6)活物質粉末、導電化材粉末および結
着剤粉末の複合粉末を塗装する方法、(7)活物質粉末
および結着剤粉末の複合粉末と、導電化材粉末および結
着剤粉末の複合粉末をそれぞれ塗装する方法、(8)活
物質粉末および結着剤粉末の複合粉末と、導電化材粉末
(単体)とをそれぞれ塗装する方法、(9)活物質粉末
(単体)と、導電化材粉末および結着剤粉末の複合粉末
とをそれぞれ塗装する方法、(10)活物質粉末および
結着剤粉末の複合粉末と、導電化材粉末(単体)と、の
複合粉末を塗装する方法、(11)活物質粉末(単体)
と、導電化材粉末および結着剤粉末の複合粉末と、の混
合粉末を塗装する方法、(12)活物質粉末、導電化材
粉末および結着剤粉末の複合粉末と、活物質粉末(単
体)と、導電化材粉末(単体)と、の混合粉末を塗装す
る方法、
(6) A method of coating a composite powder of an active material powder, a conductive material powder and a binder powder, (7) a composite powder of an active material powder and a binder powder, a conductive material powder and a binder (8) a method of applying a composite powder of an active material powder and a binder powder, and a method of applying a conductive material powder (single), respectively; (9) a method of applying an active material powder (single) And (10) a composite powder of a composite powder of an active material powder and a binder powder and a conductive powder (single substance). Method of painting, (11) Active material powder (simple)
(12) a method of coating a mixed powder of an active material powder, a conductive material powder and a binder powder, and a composite powder of an active material powder, a conductive material powder and a binder powder; ), And a method of coating a mixed powder of the conductive material powder (simple),

【0015】粉体塗装に対する適性、得られる活物質層
の密度および性能等の点から、単体粉末を塗装する場合
の平均粒子径は、活物質粉末では1〜50μm(より好
ましくは5〜20μm)、導電化材粉末では0.01〜
5μm(より好ましくは0.03〜2μm)、結着剤粉
末では0.1〜50μm(より好ましくは1〜10μ
m)とすることが好ましい。また、複合粉末を塗装する
場合、この複合粉末の平均粒子径は1〜50μm(より
好ましくは1〜30μm)とすることが好ましい。粉体
塗装を行う方法としては、各材料粉末を静電力により被
処理物に付着させる静電塗装法が好ましく、特に電解流
動静電塗装法が好ましく用いられる。
From the viewpoint of suitability for powder coating, the density of the obtained active material layer, performance and the like, the average particle size when the single powder is coated is 1 to 50 μm (more preferably 5 to 20 μm) for the active material powder. , 0.01 ~
5 μm (more preferably 0.03 to 2 μm), and 0.1 to 50 μm (more preferably 1 to 10 μm) for the binder powder.
m) is preferable. When the composite powder is applied, the average particle size of the composite powder is preferably 1 to 50 μm (more preferably 1 to 30 μm). As a method of performing powder coating, an electrostatic coating method in which each material powder is adhered to an object to be processed by electrostatic force is preferable, and particularly, an electrolytic flow electrostatic coating method is preferably used.

【0016】集電体に付着された単体粉末および/また
は複合粉末は、これらを結着剤の軟化温度以上に加熱す
る融着工程により、結着剤を介して融着される。活物質
層を構成する材料粒子の全ての分量を集電体に付着させ
た後に融着工程を実施してもよく、一部分量の材料粒子
を付着させる塗装工程と融着工程とを交互に繰り返して
行ってもよい。特に、組成の異なる二以上の粉末をそれ
ぞれ塗装する場合には、分散性を向上させるために、塗
装工程と融着工程とを交互に繰り返すことが好ましい。
加熱の方法としては加熱炉、熱プレス等を用いることが
できる。加熱温度および加熱時間等の条件は、結着剤の
材質および使用量、塗装方法等に応じて適宜選択すれば
よい。例えば、結着剤としてPVDFを用いる場合には
150℃以上とすることができ、好ましくは170℃以
上である。一方、材料粉末の変質等を防ぐため、通常は
加熱温度を200℃以下とすることが好ましい。
The simple powder and / or the composite powder adhered to the current collector are fused via the binder in a fusion step of heating them to a temperature higher than the softening temperature of the binder. After the entire amount of the material particles constituting the active material layer is adhered to the current collector, the fusing step may be performed, and the coating step and the fusing step of adhering a part of the material particles are alternately repeated. You may go. In particular, when coating two or more powders having different compositions, it is preferable to alternately repeat the coating step and the fusing step in order to improve dispersibility.
As a heating method, a heating furnace, a hot press, or the like can be used. Conditions such as heating temperature and heating time may be appropriately selected according to the material and amount of the binder, the coating method, and the like. For example, when PVDF is used as the binder, the temperature can be 150 ° C. or higher, and preferably 170 ° C. or higher. On the other hand, in order to prevent deterioration of the material powder, it is usually preferable to set the heating temperature to 200 ° C. or lower.

【0017】上記融着工程の後、ロールプレス、平板プ
レス等のプレス処理を行ってもよい。このプレス処理は
加熱とともに行ってもよく、加熱温度は例えば融着工程
と同程度とすることができる。プレス処理の圧力は特に
限定されず、例えば50〜150kg/cm2程度とす
ることができる。このプレス処理は、集電体に付着され
た粉末に対して融着工程の前に行ってもよく、融着工程
において加熱と同時にプレス処理を行ってもよく、これ
らの各段階で複数回のプレス処理を行ってもよい。上記
プレス処理により、活物質層の充填密度が高められて負
荷特性等が良好となり、活物質層の形状維持性および集
電体への密着性も向上する。本発明の製造方法において
は、集電体の両面に活物質層を形成してもよく、一方の
表面のみに形成してもよい。形成する活物質層の厚さは
特に限定されず、例えば10〜500μm(好ましくは
20〜200μm)とすることができる。また、得られ
た活物質層の密度は、材料粉末の組成等によっても異な
るが、通常1.5〜3.5g/cm3とすることがで
き、好ましくは2〜3g/cm3である。
After the above-mentioned fusing step, a press treatment such as a roll press or a flat plate press may be performed. This pressing may be performed together with the heating, and the heating temperature may be, for example, about the same as the fusion step. The pressure for the press treatment is not particularly limited, and may be, for example, about 50 to 150 kg / cm 2 . This pressing may be performed before the fusion step on the powder attached to the current collector, or may be performed simultaneously with the heating in the fusion step, and a plurality of times may be performed at each of these steps. Pressing may be performed. By the press treatment, the packing density of the active material layer is increased, load characteristics and the like are improved, and shape retention of the active material layer and adhesion to the current collector are also improved. In the manufacturing method of the present invention, the active material layer may be formed on both surfaces of the current collector, or may be formed only on one surface. The thickness of the active material layer to be formed is not particularly limited, and may be, for example, 10 to 500 μm (preferably 20 to 200 μm). The density of the obtained active material layer varies depending on the composition of the material powder and the like, but can be usually 1.5 to 3.5 g / cm 3 , preferably 2 to 3 g / cm 3 .

【0018】また、第5発明の製造方法は、第1〜第4
発明により得られた活物質層付集電体の表面にセパレー
タ層を形成して、セパレータ一体型の電極を製造するも
のである。活物質層を形成する工程に続いて、上記材料
等からなるセパレータ材料粉末を同様の粉体塗装法等に
より活物質層付集電体に付着させ、次いでこのセパレー
タ材料粉末を加熱融着させることによりセパレータ層が
形成される。このセパレータ層は、活物質層付集電体の
片面に形成してもよく、両面に形成してもよい。集電体
の一方の面のみに活物質層が形成された活物質層付集電
体において、その片面のみにセパレータ層を形成する場
合、セパレータ層を形成する面は活物質層の上であって
もよく、集電体の他方の面(活物質層が形成されていな
い面)であってもよい。
Further, the manufacturing method according to the fifth invention is characterized in that the first to fourth
A separator layer is formed on the surface of a current collector with an active material layer obtained according to the present invention to produce a separator-integrated electrode. Subsequent to the step of forming the active material layer, a separator material powder made of the above-mentioned materials and the like is attached to the active material layer-attached current collector by a similar powder coating method or the like, and then the separator material powder is heated and fused. Forms a separator layer. The separator layer may be formed on one surface of the current collector with an active material layer, or may be formed on both surfaces. In a current collector with an active material layer in which the active material layer is formed only on one surface of the current collector, when the separator layer is formed only on one surface, the surface on which the separator layer is formed is above the active material layer. Or the other surface of the current collector (the surface on which the active material layer is not formed).

【0019】セパレータ層を構成する材料としては、例
えばポリエチレン、ポリプロピレン等のオレフィン系樹
脂を含む熱可塑性樹脂等を採用することができる。セパ
レータ材料粉末の平均粒子径は、0.1〜30μmとす
ることができ、0.5〜5μmとすることが好ましい。
平均粒子径がこの範囲であれば、容易に粉体塗装を行う
ことができ、かつ加熱融着後に多孔質のセパレータ層を
形成しやすい。セパレータ層の気孔率は30〜60体積
%とすることが好ましく、40〜50体積%とすること
がより好ましい。セパレータ層の厚さは特に限定され
ず、例えば5〜60μm、好ましくは10〜40μmと
することができる。
As a material for forming the separator layer, for example, a thermoplastic resin containing an olefin resin such as polyethylene or polypropylene can be adopted. The average particle diameter of the separator material powder can be 0.1 to 30 μm, and preferably 0.5 to 5 μm.
When the average particle diameter is in this range, powder coating can be easily performed, and a porous separator layer can be easily formed after heat-sealing. The porosity of the separator layer is preferably from 30 to 60% by volume, and more preferably from 40 to 50% by volume. The thickness of the separator layer is not particularly limited, and may be, for example, 5 to 60 μm, and preferably 10 to 40 μm.

【0020】本発明の方法により製造された電極を正極
に用いてリチウムイオン電池を構成する場合、その電解
液としては、従来のリチウムイオン二次電池に用いられ
る各種非プロトン性溶媒から選択される一種または二種
以上を用いることができる。例えば、エチレンカーボネ
ート(EC)、プロピレンカーボネート(PC)、γ−
ブチロラクトン、1,2−ジメチルエタン、テトラヒド
ロフラン、1,3−ジオキサン、酢酸メチル、ジエチル
カーボネート(DEC)等が挙げられる。また、電解質
としては、従来のリチウムイオン二次電池に用いられる
各種リチウム塩、例えばLiPF6、LiBF4、CF3
SO3Li、LiClO4等を用いることができ、これら
のうちLiPF6、LiBF4が好ましい。電解液中にお
ける電解質濃度は通常0.05〜10mol/L程度で
あり、好ましくは0.1〜5mol/L程度である。
When a lithium ion battery is constructed using the electrode produced by the method of the present invention as a positive electrode, the electrolyte is selected from various aprotic solvents used in conventional lithium ion secondary batteries. One type or two or more types can be used. For example, ethylene carbonate (EC), propylene carbonate (PC), γ-
Butyrolactone, 1,2-dimethylethane, tetrahydrofuran, 1,3-dioxane, methyl acetate, diethyl carbonate (DEC) and the like. As the electrolyte, various lithium salts used in conventional lithium ion secondary batteries, for example, LiPF 6 , LiBF 4 , CF 3
SO 3 Li, LiClO 4 and the like can be used, and among these, LiPF 6 and LiBF 4 are preferable. The electrolyte concentration in the electrolyte is usually about 0.05 to 10 mol / L, preferably about 0.1 to 5 mol / L.

【0021】また、この電池における負極としては、例
えばアルミニウム箔、ニッケル箔、銅箔等の金属箔から
なる集電体の表面に、アモルファスカーボン、グラファ
イト等の炭素材料(負極活物質)およびPVDF等の結
着剤を含有する負極活物質層を形成したものを用いるこ
とができる。集電体の表面に負極活物質層を形成する方
法としては、本発明の電極の製造方法と同様に粉体塗装
法を用いることが好ましい。この負極活物質層は、この
活物質層全体を100重量%として、負極活物質を75
〜99.5重量%(より好ましくは85〜99重量%)
PVDF等の結着剤を0.5〜25重量%(より好まし
くは1〜15重量%)程度含有することが好ましい。ま
た、負極として金属リチウムを用いてもよい。
The negative electrode of this battery is formed, for example, by coating a current collector made of a metal foil such as an aluminum foil, a nickel foil and a copper foil with a carbon material (anode active material) such as amorphous carbon and graphite and a PVDF or the like. Formed with a negative electrode active material layer containing the above binder. As a method for forming the negative electrode active material layer on the surface of the current collector, it is preferable to use a powder coating method as in the method for producing an electrode of the present invention. The negative electrode active material layer is composed of 75% by weight of the negative electrode active material, with the entire active material layer being 100% by weight.
9999.5% by weight (more preferably 85 to 99% by weight)
It is preferable to contain about 0.5 to 25% by weight (more preferably 1 to 15% by weight) of a binder such as PVDF. Further, metallic lithium may be used as the negative electrode.

【0022】[0022]

〔混合粉末組成〕(Mixed powder composition)

マンガン酸リチウム:85重量% カーボン :10重量% PVDF : 5重量% この混合粉末を、集電体としてのアルミニウム箔(厚さ
15μm)の一表面に静電塗装により付着させ、次いで
175℃の乾燥機中に10時間静置して結着剤粉末と活
物質粉末および導電材粉末とを融着させて活物質層を形
成した。得られた活物質層の厚さは100μm、密度は
2g/cm3であった。
Lithium manganate: 85% by weight Carbon: 10% by weight PVDF: 5% by weight This mixed powder is adhered to one surface of an aluminum foil (15 μm thick) as a current collector by electrostatic coating, and then dried at 175 ° C. The mixture was allowed to stand for 10 hours to fuse the binder powder, the active material powder, and the conductive material powder to form an active material layer. The thickness of the obtained active material layer was 100 μm, and the density was 2 g / cm 3 .

【0023】実施例1により形成された活物質層の構造
を図4(a)に模式的に示す。なお、図4(a)におい
て符号4はアルミニウム箔、符号5は活物質層、符号5
1は結着剤、符号32は活物質、符号33は導電化材を
示す。
FIG. 4A schematically shows the structure of the active material layer formed according to the first embodiment. In FIG. 4A, reference numeral 4 indicates an aluminum foil, reference numeral 5 indicates an active material layer, and reference numeral 5
Reference numeral 1 denotes a binder, reference numeral 32 denotes an active material, and reference numeral 33 denotes a conductive material.

【0024】(実施例2)本実施例は、第3発明の方法
を適用してリチウムイオン電池用の正極を製造した例で
ある。活物質粉末、導電化材粉末および結着剤粉末とし
ては実施例1と同じものを使用し、これらの粉末を混合
することなく順次に粉体塗装して活物質層を作成した。
(Embodiment 2) In this embodiment, a positive electrode for a lithium ion battery is manufactured by applying the method of the third invention. The same active material powder, conductive material powder and binder powder as in Example 1 were used, and the powder was sequentially coated without mixing these powders to form an active material layer.

【0025】本実施例において活物質層の形成に使用し
た装置を図1に模式的に示す。この活物質層形成装置
は、静電塗装部1と、乾燥炉2とからなる。静電塗装部
1は、結着剤粉末31、活物質粉末32および導電化材
粉末33をそれぞれ保持する3つのトレイ11を有す
る。各トレイ11は加振機12を備え、この加振機12
の動作は加振機制御装置13により制御されている。各
トレイ11の上方には3組の電界印加用電極15が設け
られており、各電界印加用電極15およびアルミニウム
箔4の巻き出し側には印加用電源16が接続されてい
る。加振機12により滞留する粉末は、この電界印加用
電極15により帯電され、静電力によってアルミニウム
箔4に吸着される。一方、乾燥炉2は、ヒータ21およ
びこのヒータ21を制御する温度制御装置22を備え
る。
FIG. 1 schematically shows an apparatus used for forming an active material layer in this embodiment. This active material layer forming apparatus includes an electrostatic coating unit 1 and a drying furnace 2. The electrostatic coating unit 1 includes three trays 11 that hold a binder powder 31, an active material powder 32, and a conductive material powder 33, respectively. Each tray 11 includes a vibrator 12.
Is controlled by the shaker control device 13. Above each tray 11, three sets of electric field application electrodes 15 are provided, and an application power supply 16 is connected to each electric field application electrode 15 and the unwinding side of the aluminum foil 4. The powder retained by the vibrator 12 is charged by the electric field applying electrode 15 and is adsorbed on the aluminum foil 4 by electrostatic force. On the other hand, the drying furnace 2 includes a heater 21 and a temperature control device 22 for controlling the heater 21.

【0026】巻出ローラ41から巻き出されたアルミニ
ウム箔4が静電塗装部1を通過する間に、静電力により
結着剤粉末31、活物質粉末32および導電化材粉末3
3をこの順に付着させる。次いで、乾燥炉2において2
00℃×10分加熱することにより、アルミニウム箔4
上の結着剤粉末31と活物質粉末32および導電化材粉
末33とが融着して活物質薄層5’が形成され、巻取ロ
ーラ42に巻き取られる。この工程を4回繰り返すこと
により、アルミニウム箔4の表面に四層の活物質薄層
5’が積層されてなる活物質層(厚さ100μm)を備
えた活物質層付集電体を製造した。この活物質層の密度
は2g/cm3であった。
While the aluminum foil 4 unwound from the unwinding roller 41 passes through the electrostatic coating unit 1, the binder powder 31, the active material powder 32 and the conductive material powder 3 are applied by electrostatic force.
3 in this order. Then, in the drying furnace 2, 2
By heating at 00 ° C. for 10 minutes, the aluminum foil 4
The upper binder material powder 31 and the active material powder 32 and the conductive material powder 33 are fused to form an active material thin layer 5 ′, which is taken up by a take-up roller 42. By repeating this step four times, a current collector with an active material layer having an active material layer (thickness: 100 μm) in which four active material thin layers 5 ′ were laminated on the surface of the aluminum foil 4 was manufactured. . The density of this active material layer was 2 g / cm 3 .

【0027】実施例2により形成された活物質層の構造
を図4(b)に模式的に示す。活物質層5中において、
結着剤51、活物質32および導電化材33が順に繰り
返し積層されている。
FIG. 4B schematically shows the structure of the active material layer formed according to the second embodiment. In the active material layer 5,
The binder 51, the active material 32, and the conductive material 33 are repeatedly laminated in order.

【0028】(実施例3)本実施例は、第4発明の方法
を適用してリチウムイオン電池用の正極を製造した例で
ある。活物質粉末および導電化材粉末としては実施例1
と同じものを使用した。一方、結着剤としては実施例
1、2と同様にPVDFを用い、これを活物質粉末と導
電化材粉末との混合物に溶射して複合粉末を形成した。
この複合粉末を、実施例1と同様に粉体塗装して活物質
層を形成した。実施例3により形成された活物質層の構
造を図4(c)に模式的に示す。複合粉末を塗装するこ
とにより、結着剤51が活物質32と導電化材33との
間に効率的に分散配置されている。
(Embodiment 3) This embodiment is an example in which a positive electrode for a lithium ion battery is manufactured by applying the method of the fourth invention. Example 1 as active material powder and conductive material powder
The same as was used. On the other hand, PVDF was used as the binder in the same manner as in Examples 1 and 2, and this was sprayed onto a mixture of the active material powder and the conductive material powder to form a composite powder.
This composite powder was powder-coated in the same manner as in Example 1 to form an active material layer. FIG. 4C schematically shows the structure of the active material layer formed according to the third embodiment. By coating the composite powder, the binder 51 is efficiently dispersed and arranged between the active material 32 and the conductive material 33.

【0029】(比較例1)実施例1と同様の活物質粉
末、導電化材粉末および結着剤粉末を使用し、これらの
粉末に有機溶媒(N−メチルビニルピロリドン)を添加
し、十分に攪拌混合して固形分濃度50重量%の活物質
ペースト調整した。この活物質ペーストを実施例1と同
じアルミニウム箔の一面にコンマロール式塗工装置によ
り塗布し、120℃×1分間乾燥して溶媒を飛散させた
後、175℃の乾燥機中に10時間静置して、厚さ10
0μm、密度2g/cm3の活物質層を形成した。
Comparative Example 1 The same active material powder, conductive material powder and binder powder as in Example 1 were used, and an organic solvent (N-methylvinylpyrrolidone) was added to these powders. An active material paste having a solid concentration of 50% by weight was prepared by stirring and mixing. This active material paste was applied to one surface of the same aluminum foil as in Example 1 using a comma roll type coating device, dried at 120 ° C. × 1 minute to disperse the solvent, and then left in a dryer at 175 ° C. for 10 hours. Place, thickness 10
An active material layer having a thickness of 0 μm and a density of 2 g / cm 3 was formed.

【0030】(負荷特性の評価)上記実施例および比較
例の方法により活物質層を形成して得られた活物質層付
集電体を用いて、図2に示す構造の電池を製造し、その
負荷特性を評価した。すなわち、アルミニウム箔4と活
物質層5とからなる活物質層付集電体を直径20mmの
円形に打ち抜き、同形状のポリエチレンシート(厚さ2
5μm)からなり電解液が含浸されたセパレータ6を活
物質層5上に積層し、さらに負極としてのLi箔7(厚
さ500μm)をセパレータ6上に積層した後、全体を
かしめシールして直径20mm、厚さ1.5mmの単極
コインセル型電池を作製した。なお、電解液としては、
1mol/LのLiPF6を含むECとDECとの混合
溶媒(EC/DECの重量比=3:7)を用いた。
(Evaluation of Load Characteristics) A battery having the structure shown in FIG. 2 was manufactured using the active material layer-attached current collector obtained by forming an active material layer by the method of the above Examples and Comparative Examples. The load characteristics were evaluated. That is, a current collector with an active material layer composed of an aluminum foil 4 and an active material layer 5 was punched into a circular shape having a diameter of 20 mm, and a polyethylene sheet having the same shape (thickness 2).
5 μm) and an electrolyte-impregnated separator 6 was laminated on the active material layer 5, and a Li foil 7 (thickness 500 μm) as a negative electrode was laminated on the separator 6, and the whole was caulked and sealed to form a diameter. A monopolar coin cell type battery having a thickness of 20 mm and a thickness of 1.5 mm was produced. In addition, as the electrolytic solution,
A mixed solvent of EC and DEC containing 1 mol / L of LiPF 6 (weight ratio of EC / DEC = 3: 7) was used.

【0031】この電池を用い、電流密度1/3、1、
3、6、9、12mA/cm2の電流密度の定電流充放
電、充電時のカット電圧4.2V、放電時のカット電圧
3Vの条件で放電容量を測定し、活物質層の単位重量当
たりの放電容量(放電容量比)を求めた。この放電容量
比と電流密度との関係を図3に示す。
Using this battery, the current density was 1/3, 1,
The discharge capacity was measured under the conditions of constant current charge / discharge at a current density of 3, 6, 9, and 12 mA / cm 2 , a cut voltage at the time of charge of 4.2 V, and a cut voltage at the time of discharge of 3 V. Was determined for the discharge capacity (discharge capacity ratio). FIG. 3 shows the relationship between the discharge capacity ratio and the current density.

【0032】表3から判るように、活物質ペーストを塗
布する従来の方法により活物質層を形成した比較例1の
電極に比べて、本発明の製造方法により活物質層を形成
した実施例1〜3の電極は、活物質層の形成時に有機溶
媒を使用しないという利点に加えて、負荷特性の点でも
比較例1に勝る性能を示した。すなわち、高電流密度に
おいても放電容量比の低下が少なく、内部抵抗の小さい
電池が得られた。
As can be seen from Table 3, Example 1 in which the active material layer was formed by the manufacturing method of the present invention was compared with the electrode of Comparative Example 1 in which the active material layer was formed by the conventional method of applying the active material paste. The electrodes of Nos. 1 to 3 exhibited performance superior to Comparative Example 1 in terms of load characteristics, in addition to the advantage that an organic solvent was not used at the time of forming the active material layer. That is, even at a high current density, a battery with a small decrease in the discharge capacity ratio and a small internal resistance was obtained.

【0033】[0033]

【発明の効果】本発明の製造方法では、集電体表面に活
物質層を形成するにあたって、有機溶媒等の溶媒を含む
ペーストを塗布する従来の方法(湿式)とは異なり、各
材料をいずれも固体の状態で塗装する粉体塗装法を用い
る。この方法によると、湿式に比べて制御が容易であ
る。また、活物質層の構成材料以外の材料(ペースト用
溶媒)が不要となるので材料費を低減することができ、
ペースト用溶媒を乾燥除去する必要がないのでエネルギ
ーコストも削減される。さらに、有機溶媒を使用しない
ので設備費および作業環境の点からも好ましい。
According to the manufacturing method of the present invention, in forming the active material layer on the surface of the current collector, unlike the conventional method (wet method) in which a paste containing a solvent such as an organic solvent is applied, each of the materials is used. Also, a powder coating method of coating in a solid state is used. According to this method, control is easier than in the wet method. In addition, materials (paste solvents) other than the constituent materials of the active material layer are not required, so that material costs can be reduced.
Energy cost is also reduced because there is no need to dry and remove the paste solvent. Furthermore, since an organic solvent is not used, it is preferable in terms of equipment cost and working environment.

【0034】第2発明の方法により活物質層を形成する
場合には、活物質粉末、導電化材粉末および結着剤粉末
の一種以上からなる混合粉末を用いるので材料の分散性
がよく、また各粉末を別個に粉体塗装する場合に比べて
装置構成が簡単である。
In the case where the active material layer is formed by the method of the second invention, a mixed powder comprising at least one of an active material powder, a conductive material powder and a binder powder is used, so that the material has good dispersibility. The apparatus configuration is simpler than in the case where each powder is separately coated.

【0035】第3発明の方法により活物質層を形成する
場合には、活物質粉末、導電化材粉末および結着剤粉末
を順次に粉体塗装するので、これらの粉末を混合する工
程を省略することができ、また異種粉末を混合しないこ
とから材料粉末にかかるシェアは最小限に抑えられる。
したがって第3発明の方法は、表面処理された材料粉
末、応力により破損しやすい材料粉末等を用いる場合に
特に好適である。
When the active material layer is formed by the method of the third invention, the active material powder, the conductive material powder, and the binder powder are successively powder-coated, so that the step of mixing these powders is omitted. And the share of the material powder is minimized because the dissimilar powders are not mixed.
Therefore, the method of the third invention is particularly suitable when a surface-treated material powder, a material powder easily damaged by stress, or the like is used.

【0036】第4発明の方法により活物質層を形成する
場合には、あらかじめ活物質粉末および導電化材粉末の
少なくとも一方と結着剤との複合粒子を調整し、この複
合粒子を粉体塗装するので、結着剤の分散性に優れた活
物質層が形成され、この活物質層を備えた電極によると
負荷特性の高い電池が得ることができる。
When the active material layer is formed by the method of the fourth invention, composite particles of at least one of the active material powder and the conductive material powder and the binder are prepared in advance, and the composite particles are coated by powder coating. Therefore, an active material layer having excellent dispersibility of the binder is formed. According to the electrode provided with the active material layer, a battery having high load characteristics can be obtained.

【0037】第5発明の製造方法によると、第1〜第4
発明により得られた活物質層付集電体の表面に、有機溶
媒を用いることなくセパレータ層を形成することができ
る。このようなセパレータ一体型の電極は組み付け性が
良好である。
According to the manufacturing method of the fifth invention, the first to fourth
A separator layer can be formed on the surface of the current collector with an active material layer obtained according to the present invention without using an organic solvent. Such an electrode integrated with a separator has good assemblability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2において活物質層の形成に用いた装置
を示す模式図である。
FIG. 1 is a schematic diagram showing an apparatus used for forming an active material layer in Example 2.

【図2】実施例で製造した電極の評価に用いた電池を示
す断面図である。
FIG. 2 is a cross-sectional view showing a battery used for evaluating electrodes manufactured in Examples.

【図3】実施例で製造した電極を用いた電池の負荷特性
を示す特性図である。
FIG. 3 is a characteristic diagram showing load characteristics of a battery using electrodes manufactured in Examples.

【図4】(a)は実施例1で形成した活物質層、(b)
は実施例2で形成した活物質層、(c)は実施例3で形
成した活物質層を示す模式的断面図である。
FIG. 4A is an active material layer formed in Example 1, and FIG.
FIG. 4 is a schematic cross-sectional view showing the active material layer formed in Example 2, and FIG. 4C is a schematic cross-sectional view showing the active material layer formed in Example 3.

【符号の説明】[Explanation of symbols]

1;静電塗装部、11;トレイ、12;加振機、13;
加振機制御装置、15;電界印加用電極、16;印加用
電源、2;乾燥炉、31;結着剤粉末、32;活物質粉
末、33;導電化材粉末、4;アルミニウム箔(集電
体)、5;活物質層、5’;活物質薄層、6;セパレー
タ、7;Li箔。
1; electrostatic coating unit; 11; tray; 12; vibrator; 13;
Vibrator control device, 15; electrode for applying electric field, 16; power supply for application, 2; drying furnace, 31; binder powder, 32; active material powder, 33; conductive material powder, 4; 5); active material thin layer, 6; separator, 7; Li foil.

フロントページの続き Fターム(参考) 5H021 BB01 BB11 CC03 CC04 EE04 HH06 5H024 AA01 AA02 BB01 BB08 DD09 DD14 DD15 EE01 EE09 FF15 FF16 FF17 FF18 FF19 HH11 5H029 AJ05 AJ06 AJ14 AK03 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ22 DJ04 DJ07 DJ08 DJ16 EJ01 EJ12 HJ14 5H050 AA07 AA12 AA17 AA19 BA06 BA17 CA08 CA09 CA14 CA15 CA16 DA06 DA07 DA08 DA10 DA11 DA19 EA08 EA09 EA10 EA24 GA02 GA22 HA14 Continued on the front page F-term (reference) 5H021 BB01 BB11 CC03 CC04 EE04 HH06 5H024 AA01 AA02 BB01 BB08 DD09 DD14 DD15 EE01 EE09 FF15 FF16 FF17 FF18 FF19 HH11 5H029 AJ05 AJ06 AJ14 AM04 DJ07 AM08 DJ08 DJ16 EJ01 EJ12 HJ14 5H050 AA07 AA12 AA17 AA19 BA06 BA17 CA08 CA09 CA14 CA15 CA16 DA06 DA07 DA08 DA10 DA11 DA19 EA08 EA09 EA10 EA24 GA02 GA22 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 集電体の表面に、活物質、導電化材およ
び結着剤からなる活物質層を、粉体塗装法により形成す
ることを特徴とする電極の製造方法。
1. A method for producing an electrode, comprising forming an active material layer comprising an active material, a conductive material and a binder on a surface of a current collector by a powder coating method.
【請求項2】 上記活物質層の形成は、活物質粉末、導
電化材粉末および結着剤粉末の一種以上からなる混合粉
末を上記集電体に付着させる粉体塗装工程と、上記集電
体に付着された粉末を上記結着剤の軟化温度以上に加熱
する融着工程と、を含む工程により行われる請求項1記
載の電極の製造方法。
2. The method according to claim 1, wherein the active material layer is formed by a powder coating step of adhering a mixed powder comprising at least one of an active material powder, a conductive material powder and a binder powder to the current collector. 2. The method for producing an electrode according to claim 1, wherein the method comprises a step of heating the powder attached to the body to a temperature equal to or higher than the softening temperature of the binder.
【請求項3】 上記活物質層の形成は、活物質粉末およ
び導電化材粉末の少なくとも一方と結着剤粉末とを上記
集電体に任意の順序で付着させる粉体塗装工程と、上記
集電体に付着された粉末を上記結着剤の軟化温度以上に
加熱する融着工程と、を含む工程により行われる請求項
1記載の電極の製造方法。
3. The formation of the active material layer includes a powder coating step of adhering at least one of the active material powder and the conductive material powder and the binder powder to the current collector in an arbitrary order; 2. The method for producing an electrode according to claim 1, wherein the method is performed by a step including a step of heating the powder attached to the electric body to a temperature higher than a softening temperature of the binder.
【請求項4】 上記活物質層の形成は、活物質粉末およ
び導電化材粉末の少なくとも一方および結着剤からなる
複合粒子を上記集電体に付着させる粉体塗装工程と、上
記集電体に付着された粉末を上記結着剤の軟化温度以上
に加熱する融着工程と、を含む工程により行われる請求
項1記載の電極の製造方法。
4. The step of forming the active material layer includes a powder coating step of adhering composite particles comprising at least one of an active material powder and a conductive material powder and a binder to the current collector; 2. The method for producing an electrode according to claim 1, wherein the method comprises: a step of heating the powder attached to the binder to a temperature higher than the softening temperature of the binder.
【請求項5】 上記活物質層が形成された活物質層付集
電体にセパレータ材料粉末を付着させた後、該セパレー
タ材料粉末を加熱融着させてセパレータ層を形成する工
程を備える請求項1から4のいずれか一項記載の電極の
製造方法。
5. A step of forming a separator layer by attaching a separator material powder to the active material layer-attached current collector on which the active material layer is formed, and then heating and fusing the separator material powder. The method for producing an electrode according to any one of claims 1 to 4.
JP2000167989A 2000-06-05 2000-06-05 Manufacturing method of electrode Pending JP2001351616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167989A JP2001351616A (en) 2000-06-05 2000-06-05 Manufacturing method of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167989A JP2001351616A (en) 2000-06-05 2000-06-05 Manufacturing method of electrode

Publications (1)

Publication Number Publication Date
JP2001351616A true JP2001351616A (en) 2001-12-21

Family

ID=18671062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167989A Pending JP2001351616A (en) 2000-06-05 2000-06-05 Manufacturing method of electrode

Country Status (1)

Country Link
JP (1) JP2001351616A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042847A1 (en) * 2002-11-08 2004-05-21 Nilar International Ab An apparatus for manufacturing an electrode
JPWO2005117043A1 (en) * 2004-05-27 2008-04-03 日本ゼオン株式会社 Electrode device electrode manufacturing method and apparatus
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
JP2010282803A (en) * 2009-06-04 2010-12-16 Idemitsu Kosan Co Ltd Manufacturing method of all-solid lithium ion secondary battery
JP2011049231A (en) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element
JP2011077014A (en) * 2009-09-04 2011-04-14 Asahi Sunac Corp Method of manufacturing electrode for battery
JP4687458B2 (en) * 2003-02-25 2011-05-25 日本ゼオン株式会社 Method for producing electrode for electrochemical device
JP2013137928A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc Electrode, lithium secondary battery, and method of manufacturing electrode
WO2013171883A1 (en) * 2012-05-17 2013-11-21 トヨタ自動車株式会社 Method for manufacturing cell
JP2014032935A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2014041793A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2014183053A (en) * 2013-03-20 2014-09-29 Robert Bosch Gmbh Electrode, method of manufacturing the same
WO2014192652A1 (en) * 2013-05-29 2014-12-04 日本ゼオン株式会社 Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
JP2015505140A (en) * 2011-12-16 2015-02-16 スリーエム イノベイティブ プロパティズ カンパニー Electrode manufacturing method
JP2015069928A (en) * 2013-09-30 2015-04-13 日本ペイントホールディングス株式会社 Composite particle for electrode and method for producing composite particle for electrode
JP2015519708A (en) * 2012-05-16 2015-07-09 イスクラ テクニカル プロダクツ,インク. System and method for manufacturing electrochemical devices
EP2824733A4 (en) * 2012-03-05 2015-10-28 Lg Chemical Ltd Method for coating inorganic particles on lithium secondary battery substrate, and lithium secondary battery including substrate coated by the method
US9431676B2 (en) 2002-11-08 2016-08-30 Nilar International Ab Electrode, method for manufacturing electrode, biplate assembly and bipolar battery
JP2017514296A (en) * 2014-03-10 2017-06-01 マックスウェル テクノロジーズ インコーポレイテッド Method and apparatus for fibrillation of polymer compound under electric field
WO2017169567A1 (en) * 2016-03-30 2017-10-05 日立造船株式会社 All-solid-state secondary battery production method and coating device
CN107681111A (en) * 2017-10-18 2018-02-09 深圳市信宇人科技股份有限公司 The hot composite transferring coating method of dry powder and system
CN107732143A (en) * 2017-10-18 2018-02-23 深圳市信宇人科技股份有限公司 Dry powder heat compound directly coating method and system
JP2019510345A (en) * 2016-03-07 2019-04-11 イスクラ テクニカル プロダクツ,インク. System and method for manufacturing separator electrodes
JP2020077614A (en) * 2018-09-13 2020-05-21 株式会社Gsユアサ Electrode and manufacturing method of electrode
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11050121B2 (en) 2012-05-16 2021-06-29 Eskra Technical Products, Inc. System and method for fabricating an electrode with separator
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2022093922A (en) * 2020-12-14 2022-06-24 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing electrode sheet
CN114824189A (en) * 2021-01-29 2022-07-29 泰星能源解决方案有限公司 Positive electrode active material composite particle, positive electrode plate, and method for producing positive electrode active material composite particle and positive electrode plate
JP2022150672A (en) * 2021-03-26 2022-10-07 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode sheet
WO2023085654A1 (en) * 2021-11-10 2023-05-19 주식회사 엘지에너지솔루션 Electrode sheet drying device capable of preventing thermal wrinkles in uncoated portion
CN117563802A (en) * 2024-01-17 2024-02-20 中国科学院大连化学物理研究所 Preparation system and method for dry-method electrostatic spraying ion battery electrode

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042847A1 (en) * 2002-11-08 2004-05-21 Nilar International Ab An apparatus for manufacturing an electrode
US9548488B2 (en) 2002-11-08 2017-01-17 Nilar International Ab Method for manufacturing electrode
US9431676B2 (en) 2002-11-08 2016-08-30 Nilar International Ab Electrode, method for manufacturing electrode, biplate assembly and bipolar battery
JP4687458B2 (en) * 2003-02-25 2011-05-25 日本ゼオン株式会社 Method for producing electrode for electrochemical device
US8048478B2 (en) 2003-02-25 2011-11-01 Zeon Corporation Method of manufacturing electrode for electrochemical device
JPWO2005117043A1 (en) * 2004-05-27 2008-04-03 日本ゼオン株式会社 Electrode device electrode manufacturing method and apparatus
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
JP2010282803A (en) * 2009-06-04 2010-12-16 Idemitsu Kosan Co Ltd Manufacturing method of all-solid lithium ion secondary battery
JP2011049231A (en) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element, electrode for electrochemical element, and electrochemical element
JP2011077014A (en) * 2009-09-04 2011-04-14 Asahi Sunac Corp Method of manufacturing electrode for battery
JP2015505140A (en) * 2011-12-16 2015-02-16 スリーエム イノベイティブ プロパティズ カンパニー Electrode manufacturing method
JP2013137928A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc Electrode, lithium secondary battery, and method of manufacturing electrode
EP2824733A4 (en) * 2012-03-05 2015-10-28 Lg Chemical Ltd Method for coating inorganic particles on lithium secondary battery substrate, and lithium secondary battery including substrate coated by the method
US10069132B2 (en) 2012-03-05 2018-09-04 Lg Chem, Ltd. Method of coating substrate for lithium secondary battery with inorganic particles and lithium secondary battery comprising substrate coated by the method
US11011737B2 (en) 2012-05-16 2021-05-18 Eskra Technical Products, Inc. System and method of fabricating an electrochemical device
US11050121B2 (en) 2012-05-16 2021-06-29 Eskra Technical Products, Inc. System and method for fabricating an electrode with separator
JP2015519708A (en) * 2012-05-16 2015-07-09 イスクラ テクニカル プロダクツ,インク. System and method for manufacturing electrochemical devices
JPWO2013171883A1 (en) * 2012-05-17 2016-01-07 トヨタ自動車株式会社 Battery manufacturing method
WO2013171883A1 (en) * 2012-05-17 2013-11-21 トヨタ自動車株式会社 Method for manufacturing cell
JP2014032935A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2014041793A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2014183053A (en) * 2013-03-20 2014-09-29 Robert Bosch Gmbh Electrode, method of manufacturing the same
JPWO2014192652A1 (en) * 2013-05-29 2017-02-23 日本ゼオン株式会社 Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
KR20160013867A (en) 2013-05-29 2016-02-05 제온 코포레이션 Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
WO2014192652A1 (en) * 2013-05-29 2014-12-04 日本ゼオン株式会社 Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
JP2015069928A (en) * 2013-09-30 2015-04-13 日本ペイントホールディングス株式会社 Composite particle for electrode and method for producing composite particle for electrode
JP2017514296A (en) * 2014-03-10 2017-06-01 マックスウェル テクノロジーズ インコーポレイテッド Method and apparatus for fibrillation of polymer compound under electric field
JP2019510345A (en) * 2016-03-07 2019-04-11 イスクラ テクニカル プロダクツ,インク. System and method for manufacturing separator electrodes
WO2017169567A1 (en) * 2016-03-30 2017-10-05 日立造船株式会社 All-solid-state secondary battery production method and coating device
JP2017183025A (en) * 2016-03-30 2017-10-05 日立造船株式会社 Method for manufacturing all-solid type secondary battery, and coating device
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN107732143B (en) * 2017-10-18 2023-09-15 深圳市信宇人科技股份有限公司 Dry powder thermal compounding direct coating method and system
CN107732143A (en) * 2017-10-18 2018-02-23 深圳市信宇人科技股份有限公司 Dry powder heat compound directly coating method and system
CN107681111A (en) * 2017-10-18 2018-02-09 深圳市信宇人科技股份有限公司 The hot composite transferring coating method of dry powder and system
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2020077614A (en) * 2018-09-13 2020-05-21 株式会社Gsユアサ Electrode and manufacturing method of electrode
JP7419714B2 (en) 2018-09-13 2024-01-23 株式会社Gsユアサ Electrode and electrode manufacturing method
JP2022093922A (en) * 2020-12-14 2022-06-24 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing electrode sheet
JP7202348B2 (en) 2020-12-14 2023-01-11 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
CN114824189A (en) * 2021-01-29 2022-07-29 泰星能源解决方案有限公司 Positive electrode active material composite particle, positive electrode plate, and method for producing positive electrode active material composite particle and positive electrode plate
JP7248728B2 (en) 2021-03-26 2023-03-29 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
JP2022150672A (en) * 2021-03-26 2022-10-07 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode sheet
WO2023085654A1 (en) * 2021-11-10 2023-05-19 주식회사 엘지에너지솔루션 Electrode sheet drying device capable of preventing thermal wrinkles in uncoated portion
CN117563802A (en) * 2024-01-17 2024-02-20 中国科学院大连化学物理研究所 Preparation system and method for dry-method electrostatic spraying ion battery electrode
CN117563802B (en) * 2024-01-17 2024-04-16 中国科学院大连化学物理研究所 Preparation system and method for dry-method electrostatic spraying ion battery electrode

Similar Documents

Publication Publication Date Title
JP2001351616A (en) Manufacturing method of electrode
JP3303694B2 (en) Lithium ion secondary battery and method of manufacturing the same
EP0959513B1 (en) Lithium ion secondary battery and manufacture thereof
US8852787B2 (en) Batteries having inorganic/organic porous films
US6322599B1 (en) Method of fabricating a lithium ion secondary battery
CN105556711B (en) The method for manufacturing non-aqueous electrolyte secondary battery
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
EP0982790A1 (en) Lithium ion battery and method for forming the same
CN108808111A (en) Layer-built battery
WO2018207530A1 (en) Nonaqueous electrolyte secondary battery
JP2001035495A (en) Positive electrode paste composition for lithium secondary battery, positive electrode, and its manufacture
KR102331219B1 (en) Method for manufacturing battery
US9819025B2 (en) Electrode for non-aqueous secondary battery
US20200280102A1 (en) All-solid-state battery and method for manufacturing the same
JP2016081829A (en) Method for manufacturing electrode for lithium ion secondary battery
US6352797B1 (en) Lithium ion battery and method for forming the same
JP2000323129A (en) Manufacture of battery electrode
JP7088969B2 (en) Lithium ion separator for secondary batteries and lithium ion secondary batteries
JPH11149918A (en) Manufacture of battery electrode
JP3774980B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP3082766B1 (en) Battery electrode manufacturing method
JPH08250110A (en) Manufacture of electrode plate for nonaqueous electrolytic secondary battery
US11108082B2 (en) Composite solid electrolyte layer, method for producing the same, and method for producing all-solid-state battery
JP2002134103A (en) Method of producing electrode for polymer lithium secondary battery
JP2000243384A (en) Manufacture of positive electrode material for polymer lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601