WO2010018841A1 - Method for manufacturing electrode for electrochemical element and electrochemical element - Google Patents

Method for manufacturing electrode for electrochemical element and electrochemical element Download PDF

Info

Publication number
WO2010018841A1
WO2010018841A1 PCT/JP2009/064241 JP2009064241W WO2010018841A1 WO 2010018841 A1 WO2010018841 A1 WO 2010018841A1 JP 2009064241 W JP2009064241 W JP 2009064241W WO 2010018841 A1 WO2010018841 A1 WO 2010018841A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode material
current collector
binder
electrochemical element
Prior art date
Application number
PCT/JP2009/064241
Other languages
French (fr)
Japanese (ja)
Inventor
弘治 干場
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008208755A external-priority patent/JP2011216505A/en
Priority claimed from JP2008208754A external-priority patent/JP2011216504A/en
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2010018841A1 publication Critical patent/WO2010018841A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing an electrode for an electrochemical element and an electrochemical element comprising the same.
  • Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors are expected to be applied as large power sources such as distributed power sources and hybrid vehicles due to environmental problems and resource problems of energy.
  • large power sources such as distributed power sources and hybrid vehicles due to environmental problems and resource problems of energy.
  • a method for producing an electrode a method in which an electrode material containing an electrode active material and a binder is made into a slurry, applied and dried; a method in which the electrode material is kneaded and extended to a target thickness with a rolling roll A method of pressure forming the electrode material as it is or in the form of composite particles.
  • the method of pressure-molding the electrode material is preferable in terms of productivity, and various methods for supplying the electrode material have been proposed.
  • Electrode material is charged and electrostatically adhered as a method for supplying the electrode material.
  • This method is excellent in productivity because the electrode material can be supplied thinly and evenly, and the electrode material that has not adhered can be recovered and reused.
  • Patent Document 1 discloses a method in which a powder having water repellency on the surface is applied to a current collector by electrostatic powder coating. According to this method, it is said that a hydrogen storage alloy electrode having water repellency uniformly and sufficiently enhanced can be produced.
  • Patent Document 2 discloses a method for producing an electrode, wherein an active material layer made of an active material, a conductive material, and a binder is formed on the surface of a current collector by a powder coating method. ing. According to this method, it is said that an electrode that is easy to control, has good productivity, and has excellent load characteristics as compared with the wet method can be obtained.
  • an incombustible or flame-retardant electrolyte solution is applied to the surface of an electrode structure, and further, an electrode material is applied by electrostatic copying and heat-fixed, whereby the electrolyte solution becomes an electrode material and an electrode structure.
  • An electrode manufacturing method is disclosed, which is characterized in that According to this method, a higher performance electrode can be provided.
  • distribution process which disperse
  • the collector supply process which supplies a collector on the disperse
  • the said electrode There is disclosed a method for producing an electrode for an electrochemical device, comprising: a zone press-bonding step of continuously pressing raw material powder and a current collector to form an electrode. And the method of making it adhere by static electricity, such as an electrostatic spraying method, is illustrated as a method of supplying electrode raw material powder.
  • an electrode material is apply
  • coating means which apply
  • An electrode manufacturing apparatus is disclosed. According to this apparatus, a higher performance electrode can be manufactured.
  • a fuel cell electrode formed by adhering an electrostatically charged electrode catalyst powder to a polymer electrolyte membrane has a structure with an appropriate pore distribution, and gas diffusion is further improved. It is said that the battery performance will improve because it improves.
  • Patent Documents 1 to 4 have a problem that continuous and stable production cannot be achieved.
  • the present inventor can efficiently generate inductive charging of the current collector by forming the electrode layer by supplying the charged electrode material onto the grounded current collector.
  • the inventors have found that the charged electrode material can be efficiently applied, and that it is possible to produce an electrode for an electrochemical element stably for a long time, and the following present invention has been completed based on these findings.
  • a method for producing an electrode for an electrochemical device wherein an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded current collector. Is done.
  • a metal can be used as the current collector.
  • composite particles containing the electrode active material can be used as the electrode material.
  • the average charge amount of the electrode material can be set to 0.5 to 10.0 ⁇ C / g.
  • the current collector may be one having an adhesive layer on at least one surface thereof.
  • the manufacturing method of the electrode which concerns on the 1st viewpoint of this invention can be used suitably for manufacture of a polarizable electrode.
  • an electrochemical element comprising an electrode for an electrochemical element obtained by the production method according to the first aspect of the present invention.
  • An example of the electrochemical element is an electric double layer capacitor.
  • a charged electrode material can be efficiently applied, and stable production can be performed for a long time. Therefore, it is possible to provide a method for producing an electrode for an electrochemical element with good productivity. Is possible. In addition, it is possible to produce an electrochemical device electrode having a low internal resistance with high productivity.
  • the present invention can be suitably used particularly as a method for producing an electric double layer capacitor, an electrode for a hybrid capacitor, and an electrode for a lithium ion secondary battery.
  • the method for producing an electrode for an electrochemical device of the present invention is characterized in that an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded current collector.
  • a metal, carbon, a conductive polymer, or the like can be used, and a metal is preferably used.
  • a metal is preferably used.
  • the current collector metal aluminum, platinum, nickel, tantalum, titanium, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the shape of the current collector is not particularly limited, but may be a film or a sheet, and the sheet current collector may have pores.
  • the sheet-like current collector may have a shape such as an expanded metal, a punching metal, or a net. When a sheet-like current collector having pores is used, the capacity per volume of the obtained electrode can be increased.
  • the ratio of the holes is preferably 10 to 79 area%, more preferably 20 to 60 area%.
  • the thickness of the current collector is appropriately selected according to the purpose of use, but is usually 1 to 200 ⁇ m, preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m. When the thickness of the current collector is in this range, the resistance of electron movement can be reduced, and the internal resistance can be reduced.
  • the current collector preferably has an adhesive layer formed on at least one surface thereof.
  • conductive materials are preferable because the interface resistance between the electrode layer and the current collector can be reduced.
  • the adhesive layer can be formed by applying and drying an adhesive on the surface of the current collector. When a current collector with an adhesive layer formed on its surface is used, good adhesiveness can be obtained even when the electrode is housed together with the electrolyte in the electrochemical element. With this binder, the contact area with the electrode active material can be increased, and the interface resistance can be reduced.
  • a conductive auxiliary powder, a binder, and a dispersant added as necessary are dispersed in water or an organic solvent.
  • the conductive aid used for the adhesive include silver, nickel, gold, graphite, acetylene black, ketjen black, and the like, preferably graphite and acetylene black.
  • the binder used for the adhesive any of those exemplified as the binder used in the production method of the present invention described later can be used.
  • water glass, an epoxy resin, a polyamide-imide resin, a urethane resin, etc. can also be used, and these can be used individually or in combination of 2 or more types, respectively.
  • the binder used for the adhesive is preferably an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or a polyamideimide resin.
  • a dispersing agent used for an adhesive agent a dispersing agent or a surfactant that may be used for the electrode layer in the production method of the present invention can be used.
  • the content of the binder in the adhesive layer is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 10 parts by weight with respect to 100 parts by weight of the conductive assistant. Part range.
  • the amount of the binder in the adhesive layer is within this range, sufficient adhesion between the obtained electrode composition layer and the current collector can be secured, the capacity of the electrochemical device is increased, and the internal resistance is decreased. Can do.
  • the content of the dispersing agent in the adhesive layer is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, particularly preferably 0.8 to 10 parts by weight based on 100 parts by weight of the conductive assistant.
  • the range is parts by weight.
  • the content of the surfactant in the adhesive layer is preferably from 0.5 to 20 parts by weight, more preferably from 1.0 to 15 parts by weight, particularly preferably from 2.0 to 100 parts by weight based on 100 parts by weight of the conductive assistant.
  • the range is 10 parts by weight.
  • the adhesive layer is composed of a current collector and an adhesive obtained by mixing, kneading, and the like in a solvent (dispersion medium) with a conductive additive and a binder, and if necessary, a dispersing agent and a surfactant. It can be applied on top and dried. Although it does not restrict
  • Specific examples of the method for producing the adhesive used in the present invention include a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
  • the method for forming the adhesive layer used in the present invention is not particularly limited.
  • a current collector is obtained by a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating, or the like. Formed on top.
  • the thickness of the adhesive layer is usually 0.01 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m, particularly preferably 1 to 5 ⁇ m. When the thickness of the adhesive layer is within the above range, the internal resistance of the electrochemical element having an electrode obtained by the production method of the present invention can be reduced.
  • the electrode material used in the method for producing an electrode for an electrochemical element of the present invention is an electrode active material, a conductive agent, a binder, and other materials necessary for constituting an electrode, and is usually in the form of solid particles.
  • Electrode active material What is necessary is just to select the electrode active material used for the electrode obtained by the manufacturing method of this invention according to the element for which an electrode is utilized.
  • a carbon allotrope is usually used as the electrode active material.
  • the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used.
  • a preferred electrode active material is activated carbon, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.
  • the electrode for an electrochemical element obtained by the production method of the present invention is used for an electrode for a negative electrode of a lithium ion secondary battery or an electrode for a hybrid capacitor negative electrode
  • the electrode active material amorphous carbon, graphite, natural graphite , Mesocarbon microbeads (MCMB), and carbonaceous materials such as pitch-based carbon fibers; conductive polymers such as polyacene; Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium.
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 and these elements Partially substituted lithium-containing composite metal oxide; transition metal sulfides such as TiS 2 , TiS 3 , amorphous MoS 3 ; Cu 2 V 2 O 3 , amorphous V 2 O ⁇ P 2 O 5 , MoO 3 , transition metal oxides such as V 2 O 5 and V 6 O 13 ; Further examples include conductive polymers such as polyacetylene and poly-p-phenylene.
  • the volume average particle diameter of the electrode active material used in the present invention is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 20 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the specific surface area of the electrode active material is preferably 30 m 2 / g or more, preferably It is preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g. Since the density of the obtained electrode composition layer tends to decrease as the specific surface area of the electrode active material increases, an electrode composition layer having a desired density can be obtained by appropriately selecting the electrode active material. Moreover, these electrode active materials can be used individually or in combination of 2 or more types.
  • the conductive material used in the present invention is composed of an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer.
  • furnace black, acetylene black, and kettle are used.
  • conductive carbon black such as chain black (registered trademark of Akzo Nobel Chemicals Besloten Fennaut Shap); graphite such as natural graphite and artificial graphite.
  • conductive carbon black is preferable, and acetylene black and ketjen black are more preferable.
  • the volume average particle diameter of the conductive material used in the present invention is preferably smaller than the volume average particle diameter of the electrode active material, and the range thereof is usually 0.001 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably. 0.01 to 1 ⁇ m. When the volume average particle diameter of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use.
  • These conductive materials can be used alone or in combination of two or more. When the amount of the conductive material is increased, the charge amount of the electrode material described later can be reduced, and when the amount is decreased, the charge amount can be increased.
  • the amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When the amount of the conductive material is within this range, the capacity of the electrochemical device of the present invention can be increased and the internal resistance can be decreased.
  • the binder used in the present invention is not particularly limited as long as it is a compound capable of binding electrode active materials to each other.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include polymer compounds such as fluorine-based polymers, diene-based polymers, acrylate-based polymers, polyimides, polyamides, polyurethane-based polymers, and preferably fluorine-based polymers and diene-based binders.
  • a polymer and an acrylate polymer more preferably a diene polymer and an acrylate polymer.
  • the charge amount described later can be adjusted by utilizing the relationship of the charge train. For example, since the acrylate polymer is more likely to be positively charged on the charged column than the diene polymer, the charge amount can be increased.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the proportion of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the diene polymer examples include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Examples include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR)
  • SBR carboxy-modified styrene / butadiene copolymer
  • NBR acrylonitrile / butadiene copolymer
  • SBR acrylonitrile / butadiene copolymer
  • the acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and / or methacrylic ester or a monomer mixture containing these.
  • the ratio of acrylic acid ester and / or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the glass transition temperature (Tg) of the binder used in the production method of the present invention is preferably ⁇ 80 ° C. to 50 ° C., more preferably ⁇ 50 ° C. to 25 ° C.
  • Tg glass transition temperature
  • the shape of the binder used in the production method of the present invention is not particularly limited, but has good binding properties, and can suppress deterioration due to repeated decrease in capacity and charge / discharge of the created electrode. It is preferably in the form of particles.
  • the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the number average particle size of the binder used in the production method of the present invention is not particularly limited, but is usually 0.0001 to 100 ⁇ m, preferably 0.001 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m. It has a number average particle size. When the number average particle diameter of the binder is within this range, an excellent binding force can be imparted to the electrochemical device electrode even with a small amount of the binder.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular. These binders can be used alone or in combination of two or more.
  • the amount of the binder is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
  • the amount of the binder is within this range, sufficient adhesion between the obtained electrode composition layer and the current collector can be secured, the capacity of the electrochemical device of the present invention can be increased and the internal resistance can be decreased. it can. Further, when the amount of the binder is increased, the charge amount of the electrode described later can be increased, and when the amount of the binder is decreased, the charge amount can be decreased.
  • the following materials necessary for constituting the electrode may be contained.
  • the dispersing material is used by being dissolved in a slurry solvent described later, and further has an action of uniformly dispersing the electrode active material, the conductive material and the like in the solvent.
  • cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and ammonium salts or alkali metal salts thereof; polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid); polyvinyl Examples include alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These dispersing agents can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali
  • dispersion materials can be used alone or in combination of two or more.
  • the amount of the dispersing agent used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the electrode active material. It is in the range of up to 2 parts by weight.
  • additives include, for example, surfactants.
  • surfactants include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable.
  • Surfactants can be used alone or in combination of two or more.
  • the amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
  • the electrode material used in the present invention is preferably a composite particle comprising the above electrode active material and a binder.
  • the composite particles refer to particles having an electrode active material and a binder as essential components and containing a conductive material, a dispersing material, and other additives as necessary.
  • the production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion type drying method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder and the conductive auxiliary agent are unevenly distributed in the vicinity of the surface can be easily obtained. When composite particles obtained by the spray drying granulation method are used, the electrode for an electrochemical element of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
  • the essential components of the electrode active material and the binder, and optional components such as a conductive material are dispersed or dissolved in a solvent, the electrode active material and the essential components of the binder, and A slurry is obtained in which optional components such as a conductive material, a dispersing material, and other additives are dispersed or dissolved.
  • the solvent used for obtaining the slurry is not particularly limited, but when using the above-mentioned dispersion material, a solvent capable of dissolving the dispersion material is preferably used.
  • a solvent capable of dissolving the dispersion material is preferably used.
  • water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used.
  • the organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like.
  • alcohols are preferable as the organic solvent.
  • water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying.
  • the dispersibility of the binder or the solubility of the dispersing agent varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity
  • the amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. .
  • the binder is preferably dispersed uniformly.
  • the method or procedure for dispersing or dissolving the essential components of the electrode active material and the binder and the optional components such as the conductive material, the dispersion material, and other additives in the solvent is not particularly limited.
  • the electrode active material is dissolved in the solvent.
  • a method of mixing and finally adding and mixing the electrode active material and the conductive material; adding and mixing the electrode active material and the conductive material to the binder dispersed in the solvent, and dispersing the mixture in the solvent For example, a method of adding and mixing materials may be used.
  • the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the viscosity of the slurry is usually in the range of 10 to 3,000 mPa ⁇ s, preferably 30 to 1,500 mPa ⁇ s, more preferably 50 to 1,000 mPa ⁇ s at room temperature.
  • the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Further, the higher the viscosity of the slurry, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 40,000 rpm, preferably 15,000 to 40,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the composite particles are preferably spherical. Whether the composite particles are spherical or not is evaluated by (Ll ⁇ Ls) / ⁇ (Ls + Ll) / 2 ⁇ where Ls is the minor axis diameter of the composite particles and Ll is the major axis diameter. (Hereinafter referred to as “sphericity”).
  • the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. The smaller this value, the closer the spherical composite particle is to a true sphere.
  • the particle observed as a square in the photographic image has a sphericity of 34.4%, so the composite particle showing a sphericity exceeding 34.4% is not at least spherical.
  • the sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less.
  • the composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary.
  • the particle surface is modified by mixing the above-mentioned electrode active material, conductive material, binder, dispersing agent or other additives into the composite particle, thereby improving the fluidity of the composite particle.
  • a charge control agent may be used.
  • Specific examples include silicon dioxide particles, styrene-methacrylate copolymer particles, nigrosine dyes, triphenylmethane dyes, quaternary ammonium salts, resins containing quaternary ammonium groups and / or amino groups. It is done.
  • the sphericity is preferably 80% or more, more preferably 90% or more.
  • the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
  • the weight average particle size of the composite particles suitably used in the present invention is usually in the range of 0.1 to 1,000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m. When the weight average particle diameter of the composite particles is within this range, the composite particles are less likely to aggregate and electrostatic force is increased against gravity, which is preferable.
  • the weight average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
  • the electrode layer is formed by supplying the charged electrode material onto at least one surface of the grounded current collector.
  • Charging an electrode material means that the electrode material is charged positively or negatively by treating the electrode material.
  • the method of charging the electrode material is not particularly limited, and examples thereof include a method of charging by directly applying a voltage to the electrode material, a method of charging the electrode material by friction, and the like.
  • Charging methods using corona discharge include charging the electrode material by spraying it near the corona discharge electrode when sprayed on the current collector, or installing a corona discharge electrode in the fluidized bed of electrode material And charging method.
  • a method of charging the electrode material by friction a method of charging the electrode material by bringing the electrode material into contact with a material that is easily charged using a charging train is used.
  • the charged column is inherent to a substance and has a relative order of easiness of charging from a material that is easily charged negatively to a material that is easily charged positively.
  • the two materials to be rubbed are more apart from each other on the charge train, each of them is charged more greatly. Therefore, on the charge train, the electrode material is easily brought into contact with the electrode material by contacting the material away from the electrode train from the electrode train. Can be charged.
  • tetrafluoroethylene is the material that is most easily negatively charged on the charge train, and therefore the electrode material can be easily positively charged by contacting with polytetrafluoroethylene.
  • the electrode material may be charged by mixing a plurality of the above-mentioned electrode materials. However, since the difference in chargeability between different electrode materials can be eliminated, the composite of the above-mentioned electrode materials is charged. It is preferable to make it.
  • the amount of charge when the electrode material is charged can be measured as the average amount of charge of the electrode material by measuring the amount of current that the oppositely charged material flows to the ground when the electrode material is charged.
  • the average charge amount of the electrode material is usually 0.5 ⁇ C / g or more, preferably 0.5 to 10.0 ⁇ C / g, more preferably 1.5 to 6.0 ⁇ C / g. When the average charge amount is within this range, the electrode material can be more efficiently applied on the current collector.
  • the charge amount can be adjusted by changing the amount and type of the conductive material and the binder. The charge amount can also be adjusted using the above-described charge control agent.
  • the current collector is required to be grounded.
  • the ground resistance of the current collector is usually 1 M ⁇ or less, preferably 100 ⁇ or less. When the ground resistance is within this range, effective induction charging is induced in the current collector when the charged electrode material approaches the vicinity of the current collector, so that a uniform electrode can be formed.
  • the charged electrode material is supplied onto at least one surface of the grounded current collector.
  • the method for supplying the charged electrode material There is no particular limitation on the method for supplying the charged electrode material.
  • the charged electrode material may be sprayed and supplied as in electrostatic powder coating, or the charged electrode material may be transferred as in electrostatic screen printing.
  • the current collector and the electrode material supplied by the supply method are pressurized with a pair of rolls to form an electrode layer.
  • the electrode material heated as necessary may be formed into a sheet-like electrode layer with a pair of rolls.
  • the temperature of the electrode material supplied is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When an electrode material in this temperature range is used, there is no slip of the electrode material on the surface of the press roll, and the electrode material is continuously and uniformly supplied to the press roll. An electrode sheet for an electrochemical element or a sheet for a polarizable electrode with small variations can be obtained.
  • the molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature of the binder. preferable.
  • the forming speed is usually 10 m / min or more, preferably 20 to 200 m / min, more preferably 30 to 80 m / min, in order to make the moldability higher and to make the film thinner.
  • the press linear pressure between the press rolls is not particularly specified, but is preferably 0.2 to 30 kN / cm, more preferably 0.5 to 10 kN / cm in that the electrode strength of the obtained electrode can be increased. is there.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the current collector is continuously supplied between a pair of rolls, and the electrode material is supplied to at least one of the rolls, so that the electrode material is placed in the gap between the current collector and the rolls.
  • the electrode layer can be formed by being supplied and pressurized.
  • the current collector is conveyed in the horizontal direction, an electrode material is supplied onto the current collector, and an electrode material layer is formed. After the supplied electrode material layer is made uniform with a blade or the like as necessary, the current collector is supplied between a pair of rolls, and the electrode layer can be formed by pressurization.
  • the post-pressing method is generally a press process using a roll.
  • the roll press process two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction.
  • the roll may be temperature controlled, such as heated or cooled.
  • the thickness of the electrode layer of the electrode for an electrochemical element obtained by the production method of the present invention varies depending on the type of the electrochemical element, but is usually 10 ⁇ m to 200 ⁇ m, preferably 30 to 100 ⁇ m. When the thickness of the electrode layer is within this range, an electrode for an electrochemical element having a balance between internal resistance and energy density is preferable.
  • a polarizable electrode can be produced by the production method of the present invention.
  • a polarizable electrode refers to an electrode that has a potential range in which no current flows even when a potential is applied.
  • the polarizable electrode obtained by the production method of the present invention is suitably used as an electrode for a capacitor such as an electric double layer capacitor or a hybrid capacitor.
  • the electrochemical device of the present invention includes an electrode for an electrochemical device obtained by the production method of the present invention.
  • the electrochemical element include a lithium ion secondary battery, an electric double layer capacitor, and a hybrid capacitor.
  • An electric double layer capacitor is preferable.
  • the electrode for an electrochemical element obtained by the production method of the present invention is used as an electrode for an electric double layer capacitor (polarizable electrode) will be described.
  • the electric double layer capacitor is composed of an electrode, a separator and an electrolytic solution, and an electrode for an electrochemical element obtained by the production method of the present invention is used as the electrode.
  • the separator is not particularly limited as long as it can insulate between the electrodes for the electric double layer capacitor and can pass cations and anions.
  • polyolefin such as polyethylene and polypropylene, rayon, aramid, or a microporous membrane or nonwoven fabric made of glass fiber, or a porous membrane mainly made of pulp called electrolytic capacitor paper can be used.
  • a separator is arrange
  • the thickness of the separator is appropriately selected depending on the purpose of use, but is usually 1 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 20 to 60 ⁇ m.
  • Electrolyte is usually composed of electrolyte and solvent.
  • the electrolyte (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used as the cation.
  • the electrolyte has PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , N (RfSO 3 ) 2 ⁇ , C (RfSO 3 ) 3 ⁇ , and RfSO 3 ⁇ (Rf is respectively A fluoroalkyl group having 1 to 12 carbon atoms), F ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , AlF 4 ⁇ and the like can be used. These electrolytes can be used alone or in combination of two or more.
  • the solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution.
  • Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile. These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • An electric double layer capacitor is obtained by impregnating the above capacitor element with an electrolytic solution.
  • the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it.
  • what impregnated the electrolytic solution beforehand in the capacitor element may be stored in the container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
  • Example 1 100 parts of high-purity activated carbon powder “Kuraray Coal YP-17D” (manufactured by Kuraray Chemical Co., Ltd.) having a specific surface area of 1,800 m 2 / g and a volume average particle size of 5 ⁇ m as an electrode active material, and a core forming a core as a binder
  • the constituent monomer units of the coalescence are n-butyl acrylate and ethyl methacrylate, the constituent monomer units of the polymer forming the shell portion are n-butyl methacrylate and methacrylic acid, and all monomer units
  • the composition ratio of n-butyl acrylate: ethyl methacrylate: n-butyl methacrylate: methacrylic acid 40: 40: 17: 3 (mass ratio)
  • the glass transition temperature of the core part is ⁇ 5 ° C.
  • This slurry was adjusted to pH 8.5 with 25% aqueous ammonia, and using a spray dryer (OC-16; manufactured by Okawara Koki Co., Ltd.), a rotating disk type atomizer (diameter 65 mm) with a rotation speed of 25,000 rpm and hot air Spray drying granulation was performed under the conditions of a temperature of 150 ° C. and a particle recovery outlet temperature of 90 ° C. to obtain composite particles of an electrode material.
  • the composite particles had a weight average particle size of 54 ⁇ m and a sphericity of 9%.
  • a conductive adhesive layer is formed by mixing a 40% aqueous dispersion of an acrylate polymer having an average particle diameter of 0.25 ⁇ m with a solid content equivalent of 8 parts and ion exchange water so that the total solid content concentration is 30%.
  • a slurry composition was prepared.
  • the slurry composition for forming a conductive adhesive was applied to a current collector made of an aluminum foil having a thickness of 30 ⁇ m, and dried at 120 ° C. for 10 minutes to form a conductive adhesive layer having a thickness of 4 ⁇ m. Thereafter, the current collector coated with the conductive adhesive layer on the surface was grounded and installed horizontally. The grounding resistance was 10 ⁇ .
  • the electrode material was charged by frictional charging generated when passing through the gap between the inner sleeve and outer sleeve of the powder manual gun.
  • the current value at this time was 1.0 ⁇ A (C / sec).
  • the average charge amount of the charged electrode material was 0.7 ⁇ C / g.
  • the coating efficiency on the current collector was calculated from the weight of the supplied electrode material and the weight of the electrode material in which the electrode material layer was formed on the current collector according to the following formula, and found to be 43%. In the following formula, the weight of the electrode material attached on the current collector is obtained by subtracting the weight of the current collector before attaching the electrode material from the weight of the current collector attached with the electrode material.
  • Coating efficiency (%) weight of electrode material deposited on current collector / weight of supplied electrode material ⁇ 100
  • the current collector on which this electrode material layer is formed is supplied to a roll (roll temperature 120 ° C., press linear pressure 4 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.), and roll pressure is applied.
  • a sheet-like consolidated electrode layer was formed by molding to produce an electrode for an electric double layer capacitor having an electrode layer thickness of 60 ⁇ m and an electrode layer density of 0.58 g / cm 3 .
  • Example 2 In Example 1, when producing composite particles of electrode material, the electrode layer thickness was 60 ⁇ m and the electrode layer was the same as Example 1 except that the amount of the aqueous dispersion used as the binder was 10 parts. An electrode having a density of 0.58 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 3.0 ⁇ A (average charge amount 2.0 ⁇ C / g), and the coating efficiency was 60%. The composite particles had a weight average particle size of 54 ⁇ m and a sphericity of 9%.
  • Example 3 In Example 1, when producing composite particles of electrode material, the electrode layer thickness was 60 ⁇ m and the electrode layer density was the same as in Example 1 except that the amount of the aqueous dispersion used as the binder was 15 parts. An electrode of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 7.5 ⁇ A (average charge amount 5.0 ⁇ C / g), and the coating efficiency was 67%. The composite particles had a weight average particle size of 54 ⁇ m and a sphericity of 9%.
  • Example 4 In Example 1, when producing composite particles of the electrode material, the amount of the aqueous dispersion used as the binder was 15 parts, and the supply amount of the electrode material was 0.8 g / sec. Similarly, an electrode having an electrode layer thickness of 60 ⁇ m and an electrode layer density of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 13.5 ⁇ A (average charge amount 9.0 ⁇ C / g), and the coating efficiency was 45%. The composite particles had a weight average particle size of 54 ⁇ m and a sphericity of 9%.
  • Example 5 In Example 1, when producing composite particles of the electrode material, the amount of the water-dispersed latex used as the binder was 15 parts, and the supply amount of the electrode material was 0.5 g / sec. Similarly, an electrode having an electrode layer thickness of 60 ⁇ m and an electrode layer density of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value when supplying the electrode material amount was 18 ⁇ A (average charge amount 12.0 ⁇ C / g), and the coating efficiency was 35%. The composite particles had a weight average particle size of 54 ⁇ m and a sphericity of 9%.
  • Example 6 An electrode having an electrode layer thickness of 60 ⁇ m and an electrode density of 0.58 g / cm 3 was produced in the same manner as in Example 3 except that no adhesive layer was formed on the current collector. Although there was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 7.5 ⁇ A (average charge amount 5.0 ⁇ C / g), and the coating efficiency was 62%.
  • Example 1 the electrode layer was the same as in Example 1 except that the PTFE inner sleeve and outer sleeve of the triboelectric powder manual gun T-2m type L7 were replaced with stainless steel of the same shape.
  • Example 3 an electrode having an electrode layer thickness of 60 ⁇ m and an electrode density of 0.60 g / cm 3 was produced in the same manner as in Example 3 except that the aluminum foil was not grounded. A spark occurred during the supply of the electrode material, and the appearance of the electrode was impaired.
  • Table 1 shows the results of the above examples and comparative examples.
  • the internal resistance value was measured as follows. That is, the electrodes obtained in the above examples and comparative examples were impregnated with an electrolytic solution (1.0 mol / L of a propylene carbonate solution of tetraethylammonium fluoroborate) at room temperature for 1 hour, and then the two electrodes serve as a cellulose separator. Then, the electrodes are arranged so as to face each other, and the electrodes are arranged so as not to be in electrical contact with each other, thereby producing a coin cell-shaped electric double layer capacitor. And the internal resistance of the produced electric double layer capacitor was measured.
  • an electrolytic solution 1.0 mol / L of a propylene carbonate solution of tetraethylammonium fluoroborate
  • the internal resistance was measured by performing charge / discharge operation after allowing the produced coin cell to stand for 24 hours. Charging is started at a constant current of 10 mA. When the voltage reaches 2.7 V, the voltage is maintained and constant voltage charging is performed, and the charging is completed when the charging current is reduced to 0.5 mA. Next, discharging was performed at a constant current of 10 mA immediately after the end of charging, and the internal resistance was calculated from the voltage drop 0.1 seconds after the discharge and the constant current value.
  • the internal resistance value is the relative value of the internal resistance value of the electric double layer capacitor manufactured using the other electrodes when the internal resistance value of the electric double layer capacitor manufactured using the electrode of Example 6 is 100%. It is. The smaller the internal resistance value, the better.
  • Example 3 in which the current collector has an adhesive layer and the average charge amount of the electrode material is 5.0 ⁇ C / g has the best balance between internal resistance and coating efficiency.
  • Comparative Example 1 since the electrode material is not charged, the coating efficiency of the electrode material is inferior.
  • Comparative Example 2 since the current collector is not grounded, the charged electrode material on the current collector causes a dielectric breakdown and sparks, which hinders the appearance of the electrode.
  • the present invention relates to the subject matter contained in Japanese Patent Application No. 2008-208754 filed on August 13, 2008 and Japanese Patent Application No. 2008-208755 filed on the same date, All are expressly incorporated herein by reference.
  • the method for producing an electrode for an electrochemical device according to the present invention has excellent electrode appearance, excellent internal resistance, and high electrode material coating efficiency. Therefore, the electric double layer capacitor electrode, hybrid capacitor electrode, It can use suitably for electrode manufacture, such as a secondary battery.

Abstract

Provided is a method for manufacturing an electrochemical element in which an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded collector.  The collector preferably has an adhesive layer on at least one surface thereof.

Description

電気化学素子用電極の製造方法及び電気化学素子Method for producing electrode for electrochemical device and electrochemical device
 本発明は、電気化学素子用電極の製造方法及びこれを備える電気化学素子に関する。 The present invention relates to a method for producing an electrode for an electrochemical element and an electrochemical element comprising the same.
 リチウムイオン二次電池や電気二重層キャパシタ等の電気化学素子は、エネルギーの環境問題や資源問題から分散電源やハイブリッド自動車などの大型電源としての応用が期待されている。しかしながら、これらの電気化学素子を大型電源として応用するためには、大電流放電時のエネルギー損失を小さくするために内部抵抗の低減が望まれている。 Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors are expected to be applied as large power sources such as distributed power sources and hybrid vehicles due to environmental problems and resource problems of energy. However, in order to apply these electrochemical elements as a large-scale power source, it is desired to reduce internal resistance in order to reduce energy loss during large current discharge.
 内部抵抗の低減のためには、電極の厚みを薄くすることが一般的に行われており、薄膜電極を生産性良く製造することが求められている。 In order to reduce the internal resistance, it is generally performed to reduce the thickness of the electrode, and it is required to manufacture a thin film electrode with high productivity.
 また、これと同時に、大型電源として使用するためにはこれら電気化学素子のコストを低減する必要もあり、電気化学素子用電極製造のコスト低減が望まれている。 At the same time, it is necessary to reduce the cost of these electrochemical elements in order to be used as a large-scale power source, and it is desired to reduce the cost of manufacturing electrodes for electrochemical elements.
 一方、電極の製造方法としては、電極活物質および結着剤などを含む電極材料をスラリーとし、塗布、乾燥する方法;電極材料を練合して、圧延ロールにて目標の厚みまで延展する方法;電極材料をそのまま、あるいは複合粒子状にして加圧成形する方法などが挙げられる。この中でも電極材料を加圧成形する方法は、生産性の点で好ましく、そのための電極材料の供給方法が様々提案されている。 On the other hand, as a method for producing an electrode, a method in which an electrode material containing an electrode active material and a binder is made into a slurry, applied and dried; a method in which the electrode material is kneaded and extended to a target thickness with a rolling roll A method of pressure forming the electrode material as it is or in the form of composite particles. Among these, the method of pressure-molding the electrode material is preferable in terms of productivity, and various methods for supplying the electrode material have been proposed.
 電極材料の供給方法として電極材料を帯電させて、静電的に付着させるという方法がある。この方法は、薄く均等に電極材料を供給できること、付着しなかった電極材料を回収して再利用できる可能性もあり、生産性の面でも優れている。 There is a method in which the electrode material is charged and electrostatically adhered as a method for supplying the electrode material. This method is excellent in productivity because the electrode material can be supplied thinly and evenly, and the electrode material that has not adhered can be recovered and reused.
 例えば特許文献1では、表面に撥水性を有する粉体を静電粉体塗装によって集電体に塗着する方法が開示されている。この方法によれば、撥水性が均等にかつ十分に高められた水素吸蔵合金電極が製造できるとしている。 For example, Patent Document 1 discloses a method in which a powder having water repellency on the surface is applied to a current collector by electrostatic powder coating. According to this method, it is said that a hydrogen storage alloy electrode having water repellency uniformly and sufficiently enhanced can be produced.
 また、特許文献2では、集電体の表面に、活物質、導電化材および結着剤からなる活物質層を、粉体塗装法により形成することを特徴とする電極の製造方法が開示されている。この方法によれば、湿式法に比べて制御が容易で生産性が良く、負荷特性に優れた電極が得られるとしている。 Patent Document 2 discloses a method for producing an electrode, wherein an active material layer made of an active material, a conductive material, and a binder is formed on the surface of a current collector by a powder coating method. ing. According to this method, it is said that an electrode that is easy to control, has good productivity, and has excellent load characteristics as compared with the wet method can be obtained.
 また、特許文献3では、不燃性または難燃性の電解質溶液を電極構成体表面に塗布し、さらに静電複写によって電極材料を塗布し加熱定着させることにより、電解質溶液が電極材料と電極構成体とを結着させることを特徴する電極の製造方法が開示されている。この方法によれば、より高性能な電極が提供できるとしている。 Further, in Patent Document 3, an incombustible or flame-retardant electrolyte solution is applied to the surface of an electrode structure, and further, an electrode material is applied by electrostatic copying and heat-fixed, whereby the electrolyte solution becomes an electrode material and an electrode structure. An electrode manufacturing method is disclosed, which is characterized in that According to this method, a higher performance electrode can be provided.
 また、特許文献4では、水平方向に走行される搬送路上に、電極原料粉末を散布する散布工程と、散布された電極原料粉末上に集電体を供給する集電体供給工程と、前記電極原料粉末と集電体とを連続的に加圧して電極を形成するゾーン圧着工程と、を備えたことを特徴とする電気化学デバイス用電極の製造方法が開示されている。そして、電極原料粉末を供給する方法として静電吹き付け法など静電気により付着させる方法が例示されている。 Moreover, in patent document 4, the dispersion | distribution process which disperse | distributes electrode raw material powder on the conveyance path driven to a horizontal direction, the collector supply process which supplies a collector on the disperse | distributed electrode raw material powder, The said electrode There is disclosed a method for producing an electrode for an electrochemical device, comprising: a zone press-bonding step of continuously pressing raw material powder and a current collector to form an electrode. And the method of making it adhere by static electricity, such as an electrostatic spraying method, is illustrated as a method of supplying electrode raw material powder.
 また特許文献5では、電極構成体表面に電極材料が塗布され、形成される電極を製造する電極製造装置において、電極材料と電極構成体表面に塗布し、電極を形成させる静電スクリーン塗布手段を備えた電極製造装置が開示されている。この装置によれば、より高性能な電極を製造することができるとしている。 Moreover, in patent document 5, an electrode material is apply | coated to the electrode structure surface, and in the electrode manufacturing apparatus which manufactures the electrode formed, the electrostatic screen application | coating means which apply | coats to electrode material and an electrode structure surface, and forms an electrode is provided. An electrode manufacturing apparatus is disclosed. According to this apparatus, a higher performance electrode can be manufactured.
 さらに、特許文献6では、高分子電解質膜に静電的に帯電させた電極触媒粉末を付着して形成した燃料電池用電極が、適度な細孔分布をもつ構造が得られ、ガス拡散をより良くするので、電池性能が向上するとしている。 Furthermore, in Patent Document 6, a fuel cell electrode formed by adhering an electrostatically charged electrode catalyst powder to a polymer electrolyte membrane has a structure with an appropriate pore distribution, and gas diffusion is further improved. It is said that the battery performance will improve because it improves.
特開平9-213316号公報JP-A-9-213316 特開2001-351616号公報JP 2001-351616 A 特開2004-281152号公報JP 2004-281152 A WO2005/117043号公報WO2005 / 117043 publication 特開2004-281221号公報JP 2004-281221 A 特開平11-288728号公報Japanese Patent Laid-Open No. 11-288728
 薄膜電極を生産性良く製造する課題として、連続的に安定生産できることが挙げられる。このような課題に対して、特許文献1~4に記載の方法では連続的に安定生産することができないという問題があった。 As an issue of manufacturing thin film electrodes with high productivity, continuous and stable production can be mentioned. With respect to such problems, the methods described in Patent Documents 1 to 4 have a problem that continuous and stable production cannot be achieved.
 また、回収再利用の可能性はあるものの、電極材料を静電的に供給する場合の塗着効率の向上も生産性の面で重要である。このような課題に対して、特許文献5および6のような方法であると、塗着効率を十分に高くすることができないという問題があった。 Also, although there is a possibility of recovery and reuse, improvement of the coating efficiency when the electrode material is supplied electrostatically is also important in terms of productivity. With respect to such a problem, there is a problem that the coating efficiency cannot be sufficiently increased when the methods as in Patent Documents 5 and 6 are used.
 さらに、リチウムイオン二次電池や電気二重層キャパシタのような電気化学素子において利用されることを考慮すると、内部抵抗を低減することができる電極を製造する技術が産業利用上重要であり、このよう技術課題に対して、特許文献1~6に記載のような方法では十分とはいえなかった。 Furthermore, considering that it is used in electrochemical devices such as lithium ion secondary batteries and electric double layer capacitors, a technique for manufacturing an electrode capable of reducing internal resistance is important for industrial use. For the technical problems, the methods described in Patent Documents 1 to 6 have not been sufficient.
 従って、本発明は、高い塗着効率で安定して電気化学素子用電極を製造する方法を提供することを目的とする。また、電気化学素子の内部抵抗を低減することができる電気化学素子用電極を製造する方法を提供することも目的とする。 Therefore, an object of the present invention is to provide a method for stably producing an electrode for an electrochemical element with high coating efficiency. Another object of the present invention is to provide a method for producing an electrode for an electrochemical element that can reduce the internal resistance of the electrochemical element.
 本発明者は、鋭意検討の結果、帯電させた電極材料を、接地した集電体上に供給して電極層を形成させることにより、集電体の誘導帯電を効率よく発生させることができるので、帯電させた電極材料が効率良く塗着し、かつ長時間安定して電気化学素子用電極の製造が可能となることを見出し、これらの知見に基づき以下の本発明を完成させるに至った。 As a result of diligent study, the present inventor can efficiently generate inductive charging of the current collector by forming the electrode layer by supplying the charged electrode material onto the grounded current collector. The inventors have found that the charged electrode material can be efficiently applied, and that it is possible to produce an electrode for an electrochemical element stably for a long time, and the following present invention has been completed based on these findings.
 本発明の第1の観点によれば、帯電させた電極材料を、接地した集電体の少なくとも一面上に供給することにより電極層を形成させるようにした電気化学素子用電極の製造方法が提供される。 According to a first aspect of the present invention, there is provided a method for producing an electrode for an electrochemical device, wherein an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded current collector. Is done.
 本発明の第1の観点に係る電極の製造方法において、特に限定されないが、前記集電体としては、金属を用いることができる。また、前記電極材料としては、前記電極活物質を含む複合粒子を用いることができる。さらに、前記電極材料の平均帯電量は、0.5~10.0μC/gとすることができる。また、前記集電体は、その少なくとも一面上に接着剤層を有するものを用いることができる。また、本発明の第1の観点に係る電極の製造方法は、分極性電極の製造に好適に用いることができる。 In the electrode manufacturing method according to the first aspect of the present invention, although not particularly limited, a metal can be used as the current collector. Moreover, as the electrode material, composite particles containing the electrode active material can be used. Further, the average charge amount of the electrode material can be set to 0.5 to 10.0 μC / g. The current collector may be one having an adhesive layer on at least one surface thereof. Moreover, the manufacturing method of the electrode which concerns on the 1st viewpoint of this invention can be used suitably for manufacture of a polarizable electrode.
 本発明の第2の観点によれば、本発明の第1の観点に係る製造方法により得られる電気化学素子用電極を備える電気化学素子が提供される。前記電気化学素子としては、電気二重層キャパシタが例示できる。 According to a second aspect of the present invention, there is provided an electrochemical element comprising an electrode for an electrochemical element obtained by the production method according to the first aspect of the present invention. An example of the electrochemical element is an electric double layer capacitor.
 本発明によれば、帯電させた電極材料を効率良く塗着させることができ、かつ長時間安定した製造が可能となるので、生産性の良い電気化学素子用電極の製造方法を提供することが可能である。また、内部抵抗の低い電気化学素子用電極を生産性良く製造することが可能となる。本発明は、特に電気二重層キャパシタ、ハイブリッドキャパシタ用電極、リチウムイオン二次電池用電極の製造方法として好適に用いることができる。 According to the present invention, a charged electrode material can be efficiently applied, and stable production can be performed for a long time. Therefore, it is possible to provide a method for producing an electrode for an electrochemical element with good productivity. Is possible. In addition, it is possible to produce an electrochemical device electrode having a low internal resistance with high productivity. The present invention can be suitably used particularly as a method for producing an electric double layer capacitor, an electrode for a hybrid capacitor, and an electrode for a lithium ion secondary battery.
 本発明の電気化学素子用電極の製造方法は、帯電させた電極材料を、接地した集電体の少なくとも一面上に供給することにより電極層を形成させることを特徴とする。 The method for producing an electrode for an electrochemical device of the present invention is characterized in that an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded current collector.
<集電体>
 本発明の製造方法に用いられる集電体は、具体的には、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
<Current collector>
As the current collector used in the production method of the present invention, specifically, a metal, carbon, a conductive polymer, or the like can be used, and a metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
 集電体の形状は、特に制限されないが、フィルム状またはシート状であり、シート状集電体は、空孔を有していてもよい。シート状集電体は、エキスパンドメタル、パンチングメタル、網状などの形状を有していてもよい。空孔を有するシート状集電体を用いると、得られる電極の体積あたりの容量を高くすることができる。シート状集電体が空孔を有す場合の空孔の割合は、好ましくは10~79面積%、より好ましくは20~60面積%である。 The shape of the current collector is not particularly limited, but may be a film or a sheet, and the sheet current collector may have pores. The sheet-like current collector may have a shape such as an expanded metal, a punching metal, or a net. When a sheet-like current collector having pores is used, the capacity per volume of the obtained electrode can be increased. When the sheet-like current collector has holes, the ratio of the holes is preferably 10 to 79 area%, more preferably 20 to 60 area%.
 集電体の厚みは、使用目的に応じて適宜選択されるが、通常は1~200μm、好ましくは5~100μm、より好ましくは10~50μmである。集電体の厚みがこの範囲にあると、電子の移動抵抗が低減でき、内部抵抗が低減できる。 The thickness of the current collector is appropriately selected according to the purpose of use, but is usually 1 to 200 μm, preferably 5 to 100 μm, more preferably 10 to 50 μm. When the thickness of the current collector is in this range, the resistance of electron movement can be reduced, and the internal resistance can be reduced.
 集電体は、少なくともその一面上に接着剤層が形成されていることが好ましい。中でも、電極層と集電体の界面抵抗を小さくできることから、導電性のものが好ましい。接着剤層は、集電体の表面に接着剤を塗布、乾燥することで形成することができる。集電体として、その表面に接着剤層が形成されたものを用いると、電気化学素子中に電解液とともに電極を収納された際にも良好な接着性が得ることができ、接着剤層中の結着剤により電極活物質との接触面積を増大させることができ、界面抵抗を小さくできる。 The current collector preferably has an adhesive layer formed on at least one surface thereof. Among these, conductive materials are preferable because the interface resistance between the electrode layer and the current collector can be reduced. The adhesive layer can be formed by applying and drying an adhesive on the surface of the current collector. When a current collector with an adhesive layer formed on its surface is used, good adhesiveness can be obtained even when the electrode is housed together with the electrolyte in the electrochemical element. With this binder, the contact area with the electrode active material can be increased, and the interface resistance can be reduced.
 接着剤は、導電性を持つものの場合、導電助剤の粉末と結着剤と、必要に応じ添加される分散剤とを、水または有機溶媒中に分散させたものである。接着剤に用いる導電助剤としては、銀、ニッケル、金、黒鉛、アセチレンブラック、ケッチェンブラックなどが挙げられ、好ましくは黒鉛、アセチレンブラックである。接着剤に用いる結着剤としては、後述する本発明の製造方法に使用される結着剤として例示したものをいずれも使用できる。また、水ガラス、エポキシ樹脂、ポリアミドイミド樹脂、ウレタン樹脂等も用いることができ、これらはそれぞれ単独でまたは2種以上を組み合わせて使用できる。接着剤に用いる結着剤は、好ましくは、アクリレート系重合体、カルボキシメチルセルロースのアンモニウム塩またはアルカリ金属塩、水ガラス、ポリアミドイミド樹脂である。また、接着剤に用いる分散材としては、上記本発明の製造方法の電極層に使用してもよい分散材、または界面活性剤を用いることができる。 In the case where the adhesive has conductivity, a conductive auxiliary powder, a binder, and a dispersant added as necessary are dispersed in water or an organic solvent. Examples of the conductive aid used for the adhesive include silver, nickel, gold, graphite, acetylene black, ketjen black, and the like, preferably graphite and acetylene black. As the binder used for the adhesive, any of those exemplified as the binder used in the production method of the present invention described later can be used. Moreover, water glass, an epoxy resin, a polyamide-imide resin, a urethane resin, etc. can also be used, and these can be used individually or in combination of 2 or more types, respectively. The binder used for the adhesive is preferably an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or a polyamideimide resin. Moreover, as a dispersing agent used for an adhesive agent, a dispersing agent or a surfactant that may be used for the electrode layer in the production method of the present invention can be used.
 接着剤層における結着剤の含有量は、導電助剤100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~20重量部、特に好ましくは1~10重量部の範囲である。接着剤層における結着剤の量がこの範囲にあると、得られる電極組成物層と集電体との密着性が充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。 The content of the binder in the adhesive layer is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 10 parts by weight with respect to 100 parts by weight of the conductive assistant. Part range. When the amount of the binder in the adhesive layer is within this range, sufficient adhesion between the obtained electrode composition layer and the current collector can be secured, the capacity of the electrochemical device is increased, and the internal resistance is decreased. Can do.
 接着剤層における分散材の含有量は、導電助剤100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~15重量部、特に好ましくは0.8~10重量部の範囲である。 The content of the dispersing agent in the adhesive layer is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, particularly preferably 0.8 to 10 parts by weight based on 100 parts by weight of the conductive assistant. The range is parts by weight.
 接着剤層における界面活性剤の含有量は、導電助剤100重量部に対して、好ましくは0.5~20重量部、より好ましくは1.0~15重量部、特に好ましくは2.0~10重量部の範囲である。接着剤層における界面活性剤の含有量がこの範囲であると、接着剤層を均一に形成することができ、電気化学素子の耐久性に優れる。 The content of the surfactant in the adhesive layer is preferably from 0.5 to 20 parts by weight, more preferably from 1.0 to 15 parts by weight, particularly preferably from 2.0 to 100 parts by weight based on 100 parts by weight of the conductive assistant. The range is 10 parts by weight. When the content of the surfactant in the adhesive layer is within this range, the adhesive layer can be formed uniformly, and the durability of the electrochemical element is excellent.
 接着剤層は、導電助剤および結着剤、並びに必要に応じて分散材や界面活性剤などを、溶媒(分散媒)中で混合、混練等することにより得られる接着剤を、集電体上に塗布し、乾燥して形成することができる。前記溶媒としては、特に制限されないが、環境性と乾燥設備の点で、水が好ましい。 The adhesive layer is composed of a current collector and an adhesive obtained by mixing, kneading, and the like in a solvent (dispersion medium) with a conductive additive and a binder, and if necessary, a dispersing agent and a surfactant. It can be applied on top and dried. Although it does not restrict | limit especially as said solvent, Water is preferable at the point of environmental property and drying equipment.
 本発明に用いる接着剤の製造方法は、具体的にはボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。 Specific examples of the method for producing the adhesive used in the present invention include a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
 本発明に用いられる接着剤層の形成方法は、特に制限されないが、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって、集電体上に形成される。 The method for forming the adhesive layer used in the present invention is not particularly limited. For example, a current collector is obtained by a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating, or the like. Formed on top.
 接着剤層の厚みは、通常0.01~20μm、好ましくは0.1~10μm、特に好ましくは1~5μmである。接着剤層の厚みが前記範囲であることにより、本発明の製造方法により得られる電極を有する電気化学素子の内部抵抗を低減することができる。 The thickness of the adhesive layer is usually 0.01 to 20 μm, preferably 0.1 to 10 μm, particularly preferably 1 to 5 μm. When the thickness of the adhesive layer is within the above range, the internal resistance of the electrochemical element having an electrode obtained by the production method of the present invention can be reduced.
<電極材料>
 本発明の電気化学素子用電極の製造方法に用いる電極材料とは、電極活物質、導電剤、結着剤、およびその他電極を構成するのに必要な材料であって、通常は固体粒子状の形態をなしているものをいう。
<Electrode material>
The electrode material used in the method for producing an electrode for an electrochemical element of the present invention is an electrode active material, a conductive agent, a binder, and other materials necessary for constituting an electrode, and is usually in the form of solid particles. The one that has a form.
(電極活物質)
 本発明の製造方法により得られる電極に用いる電極活物質は、電極が利用される素子に応じて選択すればよい。
(Electrode active material)
What is necessary is just to select the electrode active material used for the electrode obtained by the manufacturing method of this invention according to the element for which an electrode is utilized.
 本発明の製造方法により得られる電気化学素子用電極を、電気二重層キャパシタ用電極やハイブリッドキャパシタの正極用電極に用いる場合には、その電極活物質として、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。 When the electrode for an electrochemical element obtained by the production method of the present invention is used for an electrode for an electric double layer capacitor or a positive electrode for a hybrid capacitor, a carbon allotrope is usually used as the electrode active material. Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used. A preferred electrode active material is activated carbon, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.
 本発明の製造方法により得られる電気化学素子用電極を、リチウムイオン二次電池の負極用電極やハイブリッドキャパシタ負極用電極に用いる場合には、その電極活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、およびピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;リチウムと合金化可能なSi、Sn、Sb、Al、ZnおよびWなどが挙げられる。 When the electrode for an electrochemical element obtained by the production method of the present invention is used for an electrode for a negative electrode of a lithium ion secondary battery or an electrode for a hybrid capacitor negative electrode, as the electrode active material, amorphous carbon, graphite, natural graphite , Mesocarbon microbeads (MCMB), and carbonaceous materials such as pitch-based carbon fibers; conductive polymers such as polyacene; Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium.
 本発明の製造方法により得られる電極を、リチウムイオン二次電池の正極用電極に用いる場合においては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVO、およびこれらの元素を一部置換したリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化物;が例示される。さらに、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子が挙げられる。 When the electrode obtained by the production method of the present invention is used as a positive electrode for a lithium ion secondary battery, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 , and these elements Partially substituted lithium-containing composite metal oxide; transition metal sulfides such as TiS 2 , TiS 3 , amorphous MoS 3 ; Cu 2 V 2 O 3 , amorphous V 2 O · P 2 O 5 , MoO 3 , transition metal oxides such as V 2 O 5 and V 6 O 13 ; Further examples include conductive polymers such as polyacetylene and poly-p-phenylene.
 本発明に用いられる電極活物質の体積平均粒子径は、通常0.1~100μm、好ましくは1~50μm、更に好ましくは3~20μm、より好ましくは5~20μmである。 The volume average particle diameter of the electrode active material used in the present invention is usually 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 3 to 20 μm, more preferably 5 to 20 μm.
 本発明の製造方法により得られる電気化学素子用電極を、電気二重層キャパシタ用電極やハイブリッドキャパシタの正極用電極に用いる場合には、電極活物質の比表面積は、30m/g以上、好ましくは500~5,000m/g、より好ましくは1,000~3,000m/gであることが好ましい。電極活物質の比表面積が大きいほど得られる電極組成物層の密度は小さくなる傾向があるので、電極活物質を適宜選択することで、所望の密度を有する電極組成物層を得ることができる。また、これらの電極活物質は、単独でまたは二種類以上を組み合わせて用いることができる。 When the electrode for an electrochemical element obtained by the production method of the present invention is used for an electrode for an electric double layer capacitor or a positive electrode for a hybrid capacitor, the specific surface area of the electrode active material is preferably 30 m 2 / g or more, preferably It is preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g. Since the density of the obtained electrode composition layer tends to decrease as the specific surface area of the electrode active material increases, an electrode composition layer having a desired density can be obtained by appropriately selecting the electrode active material. Moreover, these electrode active materials can be used individually or in combination of 2 or more types.
(導電材)
 本発明に用いられる導電材は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;が挙げられる。これらの中でも、導電性カーボンブラックが好ましく、アセチレンブラックおよびケッチェンブラックがより好ましい。
(Conductive material)
The conductive material used in the present invention is composed of an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer. Specifically, furnace black, acetylene black, and kettle are used. Examples thereof include conductive carbon black such as chain black (registered trademark of Akzo Nobel Chemicals Besloten Fennaut Shap); graphite such as natural graphite and artificial graphite. Among these, conductive carbon black is preferable, and acetylene black and ketjen black are more preferable.
 本発明に用いられる導電材の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001~10μm、好ましくは0.05~5μm、より好ましくは0.01~1μmである。導電材の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。導電材の量を多くすると後述する電極材料の帯電量を小さくすることができ、少なくすると帯電量を大きくすることができる。導電材の量は、電極活物質100重量部に対して通常0.1~50重量部、好ましくは0.5~15重量部、より好ましくは1~10重量部の範囲である。導電材の量がこの範囲にあると、本発明の電気化学素子の容量を高く且つ内部抵抗を低くすることができる。 The volume average particle diameter of the conductive material used in the present invention is preferably smaller than the volume average particle diameter of the electrode active material, and the range thereof is usually 0.001 to 10 μm, preferably 0.05 to 5 μm, more preferably. 0.01 to 1 μm. When the volume average particle diameter of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use. These conductive materials can be used alone or in combination of two or more. When the amount of the conductive material is increased, the charge amount of the electrode material described later can be reduced, and when the amount is decreased, the charge amount can be increased. The amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When the amount of the conductive material is within this range, the capacity of the electrochemical device of the present invention can be increased and the internal resistance can be decreased.
(結着剤)
 本発明に用いられる結着剤は、電極活物質を相互に結着させることができる化合物であれば特に制限はない。好適な結着剤は、溶媒に分散する性質のある分散型結着剤である。分散型結着剤として、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられ、好ましくはフッ素系重合体、ジエン系重合体およびアクリレート系重合体、より好ましくはジエン系重合体およびアクリレート系重合体が挙げられる。電極材料を帯電させる方法が、ポリテトラフルオロエチレンとの摩擦帯電である場合は、帯電列の関係を利用することにより、後述する帯電量を調整することができる。例えば、アクリレート系重合体は、ジエン系重合体よりも帯電列上はプラスに帯電しやすいので、帯電量を大きくすることができる。
(Binder)
The binder used in the present invention is not particularly limited as long as it is a compound capable of binding electrode active materials to each other. A suitable binder is a dispersion type binder having a property of being dispersed in a solvent. Examples of the dispersion-type binder include polymer compounds such as fluorine-based polymers, diene-based polymers, acrylate-based polymers, polyimides, polyamides, polyurethane-based polymers, and preferably fluorine-based polymers and diene-based binders. A polymer and an acrylate polymer, more preferably a diene polymer and an acrylate polymer. When the method of charging the electrode material is frictional charging with polytetrafluoroethylene, the charge amount described later can be adjusted by utilizing the relationship of the charge train. For example, since the acrylate polymer is more likely to be positively charged on the charged column than the diene polymer, the charge amount can be increased.
 ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBRなどが挙げられる。 The diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof. The proportion of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Examples include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
 アクリレート系重合体は、アクリル酸エステルおよび/またはメタクリル酸エステルの単独重合体またはこれらを含む単量体混合物を重合して得られる共重合体である。前記単量体混合物におけるアクリル酸エステルおよび/またはメタクリル酸エステルの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。 The acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and / or methacrylic ester or a monomer mixture containing these. The ratio of acrylic acid ester and / or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
 本発明の製造方法に用いられる結着剤のガラス転移温度(Tg)は、-80℃~50℃が好ましく、より好ましくは-50℃~25℃である。結着剤のガラス転移温度(Tg)が前記範囲であることにより、結着性と柔軟性のバランスに優れた電極層を得ることができる。 The glass transition temperature (Tg) of the binder used in the production method of the present invention is preferably −80 ° C. to 50 ° C., more preferably −50 ° C. to 25 ° C. When the glass transition temperature (Tg) of the binder is in the above range, an electrode layer having an excellent balance between binding properties and flexibility can be obtained.
 本発明の製造方法に用いられる結着剤の形状は、特に制限はないが、結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The shape of the binder used in the production method of the present invention is not particularly limited, but has good binding properties, and can suppress deterioration due to repeated decrease in capacity and charge / discharge of the created electrode. It is preferably in the form of particles. Examples of the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
 本発明の製造方法に用いられる結着剤の数平均粒子径は、格別な限定はないが、通常は0.0001~100μm、好ましくは0.001~10μm、より好ましくは0.01~1μmの数平均粒子径を有するものである。結着剤の数平均粒子径がこの範囲であるときは、少量の結着剤の使用でも優れた結着力を電気化学素子用電極に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ結着剤粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの結着剤は単独でまたは二種類以上を組み合わせて用いることができる。結着剤の量は、電極活物質100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。結着剤の量がこの範囲にあると、得られる電極組成物層と集電体との密着性が充分に確保でき、本発明の電気化学素子の容量を高く且つ内部抵抗を低くすることができる。また、結着剤の量を多くすると、後述する電極の帯電量を大きくすることができ、結着剤の量を少なくすると帯電量を小さくすることができる。 The number average particle size of the binder used in the production method of the present invention is not particularly limited, but is usually 0.0001 to 100 μm, preferably 0.001 to 10 μm, more preferably 0.01 to 1 μm. It has a number average particle size. When the number average particle diameter of the binder is within this range, an excellent binding force can be imparted to the electrochemical device electrode even with a small amount of the binder. Here, the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular. These binders can be used alone or in combination of two or more. The amount of the binder is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When the amount of the binder is within this range, sufficient adhesion between the obtained electrode composition layer and the current collector can be secured, the capacity of the electrochemical device of the present invention can be increased and the internal resistance can be decreased. it can. Further, when the amount of the binder is increased, the charge amount of the electrode described later can be increased, and when the amount of the binder is decreased, the charge amount can be decreased.
 本発明の製造方法においては、その他、電極を構成するのに必要な以下のような材料を含有していてもよい。 In the production method of the present invention, the following materials necessary for constituting the electrode may be contained.
(分散材)
 分散材とは後述するスラリーの溶媒に溶解させて用いられ、電極活物質、導電材等を溶媒に均一に分散させる作用をさらに有するものである。例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの分散材は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。
(Dispersant)
The dispersing material is used by being dissolved in a slurry solvent described later, and further has an action of uniformly dispersing the electrode active material, the conductive material and the like in the solvent. For example, cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and ammonium salts or alkali metal salts thereof; polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid); polyvinyl Examples include alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These dispersing agents can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
 これら分散材は単独で又は二種以上を組み合わせて用いることができる。分散材の使用量は、格別な限定はないが、電極活物質100重量部に対して、通常は0.1~10重量部、好ましくは0.5~5重量部、より好ましくは0.8~2重量部の範囲である。分散材を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。また、噴霧乾燥時のアトマイザーの詰まりを防止することができるので、噴霧乾燥を安定して連続的に行うことができる。 These dispersion materials can be used alone or in combination of two or more. The amount of the dispersing agent used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the electrode active material. It is in the range of up to 2 parts by weight. By using the dispersing material, it is possible to suppress sedimentation and aggregation of the solid content in the slurry. Moreover, since the clogging of the atomizer at the time of spray drying can be prevented, spray drying can be performed stably and continuously.
 その他の添加剤としては、例えば、界面活性剤がある。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオンなどの両性の界面活性剤が挙げられるが、中でもアニオン性若しくはノニオン性の界面活性剤で熱分解しやすいものが好ましい。 Other additives include, for example, surfactants. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable.
 界面活性剤は単独で又は二種以上を組み合わせて用いることができる。界面活性剤の量は、格別な限定はないが、電極活物質100重量部に対して0~50重量部、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の範囲である。 Surfactants can be used alone or in combination of two or more. The amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
 本発明に使用される電極材料は、上記電極活物質及び結着剤を含んでなる複合粒子であることが好ましい。前記複合粒子とは、電極活物質および結着剤を必須成分として、必要に応じて導電材、分散材、その他の添加剤を含有してなる粒子形状のものをいう。 The electrode material used in the present invention is preferably a composite particle comprising the above electrode active material and a binder. The composite particles refer to particles having an electrode active material and a binder as essential components and containing a conductive material, a dispersing material, and other additives as necessary.
 複合粒子の製造方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電助剤が偏在した複合粒子を容易に得られる点で、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の電気化学素子用電極を生産性高く得ることができる。また、該電極の内部抵抗をより低減することができる。 The production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion type drying method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder and the conductive auxiliary agent are unevenly distributed in the vicinity of the surface can be easily obtained. When composite particles obtained by the spray drying granulation method are used, the electrode for an electrochemical element of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
 前記噴霧乾燥造粒法では、まず上記した電極活物質及び結着剤の必須成分、並びに導電材などの任意成分を溶媒に分散または溶解して、電極活物質及び結着剤の必須成分、並びに導電材や分散材、その他の添加剤などの任意成分が分散または溶解されてなるスラリーを得る。 In the spray-drying granulation method, first, the essential components of the electrode active material and the binder, and optional components such as a conductive material are dispersed or dissolved in a solvent, the electrode active material and the essential components of the binder, and A slurry is obtained in which optional components such as a conductive material, a dispersing material, and other additives are dispersed or dissolved.
 スラリーを得るために用いる溶媒は、特に限定されないが、上記の分散材を用いる場合には、分散材を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、結着剤の分散性または分散材の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。 The solvent used for obtaining the slurry is not particularly limited, but when using the above-mentioned dispersion material, a solvent capable of dissolving the dispersion material is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like. Among these, alcohols are preferable as the organic solvent. When water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying. Further, the dispersibility of the binder or the solubility of the dispersing agent varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity | liquidity of a slurry can be adjusted and production efficiency can be improved.
 スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1~50質量%、好ましくは5~50質量%、より好ましくは10~30質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤が均一に分散するため好適である。 The amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. . When the solid content concentration is in this range, the binder is preferably dispersed uniformly.
 電極活物質及び結着剤の必須成分と、導電材や分散材、その他の添加剤などの任意成分とを溶媒に分散または溶解する方法または手順は特に限定されず、例えば、溶媒に電極活物質、導電材、結着剤および分散材等を添加し混合する方法;溶媒に分散剤を溶解した後、溶媒に分散させた結着剤(例えば、重合体粒子の水分散体)を添加して混合し、最後に電極活物質および導電材を添加して混合する方法;溶媒に分散させた結着剤に電極活物質および導電材を添加して混合し、この混合物に溶媒に溶解させた分散材を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分~数時間行う。 The method or procedure for dispersing or dissolving the essential components of the electrode active material and the binder and the optional components such as the conductive material, the dispersion material, and other additives in the solvent is not particularly limited. For example, the electrode active material is dissolved in the solvent. A method of adding and mixing a conductive material, a binder, a dispersing agent, and the like; after dissolving the dispersant in a solvent, adding a binder (for example, an aqueous dispersion of polymer particles) dispersed in the solvent. A method of mixing and finally adding and mixing the electrode active material and the conductive material; adding and mixing the electrode active material and the conductive material to the binder dispersed in the solvent, and dispersing the mixture in the solvent For example, a method of adding and mixing materials may be used. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
 スラリーの粘度は、室温において、通常10~3,000mPa・s、好ましくは30~1,500mPa・s、より好ましくは50~1,000mPa・sの範囲である。スラリーの粘度がこの範囲にあると、複合粒子の生産性を上げることができる。また、スラリーの粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。 The viscosity of the slurry is usually in the range of 10 to 3,000 mPa · s, preferably 30 to 1,500 mPa · s, more preferably 50 to 1,000 mPa · s at room temperature. When the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Further, the higher the viscosity of the slurry, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
 次に、上記で得たスラリーを噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~40,000rpm、好ましくは15,000~40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。 Next, the slurry obtained above is spray-dried and granulated to obtain composite particles. Spray drying is performed by spraying the slurry in hot air and drying. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk method and a pressure method. The rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time. The rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 40,000 rpm, preferably 15,000 to 40,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。 The temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher. The hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C. In spray drying, the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
 また、前記複合粒子は、球状であることが好ましい。前記複合粒子が球状であるか否かの評価は、複合粒子の短軸径をLs、長軸径をLlとしたときに(Ll-Ls)/{(Ls+Ll)/2}で算出される値(以下、「球状度」という。)により行う。ここで、短軸径Lsおよび長軸径Llは、反射型電子顕微鏡を用いて複合粒子を観察した写真像より測定される100ケの任意の複合粒子についての平均値である。この数値が小さいほど球状複合粒子が真球に近いことを示す。 The composite particles are preferably spherical. Whether the composite particles are spherical or not is evaluated by (Ll−Ls) / {(Ls + Ll) / 2} where Ls is the minor axis diameter of the composite particles and Ll is the major axis diameter. (Hereinafter referred to as “sphericity”). Here, the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. The smaller this value, the closer the spherical composite particle is to a true sphere.
 たとえば、上記写真像で正方形として観察される粒子は、上記球状度は34.4%と計算されるので、34.4%を超える球状度を示す複合粒子は、少なくとも球状とはいえない。複合粒子の球状度は、好ましくは20%以下であり、さらに好ましくは15%以下である。複合粒子の球状度が、前記範囲であることにより、この複合粒子からなる電極層を形成した電気化学素子用電極を備える電気化学素子の内部抵抗が低減し、出力特性を向上させることができる。 For example, the particle observed as a square in the photographic image has a sphericity of 34.4%, so the composite particle showing a sphericity exceeding 34.4% is not at least spherical. The sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less. When the sphericity of the composite particles is within the above range, the internal resistance of the electrochemical device including the electrode for an electrochemical device in which the electrode layer made of the composite particles is formed can be reduced, and the output characteristics can be improved.
 上記の製造方法で得られた複合粒子は、必要に応じて粒子製造後の後処理を実施することもできる。具体例としては、複合粒子に上記の電極活物質、導電材、結着剤、分散材あるいはその他の添加剤等と混合することによって、粒子表面を改質して、複合粒子の流動性を向上または低下させる、連続加圧成形性を向上させる、複合粒子の電気伝導性を向上させる、複合粒子の平均帯電量を調整することなどができる。 The composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary. As a specific example, the particle surface is modified by mixing the above-mentioned electrode active material, conductive material, binder, dispersing agent or other additives into the composite particle, thereby improving the fluidity of the composite particle. Alternatively, it is possible to reduce, improve the continuous pressure moldability, improve the electrical conductivity of the composite particles, and adjust the average charge amount of the composite particles.
 複合粒子の平均帯電量を調整するために、帯電制御剤を使用していてもよい。具体的には、二酸化ケイ素粒子やスチレン-メタクリル酸エステル共重合体粒子、ニグロシン系染料、トリフェニルメタン系染料、4級アンモニウム塩、4級アンモニウム基及び/又はアミノ基を含有する樹脂などが挙げられる。 In order to adjust the average charge amount of the composite particles, a charge control agent may be used. Specific examples include silicon dioxide particles, styrene-methacrylate copolymer particles, nigrosine dyes, triphenylmethane dyes, quaternary ammonium salts, resins containing quaternary ammonium groups and / or amino groups. It is done.
 本発明に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、透過型電子顕微鏡写真像より測定される値である。 The shape of the composite particles suitably used in the present invention is preferably substantially spherical. That is, when the short axis diameter of the composite particles is Ls, the long axis diameter is Ll, La = (Ls + Ll) / 2, and the value of (1− (Ll−Ls) / La) × 100 is sphericity (%). The sphericity is preferably 80% or more, more preferably 90% or more. Here, the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
 本発明に好適に用いる複合粒子の重量平均粒径は、通常は0.1~1,000μm、好ましくは5~500μm、より好ましくは10~100μmの範囲である。複合粒子の重量平均粒径がこの範囲にあるとき、複合粒子が凝集を起こしにくく、重力に対して静電気力が大きくなるので好ましい。重量平均粒径は、レーザ回折式粒度分布測定装置を用いて測定することができる。 The weight average particle size of the composite particles suitably used in the present invention is usually in the range of 0.1 to 1,000 μm, preferably 5 to 500 μm, more preferably 10 to 100 μm. When the weight average particle diameter of the composite particles is within this range, the composite particles are less likely to aggregate and electrostatic force is increased against gravity, which is preferable. The weight average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
 本発明では、帯電させた電極材料を、接地した前記集電体の少なくとも一面上に供給することにより電極層を形成させる。 In the present invention, the electrode layer is formed by supplying the charged electrode material onto at least one surface of the grounded current collector.
 電極材料を帯電させるとは、電極材料に処理を施すことにより電極材料をプラスまたはマイナスに帯電させることをさす。 “Charging an electrode material” means that the electrode material is charged positively or negatively by treating the electrode material.
 電極材料を帯電させる方法としては、特に制限はないが、電極材料に直接電圧を印加して帯電させる方法や、電極材料を摩擦により帯電させる方法などが挙げられる。 The method of charging the electrode material is not particularly limited, and examples thereof include a method of charging by directly applying a voltage to the electrode material, a method of charging the electrode material by friction, and the like.
 電極材料に直接電圧を印加して帯電させる方法としては、コロナ放電を利用した帯電方法があげられる。コロナ放電を利用した帯電方法は、電極材料を集電体上にスプレー噴霧するときにこれをコロナ放電電極近傍を通過させることにより帯電させる方法や、電極材料による流動層中にコロナ放電電極を設置して帯電させる方法が挙げられる。 As a method of charging by directly applying a voltage to the electrode material, a charging method using corona discharge can be mentioned. Charging methods using corona discharge include charging the electrode material by spraying it near the corona discharge electrode when sprayed on the current collector, or installing a corona discharge electrode in the fluidized bed of electrode material And charging method.
 電極材料を摩擦により帯電させる方法としては、帯電列を利用して、電極材料とこれを帯電させやすい材料とを接触させて帯電させる方法が用いられる。帯電列とは、物質が固有に持つものであり、帯電しやすさを、マイナスに帯電しやすい材料からプラスに帯電しやすい材料までにわたって相対的に序列したものである。摩擦させる2つの材料が帯電列上離れているほど、それぞれが大きく帯電するので、帯電列上で、電極材料から帯電列が離れた材料と、電極材料とを接触させることで容易に電極材料を帯電させることができる。電極材料をプラスに帯電させる場合、テトラフルオロエチレンは帯電列上で最もマイナスに帯電しやすい材料であるので、電極材料はポリテトラフルオロエチレンと接触させることで容易にプラスに帯電させることができる。 As a method of charging the electrode material by friction, a method of charging the electrode material by bringing the electrode material into contact with a material that is easily charged using a charging train is used. The charged column is inherent to a substance and has a relative order of easiness of charging from a material that is easily charged negatively to a material that is easily charged positively. As the two materials to be rubbed are more apart from each other on the charge train, each of them is charged more greatly. Therefore, on the charge train, the electrode material is easily brought into contact with the electrode material by contacting the material away from the electrode train from the electrode train. Can be charged. When the electrode material is positively charged, tetrafluoroethylene is the material that is most easily negatively charged on the charge train, and therefore the electrode material can be easily positively charged by contacting with polytetrafluoroethylene.
 電極材料は、上記の複数の電極材料を混合して帯電させてもよいが、異なる電極材料間での帯電性の差をなくことができるので、上記の電極材料を複合粒子化したものを帯電させる方が好ましい。 The electrode material may be charged by mixing a plurality of the above-mentioned electrode materials. However, since the difference in chargeability between different electrode materials can be eliminated, the composite of the above-mentioned electrode materials is charged. It is preferable to make it.
<帯電量>
 電極材料を帯電させるときの帯電量は、電極材料が帯電したときに反対に帯電する材料がアースに流す電流量を計測することによって電極材料の平均帯電量として測定することができる。電極材料の平均帯電量は、通常、0.5μC/g以上、好ましくは0.5~10.0μC/g、さらに好ましくは1.5~6.0μC/gである。前記平均帯電量が、この範囲にあるとき、電極材料を集電体上により効率よく塗着させることができる。前記帯電量は、前述のように導電材や結着剤の量、種類を変更することにより調整することができる。また、前記帯電量は、前述の帯電制御剤を使用して調整することもできる。
<Charge amount>
The amount of charge when the electrode material is charged can be measured as the average amount of charge of the electrode material by measuring the amount of current that the oppositely charged material flows to the ground when the electrode material is charged. The average charge amount of the electrode material is usually 0.5 μC / g or more, preferably 0.5 to 10.0 μC / g, more preferably 1.5 to 6.0 μC / g. When the average charge amount is within this range, the electrode material can be more efficiently applied on the current collector. As described above, the charge amount can be adjusted by changing the amount and type of the conductive material and the binder. The charge amount can also be adjusted using the above-described charge control agent.
<接地>
 本発明においては、集電体が接地されていることを要する。集電体の接地抵抗は、通常1MΩ以下、好ましくは100Ω以下であることが好ましい。接地抵抗がこの範囲にあるとき、帯電させた電極材料が集電体近傍に接近したときに集電体に有効な誘導帯電が誘起されるので均一な電極を形成することができる。
<Grounding>
In the present invention, the current collector is required to be grounded. The ground resistance of the current collector is usually 1 MΩ or less, preferably 100Ω or less. When the ground resistance is within this range, effective induction charging is induced in the current collector when the charged electrode material approaches the vicinity of the current collector, so that a uniform electrode can be formed.
<電極層の形成>
(電極材料供給方法)
 本発明では、上記帯電させた電極材料を上記接地された集電体の少なくとも一面上に供給する。帯電させた電極材料を供給する方法に特に制限はない。例えば、静電粉体塗装のように、帯電させた電極材料を噴霧して供給してもよいし、静電スクリーン印刷のように、帯電させた電極材料を転写させてもよい。
<Formation of electrode layer>
(Electrode material supply method)
In the present invention, the charged electrode material is supplied onto at least one surface of the grounded current collector. There is no particular limitation on the method for supplying the charged electrode material. For example, the charged electrode material may be sprayed and supplied as in electrostatic powder coating, or the charged electrode material may be transferred as in electrostatic screen printing.
 そして、集電体と前記供給方法により供給された電極材料とを一対のロールで加圧して、電極層を形成する。この工程では、必要に応じ加温された前記電極材料が、一対のロールでシート状の電極層に成形されてもよい。供給される電極材料の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある電極材料を用いると、プレス用ロールの表面で電極材料の滑りがなく、電極材料が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、電気化学素子用電極シートまたは分極性電極用シートを得ることができる。 Then, the current collector and the electrode material supplied by the supply method are pressurized with a pair of rolls to form an electrode layer. In this step, the electrode material heated as necessary may be formed into a sheet-like electrode layer with a pair of rolls. The temperature of the electrode material supplied is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When an electrode material in this temperature range is used, there is no slip of the electrode material on the surface of the press roll, and the electrode material is continuously and uniformly supplied to the press roll. An electrode sheet for an electrochemical element or a sheet for a polarizable electrode with small variations can be obtained.
 本発明において、成形時の温度は、通常0~200℃であり、結着剤の融点またはガラス転移温度より高いことが好ましく、結着剤の融点またはガラス転移温度より20℃以上高いことがより好ましい。プレス用ロールを用いる場合の成形速度は、通常10m/分以上、成形性をより高く、薄膜化をより容易にすべく、好ましくは20~200m/分、さらに好ましくは30~80m/分である。またプレス用ロール間のプレス線圧は、特に規定はされないが、得られる電極の電極強度を高くできる点で、好ましくは0.2~30kN/cm、より好ましくは0.5~10kN/cmである。 In the present invention, the molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature of the binder. preferable. In the case of using a press roll, the forming speed is usually 10 m / min or more, preferably 20 to 200 m / min, more preferably 30 to 80 m / min, in order to make the moldability higher and to make the film thinner. . Further, the press linear pressure between the press rolls is not particularly specified, but is preferably 0.2 to 30 kN / cm, more preferably 0.5 to 10 kN / cm in that the electrode strength of the obtained electrode can be increased. is there.
 本発明においては、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、前記集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に電極材料を供給することで、集電体とロールとの間隙に電極材料が供給され、加圧により電極層を形成できる。略垂直に配置する場合は、前記集電体を水平方向に搬送させ、該集電体上に電極材料を供給し、電極材料層を形成する。供給された電極材料層を必要に応じブレード等で均一にした後、該集電体を一対のロール間に供給し、加圧により電極層を形成できる。 In the present invention, the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically. When arranged substantially horizontally, the current collector is continuously supplied between a pair of rolls, and the electrode material is supplied to at least one of the rolls, so that the electrode material is placed in the gap between the current collector and the rolls. The electrode layer can be formed by being supplied and pressurized. In the case of disposing substantially vertically, the current collector is conveyed in the horizontal direction, an electrode material is supplied onto the current collector, and an electrode material layer is formed. After the supplied electrode material layer is made uniform with a blade or the like as necessary, the current collector is supplied between a pair of rolls, and the electrode layer can be formed by pressurization.
 成形した成形体の厚みのばらつきを無くし、密度を上げて高容量化を図るために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによるプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱又は冷却等、温度調節してもよい。 ¡Post-pressurization may be further performed as necessary in order to eliminate the variation in the thickness of the molded body, increase the density, and increase the capacity. The post-pressing method is generally a press process using a roll. In the roll press process, two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction. The roll may be temperature controlled, such as heated or cooled.
 本発明の製造方法で得られる電気化学素子用電極の、電極層の厚みは、電気化学素子の種類により異なるが、通常10μm~200μm、好ましくは30~100μmである。電極層の厚みがこの範囲にあると、内部抵抗とエネルギー密度のバランスがとれた電気化学素子用の電極となり好ましい。 The thickness of the electrode layer of the electrode for an electrochemical element obtained by the production method of the present invention varies depending on the type of the electrochemical element, but is usually 10 μm to 200 μm, preferably 30 to 100 μm. When the thickness of the electrode layer is within this range, an electrode for an electrochemical element having a balance between internal resistance and energy density is preferable.
(分極性電極)
 本発明の製造方法により分極性電極を製造することができる。分極性電極とは、電位を印加しても電流が流れない電位範囲がとれる電極をいう。本発明の製造方法により得られる分極性電極は、電気二重層キャパシタやハイブリッドキャパシタなどのキャパシタ用電極として好適に用いられる。
(Polarizable electrode)
A polarizable electrode can be produced by the production method of the present invention. A polarizable electrode refers to an electrode that has a potential range in which no current flows even when a potential is applied. The polarizable electrode obtained by the production method of the present invention is suitably used as an electrode for a capacitor such as an electric double layer capacitor or a hybrid capacitor.
(電気化学素子)
 本発明の電気化学素子は、本発明の製造方法で得られる電気化学素子用電極を備える。電気化学素子としては、リチウムイオン二次電池、電気二重層キャパシタやハイブリッドキャパシタなどが挙げられるが、電気二重層キャパシタが好適である。以下、本発明の製造方法で得られる電気化学素子用電極を電気二重層キャパシタ用電極(分極性電極)に用いた場合について説明する。
(Electrochemical element)
The electrochemical device of the present invention includes an electrode for an electrochemical device obtained by the production method of the present invention. Examples of the electrochemical element include a lithium ion secondary battery, an electric double layer capacitor, and a hybrid capacitor. An electric double layer capacitor is preferable. Hereinafter, the case where the electrode for an electrochemical element obtained by the production method of the present invention is used as an electrode for an electric double layer capacitor (polarizable electrode) will be described.
 電気二重層キャパシタは、電極、セパレータおよび電解液で構成され、前記電極として、本発明の製造方法で得られた電気化学素子用電極を用いる。 The electric double layer capacitor is composed of an electrode, a separator and an electrolytic solution, and an electrode for an electrochemical element obtained by the production method of the present invention is used as the electrode.
 セパレータは、電気二重層キャパシタ用電極の間を絶縁でき、陽イオンおよび陰イオンを通過させることができるものであれば特に限定されない。具体的には、ポリエチレンやポリプロピレンなどのポリオレフィン、レーヨン、アラミド、もしくはガラス繊維製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜などを用いることができる。セパレータは、上記一対の電極組成物層が対向するように、電気二重層キャパシタ用電極の間に配置され、素子が得られる。セパレータの厚みは、使用目的に応じて適宜選択されるが、通常は1~100μm、好ましくは10~80μm、より好ましくは20~60μmである。 The separator is not particularly limited as long as it can insulate between the electrodes for the electric double layer capacitor and can pass cations and anions. Specifically, polyolefin such as polyethylene and polypropylene, rayon, aramid, or a microporous membrane or nonwoven fabric made of glass fiber, or a porous membrane mainly made of pulp called electrolytic capacitor paper can be used. A separator is arrange | positioned between the electrodes for electric double layer capacitors so that said pair of electrode composition layer may oppose, and an element is obtained. The thickness of the separator is appropriately selected depending on the purpose of use, but is usually 1 to 100 μm, preferably 10 to 80 μm, more preferably 20 to 60 μm.
 電解液は、通常電解質と溶媒で構成される。電解質は、カチオンとしては、以下に示すような(1)イミダゾリウム、(2)第四級アンモニウム、(3)第四級ホスホニウム、(4)リチウム等を用いることができる。 Electrolyte is usually composed of electrolyte and solvent. As the electrolyte, (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used as the cation.
(1)イミダゾリウム
 1,3-ジメチルイミダゾリウム、1-エチルー3-メチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1,3,4-トリメチル-エチルイミダゾリウム、1,3-ジメチル-2,4-ジエチルイミダゾリウム、1,2-ジメチル-3,4-ジエチルイミダゾリウム、1-メチル-2,3,4-トリエチルメチルイミダゾリウム、1,2,3,4-テトラエチルイミダゾリウム、1,3-ジメチル-2-エチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1,2,3-トリエチルイミダゾリウム等
(2)第四級アンモニウム
 テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム等のテトラアルキルアンモニウム等
(3)第四級ホスホニウム
 テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、メチルトリエチルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウム等
(4)リチウム
(1) Imidazolium 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1,3-diethylimidazolium, 1,2,3-trimethylimidazolium, 1,2,3,4-tetramethyl Imidazolium, 1,3,4-trimethyl-ethylimidazolium, 1,3-dimethyl-2,4-diethylimidazolium, 1,2-dimethyl-3,4-diethylimidazolium, 1-methyl-2,3 , 4-triethylmethylimidazolium, 1,2,3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1,2,3- Triethylimidazolium, etc. (2) Quaternary ammonium tetramethylammonium, ethyltrimethylammonium, diethyl (3) Quaternary phosphonium Tetramethylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, methyltriethylphosphonium, methyltributylphosphonium, dimethyldiethylphosphonium, etc. ( 4) Lithium
 また、同様に電解質は、アニオンとしては、PF 、BF 、AsF 、SbF 、N(RfSO2-、C(RfSO3-、RfSO (Rfはそれぞれ炭素数1~12のフルオロアルキル基)、F、ClO 、AlCl 、AlF 等を用いることができる。これらの電解質は単独または二種類以上として使用することができる。 Similarly, the electrolyte has PF 6 , BF 4 , AsF 6 , SbF 6 , N (RfSO 3 ) 2− , C (RfSO 3 ) 3− , and RfSO 3 (Rf is respectively A fluoroalkyl group having 1 to 12 carbon atoms), F , ClO 4 , AlCl 4 , AlF 4 − and the like can be used. These electrolytes can be used alone or in combination of two or more.
 電解液の溶媒は、一般に電解液の溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。 The solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution. Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile. These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
 上記のキャパシタ素子に電解液を含浸させて、電気二重層キャパシタが得られる。具体的には、キャパシタ素子を必要に応じ捲回、積層または折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。また、キャパシタ素子に予め電解液を含浸させたものを容器に収納してもよい。容器としては、コイン型、円筒型、角型などの公知のものをいずれも用いることができる。 An electric double layer capacitor is obtained by impregnating the above capacitor element with an electrolytic solution. Specifically, the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it. Moreover, what impregnated the electrolytic solution beforehand in the capacitor element may be stored in the container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, the part and% in an Example and a comparative example are mass references | standards unless there is particular notice.
<実施例1>
 電極活物質として比表面積1,800m/g、体積平均粒子径5μmの高純度活性炭粉末「クラレコールYP-17D」(クラレケミカル社製)100部、結着剤として、コア部を形成する重合体の構成単量体単位がアクリル酸n-ブチルおよびメタクリル酸エチルであり、シェル部を形成する重合体の構成単量体単位がメタクリル酸n-ブチルおよびメタクリル酸であり、全単量体単位の組成比がアクリル酸n-ブチル:メタクリル酸エチル:メタクリル酸n-ブチル:メタクリル酸=40:40:17:3(質量比)であり、コア部のガラス転移温度が-5℃、シェル部のガラス転移温度が25℃であるコアシェル型のアクリレート系重合体の水分散体(体積平均粒子径0.31μm、固形分濃度40%)を5部、導電材として平均粒径0.7μmのアセチレンブラック(デンカブラック粉末;電気化学工業社製)を5部、分散剤としてカルボキシメチルセルロースのアンモニウム塩(「DN-800H」(ダイセル化学工業社製))の1.5%水溶液を93.3部、およびイオン交換水を348.7部加えて、「TKホモミキサー」(プライミクス社製)で撹拌混合して固形分濃度が20%のスラリーを得た。スラリーのpHは23℃で7.6であった。このスラリーを25%アンモニア水でpH8.5に調整し、スプレー乾燥機(OC-16;大河原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で噴霧乾燥造粒を行い、電極材料の複合粒子を得た。この複合粒子の重量平均粒子径は54μm、球状度は9%であった。
<Example 1>
100 parts of high-purity activated carbon powder “Kuraray Coal YP-17D” (manufactured by Kuraray Chemical Co., Ltd.) having a specific surface area of 1,800 m 2 / g and a volume average particle size of 5 μm as an electrode active material, and a core forming a core as a binder The constituent monomer units of the coalescence are n-butyl acrylate and ethyl methacrylate, the constituent monomer units of the polymer forming the shell portion are n-butyl methacrylate and methacrylic acid, and all monomer units The composition ratio of n-butyl acrylate: ethyl methacrylate: n-butyl methacrylate: methacrylic acid = 40: 40: 17: 3 (mass ratio), the glass transition temperature of the core part is −5 ° C., and the shell part 5 parts of an aqueous dispersion of a core-shell type acrylate polymer having a glass transition temperature of 25 ° C. (volume average particle diameter 0.31 μm, solid content concentration 40%), average particle as a conductive material 5 parts of 0.7 μm acetylene black (Denka Black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) and 1.5% aqueous solution of ammonium salt of carboxymethyl cellulose (“DN-800H” (manufactured by Daicel Chemical Industries, Ltd.)) as a dispersant. 93.3 parts and 348.7 parts of ion-exchanged water were added, and the mixture was stirred and mixed with a “TK homomixer” (manufactured by Primics) to obtain a slurry having a solid content concentration of 20%. The pH of the slurry was 7.6 at 23 ° C. This slurry was adjusted to pH 8.5 with 25% aqueous ammonia, and using a spray dryer (OC-16; manufactured by Okawara Koki Co., Ltd.), a rotating disk type atomizer (diameter 65 mm) with a rotation speed of 25,000 rpm and hot air Spray drying granulation was performed under the conditions of a temperature of 150 ° C. and a particle recovery outlet temperature of 90 ° C. to obtain composite particles of an electrode material. The composite particles had a weight average particle size of 54 μm and a sphericity of 9%.
 体積平均粒子径が0.7μmのカーボンブラック100部と、分散剤としてカルボキシメチルセルロースの4.0%水溶液(DN-10L;ダイセル化学工業社製)を固形分相当で4部、結着剤として数平均粒子径が0.25μmのアクリレート系重合体の40%水分散体を固形分相当で8部及びイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤層形成用のスラリー組成物を調製した。 100 parts of carbon black having a volume average particle size of 0.7 μm, and 4 parts of a 4.0% aqueous solution of carboxymethyl cellulose (DN-10L; manufactured by Daicel Chemical Industries) as a dispersant, several parts as a binder A conductive adhesive layer is formed by mixing a 40% aqueous dispersion of an acrylate polymer having an average particle diameter of 0.25 μm with a solid content equivalent of 8 parts and ion exchange water so that the total solid content concentration is 30%. A slurry composition was prepared.
 厚さ30μmのアルミニウム箔からなる集電体に前記導電性接着剤形成用のスラリー組成物を塗布し、120℃、10分間乾燥して厚み4μmの導電性接着剤層を形成した。その後、導電性接着剤層を表面に塗布した集電体を接地して水平に設置した。接地抵抗は10Ωであった。 The slurry composition for forming a conductive adhesive was applied to a current collector made of an aluminum foil having a thickness of 30 μm, and dried at 120 ° C. for 10 minutes to form a conductive adhesive layer having a thickness of 4 μm. Thereafter, the current collector coated with the conductive adhesive layer on the surface was grounded and installed horizontally. The grounding resistance was 10Ω.
 次いで、電極材料の複合粒子の帯電及び供給を、旭サナック社製摩擦帯電式静電粉体塗装機MTR-100VTminiおよび旭サナック社製摩擦帯電式粉体手動ガンT-2mタイプL7(インナースリーブおよびアウタースリーブは、ポリテトラフルオロエチレン製である。)を用いて行った。具体的には、前記電極材料の複合粒子を前記粉体塗装機のホッパー内に投入し、定量供給用スクリューフィーダーの回転数を調節し、電極材料の複合粒子を1.5g/秒で供給した。また、前記粉体手動ガンからの搬送エア圧力を0.4MPaとして前記集電体に上部より電極材料を供給した。なお、電極材料は、前記粉体手動ガンのインナースリーブとアウタースリーブの隙間を通過させる際に発生する摩擦帯電により帯電させた。このときの電流値は1.0μA(C/秒)であった。帯電させた電極材料の平均帯電量は0.7μC/gであった。供給した電極材料の重量および、集電体上に電極材料層を形成した電極材料の重量から下式にしたがって集電体への塗着効率を算出したところ、43%であった。なお、下式において、集電体上に付着した電極材料の重量は、電極材料が付着した集電体の重量から電極材料を付着させる前の集電体の重量を差し引いたものである。
 塗着効率(%)=集電体上に付着した電極材料の重量/供給した電極材料の重量×100
Next, charging and supply of the composite particles of the electrode material were carried out by using a friction charging electrostatic powder coating machine MTR-100VTmini manufactured by Asahi Sunac Co., Ltd. and a friction charging powder manual gun T-2m type L7 manufactured by Asahi Sunac Co., Ltd. The outer sleeve was made of polytetrafluoroethylene. Specifically, the composite particles of the electrode material were put into the hopper of the powder coating machine, the rotation speed of the screw feeder for quantitative supply was adjusted, and the composite particles of the electrode material were supplied at 1.5 g / second. . Moreover, the electrode material was supplied to the said collector from the upper part by making the conveyance air pressure from the said powder manual gun into 0.4 Mpa. The electrode material was charged by frictional charging generated when passing through the gap between the inner sleeve and outer sleeve of the powder manual gun. The current value at this time was 1.0 μA (C / sec). The average charge amount of the charged electrode material was 0.7 μC / g. The coating efficiency on the current collector was calculated from the weight of the supplied electrode material and the weight of the electrode material in which the electrode material layer was formed on the current collector according to the following formula, and found to be 43%. In the following formula, the weight of the electrode material attached on the current collector is obtained by subtracting the weight of the current collector before attaching the electrode material from the weight of the current collector attached with the electrode material.
Coating efficiency (%) = weight of electrode material deposited on current collector / weight of supplied electrode material × 100
 得られた電極材料層の外観を観察したところ、均一に電極材料が集電体上に形成されていることを確認した。この電極材料層が形成された集電体をロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度120℃、プレス線圧4kN/cm)に供給し、ロール加圧成形によりシート状の圧密化された電極層を成形して、電極層厚みが60μm、電極層密度が0.58g/cmの電気二重層キャパシタ用電極を製造した。 When the appearance of the obtained electrode material layer was observed, it was confirmed that the electrode material was uniformly formed on the current collector. The current collector on which this electrode material layer is formed is supplied to a roll (roll temperature 120 ° C., press linear pressure 4 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.), and roll pressure is applied. A sheet-like consolidated electrode layer was formed by molding to produce an electrode for an electric double layer capacitor having an electrode layer thickness of 60 μm and an electrode layer density of 0.58 g / cm 3 .
<実施例2>
 実施例1において、電極材料の複合粒子を製造する際、結着剤として用いる水分散体の量を10部としたこと以外は、実施例1と同様にして、電極層厚みが60μm、電極層密度が0.58g/cmの電極を製造した。電極材料層の外観は問題なく、電極材料供給時の電流値は3.0μA(平均帯電量2.0μC/g)で、塗着効率は60%であった。なお、複合粒子の重量平均粒子径は54μm、球状度は9%であった。
<Example 2>
In Example 1, when producing composite particles of electrode material, the electrode layer thickness was 60 μm and the electrode layer was the same as Example 1 except that the amount of the aqueous dispersion used as the binder was 10 parts. An electrode having a density of 0.58 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 3.0 μA (average charge amount 2.0 μC / g), and the coating efficiency was 60%. The composite particles had a weight average particle size of 54 μm and a sphericity of 9%.
<実施例3>
 実施例1において、電極材料の複合粒子を製造する際、結着剤として用いる水分散体の量を15部としたこと以外は、実施例1と同様にして、電極層厚み60μm、電極層密度0.60g/cmの電極を製造した。電極材料層の外観は問題なく、電極材料供給時の電流値は7.5μA(平均帯電量5.0μC/g)で、塗着効率は67%であった。なお、複合粒子の重量平均粒子径は54μm、球状度は9%であった。
<Example 3>
In Example 1, when producing composite particles of electrode material, the electrode layer thickness was 60 μm and the electrode layer density was the same as in Example 1 except that the amount of the aqueous dispersion used as the binder was 15 parts. An electrode of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 7.5 μA (average charge amount 5.0 μC / g), and the coating efficiency was 67%. The composite particles had a weight average particle size of 54 μm and a sphericity of 9%.
<実施例4>
 実施例1において、電極材料の複合粒子を製造する際、結着剤として用いる水分散体の量を15部とし、電極材料供給量を0.8g/秒としたこと以外は、実施例1と同様にして、電極層厚みが60μm、電極層密度が0.60g/cmの電極を製造した。電極材料層の外観は問題なく、電極材料供給時の電流値は13.5μA(平均帯電量9.0μC/g)で、塗着効率は45%であった。なお、複合粒子の重量平均粒子径は54μm、球状度は9%であった。
<Example 4>
In Example 1, when producing composite particles of the electrode material, the amount of the aqueous dispersion used as the binder was 15 parts, and the supply amount of the electrode material was 0.8 g / sec. Similarly, an electrode having an electrode layer thickness of 60 μm and an electrode layer density of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 13.5 μA (average charge amount 9.0 μC / g), and the coating efficiency was 45%. The composite particles had a weight average particle size of 54 μm and a sphericity of 9%.
<実施例5>
 実施例1において、電極材料の複合粒子を製造する際、結着剤として用いる水分散ラテックスの量を15部とし、電極材料供給量を0.5g/秒としたこと以外は、実施例1と同様にして、電極層厚みが60μm、電極層密度が0.60g/cmの電極を製造した。電極材料層の外観は問題なく、電極材料量供給時の電流値は18μA(平均帯電量12.0μC/g)で、塗着効率は35%であった。なお、複合粒子の重量平均粒子径は54μm、球状度は9%であった。
<Example 5>
In Example 1, when producing composite particles of the electrode material, the amount of the water-dispersed latex used as the binder was 15 parts, and the supply amount of the electrode material was 0.5 g / sec. Similarly, an electrode having an electrode layer thickness of 60 μm and an electrode layer density of 0.60 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value when supplying the electrode material amount was 18 μA (average charge amount 12.0 μC / g), and the coating efficiency was 35%. The composite particles had a weight average particle size of 54 μm and a sphericity of 9%.
<実施例6>
 実施例1において、集電体に接着剤層を形成させなかったこと以外は、実施例3と同様にして電極層厚みが60μm、電極密度が0.58g/cmの電極を製造した。電極材料層の外観は問題なかったが、電極材料供給時の電流値は7.5μA(平均帯電量5.0μC/g)で、塗着効率は62%であった。
<Example 6>
In Example 1, an electrode having an electrode layer thickness of 60 μm and an electrode density of 0.58 g / cm 3 was produced in the same manner as in Example 3 except that no adhesive layer was formed on the current collector. Although there was no problem in the appearance of the electrode material layer, the current value at the time of supplying the electrode material was 7.5 μA (average charge amount 5.0 μC / g), and the coating efficiency was 62%.
<比較例1>
 実施例1において、摩擦帯電式粉体手動ガンT-2mタイプL7のPTFE製のインナースリーブおよびアウタースリーブを同形状のステンレス製のものに交換したこと以外は、実施例1と同様にして電極層厚みが60μm、電極密度が0.58g/cmの電極を製造した。電極材料層の外観は問題なく、電極材料供給時の電流値は0.0μA(平均帯電量は0.0μC/g)で、塗着効率は8%であった。
<Comparative Example 1>
In Example 1, the electrode layer was the same as in Example 1 except that the PTFE inner sleeve and outer sleeve of the triboelectric powder manual gun T-2m type L7 were replaced with stainless steel of the same shape. An electrode having a thickness of 60 μm and an electrode density of 0.58 g / cm 3 was produced. There was no problem in the appearance of the electrode material layer, the current value when supplying the electrode material was 0.0 μA (average charge amount was 0.0 μC / g), and the coating efficiency was 8%.
<比較例2>
 実施例3において、アルミ箔を接地しなかったこと以外は実施例3と同様にして電極層厚みが60μm、電極密度が0.60g/cmの電極を製造した。電極材料供給の途中でスパークが発生し電極の外観が損なわれた。
<Comparative example 2>
In Example 3, an electrode having an electrode layer thickness of 60 μm and an electrode density of 0.60 g / cm 3 was produced in the same manner as in Example 3 except that the aluminum foil was not grounded. A spark occurred during the supply of the electrode material, and the appearance of the electrode was impaired.
 以上の実施例および比較例の結果を表1に示す。 Table 1 shows the results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、内部抵抗値は、以下のようにして測定した。すなわち、上記実施例や比較例で得られた電極を、室温で1時間電解液(1.0mol/Lのテトラエチルアンモニウムフルオロボレートのプロピレンカーボネート溶液)に含浸させ、次いで2枚の電極がセルロースセパレータを介して電極が内側になるように対向させ、それぞれの電極が電気的に接触しないように配置して、コインセル形状の電気二重層キャパシタを作製した。そして、作製した電気二重層キャパシタの内部抵抗を測定した。 In Table 1, the internal resistance value was measured as follows. That is, the electrodes obtained in the above examples and comparative examples were impregnated with an electrolytic solution (1.0 mol / L of a propylene carbonate solution of tetraethylammonium fluoroborate) at room temperature for 1 hour, and then the two electrodes serve as a cellulose separator. Then, the electrodes are arranged so as to face each other, and the electrodes are arranged so as not to be in electrical contact with each other, thereby producing a coin cell-shaped electric double layer capacitor. And the internal resistance of the produced electric double layer capacitor was measured.
 内部抵抗は、作製したコインセルを24時間静置させた後に充放電の操作を行い測定した。充電は10mAの定電流で開始し、電圧が2.7Vに達したら、その電圧を保って定電圧充電とし、充電電流が0.5mAまで低下した時点で充電を完了する。次に、放電を充電終了直後に定電流10mAで行い、放電0.1秒後の電圧降下と定電流値から内部抵抗を算出した。なお、内部抵抗値は、実施例6の電極を用いて作製した電気二重層キャパシタの内部抵抗値を100%としたきの、その他の電極で作製した電気二重層キャパシタの内部抵抗値の相対値である。内部抵抗値は小さいほど好ましい。 The internal resistance was measured by performing charge / discharge operation after allowing the produced coin cell to stand for 24 hours. Charging is started at a constant current of 10 mA. When the voltage reaches 2.7 V, the voltage is maintained and constant voltage charging is performed, and the charging is completed when the charging current is reduced to 0.5 mA. Next, discharging was performed at a constant current of 10 mA immediately after the end of charging, and the internal resistance was calculated from the voltage drop 0.1 seconds after the discharge and the constant current value. The internal resistance value is the relative value of the internal resistance value of the electric double layer capacitor manufactured using the other electrodes when the internal resistance value of the electric double layer capacitor manufactured using the electrode of Example 6 is 100%. It is. The smaller the internal resistance value, the better.
 表1の結果より、以下のことがわかる。 From the results in Table 1, the following can be understood.
 本発明によれば、実施例1~6に示すように、電極の外観に優れ、電極の塗着効率に優れる。実施例の中でも、集電体に接着剤層を有し、電極材料の平均帯電量が5.0μC/gである実施例3は、内部抵抗と塗着効率のバランスが最もよい。 According to the present invention, as shown in Examples 1 to 6, the electrode appearance is excellent and the electrode coating efficiency is excellent. Among the examples, Example 3 in which the current collector has an adhesive layer and the average charge amount of the electrode material is 5.0 μC / g has the best balance between internal resistance and coating efficiency.
 一方、比較例1は、電極材料を帯電させていないので電極材料の塗着効率が劣っている。比較例2は、集電体を接地してないために集電体上の帯電した電極材料が絶縁破壊を起こしてスパークし、電極の外観に支障が出ている。 On the other hand, in Comparative Example 1, since the electrode material is not charged, the coating efficiency of the electrode material is inferior. In Comparative Example 2, since the current collector is not grounded, the charged electrode material on the current collector causes a dielectric breakdown and sparks, which hinders the appearance of the electrode.
 以上、現時点において、最も、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気化学素子用電極の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。 Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the invention is limited to the embodiments disclosed herein. However, it can be changed as appropriate without departing from the scope or spirit of the invention which can be read from the claims and the entire specification, and the method for producing an electrode for an electrochemical device with such a change is also within the technical scope of the present invention. Must be understood as encompassed by.
 本発明は、2008年8月13日に提出された日本国特許出願第2008-208754号および同日に提出された日本国特許出願第2008-208755号に含まれた主題に関連し、その開示のすべては、ここに参照事項として明白に組み込まれる。 The present invention relates to the subject matter contained in Japanese Patent Application No. 2008-208754 filed on August 13, 2008 and Japanese Patent Application No. 2008-208755 filed on the same date, All are expressly incorporated herein by reference.
 本発明の電気化学素子用電極の製造方法は、電極の外観に優れ、内部抵抗に優れ、電極材料の塗着効率も高いので、生産性良く電気二重層キャパシタ電極、ハイブリッドキャパシタ電極、リチウムイオン二次電池等の電極製造に好適に使用することができる。 The method for producing an electrode for an electrochemical device according to the present invention has excellent electrode appearance, excellent internal resistance, and high electrode material coating efficiency. Therefore, the electric double layer capacitor electrode, hybrid capacitor electrode, It can use suitably for electrode manufacture, such as a secondary battery.

Claims (8)

  1.  帯電させた電極材料を、接地した集電体の少なくとも一面上に供給することにより電極層を形成させるようにした電気化学素子用電極の製造方法。 A method for producing an electrode for an electrochemical element, wherein an electrode layer is formed by supplying a charged electrode material onto at least one surface of a grounded current collector.
  2.  前記集電体が金属である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the current collector is a metal.
  3.  前記電極材料が、電極活物質及び結着剤を含む複合粒子である請求項1または2に記載の製造方法。 The method according to claim 1 or 2, wherein the electrode material is composite particles containing an electrode active material and a binder.
  4.  前記電極材料の平均帯電量が0.5~10.0μC/gである請求項1~3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein an average charge amount of the electrode material is 0.5 to 10.0 µC / g.
  5.  前記集電体が、その少なくとも一面上に接着剤層を有するものである、請求項1~4のいずれかに記載の電気化学素子用電極の製造方法。 The method for producing an electrode for an electrochemical element according to any one of claims 1 to 4, wherein the current collector has an adhesive layer on at least one surface thereof.
  6.  前記電極は、分極性電極である請求項1~5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the electrode is a polarizable electrode.
  7.  請求項1~6のいずれかに記載の製造方法により得られる電気化学素子用電極を備える電気化学素子。 An electrochemical element comprising an electrode for an electrochemical element obtained by the production method according to any one of claims 1 to 6.
  8.  前記電気化学素子が、電気二重層キャパシタである請求項7に記載の電気化学素子。 The electrochemical device according to claim 7, wherein the electrochemical device is an electric double layer capacitor.
PCT/JP2009/064241 2008-08-13 2009-08-12 Method for manufacturing electrode for electrochemical element and electrochemical element WO2010018841A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008208755A JP2011216505A (en) 2008-08-13 2008-08-13 Method for manufacturing polarizable electrode and electrochemical element
JP2008-208755 2008-08-13
JP2008208754A JP2011216504A (en) 2008-08-13 2008-08-13 Method for manufacturing electrode for electrochemical element
JP2008-208754 2008-08-13

Publications (1)

Publication Number Publication Date
WO2010018841A1 true WO2010018841A1 (en) 2010-02-18

Family

ID=41668983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064241 WO2010018841A1 (en) 2008-08-13 2009-08-12 Method for manufacturing electrode for electrochemical element and electrochemical element

Country Status (1)

Country Link
WO (1) WO2010018841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243402A (en) * 2010-05-18 2011-12-01 Hitachi Zosen Corp Solid lithium battery, method of manufacturing solid lithium battery, and apparatus including solid lithium battery
JP2013219006A (en) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd Adhesive resin composition for secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2008153614A (en) * 2006-11-21 2008-07-03 Yokohama Rubber Co Ltd:The Electrode for capacitor and electric double layer capacitor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2008153614A (en) * 2006-11-21 2008-07-03 Yokohama Rubber Co Ltd:The Electrode for capacitor and electric double layer capacitor using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.KIM ET AL.: "Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning", APPLIED PHYSICS LETTERS, vol. 83, no. 6, 11 August 2003 (2003-08-11), pages 1216 - 1218 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243402A (en) * 2010-05-18 2011-12-01 Hitachi Zosen Corp Solid lithium battery, method of manufacturing solid lithium battery, and apparatus including solid lithium battery
JP2013219006A (en) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd Adhesive resin composition for secondary battery

Similar Documents

Publication Publication Date Title
JP5549672B2 (en) Electrode for electrochemical element and electrochemical element
JP5287601B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
KR101245055B1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP5423991B2 (en) Lithium ion capacitor electrode and lithium ion capacitor
JP5141002B2 (en) Method for producing composite particle for electrochemical device electrode
KR101296983B1 (en) Composite particles for electrochemical element electrode
CN101410915B (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP2010278125A (en) Method of manufacturing electrode for electrochemical element, and electrochemical element
JP5471307B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
US20090224198A1 (en) Electrode material for electrochemical element and composite particle
JPWO2007072815A1 (en) Electric double layer capacitor
KR20080005375A (en) Electro-chemical element electrode
JP5354205B2 (en) Electrode for electrochemical element and electrochemical element
JP5601485B2 (en) Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
JP2011216504A (en) Method for manufacturing electrode for electrochemical element
WO2010018841A1 (en) Method for manufacturing electrode for electrochemical element and electrochemical element
WO2010016567A1 (en) Electrode for lithium ion capacitor and lithium ion capacitor
JP2010157564A (en) Method of manufacturing composite particle for electrochemical element electrode
WO2009119553A1 (en) Method for production of electrode for hybrid capacitor
JP6281488B2 (en) Composite particle for lithium ion secondary battery electrode, method for producing composite particle for lithium ion secondary battery electrode, lithium ion secondary battery electrode material, lithium ion secondary battery electrode, and method for producing lithium ion secondary battery electrode
JP6467808B2 (en) Method for producing composite particle for electrochemical element electrode, method for producing electrochemical element electrode material, method for producing electrochemical element electrode, and method for producing electrochemical element
JP5651470B2 (en) Lithium ion capacitor binder, lithium ion capacitor electrode and lithium ion capacitor
WO2009107716A1 (en) Method for producing electrochemical device electrode
JP2011216505A (en) Method for manufacturing polarizable electrode and electrochemical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09806732

Country of ref document: EP

Kind code of ref document: A1