WO2009107716A1 - Method for producing electrochemical device electrode - Google Patents

Method for producing electrochemical device electrode Download PDF

Info

Publication number
WO2009107716A1
WO2009107716A1 PCT/JP2009/053553 JP2009053553W WO2009107716A1 WO 2009107716 A1 WO2009107716 A1 WO 2009107716A1 JP 2009053553 W JP2009053553 W JP 2009053553W WO 2009107716 A1 WO2009107716 A1 WO 2009107716A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical element
current collector
composite particles
active material
Prior art date
Application number
PCT/JP2009/053553
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 戸倉
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2010500736A priority Critical patent/JPWO2009107716A1/en
Publication of WO2009107716A1 publication Critical patent/WO2009107716A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical element such as an electric double layer capacitor and a lithium ion secondary battery, and particularly an electrochemical element electrode (herein referred to simply as “electrode”) that is preferably used for an electric double layer capacitor. ) Manufacturing method.
  • Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors that are small and light, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics.
  • Lithium ion secondary batteries are used in mobile phones, notebook personal computers, and other fields because of their relatively high energy density, and electric double layer capacitors can be rapidly charged and discharged. It is used as a power source.
  • the electric double layer capacitor is expected to be applied as a large power source for electric vehicles.
  • a hybrid capacitor that uses a Faraday reaction electrode for one of the positive electrode and the negative electrode and a non-Faraday reaction electrode for the other has been developed.
  • redox capacitors that utilize the oxidation-reduction reaction (pseudo electric double layer capacitance) on the surface of metal oxides or conductive polymers are also attracting attention due to their large capacity.
  • these electrochemical elements are required to further improve characteristics such as low resistance, high capacity, and improved mechanical characteristics. Under such circumstances, in order to improve the performance of the electrochemical device, various improvements have been made on the method of forming the electrochemical device electrode.
  • Electrochemical element electrodes can be obtained, for example, by supplying an electrode material containing an electrode active material or the like onto a current collector and pressing it with a forming roll.
  • Japanese Unexamined Patent Publication No. 2007-005747 introduces a method of manufacturing an electrochemical element electrode using a pair of press rolls or belts arranged substantially horizontally by supplying an electrode material with a quantitative feeder onto a current collector.
  • an expanded metal having a thickness of 50 ⁇ m and a porosity of 37 area% is used as a current collector, and an electrode having an electrode thickness of 480 ⁇ m is obtained by molding at a molding speed of 6 m / min.
  • an electrode that provides an electrochemical element having a lower resistance there has been a demand for an electrode that provides an electrochemical element having a lower resistance.
  • An object of the present invention is to provide a method for efficiently producing a large amount of electrochemical device electrodes that provide a low-resistance electrochemical device.
  • the present inventor has obtained a low-resistance electrochemical element by thinning an electrode layer made of an electrode material by molding at a specific molding speed using a porous current collector. It has been found that a device electrode can be obtained. Further, (roll gap of press roll) / (current collector thickness + electrode material layer thickness) is 0.01 to 1, the opening area of the porous collector is 10 to 90 area%, and the opening diameter is 0.1 to It has been found that the resistance can be further reduced by setting the thickness to 10 ⁇ m. The present inventor has completed the present invention based on these findings.
  • the manufacturing method of the electrochemical element electrode which consists of the process to form and the shaping
  • an electrochemical element provided with the electrochemical element electrode obtained by the said manufacturing method is provided.
  • the electrode layer can be easily thinned, and a low-resistance electrochemical device electrode can be efficiently produced in large quantities.
  • the high-power electrochemical element electrode obtained by the production method of the present invention is suitably used for various applications such as electric double layer capacitors and secondary batteries.
  • the electrode material used in the present invention is used to obtain an electrochemical element electrode.
  • an electrode active material, a conductive material, and a binder are essential components, and if necessary, a dispersion material or Other additives and the like can be contained.
  • Electrode active material is a material that transfers electrons in the electrode.
  • the electrode active material mainly includes an active material for a lithium ion secondary battery and an active material for an electric double layer capacitor.
  • Examples of the active material for a lithium ion secondary battery include a positive electrode and a negative electrode.
  • As an electrode active material for a positive electrode of a lithium ion secondary battery lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non Transition metal sulfides such as crystalline MoS 3 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O ⁇ P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 ; Illustrated.
  • Electrode active material for the negative electrode of the lithium ion secondary battery examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; high conductivity such as polyacene Examples include molecules.
  • the electrode active material used for the electrode of the lithium ion secondary battery is preferably sized into spherical particles.
  • the volume average particle size distribution is preferably a mixture of fine particles of about 1 ⁇ m and relatively large particles of 3 to 8 ⁇ m, or particles having a broad particle size distribution of 0.5 to 8 ⁇ m. Particles having a particle size of 50 ⁇ m or more are preferably used after being removed by sieving.
  • the tap density defined by ASTM D4164 of the electrode active material is not particularly limited, and those having a positive electrode of 2 g / cm 3 or more and those of a negative electrode of 0.6 g / cm 3 or more are preferably used.
  • An allotrope of carbon is usually used as the electrode active material for the electric double layer capacitor.
  • Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used.
  • a preferable electrode active material for the electric double layer capacitor is activated carbon, and specific examples include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based activated carbon.
  • the specific surface area of the electrode active material for an electric double layer capacitor is usually 30 m 2 / g or more, preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g.
  • the volume average particle diameter of the electrode active material for the electric double layer capacitor is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the electric double layer capacitor electrode can be easily thinned and the capacitance can be increased.
  • Electrode active materials can be used alone or in combination of two or more depending on the type of electrochemical element.
  • the conductive material is made of a particulate carbon allotrope having conductivity and no pores capable of forming an electric double layer, and can improve the conductivity of the electrochemical element electrode.
  • Specific examples of the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennot Shap); graphite such as natural graphite and artificial graphite; Can be mentioned.
  • conductive carbon black is preferable, and acetylene black and furnace black are more preferable.
  • the volume average particle diameter of the conductive material is preferably smaller than the volume average particle diameter of the electrode active material, and is usually in the range of 0.001 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m. is there. When the particle size of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use.
  • the conductive materials can be used alone or in combination of two or more.
  • the amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When an electrode having an amount of the conductive material within this range is used, the capacity of the electrochemical element can be increased and the internal resistance can be decreased.
  • the binder is a compound that can bind an electrode active material, a conductive material, or the like.
  • polymer compounds such as fluorine-based polymers, diene-based polymers, acrylate-based polymers, polyimides, polyamides, and polyurethanes are preferable, and fluorine-based polymers, diene-based polymers, and acrylate-based polymers are preferable. It is done.
  • a fluoropolymer is a polymer containing a monomer unit containing a fluorine atom.
  • the ratio of the monomer unit containing fluorine in the fluoropolymer is usually 50% by weight or more.
  • Specific examples of the fluorine-based polymer include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, and polytetrafluoroethylene is preferable.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the proportion of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the diene polymer examples include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Examples include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR)
  • SBR carboxy-modified styrene / butadiene copolymer
  • NBR acrylonitrile / butadiene copolymer
  • SBR acrylonitrile / butadiene copolymer
  • the acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and / or methacrylic ester or a monomer mixture containing these.
  • the ratio of acrylic acid ester and / or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the acrylate polymer examples include 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / methacrylic acid / methacrylonitrile / diethylene glycol dimethacrylate copolymer, acrylic Crosslinking of 2-ethylhexyl acid / styrene / methacrylic acid / ethylene glycol dimethacrylate copolymer, butyl acrylate / acrylonitrile / diethylene glycol dimethacrylate copolymer, and butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymer
  • Type acrylate polymer ethylene / methyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene / ethyl acrylate copolymer, A copo
  • a radically polymerizable monomer used for the said graft polymer methyl methacrylate, acrylonitrile, methacrylic acid etc. are mentioned, for example.
  • a copolymer of ethylene and acrylic acid (or methacrylic acid) such as an ethylene / acrylic acid copolymer and an ethylene / methacrylic acid copolymer can be used as a binder.
  • the binder is not particularly limited depending on its shape, but has good binding properties, and can be prevented from being deteriorated due to a decrease in the capacitance of the created electrode or repeated charge / discharge, so that it is particulate. Is preferred.
  • the particulate binder include those in which particles of a dispersion-type binder such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the number average particle diameter of the particulate binder is not particularly limited, but is usually 0.0001 to 100 ⁇ m, preferably 0.001 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m. When the number average particle diameter of the binder is within this range, an excellent binding force can be imparted to the electrode layer even when a small amount of the binder is used.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph.
  • the shape of the particles can be either spherical or irregular.
  • binders can be used alone or in combination of two or more.
  • the amount of the binder used is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. .
  • the electrode material further contains a dispersing agent.
  • the dispersing material is used by being dissolved in a slurry solvent, and further has an action of uniformly dispersing the electrode active material, the conductive material and the like in the solvent.
  • cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and ammonium salts or alkali metal salts thereof; polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid); polyvinyl Examples include alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These dispersing agents can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or
  • the amount of the dispersing agent used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the electrode active material. It is in the range of up to 2 parts by weight.
  • a dispersion material having a weight average molecular weight of 300,000 or more.
  • additives include, for example, surfactants.
  • surfactants include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable.
  • Surfactants can be used alone or in combination of two or more.
  • the amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
  • the electrode material used in the present invention comprises the above electrode active material, conductive material, and binder as essential components, and contains a dispersing agent and other additives as necessary.
  • a suitably used electrode material is in the form of particles containing the above components in a composite (hereinafter sometimes referred to as composite particles). It is preferable that the composite particles usually include at least an electrode active material, a conductive material, and a binder, and the electrode active material and the conductive material are bound by a binder.
  • the production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder and the conductive auxiliary agent are unevenly distributed near the surface can be easily obtained. When composite particles obtained by the spray drying granulation method are used, the electrode of the present invention can be obtained with high productivity. Moreover, the internal resistance of the electrochemical element obtained using this electrode can be reduced more.
  • the composite particles suitably used in the present invention are preferably particles obtained by spray drying a slurry containing an electrode active material, a conductive material and a binder.
  • the composite particles are particles obtained by spray-drying the slurry containing the electrode active material, the conductive material and the binder, so that the electrochemical device electrode of the present invention can be obtained with high productivity, In addition, the internal resistance of the electrode can be further reduced.
  • the slurry can be obtained by dispersing or dissolving optional components such as a dispersing agent and other additives in addition to the essential components of the electrode active material, the conductive material, and the binder.
  • the solvent used in the slurry for obtaining composite particles water is usually used, but an organic solvent may be used.
  • the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide, N-methyl- Examples include amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and alcohols are preferable.
  • the drying rate can be increased during granulation by the spray drying method.
  • the dispersibility of the dispersion-type binder or the solubility of the soluble resin varies depending on the type of solvent, the viscosity and fluidity of the slurry are adjusted by selecting the amount or type of organic solvent, and spray drying production Efficiency can be improved.
  • the amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. Amount.
  • a method or a procedure for dispersing or dissolving the electrode active material, the conductive material, the binder, and the optional component in the solvent is not particularly limited.
  • the electrode active material, the conductive material, the binder, and the other components in the solvent A method of adding and mixing components; a method of adding and mixing a binder (for example, latex) dispersed in a solvent; and a method of adding and mixing an electrode active material, a conductive material and the optional component; an electrode active material; Examples include a method in which a conductive material and the above-mentioned optional component dispersed in a solvent are added to a binder and mixed.
  • mixing means examples include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the spray drying method is a method in which slurry is sprayed and dried in hot air.
  • a typical example of the apparatus used for the spray drying method is an atomizer.
  • the rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at high speed, and the slurry is released from the disk by the centrifugal force of the disk, and in that case, the slurry is dried in the form of a mist.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm.
  • the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited. Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact. Furthermore, heat treatment is performed to cure the surface of the composite particles.
  • the heat treatment temperature is usually 80 to 300 ° C.
  • the sphericity is preferably 80% or more, more preferably 90% or more.
  • the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
  • the volume average particle diameter of the composite particles suitably used in the present invention is usually in the range of 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
  • the composite particles suitably used in the present invention have a surface average porosity of preferably 15% or more, more preferably 20% or more, and further preferably 20% or more and 40% or less.
  • the “surface average porosity” is an apparent appearance of voids of 0.1 ⁇ m 2 or more on the surface of the composite particle for 5 particles or more (each with different fields of view) and 10 particles or more per composite particle. This is a value obtained as an average value of the ratio (%) of the apparent surface area of the void to the entire visual field area (hereinafter, sometimes referred to as “void ratio”).
  • void ratio the ratio
  • the surface average porosity of the composite particles is less than 15%, the diffusion resistance of the electrolyte ions in the composite particles increases, and the resistance of the electrode obtained by using this increases.
  • the surface average porosity is obtained by taking an electron micrograph of the composite particles suitably used in the present invention, observing 5 fields or more per arbitrarily selected particle, and having an area of 0.1 ⁇ m 2 or more.
  • the apparent surface area of the continuous voids is measured, the same measurement is performed for 10 particles or more, and the average value of the obtained void ratios is calculated.
  • the apparent surface area of the void is an area corresponding to the surface area of the opening of the void observed on the electron micrograph, and is not an actual area taking into consideration the area in the pores of the void.
  • composite particles having a porosity of less than 15% may be included, but since the porosity includes a large number of particles having a porosity of 15% or more, the overall surface average porosity is As high as
  • the composite particles suitable for the present invention usually have a particle size displacement rate of 5 to 70%, preferably 20 to 50% when compressed to a maximum load of 9.8 mN at a load speed of 0.9 mN / sec using a micro compression tester. is there.
  • D 1 is a value that varies according to the load amount of the particle diameter when being under a load.
  • the composite particles suitably used in the present invention preferably have a change amount of particle size displacement rate per unit second when compressed to a maximum load of 9.8 mN at a load speed of 0.9 mN / sec by a micro compression tester. It is 25% or less, more preferably 10% or less, and particularly preferably 7% or less.
  • the change amount of the particle size displacement rate per unit second is the change amount per unit second of the particle size change rate when the load is increased at a load speed of 0.9 mN / second.
  • the particle size displacement rate when compressed to a maximum load of 9.8 mN measured by a micro-compression tester is a numerical value necessary to show the shape maintenance force of the composite particles.
  • the particle size displacement rate is too small, the composite particles are hardly deformed even by pressurization, so that the contact area between the particles is small and the conductivity is not increased.
  • the particle size displacement rate is too large, the composite particles are crushed, the network formed by the conductive material and the electrode active material formed in the composite particles is broken, and the conductivity is lowered.
  • the change amount of the particle size displacement rate per unit second is an index for determining the presence or absence of crushing. When crushing occurs, the particle size decreases rapidly, so the amount of change in particle size displacement rate per unit second exceeds 25%. By crushing, the network formed by the conductive material and the electrode active material formed in the composite particles is broken, and the conductivity is lowered.
  • Composite particles having a particle size displacement rate of 5 to 70% when compressed to a maximum load of 9.8 mN have moderate softness, so that the contact area between the particles is large. And since it does not crush, the network of an electroconductive material and an electrode active material is maintained. These composite particles can be used alone or in combination of two or more.
  • the porous current collector used in the present invention is an electrode substrate having a current collecting function having front and back through holes.
  • the material for example, metal, carbon, conductive polymer, and the like can be used, and metal is preferably used.
  • the current collector metal aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use aluminum or an aluminum alloy in terms of conductivity and voltage resistance.
  • Examples of the shape of the current collector holes include a quadrangle, a rhombus, a turtle shell, a hexagon, a circle, a star, and a cross.
  • the sheet-like current collector having pores include expanded metal obtained by expanding a flat plate into a rhombus or turtle shell-shaped net, punching metal obtained by perforating a flat plate, or a metal wire or a metal band plain weave or Examples thereof include a wire net obtained by twilling or fitting a crimp metal wire.
  • the aperture ratio of the porous current collector used in the present invention is not particularly specified, but is preferably 10 to 90 area%, more preferably 40 to 60 area%, because the strength and molding speed can be increased.
  • the opening diameter is not particularly specified, but is usually 0.01 to 10 ⁇ m, more preferably 1 to 5 ⁇ m because the molding speed can be increased.
  • the opening diameter here is a diameter of a circumscribed circle of the opening. The diameter of the circumscribed circle is obtained by observing the surface of the current collector with a laser microscope or a tool microscope, fitting the circumscribed circle to the opening, and averaging the results.
  • the thickness of the porous current collector is appropriately selected according to the purpose of use, but is preferably 10 to 100 ⁇ m, more preferably 50 to 100 ⁇ m from the viewpoint of achieving both high strength and low resistance.
  • the current collector may be one obtained by applying a conductive adhesive on the surface thereof.
  • the conductive adhesive is obtained by dispersing a conductive auxiliary powder, a binder, and a dispersant added as necessary in water or an organic solvent.
  • the conductive assistant for the conductive adhesive include silver, nickel, gold, graphite, acetylene black, and ketjen black, and graphite and acetylene black are preferable.
  • the binder of the conductive adhesive any of those exemplified as the binder used in the electrode layer of the electrode of the present invention can be used.
  • the binder of the conductive adhesive is preferably an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or polyamideimide resin.
  • a dispersing agent of a conductive adhesive a dispersing agent or a surfactant that may be used for the electrode layer of the electrode of the present invention can be used.
  • the electrode material is supplied to at least one surface of the porous current collector.
  • the feeder used in the step of supplying the electrode material is not particularly limited, but is preferably a quantitative feeder capable of supplying composite particles quantitatively.
  • the quantitative feeder used in the present invention preferably has a CV value of 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the porous current collector and the supplied electrode material are pressurized with a pair of rolls to form an electrode layer on the porous current collector.
  • the electrode material heated as necessary is formed into a sheet-like electrode layer by a pair of rolls.
  • the temperature of the electrode material supplied is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When an electrode material in this temperature range is used, there is no slip of the electrode material on the surface of the press roll, and the electrode material is continuously and uniformly supplied to the press roll. An electrochemical element electrode sheet with small variations can be obtained.
  • the molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature.
  • the forming speed is usually 10 m / min or more, and it is preferably 20 to 200 m / min, and more preferably 30 to 80 m / min, because the moldability is high and thinning is easy.
  • the forming speed here means the rotational speed of the roll.
  • the press linear pressure between the press rolls is not particularly specified, but is preferably 0.2 to 30 kN / cm, more preferably 0.5 to 10 kN / cm because the electrode strength can be increased.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the porous current collector is continuously supplied between a pair of rolls, and an electrode material is supplied to at least one of the rolls, so that the gap between the porous current collector and the rolls is increased.
  • An electrode material is supplied to the electrode layer, and an electrode layer can be formed by pressurization.
  • the porous current collector is conveyed in the horizontal direction, an electrode material is supplied onto the current collector, and an electrode material layer is formed.
  • the current collector is supplied between a pair of rolls, and the electrode layer can be formed by pressurization.
  • the thickness of the electrode material layer supplied between the pair of rolls is a value represented by (roll gap between the pair of rolls) / (current collector thickness + electrode material layer thickness). From the viewpoint of excellent properties, it is preferably 0.01 to 1, more preferably 0.05 to 0.75, and particularly preferably 0.1 to 0.5.
  • the post-pressing method is generally a press process using a roll.
  • the roll press process two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction.
  • the temperature of the roll may be adjusted by heating or cooling.
  • the electrochemical element of the present invention has an electrode for an electrochemical element obtained by the production method of the present invention.
  • An electrochemical element can be manufactured according to a conventional method using components such as an electrode obtained by the manufacturing method of the present invention, an electrolytic solution, and a separator. Specifically, for example, the electrode is cut into an appropriate size, and then the electrodes are overlapped through a separator, and then wound, folded, laminated, etc., and then put into a container, and an electrolyte is injected into the container. Can be manufactured by sealing.
  • the electrolytic solution is usually composed of an electrolyte and a solvent.
  • the electrolyte may be cationic or anionic.
  • As the cationic electrolyte (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used.
  • Imidazolium 1,3-Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1,3-Diethylimidazolium, 1,2,3-Trimethylimidazolium, 1,2,3,4-Tetra Methylimidazolium, 1,3,4-trimethyl-ethylimidazolium, 1,3-dimethyl-2,4-diethylimidazolium, 1,2-dimethyl-3,4-diethylimidazolium, 1-methyl-2, 3,4-triethylmethylimidazolium, 1,2,3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1,2,3 -Triethylimidazolium, etc.
  • anionic electrolyte PF 6 -, BF 4 - , AsF 6 -, SbF 6 -, N (RfSO 3) 2 -, C (RfSO 3) 3 -, RfSO 3 - (Rf respectively 1 -C To 12 fluoroalkyl groups), F—, ClO 4 —, AlCl 4 —, AlF 4 — and the like.
  • These electrolytes can be used alone or in combination of two or more.
  • the solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution.
  • Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile. These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • the electrochemical element of the present invention is obtained by impregnating the above element with an electrolytic solution.
  • the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it.
  • a device in which an element is previously impregnated with an electrolytic solution may be stored in a container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
  • separator for example, a microporous film made of polyolefin such as polyethylene or polypropylene, or a nonwoven fabric, a porous film mainly made of pulp called electrolytic capacitor paper can be used. Moreover, it can replace with a separator and a solid electrolyte can also be used.
  • each characteristic in an Example and a comparative example was measured in accordance with the following method.
  • the electrode layer thickness was measured using an eddy current displacement sensor (sensor head part EX-110V, amplifier unit part EX-V02: manufactured by Keyence Corporation) after forming electrode layers on both sides of the current collector.
  • the thickness of each electrode layer was measured at intervals of 10 cm in the longitudinal direction and at intervals of 2 cm in the width direction, and the average value thereof was taken as the thickness of the electrode layer.
  • the electrochemical capacitor was charged at a constant current of 15 mA.
  • a predetermined charging voltage was reached, the voltage was maintained to be constant voltage charging, and charging was completed when constant voltage charging was performed for 5 minutes.
  • the surface average porosity of the composite particles produced in the following examples and comparative examples was determined by the following method. First, an electron micrograph of the composite particles was measured at a magnification of 2000 times, and arbitrary particles were read into image analysis software (analySIS: Soft Imaging System) as black and white 256-gradation image data within a field of view of 20 ⁇ m 2 . The contrast is optimized so that the brightest part of the image is 255 and the darkest part is 0. Next, the threshold value is set to 77, binarization processing is performed, and the ratio of voids having an area of 0.1 ⁇ m 2 or more on the composite particle surface is obtained from the obtained binarized image. For the same particle, the same measurement is performed 5 times in any different field of view, and the same measurement is performed for 10 particles, and the average is the surface average porosity of the composite particles.
  • Example 1 100 parts of an electrode active material (activated carbon with a specific surface area of 2000 m 2 / g and a volume average particle size of 5 ⁇ m), 5 parts of a conductive material (acetylene black “Denka Black Powder” manufactured by Denki Kagaku Kogyo Co., Ltd.), a dispersion-type binder (40% aqueous dispersion of a cross-linked acrylate polymer having a number average particle size of 0.15 ⁇ m and a glass transition temperature of ⁇ 40 ° C .: “AD211”; manufactured by Nippon Zeon Co., Ltd.) 7.5 parts, carboxymethylcellulose as a dispersing agent Of 1.5% aqueous solution (“DN-800H”: manufactured by Daicel Chemical Industries, Ltd., weight average molecular weight of less than 300,000) and 231.8 parts of ion-exchanged water K.
  • an electrode active material activated carbon with a specific surface area of 2000 m 2 / g and a volume average particle
  • the mixture was stirred and mixed with a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a slurry having a solid content concentration of 25%.
  • a homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the slurry was spray-dried with hot air at 150 ° C. using a spray dryer (with a pin-type atomizer manufactured by Okawahara Kako Co., Ltd.), and spherical composite particles having a surface average porosity of 11% and a volume average particle size of 60 ⁇ m were obtained. Obtained.
  • an expanded metal having a thickness of 50 ⁇ m, an opening area of 37 area%, and an opening diameter of 1,000 ⁇ m is inserted as a porous current collector, and the composite particles supplied from the quantitative feeder are adhered to both sides of the expanded metal.
  • an electrochemical device electrode having an electrode layer with an average single-side thickness of 300 ⁇ m and an average single-side density of 0.50 g / cm 3 was obtained.
  • the electrode produced above was cut out so that the current collector sheet portion on which the electrode layer was not formed remained 2 cm long ⁇ 2 cm wide, and the portion where the electrode layer was formed was 5 cm long ⁇ 5 cm wide.
  • the collector sheet portion where the electrode layer is not formed is formed so as to extend one side of the 5 cm ⁇ 5 cm square where the electrode layer is formed.
  • 10 sets of positive electrodes and 11 sets of negative electrodes thus cut out were prepared, and the uncoated portions were ultrasonically welded. Furthermore, the current collector sheet portion in which the electrode layer is formed by laminating and welding the tab material having a length of 7 cm, a width of 1 cm and a thickness of 0.01 cm made of aluminum for the positive electrode and nickel for the negative electrode is measured by ultrasonic welding. An electrode was prepared.
  • the measurement electrode is vacuum-dried at 200 ° C. for 24 hours.
  • a cellulose / rayon mixed non-woven fabric with a thickness of 35 ⁇ m as a separator, the terminal welds of the positive electrode current collector and the negative electrode current collector are arranged on opposite sides, and the positive electrode and the negative electrode are alternated and laminated. All of the outermost electrodes were laminated so that all of them were negative electrodes. Separators were placed on the top and bottom, and four sides were taped.
  • Example 2 In Example 1, a punching metal having an opening area of 37 area% and an opening diameter of 0.1 ⁇ m was used as the current collector, and an electrochemical element electrode was obtained in the same manner as in Example 1 except that the molding speed was 40 m / min. It was. The results are shown in Table 1.
  • Example 3 an electrochemical element electrode was obtained in the same manner as in Example 2 except that a punching metal having an opening area of 60 area% and an opening diameter of 0.1 ⁇ m was used as the current collector. The results are shown in Table 1.
  • Example 4 An electrochemical element electrode was obtained in the same manner as in Example 3 except that the molding speed in Example 3 was changed to 60 m / min. The results are shown in Table 1.
  • Example 5 an electrochemical device electrode was obtained in the same manner as in Example 4 except that a punching metal having an opening area of 60 area% and an opening diameter of 3 ⁇ m was used as the current collector. The results are shown in Table 1.
  • Example 7 In Example 1, 1% of carboxymethylcellulose was used instead of 1.5% aqueous solution of carboxymethylcellulose (“DN-800H”: manufactured by Daicel Chemical Industries, Ltd.) as a dispersant used in preparing composite particles.
  • Spherical composite particles were obtained in the same manner as in Example 1, except that an aqueous solution (“BSH-12” (Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight: 330,000 to 380,000)) was used.
  • BSH-12 (Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight: 330,000 to 380,000)
  • the particles had a volume average particle size of 60 ⁇ m and a surface porosity of 25%
  • Example 6 an electrochemical device electrode was prepared in the same manner as in Example 6 except that the composite particles were used as the electrode material. The results are shown in Table 1.
  • Comparative Example 1 An electrochemical element electrode was obtained in the same manner as in Example 1 except that the molding speed was 6 m / min in Example 1. The results are shown in Table 1.
  • Comparative Example 2 An electrochemical element electrode was obtained in the same manner as in Example 4 except that the molding speed was 6 m / min in Example 7. The results are shown in Table 1.
  • the present invention relates to the subject matter contained in Japanese Patent Application No. 2008-46495 filed on Feb. 27, 2008, the entire disclosure of which is expressly incorporated herein by reference.

Abstract

Disclosed is a method for efficiently mass-producing an electrochemical device electrode which provides an electrochemical device having low resistance. The method for mass-producing an electrochemical device electrode comprises a step of supplying an electrode material to at least one surface of a porous collector, and a step of forming an electrode layer on the porous collector by pressing the porous collector and the electrode material against each other with a pair of rolls. The molding rate in the electrode layer-forming step is set at not less than 10 m/min. The porous collector preferably has an aperture ratio of 10-90% by area and an aperture diameter of 0.1-10 μm.

Description

電気化学素子電極の製造方法Method for producing electrochemical element electrode
 本発明は、電気二重層キャパシタやリチウムイオン二次電池などの電気化学素子に関し、特に電気二重層キャパシタに好適に用いられる電気化学素子電極(本明細書では単に「電極」と言うことがある。)の製造方法に関する。 The present invention relates to an electrochemical element such as an electric double layer capacitor and a lithium ion secondary battery, and particularly an electrochemical element electrode (herein referred to simply as “electrode”) that is preferably used for an electric double layer capacitor. ) Manufacturing method.
 小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能なリチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的に大きいことから携帯電話やノート型パーソナルコンピュータなどの分野で利用され、電気二重層キャパシタは、急激な充放電が可能なので、パソコン等のメモリバックアップ小型電源として利用されている。更に、電気二重層キャパシタは電気自動車用の大型電源としての応用が期待されている。また、高いエネルギー密度と充放電速度の両立を目指し、正極、負極の2つの電極のうち、一方にファラデー反応電極、他方に非ファラデー反応電極を使用するハイブリッドキャパシタも開発が進められている。また、金属酸化物や導電性高分子の表面の酸化還元反応(疑似電気二重層容量)を利用するレドックスキャパシタもその容量の大きさから注目を集めている。これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性の向上など、より一層の特性の改善が求められている。そのようななかで、電気化学素子の性能を向上させるために、電気化学素子電極を形成する方法についても様々な改善が行われている。 Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors that are small and light, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics. Lithium ion secondary batteries are used in mobile phones, notebook personal computers, and other fields because of their relatively high energy density, and electric double layer capacitors can be rapidly charged and discharged. It is used as a power source. Furthermore, the electric double layer capacitor is expected to be applied as a large power source for electric vehicles. Also, with the aim of achieving both high energy density and charge / discharge speed, a hybrid capacitor that uses a Faraday reaction electrode for one of the positive electrode and the negative electrode and a non-Faraday reaction electrode for the other has been developed. In addition, redox capacitors that utilize the oxidation-reduction reaction (pseudo electric double layer capacitance) on the surface of metal oxides or conductive polymers are also attracting attention due to their large capacity. With the expansion and development of applications, these electrochemical elements are required to further improve characteristics such as low resistance, high capacity, and improved mechanical characteristics. Under such circumstances, in order to improve the performance of the electrochemical device, various improvements have been made on the method of forming the electrochemical device electrode.
 電気化学素子電極は、例えば電極活物質等を含有する電極材料を集電体上に供給し、成形ロールでプレスすることで得ることができる。日本国特開2007-005747号公報には集電体上に定量フィーダーで電極材料を供給し、略水平に配置された一対のプレス用ロール又はベルトを用いた電気化学素子電極の製造方法が紹介されている。この文献の実施例では、厚さ50μmで空孔の割合が37面積%のエキスパンドメタルを集電体として使用し、成形速度6m/分で成形して電極厚みが480μmの電極を得ている。しかしながら、さらに抵抗の低い電気化学素子を与える電極が求められていた。 Electrochemical element electrodes can be obtained, for example, by supplying an electrode material containing an electrode active material or the like onto a current collector and pressing it with a forming roll. Japanese Unexamined Patent Publication No. 2007-005747 introduces a method of manufacturing an electrochemical element electrode using a pair of press rolls or belts arranged substantially horizontally by supplying an electrode material with a quantitative feeder onto a current collector. Has been. In the example of this document, an expanded metal having a thickness of 50 μm and a porosity of 37 area% is used as a current collector, and an electrode having an electrode thickness of 480 μm is obtained by molding at a molding speed of 6 m / min. However, there has been a demand for an electrode that provides an electrochemical element having a lower resistance.
 本発明の目的は、低抵抗の電気化学素子を与える電気化学素子電極を大量に効率よく製造する方法を提供することにある。 An object of the present invention is to provide a method for efficiently producing a large amount of electrochemical device electrodes that provide a low-resistance electrochemical device.
 本発明者は上記課題に鑑み鋭意検討した結果、多孔化集電体を用い、特定の成形速度で成形することにより電極材料からなる電極層が薄膜化し、低抵抗の電気化学素子を与える電気化学素子電極が得られることを見出した。さらに(プレス用ロールのロール間隙)/(集電体厚み+電極材料層厚み)が0.01~1、多孔化集電体の開口面積を10~90面積%、開口径を0.1~10μmにすることによりさらなる低抵抗化が可能であることを見出した。本発明者は、これらの知見に基づいて本発明を完成するに至ったものである。 As a result of diligent investigations in view of the above problems, the present inventor has obtained a low-resistance electrochemical element by thinning an electrode layer made of an electrode material by molding at a specific molding speed using a porous current collector. It has been found that a device electrode can be obtained. Further, (roll gap of press roll) / (current collector thickness + electrode material layer thickness) is 0.01 to 1, the opening area of the porous collector is 10 to 90 area%, and the opening diameter is 0.1 to It has been found that the resistance can be further reduced by setting the thickness to 10 μm. The present inventor has completed the present invention based on these findings.
 本発明によれば、多孔化集電体上に電極材料を供給する工程、および前記多孔化集電体と前記電極材料とを一対のロールで加圧して多孔化集電体上に電極層を形成する工程からなり、前記電極材料からなる電極層を形成する工程における成形速度が10m/分以上である電気化学素子電極の製造方法が提供される。また、本発明によれば前記製造方法により得られた電気化学素子電極を備える電気化学素子が提供される。 According to the present invention, a step of supplying an electrode material onto the porous current collector, and an electrode layer is formed on the porous current collector by pressing the porous current collector and the electrode material with a pair of rolls. The manufacturing method of the electrochemical element electrode which consists of the process to form and the shaping | molding speed | rate in the process of forming the electrode layer which consists of said electrode material is 10 m / min or more is provided. Moreover, according to this invention, an electrochemical element provided with the electrochemical element electrode obtained by the said manufacturing method is provided.
 本発明によれば、電極層の薄膜化が容易で、低抵抗の電気化学素子電極を大量に効率よく製造できる。本発明の製造方法によって得られる高出力電気化学素子電極は電気二重層キャパシタや二次電池等いろいろな用途に好適に用いられる。 According to the present invention, the electrode layer can be easily thinned, and a low-resistance electrochemical device electrode can be efficiently produced in large quantities. The high-power electrochemical element electrode obtained by the production method of the present invention is suitably used for various applications such as electric double layer capacitors and secondary batteries.
 本発明に用いる電極材料は、電気化学素子電極を得るために使用されるものであり、具体的には、電極活物質、導電材および結着剤を必須成分とし、必要に応じさらに分散材やその他の添加剤などを含有することができる。 The electrode material used in the present invention is used to obtain an electrochemical element electrode. Specifically, an electrode active material, a conductive material, and a binder are essential components, and if necessary, a dispersion material or Other additives and the like can be contained.
 電極活物質とは電極内で電子の受け渡しをする物質である。電極活物質には主としてリチウムイオン二次電池用活物質や、電気二重層キャパシタ用活物質がある。 Electrode active material is a material that transfers electrons in the electrode. The electrode active material mainly includes an active material for a lithium ion secondary battery and an active material for an electric double layer capacitor.
 リチウムイオン二次電池用活物質には、正極用、負極用がある。リチウムイオン二次電池の正極用の電極活物質としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化物;が例示される。さらに、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子が挙げられる。リチウムイオン二次電池の負極用の電極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。 Examples of the active material for a lithium ion secondary battery include a positive electrode and a negative electrode. As an electrode active material for a positive electrode of a lithium ion secondary battery, lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non Transition metal sulfides such as crystalline MoS 3 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O · P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 ; Illustrated. Further examples include conductive polymers such as polyacetylene and poly-p-phenylene. Examples of the electrode active material for the negative electrode of the lithium ion secondary battery include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; high conductivity such as polyacene Examples include molecules.
 リチウムイオン二次電池の電極に使用する電極活物質は球形の粒子に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。また、体積平均粒径分布は、1μm程度の細かな粒子と3~8μmの比較的大きな粒子の混合物や、0.5~8μmにブロードな粒径分布を持つ粒子が好ましい。粒径が50μm以上の粒子は篩い分けなどにより除去して用いるのが好ましい。電極活物質のASTMD4164で規定されるタップ密度は特に制限されないが、正極では2g/cm以上、負極では0.6g/cm以上のものが好適に用いられる。 The electrode active material used for the electrode of the lithium ion secondary battery is preferably sized into spherical particles. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding. The volume average particle size distribution is preferably a mixture of fine particles of about 1 μm and relatively large particles of 3 to 8 μm, or particles having a broad particle size distribution of 0.5 to 8 μm. Particles having a particle size of 50 μm or more are preferably used after being removed by sieving. The tap density defined by ASTM D4164 of the electrode active material is not particularly limited, and those having a positive electrode of 2 g / cm 3 or more and those of a negative electrode of 0.6 g / cm 3 or more are preferably used.
 電気二重層キャパシタ用の電極活物質としては、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。電気二重層キャパシタ用の好ましい電極活物質は活性炭であり、具体的にはフェノール系、レーヨン系、アクリル系、ピッチ系、又はヤシガラ系等の活性炭を挙げることができる。 An allotrope of carbon is usually used as the electrode active material for the electric double layer capacitor. Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used. A preferable electrode active material for the electric double layer capacitor is activated carbon, and specific examples include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based activated carbon.
 電気二重層キャパシタ用の電極活物質の比表面積は、通常30m/g以上、好ましくは500~5,000m/g、より好ましくは1,000~3,000m/gである。 The specific surface area of the electrode active material for an electric double layer capacitor is usually 30 m 2 / g or more, preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g.
 電気二重層キャパシタ用の電極活物質の体積平均粒径は、通常0.1~100μm、好ましくは1~50μm、更に好ましくは5~20μmの粉末である。この範囲の体積平均粒径の活物質を用いると、電気二重層キャパシタ用電極の薄膜化が容易で、静電容量も高くできる。 The volume average particle diameter of the electrode active material for the electric double layer capacitor is usually 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 5 to 20 μm. When an active material having a volume average particle diameter in this range is used, the electric double layer capacitor electrode can be easily thinned and the capacitance can be increased.
 これらの電極活物質は、電気化学素子の種類に応じて、単独でまたは二種類以上を組み合わせて使用することができる。 These electrode active materials can be used alone or in combination of two or more depending on the type of electrochemical element.
 導電材とは、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、電気化学素子電極の導電性を向上させうるものである。導電材の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベルケミカルズベスローテンフェンノートシャップ社の登録商標)などの導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;が挙げられる。これらの中でも、導電性カーボンブラックが好ましく、アセチレンブラックおよびファーネスブラックがより好ましい。 The conductive material is made of a particulate carbon allotrope having conductivity and no pores capable of forming an electric double layer, and can improve the conductivity of the electrochemical element electrode. Specific examples of the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennot Shap); graphite such as natural graphite and artificial graphite; Can be mentioned. Among these, conductive carbon black is preferable, and acetylene black and furnace black are more preferable.
 導電材の体積平均粒径は、電極活物質の体積平均粒径よりも小さいことが好ましく、通常0.001~10μm、好ましくは0.05~5μm、より好ましくは0.01~1μmの範囲である。導電材の粒径がこの範囲にあると、より少ない使用量で高い導電性が得られる。 The volume average particle diameter of the conductive material is preferably smaller than the volume average particle diameter of the electrode active material, and is usually in the range of 0.001 to 10 μm, preferably 0.05 to 5 μm, more preferably 0.01 to 1 μm. is there. When the particle size of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use.
 これらの導電材は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。導電材の量は、電極活物質100重量部に対して、通常0.1~50重量部、好ましくは0.5~15重量部、より好ましくは1~10重量部の範囲である。導電材の量がこの範囲にある電極を使用すると電気化学素子の容量を高く且つ内部抵抗を低くすることができる。 These conductive materials can be used alone or in combination of two or more. The amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When an electrode having an amount of the conductive material within this range is used, the capacity of the electrochemical element can be increased and the internal resistance can be decreased.
 結着剤とは、電極活物質や導電材などを結着させることができる化合物である。例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素系重合体、ジエン系重合体、及びアクリレート系重合体が挙げられる。 The binder is a compound that can bind an electrode active material, a conductive material, or the like. For example, polymer compounds such as fluorine-based polymers, diene-based polymers, acrylate-based polymers, polyimides, polyamides, and polyurethanes are preferable, and fluorine-based polymers, diene-based polymers, and acrylate-based polymers are preferable. It is done.
 フッ素系重合体はフッ素原子を含む単量体単位を含有する重合体である。フッ素系重合体中のフッ素を含有する単量体単位の割合は通常50重量%以上である。フッ素系重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂が挙げられ、ポリテトラフルオロエチレンが好ましい。 A fluoropolymer is a polymer containing a monomer unit containing a fluorine atom. The ratio of the monomer unit containing fluorine in the fluoropolymer is usually 50% by weight or more. Specific examples of the fluorine-based polymer include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, and polytetrafluoroethylene is preferable.
 ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBRなどが挙げられる。 The diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof. The proportion of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Examples include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
 アクリレート系重合体は、アクリル酸エステルおよび/またはメタクリル酸エステルの単独重合体またはこれらを含む単量体混合物を重合して得られる共重合体である。前記単量体混合物におけるアクリル酸エステルおよび/またはメタクリル酸エステルの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。 The acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and / or methacrylic ester or a monomer mixture containing these. The ratio of acrylic acid ester and / or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
 アクリレート系重合体の具体例としては、アクリル酸2-エチルヘキシル・メタクリル酸・アクリロニトリル・エチレングリコールジメタクリレート共重合体、アクリル酸2-エチルヘキシル・メタクリル酸・メタクリロニトリル・ジエチレングリコールジメタクリレート共重合体、アクリル酸2-エチルヘキシル・スチレン・メタクリル酸・エチレングリコールジメタクリレート共重合体、アクリル酸ブチル・アクリロニトリル・ジエチレングリコールジメタクリレート共重合体、およびアクリル酸ブチル・アクリル酸・トリメチロールプロパントリメタクリレート共重合体などの架橋型アクリレート系重合体;エチレン・アクリル酸メチル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸エチル共重合体、およびエチレン・メタクリル酸エチル共重合体などのエチレンとアクリル酸(またはメタクリル酸)エステルとの共重合体;上記エチレンとアクリル酸(またはメタクリル酸)エステルとの共重合体にラジカル重合性単量体をグラフトさせたグラフト重合体;などが挙げられる。なお、上記グラフト重合体に用いられるラジカル重合性単量体としては、例えば、メタクリル酸メチル、アクリロニトリル、メタクリル酸などが挙げられる。その他に、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体などのエチレンとアクリル酸(またはメタクリル酸)との共重合体等が結着剤として使用できる。 Specific examples of the acrylate polymer include 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / methacrylic acid / methacrylonitrile / diethylene glycol dimethacrylate copolymer, acrylic Crosslinking of 2-ethylhexyl acid / styrene / methacrylic acid / ethylene glycol dimethacrylate copolymer, butyl acrylate / acrylonitrile / diethylene glycol dimethacrylate copolymer, and butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymer Type acrylate polymer; ethylene / methyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene / ethyl acrylate copolymer, A copolymer of ethylene and acrylic acid (or methacrylic acid) such as ethylene / ethyl methacrylate copolymer; a radical polymerizable monomer in the above copolymer of ethylene and acrylic acid (or methacrylic acid) And the like, and the like. In addition, as a radically polymerizable monomer used for the said graft polymer, methyl methacrylate, acrylonitrile, methacrylic acid etc. are mentioned, for example. In addition, a copolymer of ethylene and acrylic acid (or methacrylic acid) such as an ethylene / acrylic acid copolymer and an ethylene / methacrylic acid copolymer can be used as a binder.
 結着剤は、その形状によって特に制限はないが、結着性が良く、また、作成した電極の静電容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのごとき分散型結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The binder is not particularly limited depending on its shape, but has good binding properties, and can be prevented from being deteriorated due to a decrease in the capacitance of the created electrode or repeated charge / discharge, so that it is particulate. Is preferred. Examples of the particulate binder include those in which particles of a dispersion-type binder such as latex are dispersed in water, and powders obtained by drying such a dispersion.
 粒子状の結着剤の数平均粒径は、格別な限定はないが、通常は0.0001~100μm、好ましくは0.001~10μm、より好ましくは0.01~1μmである。結着剤の数平均粒径がこの範囲であるときは、少量の結着剤の使用でも優れた結着力を電極層に与えることができる。ここで、数平均粒径は、透過型電子顕微鏡写真で無作為に選んだ結着剤粒子100個の径を測定し、その算術平均値として算出される個数平均粒径である。粒子の形状は球形、異形、どちらでもかまわない。 The number average particle diameter of the particulate binder is not particularly limited, but is usually 0.0001 to 100 μm, preferably 0.001 to 10 μm, more preferably 0.01 to 1 μm. When the number average particle diameter of the binder is within this range, an excellent binding force can be imparted to the electrode layer even when a small amount of the binder is used. Here, the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular.
 これら結着剤は単独で又は二種以上を組み合わせて用いることができる。結着剤の使用量は、電極活物質100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。 These binders can be used alone or in combination of two or more. The amount of the binder used is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. .
 電極材料にはその他に分散材を含有していることが好ましい。分散材とはスラリーの溶媒に溶解させて用いられ、電極活物質、導電材等を溶媒に均一に分散させる作用をさらに有するものである。例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの分散材は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。 It is preferable that the electrode material further contains a dispersing agent. The dispersing material is used by being dissolved in a slurry solvent, and further has an action of uniformly dispersing the electrode active material, the conductive material and the like in the solvent. For example, cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and ammonium salts or alkali metal salts thereof; polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid); polyvinyl Examples include alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These dispersing agents can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
 分散材の使用量は、格別な限定はないが、電極活物質100重量部に対して、通常は0.1~10重量部、好ましくは0.5~5重量部、より好ましくは0.8~2重量部の範囲である。分散材を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。また、噴霧乾燥時のアトマイザーの詰まりを防止することができるので、噴霧乾燥を安定して連続的に行うことができる。また、後述する複合粒子表面の表面平均空隙率を上げるため、具体的には表面平均空隙率を15%以上にするためには、重量平均分子量が30万以上の分散材を使用することが好ましい。 The amount of the dispersing agent used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the electrode active material. It is in the range of up to 2 parts by weight. By using the dispersing material, it is possible to suppress sedimentation and aggregation of the solid content in the slurry. Moreover, since the clogging of the atomizer at the time of spray drying can be prevented, spray drying can be performed stably and continuously. Further, in order to increase the surface average porosity of the composite particle surface described later, specifically, in order to increase the surface average porosity to 15% or more, it is preferable to use a dispersion material having a weight average molecular weight of 300,000 or more. .
 その他の添加剤としては、例えば、界面活性剤がある。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオンなどの両性の界面活性剤が挙げられるが、中でもアニオン性若しくはノニオン性の界面活性剤で熱分解しやすいものが好ましい。 Other additives include, for example, surfactants. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable.
 界面活性剤は単独で又は二種以上を組み合わせて用いることができる。界面活性剤の量は、格別な限定はないが、電極活物質100重量部に対して0~50重量部、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の範囲である。 Surfactants can be used alone or in combination of two or more. The amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
 本発明に使用される電極材料は、上記電極活物質、導電材、結着剤を必須成分として、必要に応じて分散材、その他の添加剤を含有してなる。好適に用いられる電極材料は上記成分を複合して含有する粒子形状のもの(以下、複合粒子ということがある。)である。この複合粒子は、通常、電極活物質、導電材、結着剤を少なくとも含有し、前記電極活物質及び導電材が結着剤により結着されてなるもので構成されていることが好ましい。 The electrode material used in the present invention comprises the above electrode active material, conductive material, and binder as essential components, and contains a dispersing agent and other additives as necessary. A suitably used electrode material is in the form of particles containing the above components in a composite (hereinafter sometimes referred to as composite particles). It is preferable that the composite particles usually include at least an electrode active material, a conductive material, and a binder, and the electrode active material and the conductive material are bound by a binder.
 複合粒子の製造方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電助剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の電極を高い生産性で得ることができる。また、該電極を用いて得られる電気化学素子の内部抵抗をより低減することができる。 The production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder and the conductive auxiliary agent are unevenly distributed near the surface can be easily obtained. When composite particles obtained by the spray drying granulation method are used, the electrode of the present invention can be obtained with high productivity. Moreover, the internal resistance of the electrochemical element obtained using this electrode can be reduced more.
 本発明に好適に使用される複合粒子は、電極活物質、導電材及び結着剤を含むスラリーを噴霧乾燥して得られた粒子であることが好ましい。前記複合粒子が、上記電極活物質、導電材及び結着剤を含むスラリーを噴霧乾燥して得られた粒子であることにより、本発明の電気化学素子電極を高い生産性で得ることができ、かつ該電極の内部抵抗をより低減することができる。 The composite particles suitably used in the present invention are preferably particles obtained by spray drying a slurry containing an electrode active material, a conductive material and a binder. The composite particles are particles obtained by spray-drying the slurry containing the electrode active material, the conductive material and the binder, so that the electrochemical device electrode of the present invention can be obtained with high productivity, In addition, the internal resistance of the electrode can be further reduced.
 前記スラリーは、電極活物質、導電材、結着剤の必須成分の他に、分散材やその他の添加剤などの任意成分を、溶媒に分散または溶解させることにより得ることができる。 The slurry can be obtained by dispersing or dissolving optional components such as a dispersing agent and other additives in addition to the essential components of the electrode active material, the conductive material, and the binder.
 複合粒子を得るためのスラリーに用いる溶媒として、通常、水が用いられるが、有機溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルキルアルコール類;アセトン、メチルエチルケトンなどのアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;などが挙げられるが、アルコール類が好ましい。水よりも沸点の低い有機溶媒を併用すると、噴霧乾燥法による造粒時に、乾燥速度を速くすることができる。また、分散型結着剤の分散性又は溶解型樹脂の溶解性が溶媒の種類によって変るので、スラリーの粘度や流動性を有機溶媒の量又は種類を選択することにより調整し、噴霧乾燥の生産効率を向上させることができる。 As the solvent used in the slurry for obtaining composite particles, water is usually used, but an organic solvent may be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide, N-methyl- Examples include amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and alcohols are preferable. When an organic solvent having a lower boiling point than water is used in combination, the drying rate can be increased during granulation by the spray drying method. In addition, since the dispersibility of the dispersion-type binder or the solubility of the soluble resin varies depending on the type of solvent, the viscosity and fluidity of the slurry are adjusted by selecting the amount or type of organic solvent, and spray drying production Efficiency can be improved.
 スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常は1~50重量%、好ましくは5~50重量%、より好ましくは10~30重量%の範囲となるような量である。 The amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. Amount.
 電極活物質、導電材、結着剤、及び前記任意成分を溶媒に分散又は溶解する方法又は手順は特に限定されず、例えば、溶媒に電極活物質、導電材、結着剤、及び前記他の成分を添加し混合する方法;溶媒に分散させた結着剤(例えば、ラテックス)を添加して混合し、電極活物質、導電材及び前記任意成分を添加して混合する方法;電極活物質、導電材及び前記任意成分を溶媒に分散させたものを、結着剤に添加して混合する方法などが挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどの混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分間~数時間行う。 A method or a procedure for dispersing or dissolving the electrode active material, the conductive material, the binder, and the optional component in the solvent is not particularly limited. For example, the electrode active material, the conductive material, the binder, and the other components in the solvent A method of adding and mixing components; a method of adding and mixing a binder (for example, latex) dispersed in a solvent; and a method of adding and mixing an electrode active material, a conductive material and the optional component; an electrode active material; Examples include a method in which a conductive material and the above-mentioned optional component dispersed in a solvent are added to a binder and mixed. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
 噴霧乾燥法は、熱風中にスラリーを噴霧して乾燥する方法である。噴霧乾燥法に用いる装置の代表例としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際に霧状にして乾燥する方式である。 The spray drying method is a method in which slurry is sprayed and dried in hot air. A typical example of the apparatus used for the spray drying method is an atomizer. There are two types of atomizers: a rotating disk method and a pressure method. The rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at high speed, and the slurry is released from the disk by the centrifugal force of the disk, and in that case, the slurry is dried in the form of a mist.
 円盤の回転速度は円盤の大きさに依存するが、通常は5,000~30,000rpm、好ましくは15,000~30,000rpmである。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。 The rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm. On the other hand, the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥法において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式などが挙げられる。さらに、複合粒子の表面を硬化させるために加熱処理する。熱処理温度は、通常80~300℃である。 The temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher. The hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C. In the spray drying method, the method of blowing hot air is not particularly limited. Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact. Furthermore, heat treatment is performed to cure the surface of the composite particles. The heat treatment temperature is usually 80 to 300 ° C.
 本発明に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、透過型電子顕微鏡写真像より測定される値である。 The shape of the composite particles suitably used in the present invention is preferably substantially spherical. That is, when the short axis diameter of the composite particles is Ls, the long axis diameter is Ll, La = (Ls + Ll) / 2, and the value of (1− (Ll−Ls) / La) × 100 is sphericity (%). The sphericity is preferably 80% or more, more preferably 90% or more. Here, the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
 本発明に好適に用いる複合粒子の体積平均粒子径は、通常10~100μm、好ましくは20~80μm、より好ましくは30~60μmの範囲である。体積平均粒子径は、レーザ回折式粒度分布測定装置を用いて測定することができる。 The volume average particle diameter of the composite particles suitably used in the present invention is usually in the range of 10 to 100 μm, preferably 20 to 80 μm, more preferably 30 to 60 μm. The volume average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
 本発明に好適に用いる複合粒子は、表面平均空隙率が、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは20%以上40%以下である。ここで、「表面平均空隙率」は、複合粒子1つあたり、5視野以上(それぞれ異なる視野で)で、かつ10粒子以上について、複合粒子の表面において、0.1μm以上の空隙の見掛けの面積を測定し、全視野面積に対する空隙の見掛けの表面積の割合(%)(以下、「空隙率」と記載することがある)の平均値として得られる値である。複合粒子の表面平均空隙率が15%未満であると、複合粒子中の電解質イオンの拡散抵抗が大きくなり、これを用いて得られる電極の抵抗が大きくなる。本発明に好適に用いる複合粒子の表面平均空隙率を15%以上にするためには、複合粒子を作製する際に、重量平均分子量が30万以上の分散材を使用することにより達成可能である。 The composite particles suitably used in the present invention have a surface average porosity of preferably 15% or more, more preferably 20% or more, and further preferably 20% or more and 40% or less. Here, the “surface average porosity” is an apparent appearance of voids of 0.1 μm 2 or more on the surface of the composite particle for 5 particles or more (each with different fields of view) and 10 particles or more per composite particle. This is a value obtained as an average value of the ratio (%) of the apparent surface area of the void to the entire visual field area (hereinafter, sometimes referred to as “void ratio”). When the surface average porosity of the composite particles is less than 15%, the diffusion resistance of the electrolyte ions in the composite particles increases, and the resistance of the electrode obtained by using this increases. In order to increase the surface average porosity of the composite particles suitably used in the present invention to 15% or more, it can be achieved by using a dispersion material having a weight average molecular weight of 300,000 or more when producing the composite particles. .
 具体的には、表面平均空隙率は、本発明で好適に用いる複合粒子について、電子顕微鏡写真を撮影し、任意に選択した1粒子当たり、5視野以上を観察し、面積が0.1μm以上の連続した空隙の見掛け上の表面積を測定し、10粒子以上について同様の測定を行い、得られた空隙率の平均値として算出する。なお、空隙の見掛け上の表面積とは、電子顕微鏡写真上で観察される空隙の開口部の表面積相当の面積であり、空隙の細孔内の面積等を考慮に入れた実際の面積ではない。個々の複合粒子を見た場合には、空隙率が15%未満の複合粒子も含まれることがあるが、空隙率が15%以上の粒子を多く含むため、全体の表面平均空隙率は、上記のように高くなる。 Specifically, the surface average porosity is obtained by taking an electron micrograph of the composite particles suitably used in the present invention, observing 5 fields or more per arbitrarily selected particle, and having an area of 0.1 μm 2 or more. The apparent surface area of the continuous voids is measured, the same measurement is performed for 10 particles or more, and the average value of the obtained void ratios is calculated. The apparent surface area of the void is an area corresponding to the surface area of the opening of the void observed on the electron micrograph, and is not an actual area taking into consideration the area in the pores of the void. When individual composite particles are seen, composite particles having a porosity of less than 15% may be included, but since the porosity includes a large number of particles having a porosity of 15% or more, the overall surface average porosity is As high as
 本発明に好適な複合粒子は、微小圧縮試験機によって荷重速度0.9mN/secで最大荷重9.8mNまで圧縮したときの粒径変位率が通常5~70%、好ましくは20~50%である。粒径変位率は、複合粒子の圧縮前の粒径Dに対する、圧縮による粒径の減少量(ΔD=D-D)の割合(=ΔD/D×100)である。なお、Dは荷重を掛けているときの粒径で荷重量に応じて変化する値である。 The composite particles suitable for the present invention usually have a particle size displacement rate of 5 to 70%, preferably 20 to 50% when compressed to a maximum load of 9.8 mN at a load speed of 0.9 mN / sec using a micro compression tester. is there. The particle size displacement rate is a ratio (= ΔD / D 0 × 100) of the amount of particle size reduction (ΔD = D 0 −D 1 ) due to compression to the particle size D 0 before compression of the composite particles. Incidentally, D 1 is a value that varies according to the load amount of the particle diameter when being under a load.
 また、本発明に好適に用いられる複合粒子は、微小圧縮試験機によって荷重速度0.9mN/秒で最大荷重9.8mNまで圧縮したときの、単位秒あたりの粒径変位率変化量が好ましくは25%以下、より好ましくは10%以下、特に好ましくは7%以下である。単位秒あたりの粒径変位率変化量は、荷重速度0.9mN/秒で荷重が増えていったときの粒径変位率の単位秒あたりの変化量である。微小圧縮試験機によって測定される最大荷重9.8mNまで圧縮したときの粒径変位率は、複合粒子の形状維持力を示すために必要な数値である。該粒径変位率が小さ過ぎると、加圧によってもほとんど複合粒子が変形しないので、粒子同士の接触面積が小さく、導電性が高くならない。一方、粒径変位率が大き過ぎると、複合粒子が圧壊し、複合粒子中に形成された導電材及び電極活物質によるネットワークが壊れ、導電性が低下する。また、単位秒あたりの粒径変位率変化量は、圧壊の有無を判断する一指標である。圧壊が起きると、粒径が急激に小さくなるので、単位秒あたりの粒径変位率変化量が25%を超える。圧壊によって、複合粒子中に形成された導電材及び電極活物質によるネットワークが壊れ、導電性が低下する。最大荷重9.8mNまで圧縮したときの粒径変位率が5~70%である複合粒子は、適度な柔らかさを持つので、粒子同士の接触面積が大きい。そして、圧壊しないので、導電材及び電極活物質のネットワークが維持される。これら複合粒子は単独で又は二種以上を組み合わせて用いることができる。 In addition, the composite particles suitably used in the present invention preferably have a change amount of particle size displacement rate per unit second when compressed to a maximum load of 9.8 mN at a load speed of 0.9 mN / sec by a micro compression tester. It is 25% or less, more preferably 10% or less, and particularly preferably 7% or less. The change amount of the particle size displacement rate per unit second is the change amount per unit second of the particle size change rate when the load is increased at a load speed of 0.9 mN / second. The particle size displacement rate when compressed to a maximum load of 9.8 mN measured by a micro-compression tester is a numerical value necessary to show the shape maintenance force of the composite particles. If the particle size displacement rate is too small, the composite particles are hardly deformed even by pressurization, so that the contact area between the particles is small and the conductivity is not increased. On the other hand, when the particle size displacement rate is too large, the composite particles are crushed, the network formed by the conductive material and the electrode active material formed in the composite particles is broken, and the conductivity is lowered. Further, the change amount of the particle size displacement rate per unit second is an index for determining the presence or absence of crushing. When crushing occurs, the particle size decreases rapidly, so the amount of change in particle size displacement rate per unit second exceeds 25%. By crushing, the network formed by the conductive material and the electrode active material formed in the composite particles is broken, and the conductivity is lowered. Composite particles having a particle size displacement rate of 5 to 70% when compressed to a maximum load of 9.8 mN have moderate softness, so that the contact area between the particles is large. And since it does not crush, the network of an electroconductive material and an electrode active material is maintained. These composite particles can be used alone or in combination of two or more.
 本発明に使用される多孔化集電体とは、表裏貫通孔を有する集電機能を有する電極基体である。その材料としては、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面からアルミニウムまたはアルミニウム合金を使用するのが好ましい。集電体の空孔の形状としては、四角形、菱形、亀甲形状、六角形、丸形、星形、十文字形などが挙げられる。空孔を有するシート状集電体の具体例としては、平板を菱形や亀甲形の網状に展開して得られるエキスパンドメタル、平板に穿孔して得られるパンチングメタル、金属線や金属帯を平織り若しくはあや織りして又はクリンプ金属線を嵌め合わせて得られる金網などが挙げられる。 The porous current collector used in the present invention is an electrode substrate having a current collecting function having front and back through holes. As the material, for example, metal, carbon, conductive polymer, and the like can be used, and metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use aluminum or an aluminum alloy in terms of conductivity and voltage resistance. Examples of the shape of the current collector holes include a quadrangle, a rhombus, a turtle shell, a hexagon, a circle, a star, and a cross. Specific examples of the sheet-like current collector having pores include expanded metal obtained by expanding a flat plate into a rhombus or turtle shell-shaped net, punching metal obtained by perforating a flat plate, or a metal wire or a metal band plain weave or Examples thereof include a wire net obtained by twilling or fitting a crimp metal wire.
 本発明に使用される多孔化集電体の開口率は、特に規定はされないが、強度と成形速度を高くできるので好ましくは10~90面積%、より好ましくは40~60面積%である。開口径は、特に規定はされないが、成形速度を高くできるので、通常0.01~10μm、より好ましくは1~5μmである。ここでいう開口径とは、開口部の外接円の直径である。外接円の直径は、レーザー顕微鏡や工具顕微鏡などにより集電体の表面観察を行い、開口部に外接円をフィッティングさせ、それを平均化したものである。多孔化集電体の厚さは、使用目的に応じて適宜選択されるが、高い強度と低抵抗とを両立するとの観点から、好ましくは10~100μm、より好ましくは50~100μmである。 The aperture ratio of the porous current collector used in the present invention is not particularly specified, but is preferably 10 to 90 area%, more preferably 40 to 60 area%, because the strength and molding speed can be increased. The opening diameter is not particularly specified, but is usually 0.01 to 10 μm, more preferably 1 to 5 μm because the molding speed can be increased. The opening diameter here is a diameter of a circumscribed circle of the opening. The diameter of the circumscribed circle is obtained by observing the surface of the current collector with a laser microscope or a tool microscope, fitting the circumscribed circle to the opening, and averaging the results. The thickness of the porous current collector is appropriately selected according to the purpose of use, but is preferably 10 to 100 μm, more preferably 50 to 100 μm from the viewpoint of achieving both high strength and low resistance.
 また集電体は、その表面に導電性接着剤を塗布したものを用いてもよい。導電性接着剤は、導電助剤の粉末と結着剤と、必要に応じ添加される分散剤とを水または有機溶媒中に分散させたものである。導電性接着剤の導電助剤としては、銀、ニッケル、金、黒鉛、アセチレンブラック、ケッチェンブラックが挙げられ、好ましくは黒鉛、アセチレンブラックである。導電性接着剤の結着剤としては、上記本発明の電極の電極層に使用される結着剤として例示したものをいずれも使用できる。また、水ガラス、エポキシ樹脂、ポリアミドイミド樹脂、ウレタン樹脂等も用いることができ、それぞれ単独でまたは2種以上を組み合わせて使用できる。導電性接着剤の結着剤は好ましくは、アクリレート系重合体、カルボキシメチルセルロースのアンモニウム塩またはアルカリ金属塩、水ガラス、ポリアミドイミド樹脂である。また、導電性接着剤の分散剤としては、上記本発明の電極の電極層に使用してもよい分散剤、または界面活性剤を用いることができる。 Further, the current collector may be one obtained by applying a conductive adhesive on the surface thereof. The conductive adhesive is obtained by dispersing a conductive auxiliary powder, a binder, and a dispersant added as necessary in water or an organic solvent. Examples of the conductive assistant for the conductive adhesive include silver, nickel, gold, graphite, acetylene black, and ketjen black, and graphite and acetylene black are preferable. As the binder of the conductive adhesive, any of those exemplified as the binder used in the electrode layer of the electrode of the present invention can be used. Moreover, water glass, an epoxy resin, a polyamideimide resin, a urethane resin, etc. can also be used, and each can be used individually or in combination of 2 or more types. The binder of the conductive adhesive is preferably an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or polyamideimide resin. Moreover, as a dispersing agent of a conductive adhesive, a dispersing agent or a surfactant that may be used for the electrode layer of the electrode of the present invention can be used.
 本発明では、上記多孔化集電体上の少なくとも一表面に上記電極材料を供給する。電極材料を供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて電極材料を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。 In the present invention, the electrode material is supplied to at least one surface of the porous current collector. The feeder used in the step of supplying the electrode material is not particularly limited, but is preferably a quantitative feeder capable of supplying composite particles quantitatively. Here, being able to supply quantitatively means that the electrode material is continuously supplied using such a feeder, the supply amount is measured a plurality of times at regular intervals, and the average value m of the measured values and the standard deviation σm are obtained. It means that the CV value (= σm / m × 100) is 4 or less. The quantitative feeder used in the present invention preferably has a CV value of 2 or less. Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
 次いで、前記多孔化集電体と供給された電極材料とを一対のロールで加圧して、多孔化集電体上に電極層を形成する。この工程では、必要に応じ加温された前記電極材料が、一対のロールでシート状の電極層に成形される。供給される電極材料の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある電極材料を用いると、プレス用ロールの表面で電極材料の滑りがなく、電極材料が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、電気化学素子電極用シートを得ることができる。 Next, the porous current collector and the supplied electrode material are pressurized with a pair of rolls to form an electrode layer on the porous current collector. In this step, the electrode material heated as necessary is formed into a sheet-like electrode layer by a pair of rolls. The temperature of the electrode material supplied is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When an electrode material in this temperature range is used, there is no slip of the electrode material on the surface of the press roll, and the electrode material is continuously and uniformly supplied to the press roll. An electrochemical element electrode sheet with small variations can be obtained.
 成形時の温度は、通常0~200℃であり、結着剤の融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常10m/分以上、成形性が高く薄膜化が容易なので、好ましくは20~200m/分、さらに好ましくは30~80m/分である。ここでいう成形速度とは、ロールの回転速度を意味する。またプレス用ロール間のプレス線圧は、特に規定はされないが、電極強度を高くできるので好ましくは0.2~30kN/cm、より好ましくは0.5~10kN/cmである。 The molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature. When a roll is used, the forming speed is usually 10 m / min or more, and it is preferably 20 to 200 m / min, and more preferably 30 to 80 m / min, because the moldability is high and thinning is easy. The forming speed here means the rotational speed of the roll. The press linear pressure between the press rolls is not particularly specified, but is preferably 0.2 to 30 kN / cm, more preferably 0.5 to 10 kN / cm because the electrode strength can be increased.
 本発明の製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、前記多孔化集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に電極材料を供給することで、多孔化集電体とロールとの間隙に電極材料が供給され、加圧により電極層を形成できる。略垂直に配置する場合は、前記多孔化集電体を水平方向に搬送させ、該集電体上に電極材料を供給し、電極材料層を形成する。供給された電極材料層を必要に応じブレード等で均一にした後、該集電体を一対のロール間に供給し、加圧により電極層を形成できる。この場合において、一対のロール間に供給される電極材料層の厚さは、(前記一対のロールのロール間隙)/(集電体厚み+電極材料層厚さ)で表される値で、成形性に優れるとの観点から、好ましくは0.01~1、より好ましくは0.05~0.75、特に好ましくは0.1~0.5である。 In the production method of the present invention, the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically. When arranged substantially horizontally, the porous current collector is continuously supplied between a pair of rolls, and an electrode material is supplied to at least one of the rolls, so that the gap between the porous current collector and the rolls is increased. An electrode material is supplied to the electrode layer, and an electrode layer can be formed by pressurization. In the case of disposing substantially vertically, the porous current collector is conveyed in the horizontal direction, an electrode material is supplied onto the current collector, and an electrode material layer is formed. After the supplied electrode material layer is made uniform with a blade or the like as necessary, the current collector is supplied between a pair of rolls, and the electrode layer can be formed by pressurization. In this case, the thickness of the electrode material layer supplied between the pair of rolls is a value represented by (roll gap between the pair of rolls) / (current collector thickness + electrode material layer thickness). From the viewpoint of excellent properties, it is preferably 0.01 to 1, more preferably 0.05 to 0.75, and particularly preferably 0.1 to 0.5.
 成形した成形体の厚みのばらつきを無くし、密度を上げて高容量化をはかるために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによるプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱又は冷却等、温度調節しても良い。 ¡Post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the molded body and increase the density and increase the capacity. The post-pressing method is generally a press process using a roll. In the roll press process, two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
 本発明の電気化学素子は、上記本発明の製造方法により得られた電気化学素子用電極を有するものである。電気化学素子は、本発明の製造方法により得られた電極と、電解液と、セパレータなどの部品を用いて、常法に従って製造することができる。具体的には、例えば、電極を適切な大きさに切断し、次いでセパレータを介して電極を重ね合わせ、これを巻く、折る、積層するなどした後に容器に入れ、容器に電解液を注入して封口して製造できる。 The electrochemical element of the present invention has an electrode for an electrochemical element obtained by the production method of the present invention. An electrochemical element can be manufactured according to a conventional method using components such as an electrode obtained by the manufacturing method of the present invention, an electrolytic solution, and a separator. Specifically, for example, the electrode is cut into an appropriate size, and then the electrodes are overlapped through a separator, and then wound, folded, laminated, etc., and then put into a container, and an electrolyte is injected into the container. Can be manufactured by sealing.
 電解液は、通常電解質と溶媒で構成される。電解質は、カチオン性であってもよく、アニオン性であってもよい。カチオン性電解質としては、以下に示すような(1)イミダゾリウム、(2)第四級アンモニウム、(3)第四級ホスホニウム、(4)リチウム等を用いることができる。
(1)イミダゾリウム
 1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1,3,4-トリメチル-エチルイミダゾリウム、1,3-ジメチル-2,4-ジエチルイミダゾリウム、1,2-ジメチル-3,4-ジエチルイミダゾリウム、1-メチル-2,3,4-トリエチルメチルイミダゾリウム、1,2,3,4-テトラエチルイミダゾリウム、1,3-ジメチル-2-エチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1,2,3-トリエチルイミダゾリウム等
(2)第四級アンモニウム
 テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム等のテトラアルキルアンモニウム等
(3)第四級ホスホニウム
 テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、メチルトリエチルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウム等
(4)リチウム
The electrolytic solution is usually composed of an electrolyte and a solvent. The electrolyte may be cationic or anionic. As the cationic electrolyte, (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used.
(1) Imidazolium 1,3-Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1,3-Diethylimidazolium, 1,2,3-Trimethylimidazolium, 1,2,3,4-Tetra Methylimidazolium, 1,3,4-trimethyl-ethylimidazolium, 1,3-dimethyl-2,4-diethylimidazolium, 1,2-dimethyl-3,4-diethylimidazolium, 1-methyl-2, 3,4-triethylmethylimidazolium, 1,2,3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1,2,3 -Triethylimidazolium, etc. (2) Quaternary ammonium tetramethylammonium, ethyltrimethylammonium, diethyl (3) Quaternary phosphonium Tetramethylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, methyltriethylphosphonium, methyltributylphosphonium, dimethyldiethylphosphonium, etc. ( 4) Lithium
 また、アニオン性電解質としては、PF-、BF-、AsF-、SbF-、N(RfSO-、C(RfSO-、RfSO-(Rfはそれぞれ炭素数1~12のフルオロアルキル基)、F-、ClO-、AlCl-、AlF-等を用いることができる。これらの電解質は単独または二種類以上として使用することができる。  As the anionic electrolyte, PF 6 -, BF 4 - , AsF 6 -, SbF 6 -, N (RfSO 3) 2 -, C (RfSO 3) 3 -, RfSO 3 - (Rf respectively 1 -C To 12 fluoroalkyl groups), F—, ClO 4 —, AlCl 4 —, AlF 4 — and the like. These electrolytes can be used alone or in combination of two or more.
 電解液の溶媒は、一般に電解液の溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。 The solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution. Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile. These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
 上記の素子に電解液を含浸させて、本発明の電気化学素子が得られる。具体的には、キャパシタ素子を必要に応じ捲回、積層または折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。また、素子に予め電解液を含浸させたものを容器に収納してもよい。容器としては、コイン型、円筒型、角型などの公知のものをいずれも用いることができる。 The electrochemical element of the present invention is obtained by impregnating the above element with an electrolytic solution. Specifically, the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it. Further, a device in which an element is previously impregnated with an electrolytic solution may be stored in a container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
 セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜などを用いることができる。また、セパレータに代えて固体電解質を用いることもできる。 As the separator, for example, a microporous film made of polyolefin such as polyethylene or polypropylene, or a nonwoven fabric, a porous film mainly made of pulp called electrolytic capacitor paper can be used. Moreover, it can replace with a separator and a solid electrolyte can also be used.
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the examples and comparative examples, “part” and “%” are based on weight unless otherwise specified.
 実施例および比較例における各特性は、下記の方法に従い測定した。
(電極層厚さの測定)
 電極層厚さは集電体の両面に電極層を形成した後に、渦電流式変位センサ(センサヘッド部EX-110V、アンプユニット部EX-V02:キーエンス社製)を用いて測定した。長手方向に10cm間隔、幅方向に2cm間隔で各電極層の厚さを測定し、それらの平均値を電極層の厚さとした。
Each characteristic in an Example and a comparative example was measured in accordance with the following method.
(Measurement of electrode layer thickness)
The electrode layer thickness was measured using an eddy current displacement sensor (sensor head part EX-110V, amplifier unit part EX-V02: manufactured by Keyence Corporation) after forming electrode layers on both sides of the current collector. The thickness of each electrode layer was measured at intervals of 10 cm in the longitudinal direction and at intervals of 2 cm in the width direction, and the average value thereof was taken as the thickness of the electrode layer.
(内部抵抗の測定)
 電気化学キャパシタについて、15mAの定電流で充電を開始し、所定の充電電圧に達したらその電圧を保って定電圧充電とし、5分間定電圧充電を行った時点で充電を完了した。次いで、充電終了直後に定電流15mAで0Vに達するまで放電を行った。この充放電操作を3サイクル行い、3サイクル目の放電後0.1秒後の電圧からR=ΔV/Iの関係より算出した。
(Measurement of internal resistance)
The electrochemical capacitor was charged at a constant current of 15 mA. When a predetermined charging voltage was reached, the voltage was maintained to be constant voltage charging, and charging was completed when constant voltage charging was performed for 5 minutes. Next, immediately after the end of charging, discharging was performed at a constant current of 15 mA until reaching 0V. This charge / discharge operation was performed for 3 cycles, and the voltage was calculated from the relationship of R = ΔV / I from the voltage 0.1 seconds after the third cycle discharge.
(複合粒子の表面平均空隙率)
 下記実施例、比較例において製造した複合粒子の表面平均空隙率を以下の方法で求めた。まず、倍率2000倍で複合粒子の電子顕微鏡写真を測定し、任意の粒子について、視野20μmの範囲で白黒256階調の画像データとして画像解析ソフト(analySIS:Soft Imaging System社製)に読み込み、その画像の最明部が255、最暗部が0となるようにコントラストの最適化を行う。次いで、しきい値を77に設定して2値化処理を行い、得られた2値化画像より複合粒子表面における0.1μm以上の面積を有する空隙の割合を求める。同一粒子について、任意の異なる視野において全5回同様の測定を行い、さらに、同じ測定を10個の粒子について行い、平均化したものを複合粒子の表面平均空隙率とする。
(Surface average porosity of composite particles)
The surface average porosity of the composite particles produced in the following examples and comparative examples was determined by the following method. First, an electron micrograph of the composite particles was measured at a magnification of 2000 times, and arbitrary particles were read into image analysis software (analySIS: Soft Imaging System) as black and white 256-gradation image data within a field of view of 20 μm 2 . The contrast is optimized so that the brightest part of the image is 255 and the darkest part is 0. Next, the threshold value is set to 77, binarization processing is performed, and the ratio of voids having an area of 0.1 μm 2 or more on the composite particle surface is obtained from the obtained binarized image. For the same particle, the same measurement is performed 5 times in any different field of view, and the same measurement is performed for 10 particles, and the average is the surface average porosity of the composite particles.
実施例1
 電極活物質(比表面積2000m/g及び体積平均粒径5μmの活性炭)100部、導電材(アセチレンブラック「デンカブラック粉状」:電気化学工業(株)製)5部、分散型結着剤(数平均粒径0.15μm、ガラス転移温度-40℃の架橋型アクリレート系重合体の40%水分散体:「AD211」;日本ゼオン(株)製)7.5部、分散材としてカルボキシメチルセルロースの1.5%水溶液(「DN-800H」:ダイセル化学工業(株)製、重量平均分子量30万未満)93.3部、及びイオン交換水231.8部をT.K.ホモミクサー(特殊機化工業(株)製)で攪拌混合して、固形分濃度25%のスラリーを得た。次いで、スラリーをスプレー乾燥機(大川原化工機(株)製ピン型アトマイザー付)を用いて150℃の熱風で噴霧乾燥し、表面平均空隙率11%、体積平均粒径60μmの球状の複合粒子を得た。
Example 1
100 parts of an electrode active material (activated carbon with a specific surface area of 2000 m 2 / g and a volume average particle size of 5 μm), 5 parts of a conductive material (acetylene black “Denka Black Powder” manufactured by Denki Kagaku Kogyo Co., Ltd.), a dispersion-type binder (40% aqueous dispersion of a cross-linked acrylate polymer having a number average particle size of 0.15 μm and a glass transition temperature of −40 ° C .: “AD211”; manufactured by Nippon Zeon Co., Ltd.) 7.5 parts, carboxymethylcellulose as a dispersing agent Of 1.5% aqueous solution (“DN-800H”: manufactured by Daicel Chemical Industries, Ltd., weight average molecular weight of less than 300,000) and 231.8 parts of ion-exchanged water K. The mixture was stirred and mixed with a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a slurry having a solid content concentration of 25%. Next, the slurry was spray-dried with hot air at 150 ° C. using a spray dryer (with a pin-type atomizer manufactured by Okawahara Kako Co., Ltd.), and spherical composite particles having a surface average porosity of 11% and a volume average particle size of 60 μm were obtained. Obtained.
 定量フィーダー(ニッカ株式会社製、ニッカスプレーK-V)を用い各フィーダーの供給速度70g/分で、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研工業(株)製)のプレス用ロール(ロール温度120℃、プレス線圧4kN/cm、(ロール間隙)/(電極層厚み+電極材料層厚み)=1)に供給した。プレス用ロール間に、多孔化集電体として厚さ50μmで開口面積が37面積%、開口径1,000μmのエキスパンドメタルを挿入し定量フィーダーから供給された複合粒子をエキスパンドメタルの両面に付着させ、成形速度14m/分で加圧成形し、平均片面厚さ300μm、平均片面密度0.50g/cmの電極層を有する電気化学素子電極を得た。 Using a fixed feeder (Nikka Co., Ltd., Nikka Spray KV) at a feed rate of 70 g / min, a roll for a press (roll) in a roll press machine (cut-off rough surface heat roll; manufactured by Hirano Giken Co., Ltd.) Temperature 120 ° C., press linear pressure 4 kN / cm, (roll gap) / (electrode layer thickness + electrode material layer thickness) = 1). Between the rolls for pressing, an expanded metal having a thickness of 50 μm, an opening area of 37 area%, and an opening diameter of 1,000 μm is inserted as a porous current collector, and the composite particles supplied from the quantitative feeder are adhered to both sides of the expanded metal. Then, an electrochemical device electrode having an electrode layer with an average single-side thickness of 300 μm and an average single-side density of 0.50 g / cm 3 was obtained.
 上記で作製した電極を、電極層が形成されていない集電体シート部を縦2cm×横2cm残るように、かつ電極層が形成されている部分が縦5cm×横5cmになるように切り抜いた(電極層が形成されていない集電体シート部は電極層が形成されている5cm×5cmの正方形の一辺をそのまま延長するように形成される。)。このように切り抜いた正極10組、負極11組を用意し、それぞれ未塗工部を超音波溶接した。さらに、正極はアルミ、負極はニッケルからなる、縦7cm×横1cm×厚み0.01cmのタブ材を、それぞれ積層溶接した電極層が形成されていない集電体シート部を超音波溶接して測定用電極を作製した。測定用電極は、200℃で24時間真空乾燥する。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、正極集電体、負極集電体の端子溶接部がそれぞれ反対側になるよう配置し、正極、負極が交互になるように、また積層した電極の最外部の電極がいずれも負極となるようにすべて積層した。最上部と最下部はセパレータを配置させて4辺をテープ留めした。 The electrode produced above was cut out so that the current collector sheet portion on which the electrode layer was not formed remained 2 cm long × 2 cm wide, and the portion where the electrode layer was formed was 5 cm long × 5 cm wide. (The collector sheet portion where the electrode layer is not formed is formed so as to extend one side of the 5 cm × 5 cm square where the electrode layer is formed.) 10 sets of positive electrodes and 11 sets of negative electrodes thus cut out were prepared, and the uncoated portions were ultrasonically welded. Furthermore, the current collector sheet portion in which the electrode layer is formed by laminating and welding the tab material having a length of 7 cm, a width of 1 cm and a thickness of 0.01 cm made of aluminum for the positive electrode and nickel for the negative electrode is measured by ultrasonic welding. An electrode was prepared. The measurement electrode is vacuum-dried at 200 ° C. for 24 hours. Using a cellulose / rayon mixed non-woven fabric with a thickness of 35 μm as a separator, the terminal welds of the positive electrode current collector and the negative electrode current collector are arranged on opposite sides, and the positive electrode and the negative electrode are alternated and laminated. All of the outermost electrodes were laminated so that all of them were negative electrodes. Separators were placed on the top and bottom, and four sides were taped.
 上記積層電極を外装ラミネートフィルムで覆い三辺を融着後、電解液としてプロピレンカーボネートにホウフッ化テトラエチルアンモニウムを1.4モル/Lの濃度に溶解した溶液を真空含浸させた後、残り一辺を融着させ、フィルム型キャパシタ(電気化学キャパシタ)を作製した。得られるフィルム型キャパシタについて内部抵抗を測定した。結果を表1に示す。 After covering the laminated electrode with an exterior laminate film and fusing three sides, a solution of propylene carbonate dissolved in tetraethylammonium borofluoride at a concentration of 1.4 mol / L was vacuum impregnated as an electrolyte, and then the remaining side was melted. A film type capacitor (electrochemical capacitor) was produced. The internal resistance of the obtained film type capacitor was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2
 実施例1において集電体として開口面積が37面積%、開口径が0.1μmのパンチングメタルを用い、成形速度を40m/分にする以外は実施例1と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 2
In Example 1, a punching metal having an opening area of 37 area% and an opening diameter of 0.1 μm was used as the current collector, and an electrochemical element electrode was obtained in the same manner as in Example 1 except that the molding speed was 40 m / min. It was. The results are shown in Table 1.
実施例3
 実施例2において集電体として開口面積が60面積%、開口径が0.1μmのパンチングメタルを用いる以外は実施例2と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 3
In Example 2, an electrochemical element electrode was obtained in the same manner as in Example 2 except that a punching metal having an opening area of 60 area% and an opening diameter of 0.1 μm was used as the current collector. The results are shown in Table 1.
実施例4
 実施例3において成形速度を60m/分にする以外は実施例3と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 4
An electrochemical element electrode was obtained in the same manner as in Example 3 except that the molding speed in Example 3 was changed to 60 m / min. The results are shown in Table 1.
実施例5
 実施例4において集電体として開口面積が60面積%、開口径が3μmのパンチングメタルを用いる以外は実施例4と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 5
In Example 4, an electrochemical device electrode was obtained in the same manner as in Example 4 except that a punching metal having an opening area of 60 area% and an opening diameter of 3 μm was used as the current collector. The results are shown in Table 1.
実施例6
 実施例5において(ロール間隙)/(電極層厚み+電極材料層厚み)=0.3にする以外は実施例5と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 6
An electrochemical device electrode was obtained in the same manner as in Example 5 except that (roll gap) / (electrode layer thickness + electrode material layer thickness) = 0.3 in Example 5. The results are shown in Table 1.
実施例7
 実施例1において、複合粒子を調製する際に使用する分散材として、カルボキシメチルセルロースの1.5%水溶液(「DN-800H」:ダイセル化学工業(株)製)のかわりに、カルボキシメチルセルロースの1%水溶液(「BSH-12」(第一工業製薬(株)製、重量平均分子量33万~38万)を用いる以外は、実施例1と同様にして球状の複合粒子を得た。得られた複合粒子の、体積平均粒径は60μm、表面空隙率は25%であった。そして、実施例6において、電極材料として上記複合粒子を用いる以外は、実施例6と同様にして電気化学素子電極を得た。結果を表1に示す。
Example 7
In Example 1, 1% of carboxymethylcellulose was used instead of 1.5% aqueous solution of carboxymethylcellulose (“DN-800H”: manufactured by Daicel Chemical Industries, Ltd.) as a dispersant used in preparing composite particles. Spherical composite particles were obtained in the same manner as in Example 1, except that an aqueous solution (“BSH-12” (Daiichi Kogyo Seiyaku Co., Ltd., weight average molecular weight: 330,000 to 380,000)) was used. The particles had a volume average particle size of 60 μm and a surface porosity of 25%, and in Example 6, an electrochemical device electrode was prepared in the same manner as in Example 6 except that the composite particles were used as the electrode material. The results are shown in Table 1.
比較例1
 実施例1において成形速度を6m/分にする以外は実施例1と同様にして電気化学素子電極を得た。結果を表1に示す。
Comparative Example 1
An electrochemical element electrode was obtained in the same manner as in Example 1 except that the molding speed was 6 m / min in Example 1. The results are shown in Table 1.
比較例2
 実施例7において成形速度を6m/分にする以外は実施例4と同様にして電気化学素子電極を得た。結果を表1に示す。
Comparative Example 2
An electrochemical element electrode was obtained in the same manner as in Example 4 except that the molding speed was 6 m / min in Example 7. The results are shown in Table 1.
 以上の実施例より、本発明の製造方法によれば、電極層厚さの薄い電気化学素子電極を高い生産性で製造することができること、および得られる電気化学素子電極を用いると、内部抵抗の低い電気化学素子が得られることが分かる。 From the above examples, according to the production method of the present invention, it is possible to produce an electrochemical element electrode having a thin electrode layer thickness with high productivity, and when the obtained electrochemical element electrode is used, the internal resistance is reduced. It can be seen that a low electrochemical element can be obtained.
 なお、以上説明した実施形態及び実施例は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。従って、上記の実施形態又は実施例に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments and examples described above are described for facilitating understanding of the present invention, and are not described for limiting the present invention. Accordingly, each element disclosed in the above embodiment or example is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 本発明は、2008年2月27日に提出された日本国特許出願第2008-46495号に含まれた主題に関連し、その開示のすべては、ここに参照事項として明白に組み込まれる。 The present invention relates to the subject matter contained in Japanese Patent Application No. 2008-46495 filed on Feb. 27, 2008, the entire disclosure of which is expressly incorporated herein by reference.

Claims (8)

  1.  多孔化集電体上の少なくとも一表面に電極材料を供給する工程、および前記多孔化集電体と前記電極材料とを一対のロールで加圧して多孔化集電体上に前記電極材料からなる電極層を形成する工程を含んでなり、
     前記電極層を形成する工程における成形速度が10m/分以上である電気化学素子電極の製造方法。
    A step of supplying an electrode material to at least one surface of the porous current collector, and the porous current collector and the electrode material are pressurized with a pair of rolls and made of the electrode material on the porous current collector Comprising the step of forming an electrode layer,
    The manufacturing method of the electrochemical element electrode whose shaping | molding speed in the process of forming the said electrode layer is 10 m / min or more.
  2.  (前記一対のロールのロール間隙)/(前記多孔化集電体の厚さ+前記電極材料の厚さ)が、0.01~1である請求項1記載の電気化学素子電極の製造方法。 The method for producing an electrochemical element electrode according to claim 1, wherein (the roll gap between the pair of rolls) / (thickness of the porous collector + thickness of the electrode material) is 0.01 to 1.
  3.  前記電極材料が、電極活物質、導電材、結着剤を少なくとも含有し、前記電極活物質及び導電材が、結着剤により結着されてなる複合粒子である請求項1または2記載の電気化学素子電極の製造方法。 The electricity according to claim 1 or 2, wherein the electrode material contains at least an electrode active material, a conductive material, and a binder, and the electrode active material and the conductive material are composite particles formed by binding with a binder. A method for producing a chemical element electrode.
  4.  前記複合粒子は、電極活物質、導電材及び結着剤を含むスラリーを噴霧乾燥して得られた粒子である請求項3記載の電気化学素子電極の製造方法。 4. The method for producing an electrochemical element electrode according to claim 3, wherein the composite particles are particles obtained by spray drying a slurry containing an electrode active material, a conductive material and a binder.
  5.  前記複合粒子の表面平均空隙率が15%以上である請求項3記載の電気化学素子電極の製造方法。 The method for producing an electrochemical element electrode according to claim 3, wherein the composite particles have a surface average porosity of 15% or more.
  6.  前記多孔化集電体の開口面積が10~90面積%である請求項1または2記載の電気化学素子電極の製造方法。 The method for producing an electrochemical element electrode according to claim 1 or 2, wherein an opening area of the porous current collector is 10 to 90 area%.
  7.  前記多孔化集電体の開口径が0.1~10μmである請求項1~3のいずれかに記載の電気化学素子電極の製造方法。 The method for producing an electrochemical element electrode according to any one of claims 1 to 3, wherein an opening diameter of the porous current collector is 0.1 to 10 µm.
  8.  請求項1~7のいずれかに記載の製造方法により得られる電気化学素子電極を備える電気化学素子。 An electrochemical element comprising an electrochemical element electrode obtained by the production method according to any one of claims 1 to 7.
PCT/JP2009/053553 2008-02-27 2009-02-26 Method for producing electrochemical device electrode WO2009107716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500736A JPWO2009107716A1 (en) 2008-02-27 2009-02-26 Method for producing electrochemical element electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-046495 2008-02-27
JP2008046495 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009107716A1 true WO2009107716A1 (en) 2009-09-03

Family

ID=41016103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053553 WO2009107716A1 (en) 2008-02-27 2009-02-26 Method for producing electrochemical device electrode

Country Status (2)

Country Link
JP (1) JPWO2009107716A1 (en)
WO (1) WO2009107716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119207A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Manufacturing apparatus for electrode for lithium ion secondary battery
JP2017117617A (en) * 2015-12-24 2017-06-29 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614159A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Alkaline battery
JPH05325957A (en) * 1992-05-28 1993-12-10 Shin Kobe Electric Mach Co Ltd Electrode and manufacture thereof
JP2001319643A (en) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode for alkaline battery
WO2006126665A1 (en) * 2005-05-26 2006-11-30 Zeon Corporation Electrode material for electrochemical device and composite particle
JP2007053278A (en) * 2005-08-19 2007-03-01 Nippon Zeon Co Ltd Electrode for electric double layer capacitor
JP2007180251A (en) * 2005-12-27 2007-07-12 Tdk Corp Manufacturing method and manufacturing apparatus of electrode for electrochemical capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614159A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Alkaline battery
JPH05325957A (en) * 1992-05-28 1993-12-10 Shin Kobe Electric Mach Co Ltd Electrode and manufacture thereof
JP2001319643A (en) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode for alkaline battery
WO2006126665A1 (en) * 2005-05-26 2006-11-30 Zeon Corporation Electrode material for electrochemical device and composite particle
JP2007053278A (en) * 2005-08-19 2007-03-01 Nippon Zeon Co Ltd Electrode for electric double layer capacitor
JP2007180251A (en) * 2005-12-27 2007-07-12 Tdk Corp Manufacturing method and manufacturing apparatus of electrode for electrochemical capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119207A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Manufacturing apparatus for electrode for lithium ion secondary battery
JP2017117617A (en) * 2015-12-24 2017-06-29 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2009107716A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5549672B2 (en) Electrode for electrochemical element and electrochemical element
JP5098954B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP4605467B2 (en) Method for producing electrochemical element
JP4840358B2 (en) Electrochemical element electrode
JP4839669B2 (en) Composite particles for electrochemical device electrodes
JP6217741B2 (en) Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element
US20090224198A1 (en) Electrode material for electrochemical element and composite particle
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2006115272A1 (en) Composite particles for electrochemical element electrode
JP5767431B2 (en) Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
WO2010024327A1 (en) Electrode for lithium ion capacitor and lithium ion capacitor
JP5311706B2 (en) Method for producing composite particle for electrochemical device electrode
JP5354205B2 (en) Electrode for electrochemical element and electrochemical element
KR102311705B1 (en) Composite particle for electrochemical element electrode
WO2014185365A1 (en) Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JP5169720B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP2009212113A (en) Method of manufacturing sheet for electrochemical device electrode
JP2009224623A (en) Electrode sheet for hybrid capacitor and method of manufacturing the same
WO2015098632A1 (en) Composite particle for electrochemical element electrode
JP2009253168A (en) Method of manufacturing electrochemical device electrode
WO2009119553A1 (en) Method for production of electrode for hybrid capacitor
WO2009107716A1 (en) Method for producing electrochemical device electrode
JP2011216504A (en) Method for manufacturing electrode for electrochemical element
JP2010157564A (en) Method of manufacturing composite particle for electrochemical element electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500736

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715122

Country of ref document: EP

Kind code of ref document: A1