WO2015098632A1 - Composite particle for electrochemical element electrode - Google Patents

Composite particle for electrochemical element electrode Download PDF

Info

Publication number
WO2015098632A1
WO2015098632A1 PCT/JP2014/083339 JP2014083339W WO2015098632A1 WO 2015098632 A1 WO2015098632 A1 WO 2015098632A1 JP 2014083339 W JP2014083339 W JP 2014083339W WO 2015098632 A1 WO2015098632 A1 WO 2015098632A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
negative electrode
active material
electrode active
composite particles
Prior art date
Application number
PCT/JP2014/083339
Other languages
French (fr)
Japanese (ja)
Inventor
梓 増田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015554771A priority Critical patent/JP6485359B2/en
Priority to CN201480066528.7A priority patent/CN105794025B/en
Priority to KR1020167012496A priority patent/KR102330766B1/en
Publication of WO2015098632A1 publication Critical patent/WO2015098632A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to composite particles for electrochemical element electrodes.
  • Lithium ion secondary batteries have a relatively high energy density and are used in mobile fields such as mobile phones and notebook personal computers.
  • the electric double layer capacitor can be rapidly charged and discharged, the electric double layer capacitor is expected to be used as an auxiliary power source for an electric vehicle or the like in addition to being used as a memory backup small power source for a personal computer or the like.
  • the lithium ion capacitor that takes advantage of the lithium ion secondary battery and the electric double layer capacitor has higher energy density and output density than the electric double layer capacitor.
  • Application to applications that could not meet the specifications for capacitor performance is being considered.
  • lithium ion secondary batteries have been studied for application not only to in-vehicle applications such as hybrid electric vehicles and electric vehicles, but also to power storage applications.
  • Electrodes for electrochemical devices are usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive aid used as necessary with a binder resin on a current collector. It will be.
  • An electrode for an electrochemical element includes a coated electrode manufactured by a method in which a slurry for a coated electrode containing an electrode active material, a binder resin, a conductive auxiliary agent, etc. is coated on a current collector and the solvent is removed by heat or the like.
  • a slurry for a coated electrode containing an electrode active material, a binder resin, a conductive auxiliary agent, etc. is coated on a current collector and the solvent is removed by heat or the like.
  • this method has a high cost and a poor working environment, and the manufacturing apparatus tends to be large.
  • Patent Document 1 discloses composite particles obtained by spraying and drying a slurry for composite particles containing an electrode active material, a binder resin, and a dispersion medium. A method of forming an electrode active material layer using composite particles is disclosed. Since such composite particles may be destroyed during transfer such as pneumatic transportation, improvement in strength is required.
  • the uniformity of the particle size of the composite particles is lost, so that the fluidity of the powder is deteriorated and a uniform electrode active material layer is formed. Can not be.
  • the adhesion between the composite particles and the adhesion between the electrode active material layer and the current collector were weakened, and the cycle characteristics of the resulting electrochemical device were not sufficient.
  • the electrode which has the electrode active material layer formed using the broken composite particle is inferior in a softness
  • Patent Document 1 externally added particles obtained by coating the surface of the composite particles with a fibrous conductive assistant are obtained, but since the fibrous conductive assistant is not present inside the composite particles, the composite particles It was not possible to improve the strength.
  • Patent Document 2 describes that carbon fiber is contained in a slurry for a coating electrode that is applied to an electrode to form an electrode layer in order to improve adhesion in the coating electrode.
  • a method for producing the coated electrode which is different from powder molding using composite particles, it has not been described to improve the strength of the composite particles.
  • Patent Document 3 describes that, in order to enhance the adhesion in the coated electrode, the coated electrode slurry for forming the electrode layer by coating the electrode contains finely divided cellulose fibers. However, since it relates to a method for producing the coated electrode, which is different from powder molding using composite particles, it has not been described to improve the strength of the composite particles.
  • An object of the present invention is to provide a composite particle for an electrochemical element electrode that has sufficient strength, can provide sufficient adhesion when forming an electrode, and can provide an electrode having excellent flexibility. That is.
  • the present inventors have found that the above object can be achieved by obtaining composite particles by combining a water-soluble polymer and a water-insoluble polysaccharide polymer in a predetermined ratio.
  • the present invention has been completed.
  • ADVANTAGE OF THE INVENTION According to this invention, it has sufficient intensity
  • the composite particle for an electrochemical element electrode of the present invention includes a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), and a non-particle.
  • positive electrode active material means an electrode active material for a positive electrode
  • negative electrode active material means an electrode active material for a negative electrode
  • the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode
  • the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
  • Negative electrode active material (A) examples of the negative electrode active material (A) used in the present invention include materials that can transfer electrons in the negative electrode of an electrochemical element.
  • the negative electrode active material (A) in the case where the electrochemical device is a lithium ion secondary battery a material that can occlude and release lithium can be generally used.
  • Examples of the negative electrode active material (A) preferably used for the lithium ion secondary battery include a negative electrode active material formed of carbon.
  • Examples of the negative electrode active material formed of carbon include natural graphite, artificial graphite, and carbon black. Among them, graphite such as artificial graphite and natural graphite is preferable, and natural graphite is particularly preferable.
  • the negative electrode active material (A) preferably used for the lithium ion secondary battery is a negative electrode active material containing a metal.
  • a negative electrode active material containing at least one selected from the group consisting of tin, silicon, germanium and lead is preferable. The negative electrode active material containing these elements can reduce the irreversible capacity.
  • negative electrode active materials containing silicon are preferable.
  • a negative electrode active material containing silicon By using a negative electrode active material containing silicon, the electric capacity of the lithium ion secondary battery can be increased.
  • a negative electrode active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge, but the composite particles of the present invention have a strength that can withstand the expansion and contraction of the negative electrode active material containing silicon. Have. Therefore, in the negative electrode manufactured using the composite particles of the present invention, it is possible to effectively suppress a decrease in battery performance due to expansion and contraction of the negative electrode active material containing silicon.
  • Examples of the negative electrode active material containing silicon include silicon-containing compounds (hereinafter sometimes referred to as “silicon-containing compounds”) and metallic silicon.
  • the silicon-containing compound is a compound of silicon and another element, and examples thereof include SiO, SiO 2 , SiO x (0.01 ⁇ x ⁇ 2), SiC, and SiOC.
  • SiO x , SiOC, and SiC are preferable, SiO x and SiOC are more preferable from the viewpoint of battery life, and SiO x is particularly preferable from the viewpoint of suppressing swelling of the negative electrode.
  • SiO x is a compound that can be formed from one or both of SiO and SiO 2 and metallic silicon. This SiO x can be produced, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and metal silicon.
  • the amount of the silicon-containing compound in the negative electrode active material (A) is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, particularly Preferably, it is 10 to 30% by weight. If the compounding amount of the silicon-containing compound is too small, the capacity when a lithium ion secondary battery is produced becomes small. Moreover, when there are too many compounding quantities of a silicon-containing compound, a negative electrode will swell. Moreover, as a negative electrode active material (A), one type may be used independently and it may be used combining two or more types by arbitrary ratios.
  • the negative electrode active material (A) preferably has a particle size.
  • the volume average particle diameter of the negative electrode active material for a lithium ion secondary battery is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and still more preferably 0.8 to 20 ⁇ m.
  • the tap density of the negative electrode active material for the lithium ion secondary battery is not particularly limited, but those having a density of 0.6 g / cm 3 or more are preferably used.
  • the negative electrode active material (A) preferably used when an electrochemical element is a lithium ion capacitor the negative electrode active material formed with the said carbon is mentioned.
  • the particulate binder resin (B) used in the present invention is not particularly limited as long as it is a substance capable of binding the above-described negative electrode active materials to each other.
  • a dispersion type particulate binder resin having a property of being dispersed in a solvent is preferable.
  • the dispersion type particulate binder resin include high molecular compounds such as silicon-based polymers, fluorine-containing polymers, conjugated diene-based polymers, acrylate-based polymers, polyimides, polyamides, and polyurethanes, preferably fluorine.
  • These polymers can be used alone or in combination as a dispersion type particulate binder resin.
  • the fluorine-containing polymer is a polymer containing a monomer unit containing a fluorine atom.
  • Specific examples of the fluorine-containing polymer include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, A perfluoroethylene propene copolymer may be mentioned.
  • the conjugated diene polymer is a homopolymer of a conjugated diene monomer, a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene monomer, or a hydrogenated product thereof.
  • 1,3-butadiene is used in that the flexibility when used as an electrode can be improved and the resistance to cracking can be increased. It is more preferable.
  • the monomer mixture may contain two or more of these conjugated diene monomers.
  • conjugated diene polymer is a copolymer of the above conjugated diene monomer and a monomer copolymerizable therewith
  • examples of the copolymerizable monomer include ⁇ , Examples thereof include a ⁇ -unsaturated nitrile compound and a vinyl compound having an acid component.
  • conjugated diene polymers include conjugated diene monomer homopolymers such as polybutadiene and polyisoprene; aromatic vinyl monomers such as carboxy-modified styrene-butadiene copolymer (SBR). Monomer / conjugated diene monomer copolymer; vinyl cyanide monomer / conjugated diene monomer copolymer such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, etc. Is mentioned.
  • conjugated diene monomer homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl monomers such as carboxy-modified styrene-butadiene copolymer (SBR).
  • SBR carboxy-modified styrene-butadiene copolymer
  • Monomer / conjugated diene monomer copolymer Monomer / conjugated diene monomer copolymer
  • the amount of the conjugated diene monomer unit in the conjugated diene polymer is preferably 20 to 60% by weight, more preferably 30 to 55% by weight.
  • the compounding amount of the conjugated diene monomer unit is too large, the electrolytic solution resistance tends to be lowered when the negative electrode is produced using composite particles containing a binder resin. If the blending amount of the conjugated diene monomer unit is too small, sufficient adhesion between the composite particles and the current collector tends not to be obtained.
  • the acrylate polymer has the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group or a cycloalkyl group. R 2 further represents A monomer unit derived from a compound represented by an ether group, a hydroxyl group, a phosphate group, an amino group, a carboxyl group, a fluorine atom, or an epoxy group. Copolymer obtained by polymerizing a polymer containing, specifically, a homopolymer of a compound represented by the general formula (1) or a monomer mixture containing the compound represented by the general formula (1) It is a coalescence.
  • Specific examples of the compound represented by the general formula (1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
  • Acid ester 2- (meth) acryloyloxyethylphthalic acid-containing (meth) acrylic acid ester; (meth) acrylic acid perfluorooctylethyl fluorine-containing (meth) acrylic acid ester; (meth) Phosphoric acid group-containing (meth) acrylates such as ethyl acrylate Acrylic acid esters; (meth) epoxy group-containing (meth) acrylic acid esters of glycidyl acrylate; (meth) containing amino group such as dimethylaminoethyl acrylate (meth) acrylic acid ester; and the like.
  • (meth) acryl means “acryl” and “methacryl”.
  • (Meth) acryloyl means “acryloyl” and “methacryloyl”.
  • (meth) acrylic acid esters can be used alone or in combination of two or more.
  • (meth) acrylic acid alkyl esters are preferable, and methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and alkyl groups have 6 to 12 carbon atoms.
  • (Meth) acrylic acid alkyl ester is more preferred. By selecting these, it becomes possible to reduce the swellability with respect to the electrolytic solution, and to improve the cycle characteristics.
  • the acrylate polymer is a copolymer of the compound represented by the general formula (1) and a monomer copolymerizable therewith
  • the copolymerizable monomer For example, carboxylic acid esters having two or more carbon-carbon double bonds, aromatic vinyl monomers, amide monomers, olefins, diene monomers, vinyl ketones, and heterocyclic rings
  • examples include ⁇ , ⁇ -unsaturated nitrile compounds and vinyl compounds having an acid component.
  • the electrode (negative electrode) can be made difficult to be deformed when the electrode (negative electrode) is produced, and the strength can be strong, and sufficient adhesion between the negative electrode active material layer and the current collector is obtained.
  • an aromatic vinyl monomer examples include styrene.
  • the blending amount of the (meth) acrylic acid ester unit in the acrylate-based polymer is preferably 50 to 50% from the viewpoint of improving flexibility when used as an electrode (negative electrode) and increasing resistance to cracking. It is 95% by weight, more preferably 60 to 90% by weight.
  • Examples of the ⁇ , ⁇ -unsaturated nitrile compound used in the polymer constituting the dispersed particulate binder resin include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -bromoacrylonitrile. These may be used alone or in combination of two or more. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable.
  • the blending amount of the ⁇ , ⁇ -unsaturated nitrile compound unit in the dispersion type binder resin is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, and further preferably 1 to 20% by weight. It is.
  • an ⁇ , ⁇ -unsaturated nitrile compound unit is contained in the dispersion-type binder resin, it is difficult to be deformed when the electrode (negative electrode) is produced, and the strength can be increased. Further, when an ⁇ , ⁇ -unsaturated nitrile compound unit is contained in the dispersion-type binder resin, the adhesion between the negative electrode active material layer containing composite particles and the current collector can be made sufficient.
  • vinyl compound having an acid component examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. These may be used alone or in combination of two or more. Among these, acrylic acid, methacrylic acid, and itaconic acid are preferable, methacrylic acid and itaconic acid are more preferable, and methacrylic acid is particularly preferable in terms of improving adhesive strength.
  • the blending amount of the vinyl compound unit having an acid component in the dispersion type particulate binder resin is preferably 0.5 to 10% by weight, more preferably from the viewpoint of improving the stability of the composite particle slurry. Is 1 to 8% by weight, more preferably 2 to 7% by weight.
  • the dispersion type particulate binder resin used in the present invention is in the form of particles, so that it has good binding properties, and can suppress deterioration of the capacity of the produced electrode and repeated charge / discharge.
  • the particulate binder resin (B) include those in which binder resin particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the average particle size of the dispersion type particulate binder resin is preferably from the viewpoint that the strength and flexibility of the obtained negative electrode are improved while the stability in the case of the composite particle slurry is improved.
  • the thickness is from 001 to 100 ⁇ m, more preferably from 10 to 1000 nm, still more preferably from 50 to 500 nm.
  • the method for producing the particulate binder resin (B) used in the present invention is not particularly limited, and a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method may be employed. it can. Among these, it is preferable to produce by an emulsion polymerization method because the particle diameter of the particulate binder resin (B) can be easily controlled.
  • the particulate binder resin (B) used in the present invention may be particles having a core-shell structure obtained by stepwise polymerization of a mixture of two or more monomers.
  • the compounding amount of the particulate binder resin (B) in the composite particle for an electrochemical element electrode of the present invention can ensure sufficient adhesion between the obtained negative electrode active material layer and the current collector, and the electrochemical element From the viewpoint of reducing the internal resistance of the negative electrode active material, it is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight, and still more preferably 100 parts by weight of the negative electrode active material on a dry weight basis. 1 to 15 parts by weight.
  • the water-soluble polymer (C) used in the present invention refers to a polymer having an undissolved content of less than 10.0% by weight when 0.5 g of the polymer is dissolved in 100 g of pure water at 25 ° C.
  • water-soluble polymer (C) examples include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof, alginates such as propylene glycol alginate, and alginic acid.
  • Alginates such as sodium, polyacrylic acid, and polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid), polyvinyl alcohol, modified polyvinyl alcohol, poly-N-vinylacetamide, polyethylene oxide, polyvinyl Examples include pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. It is.
  • “(modified) poly” means “unmodified poly” or “modified poly”.
  • These water-soluble polymers (C) can be used alone or in combination of two or more.
  • a cellulose-based polymer is preferable, and carboxymethyl cellulose or its ammonium salt or alkali metal salt is particularly preferable.
  • the blending amount of these water-soluble polymers (C) is not particularly limited as long as the effect of the present invention is not impaired, but with respect to 100 parts by weight of the negative electrode active material (A) in solid part equivalent amount, The amount is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, still more preferably 0.25 to 2 parts by weight.
  • the water-insoluble polysaccharide polymer fiber (D) used in the present invention belongs to a so-called polymer compound among polysaccharides, and there is no other limitation as long as it is a water-insoluble fibrous form. Usually, it is a fiber (short fiber) fibrillated by a mechanical shearing force.
  • the water-insoluble polysaccharide polymer fiber used in the present invention is a high-polysaccharide fiber having an undissolved content of 90% by weight or more when 0.5 g of polysaccharide polymer fiber is dissolved in 100 g of pure water at 25 ° C. Refers to molecular fiber.
  • polysaccharide polymer fiber (D) As the water-insoluble polysaccharide polymer fiber (D), it is preferable to use polysaccharide polymer nanofibers.
  • the polysaccharide polymer nanofibers are flexible and have a high tensile strength. From the viewpoint of enhancing the particle reinforcing effect and enhancing the particle strength, it is more preferable to use a single or any mixture selected from bio-derived nanofibers such as cellulose nanofibers, chitin nanofibers and chitosan nanofibers. preferable.
  • bio-derived nanofibers such as cellulose nanofibers, chitin nanofibers and chitosan nanofibers.
  • it is more preferable to use cellulose nanofibers and it is particularly preferable to use cellulose nanofibers made from bamboo, conifers, hardwoods, and cotton.
  • water-insoluble polysaccharide polymer fibers As a method for fibrillating (shortening fiber) by applying mechanical shearing force to these water-insoluble polysaccharide polymer fibers (D), a method in which water-insoluble polysaccharide polymer fibers are dispersed in water and then beaten. And a method of passing through an orifice.
  • the water-insoluble polysaccharide polymer fiber short fibers having various fiber diameters are commercially available, and these may be used by dispersing in water.
  • the average fiber diameter of the water-insoluble polysaccharide polymer fiber (D) used in the present invention is such that more water-insoluble polysaccharide polymer fiber (D) is present in the composite particles and the adhesion between the negative electrode active materials is strengthened. From the viewpoint of ensuring sufficient strength of the composite particles and the electrode (negative electrode), and from the viewpoint of excellent electrochemical characteristics of the obtained electrochemical device, it is preferably 5 to 3000 nm, more preferably 5 to 2000 nm, and still more preferably. It is 5 to 1000 nm, particularly preferably 5 to 100 nm.
  • the average fiber diameter of the water-insoluble polysaccharide polymer fiber (D) is too large, the water-insoluble polysaccharide polymer fiber cannot sufficiently exist in the composite particle, so that the strength of the composite particle should be sufficient. I can't. Further, the fluidity of the composite particles is deteriorated, and it is difficult to form a uniform negative electrode active material layer.
  • the water-insoluble polysaccharide polymer fiber (D) may be made of a single fiber that is sufficiently separated without being aligned. In this case, the average fiber diameter is the average diameter of single fibers.
  • the water-insoluble polysaccharide polymer fiber (D) may be one in which a plurality of single fibers are aggregated in a bundle to form one yarn. In this case, the average fiber diameter is defined as the average value of the diameters of one yarn.
  • the average degree of polymerization of the water-insoluble polysaccharide polymer fiber (D) is obtained from the viewpoint that the strength of the composite particles and the electrode (negative electrode) is sufficient, and a uniform negative electrode active material layer can be formed. From the viewpoint of excellent electrochemical characteristics of the chemical element, it is preferably 50 to 1000, more preferably 100 to 900, and still more preferably 150 to 800. If the average degree of polymerization of the water-insoluble polysaccharide polymer fiber is too large, the internal resistance of the resulting electrochemical device increases. In addition, it becomes difficult to form a uniform negative electrode active material layer. Moreover, when the average degree of polymerization of the water-insoluble polysaccharide polymer fiber is too small, the strength of the composite particles becomes insufficient.
  • the average degree of polymerization is determined by a viscosity method using the following copper ethylenediamine solution.
  • a freeze-dried water-insoluble polysaccharide polymer fiber is dissolved in a copper ethylenediamine solution 1 to prepare a solution 2, and the viscosity is measured using a viscometer.
  • the intrinsic viscosity [ ⁇ ] of the water-insoluble polysaccharide polymer fiber solution is obtained by the following calculation formula where the viscosity of the solution 2 is ⁇ and the viscosity of the solution 1 is ⁇ 0.
  • Intrinsic viscosity [ ⁇ ] ( ⁇ / ⁇ 0) / ⁇ c (1 + A ⁇ ⁇ / ⁇ 0) ⁇
  • c is the water-insoluble polysaccharide polymer fiber concentration (g / dL)
  • A is a value determined by the type of the solution 1.
  • the soot viscometer is preferably a capillary viscometer, examples of which include a Canon-Fenske viscometer.
  • the blending amount of the water-insoluble polysaccharide polymer fiber (D) is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1. part by weight in terms of solid content with respect to 100 parts by weight of the resulting composite particles. 5 parts by weight, more preferably 0.3 to 1 part by weight.
  • the blending amount of the water-insoluble polysaccharide polymer fiber is too large, the internal resistance of the obtained electrochemical element increases. In addition, it becomes difficult to form a uniform electrode layer (negative electrode active material layer).
  • the reinforcement effect by water-insoluble polysaccharide polymer fiber will be small, and the intensity
  • the viscosity of the slurry for composite particles increases by increasing the blending amount of the water-insoluble polysaccharide polymer fiber (D)
  • the viscosity is appropriately adjusted by reducing the blending amount of the water-soluble polymer. Can do.
  • the ratio of the water-soluble polymer (C) and the water-insoluble polysaccharide polymer fiber (D) used in the present invention is determined from the viewpoint of improving the dispersibility of the water-insoluble polysaccharide polymer fiber (D).
  • water-soluble polymer (C) / water-insoluble polysaccharide polymer fiber (D) 0.2 to 18, preferably 0.25 to 15, more preferably 0.3 to 10. .
  • the composite particle for an electrochemical element electrode of the present invention may contain a conductive additive as necessary in addition to the above components.
  • the conductive auxiliary agent is not particularly limited as long as it is a conductive material, but a conductive particulate material is preferable.
  • conductive carbon black such as furnace black, acetylene black, and ketjen black
  • natural And graphite such as graphite and artificial graphite
  • carbon fibers such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, and vapor grown carbon fiber.
  • the average particle diameter when the conductive additive is a particulate material is not particularly limited, but is preferably smaller than the average particle diameter of the negative electrode active material, from the viewpoint of expressing sufficient conductivity with a smaller amount of use.
  • the thickness is preferably 0.001 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and still more preferably 0.1 to 1 ⁇ m.
  • the compounding amount of the conductive assistant is 100 parts by weight of the negative electrode active material from the viewpoint of sufficiently reducing the internal resistance while keeping the capacity of the obtained electrochemical element high.
  • it is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 15 parts by weight, still more preferably 1 to 10 parts by weight.
  • the composite particles include a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), a water-insoluble polysaccharide polymer fiber (D), and a conductive additive added as necessary. It is obtained by granulating using the above ingredients.
  • the composite particles include the negative electrode active material (A) and the particulate binder resin (B), but each of the negative electrode active material (A) and the particulate binder resin (B) exists as independent particles. Instead, one particle is formed by two or more components including the negative electrode active material (A) and the particulate binder resin (B), which are constituent components.
  • a plurality of (preferably several to several tens) secondary particles are formed by combining a plurality of the individual particles of the two or more components while maintaining the shape substantially. It is preferable that the negative electrode active material (A) is bound by the particulate binder resin (B) to form particles.
  • the minor axis diameter L s and the major axis diameter L l are values measured from a scanning electron micrograph image.
  • the average particle diameter of the composite particles is preferably 0.1 to 200 ⁇ m, more preferably 1 to 150 ⁇ m, and still more preferably 10 to 10 from the viewpoint that an electrode layer (negative electrode active material layer) having a desired thickness can be easily obtained. 80 ⁇ m.
  • the average particle size is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
  • the production method of the composite particles is not particularly limited, but is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation method.
  • Composite particles can be obtained by production methods such as a granulation method, a fluidized bed multifunctional granulation method, and a melt granulation method.
  • the production method of the composite particles may be appropriately selected from the viewpoints of ease of particle size control, productivity, ease of control of particle size distribution, etc. according to the components of the composite particles, etc.
  • the spray-drying granulation method described in 1 is preferable because the composite particles can be produced relatively easily.
  • the spray drying granulation method will be described.
  • a slurry for composite particles (hereinafter sometimes referred to as “slurry”) containing a negative electrode active material (A) and a particulate binder resin (B) is prepared.
  • the composite particle slurry is prepared by dispersing or dissolving a negative electrode active material, a binder resin, a water-soluble polymer and a water-insoluble polysaccharide polymer fiber, and a conductive additive added as necessary, in a solvent. Can do.
  • the binder resin when the binder resin is dispersed in water as a solvent, it can be added in a state dispersed in water.
  • water is preferably used, but a mixed solvent of water and an organic solvent may be used, or only an organic solvent may be used alone or in combination of several kinds.
  • organic solvent examples include alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane, and diglyme; diethylformamide, dimethyl Amides such as acetamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone; and the like.
  • alcohols are preferred.
  • water and an organic solvent having a lower boiling point than water the drying rate can be increased during spray drying. Thereby, the viscosity and fluidity of the slurry for composite particles can be adjusted, and the production efficiency can be improved.
  • the viscosity of the composite particle slurry is preferably 10 to 3,000 mPa ⁇ s, more preferably 30 to 1,500 mPa ⁇ s, more preferably at room temperature, from the viewpoint of improving the productivity of the spray drying granulation step. Is 50 to 1,000 mPa ⁇ s.
  • a dispersant or a surfactant when preparing the composite particle slurry, a dispersant or a surfactant may be added as necessary.
  • the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions, and anionic or nonionic surfactants that are easily thermally decomposed are preferable.
  • the compounding amount of the surfactant is preferably 50 parts by weight or less, more preferably 0.1 to 10 parts by weight, and further preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the negative electrode active material. .
  • the amount of the solvent used in preparing the slurry is such that the solid content concentration of the slurry is preferably 1 to 50% by weight, more preferably 5 to 50% by weight, from the viewpoint of uniformly dispersing the binder resin in the slurry. More preferably, the amount is 10 to 40% by weight.
  • a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), a water-insoluble polysaccharide polymer fiber (D), and a conductive additive added as necessary are dispersed in a solvent or The method or order of dissolution is not particularly limited.
  • the negative electrode active material (A), the particulate binder resin (B), the water-soluble polymer (C), and the water-insoluble polysaccharide polymer fiber (D) are used in the solvent.
  • the mixing device for example, a ball mill, a sand mill, a bead mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a homomixer, a planetary mixer, or the like can be used.
  • the mixing is preferably performed at room temperature to 80 ° C. for 10 minutes to several hours.
  • Spray drying is a method of spraying and drying a slurry in hot air.
  • An atomizer is used as an apparatus used for spraying slurry.
  • a rotating disk system slurry is introduced almost at the center of a disk that rotates at high speed, and the slurry is removed from the disk by the centrifugal force of the disk. In this case, the slurry is atomized.
  • the rotational speed of the disk depends on the size of the disk, but is preferably 5,000 to 30,000 rpm, more preferably 15,000 to 30,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry for composite particles is introduced from the center of the spray disk, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry for composite particles is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry for composite particles to be sprayed is preferably room temperature, but may be higher than room temperature by heating.
  • the hot air temperature during spray drying is preferably 25 to 250 ° C, more preferably 50 to 200 ° C, and still more preferably 80 to 150 ° C.
  • the method of blowing hot air is not particularly limited.
  • the method in which the hot air and the spraying direction flow side by side the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air flow countercurrently. Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air, then drop by gravity and contact countercurrent.
  • An electrochemical element electrode (negative electrode) can be obtained by laminating a negative electrode active material layer containing the composite particles for electrochemical element electrodes of the present invention on a current collector.
  • a material for the current collector for example, metal, carbon, conductive polymer, and the like can be used, and metal is preferably used.
  • metal copper, aluminum, platinum, nickel, tantalum, titanium, stainless steel, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance. In addition, when high voltage resistance is required, high-purity aluminum disclosed in JP 2001-176757 A can be suitably used.
  • the current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected depending on the purpose of use, but is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and still more preferably 10 to 50 ⁇ m.
  • the composite particles When laminating the negative electrode active material layer on the current collector, the composite particles may be formed into a sheet shape and then laminated on the current collector, but the composite particles are directly pressure-molded on the current collector. Is preferred.
  • a method for pressure molding for example, a roll type pressure molding apparatus provided with a pair of rolls is used, and a roll type pressure molding apparatus is used to feed composite particles with a feeder such as a screw feeder while feeding a current collector with the roll.
  • Roll pressure molding method for forming a negative electrode active material layer on a current collector, or dispersing composite particles on a current collector, adjusting the thickness by smoothing the composite particles with a blade, Next, a method of forming with a pressurizing apparatus, a method of filling composite particles into a mold, and pressurizing the mold to form are included.
  • the roll pressure molding method is preferable.
  • the composite particles of the present invention have high fluidity, they can be molded by roll press molding due to the high fluidity, thereby improving productivity.
  • the roll temperature at the time of roll press molding is preferably 25 to 200 ° C., more preferably 50 to 150 ° C., from the viewpoint of ensuring sufficient adhesion between the negative electrode active material layer and the current collector. More preferably, it is 80 to 120 ° C.
  • the press linear pressure between the rolls during roll press molding is preferably 10 to 1000 kN / m, more preferably 200 to 900 kN / m, from the viewpoint of improving the uniformity of the thickness of the negative electrode active material layer. More preferably, it is 300 to 600 kN / m.
  • the molding speed at the time of roll press molding is preferably 0.1 to 20 m / min, more preferably 4 to 10 m / min.
  • post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the formed electrochemical element electrode (negative electrode) and increase the density of the negative electrode active material layer to increase the capacity.
  • the post-pressing method is preferably a pressing process using a roll. In the roll pressing step, two cylindrical rolls are arranged vertically in parallel with a narrow interval, each is rotated in the opposite direction, and pressure is applied by interposing an electrode therebetween. In this case, the temperature of the roll may be adjusted as necessary, such as heating or cooling.
  • An electrochemical element can be obtained by using the electrochemical element electrode obtained as described above as a negative electrode and further including a positive electrode, a separator, and an electrolytic solution.
  • Examples of the electrochemical element include a lithium ion secondary battery and a lithium ion capacitor.
  • the positive electrode of the electrochemical element is formed by laminating a positive electrode active material layer on a current collector.
  • the positive electrode of the electrochemical element is a positive electrode slurry containing a positive electrode active material, a binder resin for the positive electrode, a solvent used for preparing the positive electrode, a water-soluble polymer used as necessary, and other components such as a conductive additive. It can be obtained by applying to the surface of the electric body and drying. That is, the positive electrode active material layer is formed on the current collector by applying the slurry for the positive electrode to the surface of the current collector and drying it.
  • the positive electrode active material is an active material that can be doped and dedoped with lithium ions, and is broadly classified into an inorganic compound and an organic compound.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ) (hereinafter sometimes referred to as “LCO”), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn.
  • LCO lithium-containing cobalt oxide
  • LiNiO 2 lithium-containing nickel oxide
  • Co—Ni—Mn examples thereof include lithium composite oxides, lithium composite oxides of Ni—Mn—Al, and lithium composite oxides of Ni—Co—Al.
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (here, M may be Cr, Fe, Co, Ni, Cu or the like.
  • Li x MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, and the like) is a lithium-containing composite metal oxide having an olivine structure.
  • An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ⁇ X ⁇ 2) may be mentioned.
  • a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as a positive electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the positive electrode active material may be any material that can reversibly carry lithium ions and anions such as tetrafluoroborate.
  • carbon allotropes can be preferably used, and electrode active materials used in electric double layer capacitors can be widely used.
  • Specific examples of the allotrope of carbon include activated carbon, polyacene (PAS), carbon whisker, carbon nanotube, and graphite.
  • the volume average particle diameter of the positive electrode active material can reduce the blending amount of the binder resin for the positive electrode when preparing the positive electrode slurry, and can suppress the decrease in battery capacity, and the positive electrode slurry.
  • the viscosity is preferably 1 to 50 ⁇ m, more preferably 2 to 30 ⁇ m.
  • Binder resin for positive electrode examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like.
  • a soft polymer such as an acrylic soft polymer, a diene soft polymer, an olefin soft polymer, and a vinyl soft polymer.
  • a binder resin may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the water-soluble polymer and conductive additive used as necessary for the positive electrode slurry the water-soluble polymer and conductive aid that can be used for the composite particles described above can be used.
  • solvent used for preparation of positive electrode either water or an organic solvent may be used.
  • organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and ⁇ -butyrolactone Esters such as ⁇ -caprolactone; alkyl nitriles such as acetonitrile and propionitrile; ethers such as tetrahydrofuran and ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N Amides such as -methylpyrrolidone and N, N-dimethylformamide; among them, N-methylpyrrolidon
  • the amount of the solvent may be adjusted so that the viscosity of the positive electrode slurry is suitable for coating.
  • the solid content concentration of the positive electrode slurry is preferably adjusted to 30 to 90% by weight, more preferably 40 to 80% by weight.
  • the same current collector as the current collector used for the electrochemical element electrode (negative electrode) can be used.
  • the method for applying the positive electrode slurry to the surface of the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is preferably 5 to 30 minutes, and the drying temperature is preferably 40 to 180 ° C.
  • the porosity of the positive electrode active material layer can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less.
  • the porosity is too small, it is difficult to obtain a high volume capacity, and the positive electrode active material layer is easily peeled off from the current collector.
  • the porosity is too large, the charging efficiency and the discharging efficiency are lowered.
  • the positive electrode active material layer includes a curable polymer, it is preferable to cure the polymer after the positive electrode active material layer is formed.
  • separator for example, a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Specific examples include microporous membranes made of polyolefin resins (polyethylene, polypropylene, polybutene, polyvinyl chloride), and resins such as mixtures or copolymers thereof; polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, Examples thereof include a microporous film made of a resin such as polyimide, polyimide amide, polyaramid, nylon, and polytetrafluoroethylene; a polyolefin fiber woven or non-woven fabric thereof; and an aggregate of insulating substance particles.
  • a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin
  • the thickness of the separator is preferably 0.5 to 40 ⁇ m from the viewpoint of reducing the internal resistance due to the separator in the lithium ion secondary battery and from the viewpoint of excellent workability when manufacturing the lithium ion secondary battery. More preferably, the thickness is 1 to 30 ⁇ m, still more preferably 1 to 25 ⁇ m.
  • Electrode As an electrolytic solution for a lithium ion secondary battery, for example, a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used.
  • a lithium salt is preferably used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the concentration of the supporting electrolyte in the electrolytic solution is preferably used at a concentration of 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity may decrease.
  • the non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte.
  • non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC);
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • MEC methyl ethyl carbonate
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane and dimethyl sulfoxide
  • ionic liquids used also as supporting electrolytes used also as supporting electrolytes.
  • a non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In general, the lower the viscosity of the non-aqueous solvent, the higher the lithium ion conductivity, and the higher the dielectric constant, the higher the solubility of the supporting electrolyte, but since both are in a trade-off relationship, the lithium ion conductivity depends on the type of solvent and the mixing ratio. It is recommended to adjust the conductivity.
  • the nonaqueous solvent may be used in combination or in whole or in a form in which all or part of hydrogen is replaced with fluorine.
  • the electrolyte solution may contain an additive.
  • the additive include carbonates such as vinylene carbonate (VC); sulfur-containing compounds such as ethylene sulfite (ES); and fluorine-containing compounds such as fluoroethylene carbonate (FEC).
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an electrolyte solution for lithium ion capacitors the same electrolyte solution that can be used for the above-described lithium ion secondary battery can be used.
  • Method for producing electrochemical element As a specific method for producing an electrochemical element such as a lithium ion secondary battery or a lithium ion capacitor, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery. Examples of the method include putting the battery in a battery container, injecting an electrolyte into the battery container, and sealing the battery. Further, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • an electrochemical element such as a lithium ion secondary battery or a lithium ion capacitor
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery. Examples of the method include putting the battery in a battery container, injecting an electrolyte into the battery container, and sealing the battery. Further, if necessary, an
  • the shape of the lithium ion secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the material of the battery container is not particularly limited as long as it inhibits the penetration of moisture into the battery, and is not particularly limited, such as a metal or a laminate such as aluminum.
  • the composite particle for an electrochemical element electrode of the present invention an electrode having sufficient strength, sufficient adhesion when forming an electrode, and excellent flexibility can be obtained. Moreover, the composite particle for electrochemical element electrodes of the present invention has excellent fluidity.
  • an average fiber diameter is an average value when a fiber diameter is measured about 100 water-insoluble polysaccharide polymer fibers in the visual field of an electron microscope.
  • ⁇ Particle strength of composite particles> The composite particles obtained in Examples and Comparative Examples were subjected to a compression test using a micro compression tester (“MCT-W500” manufactured by Shimadzu Corporation).
  • MCT-W500 micro compression tester
  • a compressive strength (MPa) is measured when a particle is deformed until the diameter of the composite particle is displaced by 40% by applying a load at a loading speed of 4.46 mN / sec in the center direction of the composite particle at room temperature. did.
  • a composite particle having a diameter of 40 to 60 ⁇ m was selected and a compression test was performed.
  • Compressive strength is 1.00 MPa or more
  • B Compressive strength is 0.90 MPa or more and less than 1.00 MPa
  • C Compressive strength is 0.80 MPa or more and less than 0.90 MPa
  • D Compressive strength is 0.70 MPa or more, 0.80 MPa Less than E: Compressive strength is less than 0.70 MPa
  • the negative electrodes for lithium ion secondary batteries obtained in the examples and comparative examples were cut into a rectangular shape having a width of 1 cm and a length of 10 cm. After fixing the cut negative electrode for a lithium ion secondary battery with the negative electrode active material layer side up, the cellophane tape was applied to the surface of the negative electrode active material layer, and then the cellophane tape was applied at a speed of 50 mm / min from one end of the test piece. The stress when peeled in the 180 ° direction was measured. This stress was measured 10 times, and the average value was defined as the peel strength. The peel strength was evaluated according to the following criteria, and the results are shown in Tables 1 and 2.
  • peel strength is 15 N / m or more
  • B Peel strength is 7 N / m or more and less than 15 N / m
  • C Peel strength is 3 N / m or more and less than 7 N / m
  • D Peel strength is less than 3 N / m
  • E Unevaluable
  • Capacity maintenance ratio is 90% or more
  • B: Capacity maintenance ratio is 80% or more and less than 90%
  • C: Capacity maintenance ratio is 75% or more and less than 80%
  • D: Capacity maintenance ratio is 70% or more and less than 75%
  • Example 1 (Production of particulate binder resin (B)) In a 5 MPa pressure vessel equipped with a stirrer, 47 parts of styrene, 50 parts of 1,3-butadiene, 3 parts of methacrylic acid, 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water, 0.4 part of t-dodecyl mercaptan as a chain transfer agent Then, 0.5 part of potassium persulfate was added as a polymerization initiator, and after sufficiently stirring, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reaches 96%, the reaction is stopped by cooling to obtain a particulate binder resin (B) (styrene / butadiene copolymer; hereinafter abbreviated as “SBR”). It was.
  • SBR styrene / butadiene copolymer
  • aqueous solution BSH-6; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 1% aqueous dispersion of cellulose nanofibers as water-insoluble polysaccharide polymer fiber (D) (Raw material: bamboo, degree of defibration: high, average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.) is mixed with 0.8 part in terms of solid content, and ion exchange water is added so that the solid content concentration is 35%.
  • the slurry for composite particles in a spray dryer (manufactured by Okawara Kako Co., Ltd.) was used with a rotary disk type atomizer (diameter 65 mm), rotation speed 25,000 rpm, hot air temperature 150 ° C., and particle recovery outlet temperature 90 ° C. Then, spray drying granulation was performed to obtain composite particles.
  • the composite particles had an average volume particle diameter of 40 ⁇ m.
  • LiCoO 2 LiCoO 2
  • PVDF polyvinylidene fluoride
  • H-100 acetylene black
  • N-methylpyrrolidone N-methylpyrrolidone
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by dry method, porosity 55%) was cut into a square of 5 ⁇ 5 cm 2 .
  • the positive electrode for a lithium ion secondary battery obtained above was cut into a 4 ⁇ 4 cm 2 square and placed so that the current collector-side surface was in contact with the aluminum packaging exterior.
  • the square separator obtained above was disposed on the surface of the positive electrode active material layer of the positive electrode for a lithium ion secondary battery.
  • the negative electrode for a lithium ion secondary battery obtained above was cut into a square of 4.2 ⁇ 4.2 cm 2 and arranged on the separator so that the surface on the negative electrode active material layer side faced the separator. Further, containing the vinylene carbonate 2.0%, was charged with LiPF 6 solution having a concentration of 1.0 M.
  • Example 2 Except for using 97.6 parts of artificial graphite as the negative electrode active material (A), the production of slurry for composite particles, the production of composite particles, the production of negative electrodes for lithium ion secondary batteries, lithium ion The next battery was manufactured.
  • Example 3 Carried out except that 1.0% aqueous dispersion of cellulose nanofiber (raw material: softwood, degree of defibration: high, average polymerization degree 300; manufactured by Chuetsu Pulp Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D).
  • a slurry for composite particles production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • Example 4 Carried out except that 1.0% aqueous dispersion of cellulose nanofiber (raw material: hardwood, defibration degree: low, average polymerization degree 600; manufactured by Chuetsu Pulp Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D).
  • a slurry for composite particles production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • Example 5 Example 1 except that a 10% aqueous dispersion of cotton cellulose nanofibers (fiber diameter 0.1 to 0.01 ⁇ m, serisch KY100G; manufactured by Daicel Finechem) was used as the water-insoluble polysaccharide polymer fiber (D). Similarly, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • D water-insoluble polysaccharide polymer fiber
  • Example 6 Example 1 except that a 2% aqueous dispersion of chitincellulose nanofibers (BiNFi-S (SFo-120002), average polymerization degree 300; manufactured by Sugino Machine Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D).
  • a slurry for composite particles production of composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • Example 7 Example 1 except that a 2% aqueous dispersion of chitosan cellulose nanofiber (BiNFi-S (EFo-120002), average polymerization degree 480; manufactured by Sugino Machine Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D).
  • a slurry for composite particles production of composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • Example 8 Production of slurry for composite particles, production of composite particles, production of negative electrode for lithium ion secondary battery, lithium ion secondary, as in Example 1, except that polyacrylic resin was used as the water-soluble polymer (C) The battery was manufactured.
  • the polyacrylic resin was produced as follows.
  • the obtained emulsion aqueous solution was continuously dropped into the separable flask over 4 hours.
  • the reaction temperature was set to 80 ° C., and the reaction was further carried out for 2 hours.
  • the reaction was stopped by cooling to obtain an aqueous dispersion containing a polyacrylic resin.
  • the polymerization conversion rate was 99%. Moreover, it was 25000 when the weight average molecular weight of the obtained polyacrylic resin was measured by GPC. Moreover, the viscosity when the obtained polyacrylic resin was made into 1 weight% aqueous solution was 3000 (mPa * s).
  • Example 9 A slurry for composite particles was prepared in the same manner as in Example 1 except that poly-N-vinylacetamide (PNVA, GE191-103; Showa Denko) resin was used as the water-soluble polymer (C). Production, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were carried out.
  • PNVA poly-N-vinylacetamide
  • GE191-103 Showa Denko
  • Example 10 Production of slurry for composite particles, production of composite particles, lithium, except that polyvinyl alcohol resin (PVA, JF-17; manufactured by Nihon Vinegar Bipoval) was used as the water-soluble polymer (C).
  • PVA polyvinyl alcohol resin
  • JF-17 manufactured by Nihon Vinegar Bipoval
  • C water-soluble polymer
  • Example 12 91.1 parts of artificial graphite and 6.6 parts of SiC as the negative electrode active material (A), and 1.0% aqueous solution of CMC (BSH-6; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as the water-soluble polymer (C) 1.0 part in terms of converted amount, 1% aqueous dispersion of cellulose nanofibers (raw material: bamboo, degree of defibration: high, average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.) as water-insoluble polysaccharide polymer fiber (D) Except for using 0.06 parts in terms of solid content, the production of negative electrode particle slurry, the production of composite particles, the production of a negative electrode for a lithium ion secondary battery, and the production of a lithium ion secondary battery were conducted in the same manner as in Example 1. went. That is, the ratio of the water-soluble polymer (C) to the water-insoluble polysaccharide polymer fiber (D)
  • Example 2 For composite particles as in Example 1, except that CMC as the water-soluble polymer (C) was not added and the amount of the negative electrode active material (A) was 91.4 parts of artificial graphite and 6.6 parts of SiC. Production of slurry, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
  • an electrochemical device electrode comprising a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), and a water-insoluble polysaccharide polymer fiber (D)
  • the particle strength of the composite particles for chemical element electrodes was good, and the peel strength and electrode flexibility of the negative electrode obtained using the composite particles were good.
  • the charge / discharge cycle characteristics of the lithium ion secondary battery obtained using the composite particles were good.

Abstract

A composite particle for electrochemical element electrodes, including a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), and non-water-soluble polysaccharide polymer fibers (D). The water-soluble polymer (C) and the non-water-soluble polysaccharide polymer fibers (D) are included at a weight ratio of (C)/(D) = 0.2-18.

Description

電気化学素子電極用複合粒子Composite particles for electrochemical device electrodes
 本発明は、電気化学素子電極用複合粒子に関するものである。 The present invention relates to composite particles for electrochemical element electrodes.
 小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタ及びリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどのモバイル分野で利用されている。一方、電気二重層キャパシタは急速な充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている他、電気二重層キャパシタは電気自動車等の補助電源としての応用が期待されている。さらに、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたリチウムイオンキャパシタは、電気二重層キャパシタよりエネルギー密度、出力密度ともに高いことから電気二重層キャパシタが適用される用途、および電気二重層キャパシタの性能では仕様を満たせなかった用途への適用が検討されている。これらのうち、特に、リチウムイオン二次電池では近年ハイブリッド電気自動車、電気自動車などの車載用途のみならず、電力貯蔵用途にまでその応用が検討されている。 The demand for electrochemical devices such as lithium-ion secondary batteries, electric double-layer capacitors, and lithium-ion capacitors is rapidly expanding by taking advantage of the small size, light weight, high energy density, and the ability to repeatedly charge and discharge. is doing. Lithium ion secondary batteries have a relatively high energy density and are used in mobile fields such as mobile phones and notebook personal computers. On the other hand, since the electric double layer capacitor can be rapidly charged and discharged, the electric double layer capacitor is expected to be used as an auxiliary power source for an electric vehicle or the like in addition to being used as a memory backup small power source for a personal computer or the like. Furthermore, the lithium ion capacitor that takes advantage of the lithium ion secondary battery and the electric double layer capacitor has higher energy density and output density than the electric double layer capacitor. Application to applications that could not meet the specifications for capacitor performance is being considered. Among these, in particular, lithium ion secondary batteries have been studied for application not only to in-vehicle applications such as hybrid electric vehicles and electric vehicles, but also to power storage applications.
 これら電気化学素子への期待が高まる一方で、これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子用電極に関してもより生産性の高い製造方法が求められており、高速成形可能な製造方法及び該製造方法に適合する電気化学素子用電極用材料について様々な改善が行われている。 While expectations for these electrochemical devices have increased, these electrochemical devices have further improvements such as lower resistance, higher capacity, and improved mechanical properties and productivity as applications expand and develop. It has been demanded. Under such circumstances, there is a demand for a more productive manufacturing method for electrochemical element electrodes, and various improvements have been made regarding a manufacturing method capable of high-speed molding and an electrochemical element electrode material suitable for the manufacturing method. Has been done.
 電気化学素子用電極は、通常、電極活物質と、必要に応じて用いられる導電助剤とを結着樹脂で結着することにより形成された電極活物質層を集電体上に積層してなるものである。電気化学素子用電極には、電極活物質、結着樹脂、導電助剤等を含む塗布電極用スラリーを集電体上に塗布し、溶剤を熱などにより除去する方法で製造される塗布電極があるが、結着樹脂などのマイグレーションにより、均一な電気化学素子の製造が困難であった。また、この方法はコスト高で作業環境が悪くなり、また、製造装置が大きくなる傾向があった。 Electrodes for electrochemical devices are usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive aid used as necessary with a binder resin on a current collector. It will be. An electrode for an electrochemical element includes a coated electrode manufactured by a method in which a slurry for a coated electrode containing an electrode active material, a binder resin, a conductive auxiliary agent, etc. is coated on a current collector and the solvent is removed by heat or the like. However, it has been difficult to manufacture a uniform electrochemical device due to migration of a binder resin or the like. In addition, this method has a high cost and a poor working environment, and the manufacturing apparatus tends to be large.
 それに対して、複合粒子を得て粉体成形することにより均一な電極活物質層を有する電気化学素子を得ることが提案されている。このような電極活物質層を形成する方法として、例えば特許文献1には、電極活物質、結着樹脂及び分散媒を含む複合粒子用スラリーを噴霧、乾燥することにより複合粒子を得て、この複合粒子を用いて電極活物質層を形成する方法が開示されている。このような複合粒子は、空気輸送等の移送の際に破壊されることがあるため、強度の向上が求められる。 On the other hand, it has been proposed to obtain an electrochemical element having a uniform electrode active material layer by obtaining composite particles and powder molding. As a method of forming such an electrode active material layer, for example, Patent Document 1 discloses composite particles obtained by spraying and drying a slurry for composite particles containing an electrode active material, a binder resin, and a dispersion medium. A method of forming an electrode active material layer using composite particles is disclosed. Since such composite particles may be destroyed during transfer such as pneumatic transportation, improvement in strength is required.
 ここで、破壊された複合粒子を用いて電極活物質層を形成すると、複合粒子粒子径の均一性が失われることで粉体の流動性が悪化し、均一な電極活物質層を形成することができなくなる。また、複合粒子同士の密着性及び電極活物質層と集電体との密着性が弱くなり、得られる電気化学素子のサイクル特性が十分ではなかった。また、破壊された複合粒子を用いて形成された電極活物質層を有する電極は柔軟性に劣り、電極を捲回する際に電極にひび割れが発生することがあった。 Here, when the electrode active material layer is formed using the broken composite particles, the uniformity of the particle size of the composite particles is lost, so that the fluidity of the powder is deteriorated and a uniform electrode active material layer is formed. Can not be. In addition, the adhesion between the composite particles and the adhesion between the electrode active material layer and the current collector were weakened, and the cycle characteristics of the resulting electrochemical device were not sufficient. Moreover, the electrode which has the electrode active material layer formed using the broken composite particle is inferior in a softness | flexibility, and when the electrode was wound, the electrode might crack.
 さらに、特許文献1においては、複合粒子の表面を繊維状の導電助剤により被覆した外添粒子を得ているが、繊維状の導電助剤は複合粒子の内部には存在しないため、複合粒子の強度の向上を図ることはできなかった。 Further, in Patent Document 1, externally added particles obtained by coating the surface of the composite particles with a fibrous conductive assistant are obtained, but since the fibrous conductive assistant is not present inside the composite particles, the composite particles It was not possible to improve the strength.
 また、特許文献2には、塗布電極における密着性を高めるために、電極に塗布して電極層を形成するための塗布電極用スラリーに炭素繊維を含有させることが記載されている。しかし、複合粒子を用いた粉体成形とは異なる、前記塗布電極の製造方法に関するものであるため複合粒子の強度を向上させることは記載されていなかった。 In addition, Patent Document 2 describes that carbon fiber is contained in a slurry for a coating electrode that is applied to an electrode to form an electrode layer in order to improve adhesion in the coating electrode. However, since it relates to a method for producing the coated electrode, which is different from powder molding using composite particles, it has not been described to improve the strength of the composite particles.
 また、特許文献3には、塗布電極における密着性を高めるために、電極に塗布して電極層を形成するための塗布電極用スラリーに微細化したセルロースファイバーを含有させることが記載されている。しかし、複合粒子を用いた粉体成形とは異なる、前記塗布電極の製造方法に関するものであるため複合粒子の強度を向上させることは記載されていなかった。 Further, Patent Document 3 describes that, in order to enhance the adhesion in the coated electrode, the coated electrode slurry for forming the electrode layer by coating the electrode contains finely divided cellulose fibers. However, since it relates to a method for producing the coated electrode, which is different from powder molding using composite particles, it has not been described to improve the strength of the composite particles.
国際公開第2009/44856号International Publication No. 2009/44856 特開2009-295666号公報JP 2009-295666 A 国際公開第2013/42720号International Publication No. 2013/42720
 本発明の目的は、十分な強度を有し、電極を形成する場合に十分な密着性を得ることができ、さらに柔軟性に優れる電極を得ることができる電気化学素子電極用複合粒子を提供することである。 An object of the present invention is to provide a composite particle for an electrochemical element electrode that has sufficient strength, can provide sufficient adhesion when forming an electrode, and can provide an electrode having excellent flexibility. That is.
 本発明者は上記の課題を解決するべく鋭意検討した結果、水溶性高分子と非水溶性多糖高分子とを所定の割合で併用して複合粒子を得ることにより上記目的を達成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by obtaining composite particles by combining a water-soluble polymer and a water-insoluble polysaccharide polymer in a predetermined ratio. The present invention has been completed.
 即ち、本発明によれば、
(1) 負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)及び非水溶性多糖高分子繊維(D)を含む電気化学素子電極用複合粒子であって、水溶性高分子(C)と非水溶性多糖高分子繊維(D)とを、重量比にて(C)/(D)=0.2~18の割合で含むことを特徴とする電気化学素子電極用複合粒子、
(2) 前記非水溶性多糖高分子繊維(D)の平均重合度が50~1000であることを特徴とする(1)に記載の電気化学素子電極用複合粒子、
(3) 前記粒子状結着樹脂(B)は、共役ジエン系重合体またはアクリレート系重合体であることを特徴とする(1)または(2)に記載の電気化学素子電極用複合粒子、
(4) 前記水溶性高分子(C)の配合量が負極活物質(A)100重量部に対して固形分換算量で0.1~10重量部であり、前記非水溶性多糖高分子繊維(D)の配合量が得られる複合粒子100重量部に対して固形分換算量で0.1~2重量部であることを特徴とする(1)~(3)に記載の電気化学素子電極用複合粒子、
が提供される。
That is, according to the present invention,
(1) Electrochemical element electrode composite particles comprising a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C) and a water-insoluble polysaccharide polymer fiber (D), An electrochemical element comprising water-soluble polymer (C) and water-insoluble polysaccharide polymer fiber (D) in a weight ratio of (C) / (D) = 0.2-18 Composite particles for electrodes,
(2) The composite particle for an electrochemical element electrode according to (1), wherein the water-insoluble polysaccharide polymer fiber (D) has an average degree of polymerization of 50 to 1000,
(3) The particulate binder resin (B) is a conjugated diene polymer or an acrylate polymer, (1) or (2) the composite particle for an electrochemical element electrode,
(4) The amount of the water-soluble polymer (C) is 0.1 to 10 parts by weight in terms of solid content with respect to 100 parts by weight of the negative electrode active material (A), and the water-insoluble polysaccharide polymer fiber The electrochemical element electrode according to any one of (1) to (3), wherein the blending amount of (D) is 0.1 to 2 parts by weight in terms of solid content with respect to 100 parts by weight of composite particles obtained Composite particles,
Is provided.
 本発明によれば、十分な強度を有し、電極を形成する場合に十分な密着性を得ることができ、さらに柔軟性に優れる電極を得ることができる電気化学素子電極用複合粒子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it has sufficient intensity | strength, can provide sufficient adhesiveness when forming an electrode, and provides the composite particle for electrochemical element electrodes which can obtain the electrode which is further excellent in a softness | flexibility. be able to.
 以下、本発明の実施の形態に係る電気化学素子電極用複合粒子について説明する。本発明の電気化学素子電極用複合粒子(以下、「複合粒子」ということがある。)は、負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)及び非水溶性多糖高分子繊維(D)を含む電気化学素子電極用複合粒子であって、水溶性高分子(C)と非水溶性多糖高分子繊維(D)とを、重量比にて(C)/(D)=0.2~18の割合で含むことを特徴とする。 Hereinafter, the composite particle for an electrochemical element electrode according to an embodiment of the present invention will be described. The composite particle for an electrochemical element electrode of the present invention (hereinafter sometimes referred to as “composite particle”) includes a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), and a non-particle. A composite particle for an electrochemical device electrode comprising a water-soluble polysaccharide polymer fiber (D), wherein the water-soluble polymer (C) and the water-insoluble polysaccharide polymer fiber (D) are in a weight ratio (C) /(D)=0.2-18.
 なお、以下において、さらに、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。また、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。 In the following, “positive electrode active material” means an electrode active material for a positive electrode, and “negative electrode active material” means an electrode active material for a negative electrode. The “positive electrode active material layer” means an electrode active material layer provided on the positive electrode, and the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
 (負極活物質(A))
 本発明に用いる負極活物質(A)は、電気化学素子の負極において電子の受け渡しをできる物質が挙げられる。電気化学素子がリチウムイオン二次電池である場合の負極活物質(A)としては、通常、リチウムを吸蔵及び放出できる物質を用いることができる。
(Negative electrode active material (A))
Examples of the negative electrode active material (A) used in the present invention include materials that can transfer electrons in the negative electrode of an electrochemical element. As the negative electrode active material (A) in the case where the electrochemical device is a lithium ion secondary battery, a material that can occlude and release lithium can be generally used.
 リチウムイオン二次電池に好ましく用いられる負極活物質(A)の例としては、炭素で形成された負極活物質が挙げられる。炭素で形成された負極活物質としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック等が挙げられ、中でも、人造黒鉛、天然黒鉛等の黒鉛が好ましく、天然黒鉛が特に好ましい。 Examples of the negative electrode active material (A) preferably used for the lithium ion secondary battery include a negative electrode active material formed of carbon. Examples of the negative electrode active material formed of carbon include natural graphite, artificial graphite, and carbon black. Among them, graphite such as artificial graphite and natural graphite is preferable, and natural graphite is particularly preferable.
 また、リチウムイオン二次電池に好ましく用いられる負極活物質(A)の別の例としては、金属を含む負極活物質が挙げられる。特に、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む負極活物質が好ましい。これらの元素を含む負極活物質は、不可逆容量を小さくできる。 Also, another example of the negative electrode active material (A) preferably used for the lithium ion secondary battery is a negative electrode active material containing a metal. In particular, a negative electrode active material containing at least one selected from the group consisting of tin, silicon, germanium and lead is preferable. The negative electrode active material containing these elements can reduce the irreversible capacity.
 これらの金属を含む負極活物質の中でも、ケイ素を含む負極活物質が好ましい。ケイ素を含む負極活物質を用いることにより、リチウムイオン二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含む負極活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の複合粒子はケイ素を含む負極活物質の膨張及び収縮に耐え得る強度を有する。従って、本発明の複合粒子を用いて製造される負極においては、ケイ素を含む負極活物質の膨張及び収縮による電池性能の低下を効果的に抑制することができる。 Among these negative electrode active materials containing metals, negative electrode active materials containing silicon are preferable. By using a negative electrode active material containing silicon, the electric capacity of the lithium ion secondary battery can be increased. In general, a negative electrode active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge, but the composite particles of the present invention have a strength that can withstand the expansion and contraction of the negative electrode active material containing silicon. Have. Therefore, in the negative electrode manufactured using the composite particles of the present invention, it is possible to effectively suppress a decrease in battery performance due to expansion and contraction of the negative electrode active material containing silicon.
 ケイ素を含む負極活物質の例としては、ケイ素を含有する化合物(以下、「ケイ素含有化合物」ということがある。)及び金属ケイ素が挙げられる。ケイ素含有化合物は、ケイ素と他の元素との化合物であり、例えば、SiO、SiO2、SiOx(0.01≦x<2)、SiC、SiOC等が挙げられる。これらの中でも、SiOx、SiOC及びSiCが好ましく、電池寿命の観点からSiOx及びSiOCがより好ましく、負極の膨らみ抑制の観点からSiOxが特に好ましい。ここで、SiOxは、SiO及びSiO2の一方又は両方と金属ケイ素とから形成しうる化合物である。このSiOxは、例えば、SiO2と金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを、冷却及び析出させることにより、製造することができる。 Examples of the negative electrode active material containing silicon include silicon-containing compounds (hereinafter sometimes referred to as “silicon-containing compounds”) and metallic silicon. The silicon-containing compound is a compound of silicon and another element, and examples thereof include SiO, SiO 2 , SiO x (0.01 ≦ x <2), SiC, and SiOC. Among these, SiO x , SiOC, and SiC are preferable, SiO x and SiOC are more preferable from the viewpoint of battery life, and SiO x is particularly preferable from the viewpoint of suppressing swelling of the negative electrode. Here, SiO x is a compound that can be formed from one or both of SiO and SiO 2 and metallic silicon. This SiO x can be produced, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and metal silicon.
 また、負極活物質(A)としてケイ素含有化合物を用いる場合における負極活物質(A)中のケイ素含有化合物の配合量は、好ましくは1~50重量%、より好ましくは5~40重量%、特に好ましくは10~30重量%である。ケイ素含有化合物の配合量が少なすぎると、リチウムイオン二次電池を作製した場合の容量が小さくなる。また、ケイ素含有化合物の配合量が多すぎると、負極が膨潤する。
 また、負極活物質(A)としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
In addition, when a silicon-containing compound is used as the negative electrode active material (A), the amount of the silicon-containing compound in the negative electrode active material (A) is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, particularly Preferably, it is 10 to 30% by weight. If the compounding amount of the silicon-containing compound is too small, the capacity when a lithium ion secondary battery is produced becomes small. Moreover, when there are too many compounding quantities of a silicon-containing compound, a negative electrode will swell.
Moreover, as a negative electrode active material (A), one type may be used independently and it may be used combining two or more types by arbitrary ratios.
 負極活物質(A)は、粒子状に整粒されたものが好ましい。ここで負極活物質(A)の粒子の形状が球形であると、負極を形成する際に高密度な電極を得ることができる。また、リチウムイオン二次電池用の負極活物質の体積平均粒子径は、好ましくは0.1~100μm、より好ましくは0.5~50μm、さらに好ましくは0.8~20μmである。さらに、リチウムイオン二次電池用の負極活物質のタップ密度は、特に限定されないが、0.6g/cm3以上のものが好適に用いられる。
 また、電気化学素子がリチウムイオンキャパシタである場合に好ましく用いられる負極活物質(A)としては、上記炭素で形成された負極活物質が挙げられる。
The negative electrode active material (A) preferably has a particle size. Here, when the shape of the particles of the negative electrode active material (A) is spherical, a high-density electrode can be obtained when forming the negative electrode. The volume average particle diameter of the negative electrode active material for a lithium ion secondary battery is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, and still more preferably 0.8 to 20 μm. Furthermore, the tap density of the negative electrode active material for the lithium ion secondary battery is not particularly limited, but those having a density of 0.6 g / cm 3 or more are preferably used.
Moreover, as a negative electrode active material (A) preferably used when an electrochemical element is a lithium ion capacitor, the negative electrode active material formed with the said carbon is mentioned.
 (粒子状結着樹脂(B))
 本発明に用いる粒子状結着樹脂(B)としては、上述の負極活物質を相互に結着させることができる物質であれば特に限定はない。粒子状結着樹脂(B)としては、溶媒に分散する性質のある分散型の粒子状結着樹脂が好ましい。分散型の粒子状結着樹脂として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素含有重合体、共役ジエン系重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。これらの重合体は、それぞれ単独で、または2種以上混合して、分散型の粒子状結着樹脂として用いることができる。
(Particulate binder resin (B))
The particulate binder resin (B) used in the present invention is not particularly limited as long as it is a substance capable of binding the above-described negative electrode active materials to each other. As the particulate binder resin (B), a dispersion type particulate binder resin having a property of being dispersed in a solvent is preferable. Examples of the dispersion type particulate binder resin include high molecular compounds such as silicon-based polymers, fluorine-containing polymers, conjugated diene-based polymers, acrylate-based polymers, polyimides, polyamides, and polyurethanes, preferably fluorine. A containing polymer, a conjugated diene polymer, and an acrylate polymer, more preferably a conjugated diene polymer and an acrylate polymer. These polymers can be used alone or in combination as a dispersion type particulate binder resin.
 フッ素含有重合体は、フッ素原子を含む単量体単位を含有する重合体である。フッ素含有重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、エチレン・テトラフルオロエチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体、パーフルオロエチレン・プロペン共重合体が挙げられる。中でも、ポリテトラフルオロエチレンを含むことが、フィブリル化して負極活物質を保持しやすいので好ましい。 The fluorine-containing polymer is a polymer containing a monomer unit containing a fluorine atom. Specific examples of the fluorine-containing polymer include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, A perfluoroethylene propene copolymer may be mentioned. Among them, it is preferable to include polytetrafluoroethylene because it is easy to fibrillate and hold the negative electrode active material.
 共役ジエン系重合体は、共役ジエン系単量体の単独重合体もしくは共役ジエン系単量体を含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。共役ジエン系単量体として、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることが好ましく、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとすることができる点で1,3-ブタジエンを用いることがより好ましい。また、単量体混合物においてはこれらの共役ジエン系単量体を2種以上含んでもよい。 The conjugated diene polymer is a homopolymer of a conjugated diene monomer, a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene monomer, or a hydrogenated product thereof. 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, substituted linear conjugated pentadiene as conjugated diene monomer Preferably, 1,3-butadiene is used in that the flexibility when used as an electrode can be improved and the resistance to cracking can be increased. It is more preferable. Further, the monomer mixture may contain two or more of these conjugated diene monomers.
 共役ジエン系重合体が、上述した共役ジエン系単量体と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、α,β-不飽和ニトリル化合物や酸成分を有するビニル化合物などが挙げられる。 When the conjugated diene polymer is a copolymer of the above conjugated diene monomer and a monomer copolymerizable therewith, examples of the copolymerizable monomer include α, Examples thereof include a β-unsaturated nitrile compound and a vinyl compound having an acid component.
 共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン系単量体単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル系単量体・共役ジエン系単量体共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル系単量体・共役ジエン系単量体共重合体;水素化SBR、水素化NBR等が挙げられる。 Specific examples of conjugated diene polymers include conjugated diene monomer homopolymers such as polybutadiene and polyisoprene; aromatic vinyl monomers such as carboxy-modified styrene-butadiene copolymer (SBR). Monomer / conjugated diene monomer copolymer; vinyl cyanide monomer / conjugated diene monomer copolymer such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, etc. Is mentioned.
 共役ジエン系重合体中における共役ジエン系単量体単位の配合量は、好ましくは20~60重量%であり、より好ましくは30~55重量%である。共役ジエン系単量体単位の配合量が多すぎると、結着樹脂を含む複合粒子を用いて負極を製造した場合に、耐電解液性が低下する傾向がある。共役ジエン系単量体単位の配合量が少なすぎると、複合粒子と集電体との十分な密着性が得られない傾向がある。 The amount of the conjugated diene monomer unit in the conjugated diene polymer is preferably 20 to 60% by weight, more preferably 30 to 55% by weight. When the compounding amount of the conjugated diene monomer unit is too large, the electrolytic solution resistance tends to be lowered when the negative electrode is produced using composite particles containing a binder resin. If the blending amount of the conjugated diene monomer unit is too small, sufficient adhesion between the composite particles and the current collector tends not to be obtained.
 アクリレート系重合体は、一般式(1):CH2=CR1-COOR2(式中、R1は水素原子またはメチル基を、R2はアルキル基またはシクロアルキル基を表す。R2はさらにエーテル基、水酸基、リン酸基、アミノ基、カルボキシル基、フッ素原子、またはエポキシ基を有していてもよい。)で表される化合物〔(メタ)アクリル酸エステル〕由来の単量体単位を含む重合体、具体的には、一般式(1)で表される化合物の単独重合体、または前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる共重合体である。一般式(1)で表される化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、および(メタ)アクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル等のエーテル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-2-ヒドロキシ-3-フェノキシプロピル、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタル酸等の水酸基含有(メタ)アクリル酸エステル;2-(メタ)アクリロイロキシエチルフタル酸等のカルボン酸含有(メタ)アクリル酸エステル;(メタ)アクリル酸パーフロロオクチルエチル等のフッ素基含有(メタ)アクリル酸エステル;(メタ)アクリル酸リン酸エチル等のリン酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のエポキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;等が挙げられる。 The acrylate polymer has the general formula (1): CH 2 ═CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group or a cycloalkyl group. R 2 further represents A monomer unit derived from a compound represented by an ether group, a hydroxyl group, a phosphate group, an amino group, a carboxyl group, a fluorine atom, or an epoxy group. Copolymer obtained by polymerizing a polymer containing, specifically, a homopolymer of a compound represented by the general formula (1) or a monomer mixture containing the compound represented by the general formula (1) It is a coalescence. Specific examples of the compound represented by the general formula (1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n. -Butyl, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isopentyl (meth) acrylate, isooctyl (meth) acrylate, isobornyl (meth) acrylate, (meth) (Meth) acrylic acid alkyl esters such as isodecyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and tridecyl (meth) acrylate; butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate , (Meth) acrylic acid methoxydipropylene Recall, (meth) acrylic acid methoxypolyethylene glycol, (meth) acrylic acid phenoxyethyl, ether-containing (meth) acrylic acid ester such as (meth) acrylic acid tetrahydrofurfuryl; (meth) acrylic acid-2-hydroxyethyl, Hydroxyl-containing (meth) acrylic such as (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-2-hydroxy-3-phenoxypropyl, 2- (meth) acryloyloxyethyl-2-hydroxyethylphthalic acid, etc. Acid ester; 2- (meth) acryloyloxyethylphthalic acid-containing (meth) acrylic acid ester; (meth) acrylic acid perfluorooctylethyl fluorine-containing (meth) acrylic acid ester; (meth) Phosphoric acid group-containing (meth) acrylates such as ethyl acrylate Acrylic acid esters; (meth) epoxy group-containing (meth) acrylic acid esters of glycidyl acrylate; (meth) containing amino group such as dimethylaminoethyl acrylate (meth) acrylic acid ester; and the like.
 なお、本明細書において、「(メタ)アクリル」は「アクリル」及び「メタクリル」を意味する。また、「(メタ)アクリロイル」は「アクリロイル」及び「メタクリロイル」を意味する。 In this specification, “(meth) acryl” means “acryl” and “methacryl”. “(Meth) acryloyl” means “acryloyl” and “methacryloyl”.
 これら(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、および(メタ)アクリル酸n-ブチルやアルキル基の炭素数が6~12である(メタ)アクリル酸アルキルエステルがより好ましい。これらを選択することにより、電解液に対する膨潤性を低くすることが可能となり、サイクル特性を向上させることができる。 These (meth) acrylic acid esters can be used alone or in combination of two or more. Among these, (meth) acrylic acid alkyl esters are preferable, and methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and alkyl groups have 6 to 12 carbon atoms. (Meth) acrylic acid alkyl ester is more preferred. By selecting these, it becomes possible to reduce the swellability with respect to the electrolytic solution, and to improve the cycle characteristics.
 また、アクリレート系重合体が、上述した一般式(1)で表される化合物と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、及び複素環含有ビニル化合物などのほか、α,β-不飽和ニトリル化合物や酸成分を有するビニル化合物が挙げられる。 In addition, when the acrylate polymer is a copolymer of the compound represented by the general formula (1) and a monomer copolymerizable therewith, as the copolymerizable monomer, For example, carboxylic acid esters having two or more carbon-carbon double bonds, aromatic vinyl monomers, amide monomers, olefins, diene monomers, vinyl ketones, and heterocyclic rings In addition to vinyl compounds, examples include α, β-unsaturated nitrile compounds and vinyl compounds having an acid component.
 上記共重合可能な単量体の中でも、電極(負極)を製造した際に変形しにくく強度が強いものとすることができ、また、負極活物質層と集電体との十分な密着性が得られる点で、芳香族ビニル系単量体を用いることが好ましい。芳香族ビニル系単量体としては、スチレン等が挙げられる。 Among the above copolymerizable monomers, the electrode (negative electrode) can be made difficult to be deformed when the electrode (negative electrode) is produced, and the strength can be strong, and sufficient adhesion between the negative electrode active material layer and the current collector is obtained. In view of the obtained point, it is preferable to use an aromatic vinyl monomer. Examples of the aromatic vinyl monomer include styrene.
 なお、芳香族ビニル系単量体の配合量が多すぎると負極活物質層と集電体との十分な密着性が得られない傾向がある。また、芳香族ビニル系単量体の配合量が少なすぎると、負極を製造した際に耐電解液性が低下する傾向がある。 In addition, when there is too much compounding quantity of an aromatic vinyl-type monomer, there exists a tendency for sufficient adhesiveness of a negative electrode active material layer and a collector to be not acquired. Moreover, when there are too few compounding quantities of an aromatic vinyl-type monomer, there exists a tendency for electrolyte solution resistance to fall, when manufacturing a negative electrode.
 アクリレート系重合体中における(メタ)アクリル酸エステル単位の配合量は、電極(負極)とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとする観点から、好ましくは50~95重量%であり、より好ましくは60~90重量%である。 The blending amount of the (meth) acrylic acid ester unit in the acrylate-based polymer is preferably 50 to 50% from the viewpoint of improving flexibility when used as an electrode (negative electrode) and increasing resistance to cracking. It is 95% by weight, more preferably 60 to 90% by weight.
 分散型の粒子状結着樹脂を構成する重合体に用いられる、前記α,β-不飽和ニトリル化合物としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、及びα-ブロモアクリロニトリルなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。 Examples of the α, β-unsaturated nitrile compound used in the polymer constituting the dispersed particulate binder resin include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and α-bromoacrylonitrile. These may be used alone or in combination of two or more. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable.
 分散型結着樹脂中におけるα,β-不飽和ニトリル化合物単位の配合量は、好ましくは0.1~40重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。分散型結着樹脂中にα,β-不飽和ニトリル化合物単位を含有させると、電極(負極)を製造した際に変形しにくく強度が強いものとすることができる。また、分散型結着樹脂中にα,β-不飽和ニトリル化合物単位を含有させると、複合粒子を含む負極活物質層と集電体との密着性を十分なものとすることができる。 The blending amount of the α, β-unsaturated nitrile compound unit in the dispersion type binder resin is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, and further preferably 1 to 20% by weight. It is. When an α, β-unsaturated nitrile compound unit is contained in the dispersion-type binder resin, it is difficult to be deformed when the electrode (negative electrode) is produced, and the strength can be increased. Further, when an α, β-unsaturated nitrile compound unit is contained in the dispersion-type binder resin, the adhesion between the negative electrode active material layer containing composite particles and the current collector can be made sufficient.
 なお、α,β-不飽和ニトリル化合物単位の配合量が多すぎると負極活物質層と集電体との十分な密着性が得られない傾向がある。また、α,β-不飽和ニトリル化合物単位の配合量が少なすぎると、負極を製造した際に耐電解液性が低下する傾向がある。 Note that if the amount of the α, β-unsaturated nitrile compound unit is too large, sufficient adhesion between the negative electrode active material layer and the current collector tends not to be obtained. On the other hand, if the amount of the α, β-unsaturated nitrile compound unit is too small, the resistance to electrolyte solution tends to decrease when the negative electrode is produced.
 前記酸成分を有するビニル化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、及びフマル酸などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、アクリル酸、メタクリル酸、およびイタコン酸が好ましく、メタクリル酸及びイタコン酸がより好ましく、接着力が良くなる点で特に、メタクリル酸が好ましい。 Examples of the vinyl compound having an acid component include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. These may be used alone or in combination of two or more. Among these, acrylic acid, methacrylic acid, and itaconic acid are preferable, methacrylic acid and itaconic acid are more preferable, and methacrylic acid is particularly preferable in terms of improving adhesive strength.
 分散型の粒子状結着樹脂中における酸成分を有するビニル化合物単位の配合量は、複合粒子用スラリーとした際における安定性が向上する観点から、好ましくは0.5~10重量%、より好ましくは1~8重量%、さらに好ましくは2~7重量%である。 The blending amount of the vinyl compound unit having an acid component in the dispersion type particulate binder resin is preferably 0.5 to 10% by weight, more preferably from the viewpoint of improving the stability of the composite particle slurry. Is 1 to 8% by weight, more preferably 2 to 7% by weight.
 なお、酸成分を有するビニル化合物単位の配合量が多すぎると、複合粒子用スラリーの粘度が高くなり、取扱いが困難になる傾向がある。また、酸成分を有するビニル化合物単位の配合量が少なすぎると複合粒子用スラリーの安定性が低下する傾向がある。 In addition, when there are too many compounding quantities of the vinyl compound unit which has an acid component, there exists a tendency for the viscosity of the slurry for composite particles to become high, and for handling to become difficult. Moreover, when there are too few compounding quantities of the vinyl compound unit which has an acid component, there exists a tendency for stability of the slurry for composite particles to fall.
 本発明に用いる分散型の粒子状結着樹脂は、粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状結着樹脂(B)としては、例えば、ラテックスのごとき結着樹脂の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The dispersion type particulate binder resin used in the present invention is in the form of particles, so that it has good binding properties, and can suppress deterioration of the capacity of the produced electrode and repeated charge / discharge. Examples of the particulate binder resin (B) include those in which binder resin particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
 分散型の粒子状結着樹脂の平均粒子径は、複合粒子用スラリーとした際における安定性を良好なものとしながら、得られる負極の強度及び柔軟性が良好となる点から、好ましくは0.001~100μm、より好ましくは10~1000nm、さらに好ましくは50~500nmである。 The average particle size of the dispersion type particulate binder resin is preferably from the viewpoint that the strength and flexibility of the obtained negative electrode are improved while the stability in the case of the composite particle slurry is improved. The thickness is from 001 to 100 μm, more preferably from 10 to 1000 nm, still more preferably from 50 to 500 nm.
 また、本発明に用いる粒子状結着樹脂(B)の製造方法は特に限定されず、乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、粒子状結着樹脂(B)の粒子径の制御が容易であるので好ましい。また、本発明に用いる粒子状結着樹脂(B)は、2種以上の単量体混合物を段階的に重合することにより得られるコアシェル構造を有する粒子であっても良い。 The method for producing the particulate binder resin (B) used in the present invention is not particularly limited, and a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method may be employed. it can. Among these, it is preferable to produce by an emulsion polymerization method because the particle diameter of the particulate binder resin (B) can be easily controlled. The particulate binder resin (B) used in the present invention may be particles having a core-shell structure obtained by stepwise polymerization of a mixture of two or more monomers.
 本発明の電気化学素子電極用複合粒子中の粒子状結着樹脂(B)の配合量は、得られる負極活物質層と集電体との密着性が充分に確保でき、かつ、電気化学素子の内部抵抗を低くすることができる観点から、負極活物質100重量部に対して、乾燥重量基準で好ましくは0.1~50重量部、より好ましくは0.5~20重量部、さらに好ましくは1~15重量部である。 The compounding amount of the particulate binder resin (B) in the composite particle for an electrochemical element electrode of the present invention can ensure sufficient adhesion between the obtained negative electrode active material layer and the current collector, and the electrochemical element From the viewpoint of reducing the internal resistance of the negative electrode active material, it is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight, and still more preferably 100 parts by weight of the negative electrode active material on a dry weight basis. 1 to 15 parts by weight.
 (水溶性高分子(C))
 本発明に用いる水溶性高分子(C)とは、25℃において、高分子0.5gを100gの純水に溶解させた場合の未溶解分が10.0重量%未満の高分子をいう。
(Water-soluble polymer (C))
The water-soluble polymer (C) used in the present invention refers to a polymer having an undissolved content of less than 10.0% by weight when 0.5 g of the polymer is dissolved in 100 g of pure water at 25 ° C.
 水溶性高分子(C)の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、およびポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリ-N-ビニルアセトアミド、ポリエチレンオキシド、ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。なお、本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味する。 Specific examples of the water-soluble polymer (C) include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof, alginates such as propylene glycol alginate, and alginic acid. Alginates such as sodium, polyacrylic acid, and polyacrylic acid (or methacrylic acid) salts such as sodium polyacrylic acid (or methacrylic acid), polyvinyl alcohol, modified polyvinyl alcohol, poly-N-vinylacetamide, polyethylene oxide, polyvinyl Examples include pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. It is. In the present invention, “(modified) poly” means “unmodified poly” or “modified poly”.
 これらの水溶性高分子(C)は、それぞれ単独でまたは2種以上を組み合わせて使用できる。これらの中でも、非水溶性多糖高分子繊維(D)の分散性が良くなり、また、接着性が高い観点から、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。これらの水溶性高分子(C)の配合量は、本発明の効果を損ねない範囲であれば格別な限定はないが、固形部換算量で負極活物質(A)100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部、さらに好ましくは0.25~2重量部である。 These water-soluble polymers (C) can be used alone or in combination of two or more. Among these, from the viewpoint of improving the dispersibility of the water-insoluble polysaccharide polymer fiber (D) and high adhesiveness, a cellulose-based polymer is preferable, and carboxymethyl cellulose or its ammonium salt or alkali metal salt is particularly preferable. The blending amount of these water-soluble polymers (C) is not particularly limited as long as the effect of the present invention is not impaired, but with respect to 100 parts by weight of the negative electrode active material (A) in solid part equivalent amount, The amount is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, still more preferably 0.25 to 2 parts by weight.
 (非水溶性多糖高分子繊維(D))
 本発明に用いる非水溶性多糖高分子繊維(D)は、多糖類の中でいわゆる高分子化合物に属するものであり、非水溶性の繊維状のものであればそれ以外の限定はないが、通常は、機械的せん断力によりフィブリル化させた繊維(短繊維)である。なお、本発明に用いる非水溶性多糖高分子繊維とは、25℃において、多糖高分子繊維0.5gを100gの純水に溶解させた場合の未溶解分が90重量%以上となる多糖高分子繊維をいう。
(Water-insoluble polysaccharide polymer fiber (D))
The water-insoluble polysaccharide polymer fiber (D) used in the present invention belongs to a so-called polymer compound among polysaccharides, and there is no other limitation as long as it is a water-insoluble fibrous form. Usually, it is a fiber (short fiber) fibrillated by a mechanical shearing force. In addition, the water-insoluble polysaccharide polymer fiber used in the present invention is a high-polysaccharide fiber having an undissolved content of 90% by weight or more when 0.5 g of polysaccharide polymer fiber is dissolved in 100 g of pure water at 25 ° C. Refers to molecular fiber.
 非水溶性多糖高分子繊維(D)としては、多糖高分子のナノファイバーを用いることが好ましく、多糖高分子のナノファイバーのなかでも柔軟性を有し、かつ、繊維の引張強度が大きいため複合粒子の補強効果が高く、粒子強度を向上させることができる観点から、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバーなどの生物由来のバイオナノファイバーから選ばれる単独又は任意の混合物を使用するのがより好ましい。これらのなかでも、セルロースナノファイバーを使用するのがさらに好ましく、竹、針葉樹、広葉樹、綿を原料とするセルロースナノファイバーを使用するのが特に好ましい。 As the water-insoluble polysaccharide polymer fiber (D), it is preferable to use polysaccharide polymer nanofibers. Among the polysaccharide polymer nanofibers, they are flexible and have a high tensile strength. From the viewpoint of enhancing the particle reinforcing effect and enhancing the particle strength, it is more preferable to use a single or any mixture selected from bio-derived nanofibers such as cellulose nanofibers, chitin nanofibers and chitosan nanofibers. preferable. Among these, it is more preferable to use cellulose nanofibers, and it is particularly preferable to use cellulose nanofibers made from bamboo, conifers, hardwoods, and cotton.
 これらの非水溶性多糖高分子繊維(D)に機械的せん断力を加えてフィブリル化(短繊維化)する方法としては、非水溶性多糖高分子繊維を水に分散させた後に、叩解させる方法、オリフィスを通過させる方法などが挙げられる。また、非水溶性多糖高分子繊維は、各種繊維径の短繊維が市販されており、これらを水中分散させて用いてもよい。 As a method for fibrillating (shortening fiber) by applying mechanical shearing force to these water-insoluble polysaccharide polymer fibers (D), a method in which water-insoluble polysaccharide polymer fibers are dispersed in water and then beaten. And a method of passing through an orifice. As the water-insoluble polysaccharide polymer fiber, short fibers having various fiber diameters are commercially available, and these may be used by dispersing in water.
 本発明で用いる非水溶性多糖高分子繊維(D)の平均繊維径は、複合粒子中により多く非水溶性多糖高分子繊維(D)を存在させ、負極活物質間の密着性を強くすることにより複合粒子および電極(負極)の強度を十分なものとする観点、および、得られる電気化学素子の電気化学特性に優れる観点から、好ましくは5~3000nm、より好ましくは5~2000nm、さらに好ましくは5~1000nm、特に好ましくは5~100nmである。非水溶性多糖高分子繊維(D)の平均繊維径が大きすぎると複合粒子内に非水溶性多糖高分子繊維が十分に存在することができないため、複合粒子の強度を十分なものとすることができない。また、複合粒子の流動性が悪くなり、均一な負極活物質層の形成が困難となる。 The average fiber diameter of the water-insoluble polysaccharide polymer fiber (D) used in the present invention is such that more water-insoluble polysaccharide polymer fiber (D) is present in the composite particles and the adhesion between the negative electrode active materials is strengthened. From the viewpoint of ensuring sufficient strength of the composite particles and the electrode (negative electrode), and from the viewpoint of excellent electrochemical characteristics of the obtained electrochemical device, it is preferably 5 to 3000 nm, more preferably 5 to 2000 nm, and still more preferably. It is 5 to 1000 nm, particularly preferably 5 to 100 nm. If the average fiber diameter of the water-insoluble polysaccharide polymer fiber (D) is too large, the water-insoluble polysaccharide polymer fiber cannot sufficiently exist in the composite particle, so that the strength of the composite particle should be sufficient. I can't. Further, the fluidity of the composite particles is deteriorated, and it is difficult to form a uniform negative electrode active material layer.
 なお、非水溶性多糖高分子繊維(D)は、単繊維が引き揃えられることなく十分に離隔して存在するものより成ってもよい。この場合、平均繊維径は単繊維の平均径となる。また、非水溶性多糖高分子繊維(D)は、複数本の単繊維が束状に集合して1本の糸条を構成しているものであってもよい。この場合、平均繊維径は1本の糸条の径の平均値として定義される。 In addition, the water-insoluble polysaccharide polymer fiber (D) may be made of a single fiber that is sufficiently separated without being aligned. In this case, the average fiber diameter is the average diameter of single fibers. In addition, the water-insoluble polysaccharide polymer fiber (D) may be one in which a plurality of single fibers are aggregated in a bundle to form one yarn. In this case, the average fiber diameter is defined as the average value of the diameters of one yarn.
 また、非水溶性多糖高分子繊維(D)の平均重合度は、複合粒子および電極(負極)の強度を十分なものとする観点、および、均一な負極活物質層が形成できるため得られる電気化学素子の電気化学特性に優れる観点から、好ましくは50~1000、より好ましくは100~900、さらに好ましくは150~800である。非水溶性多糖高分子繊維の平均重合度が大きすぎると、得られる電気化学素子の内部抵抗が上昇する。また、均一な負極活物質層の形成が困難となる。また、非水溶性多糖高分子繊維の平均重合度が小さすぎると複合粒子の強度が不十分となる。 Further, the average degree of polymerization of the water-insoluble polysaccharide polymer fiber (D) is obtained from the viewpoint that the strength of the composite particles and the electrode (negative electrode) is sufficient, and a uniform negative electrode active material layer can be formed. From the viewpoint of excellent electrochemical characteristics of the chemical element, it is preferably 50 to 1000, more preferably 100 to 900, and still more preferably 150 to 800. If the average degree of polymerization of the water-insoluble polysaccharide polymer fiber is too large, the internal resistance of the resulting electrochemical device increases. In addition, it becomes difficult to form a uniform negative electrode active material layer. Moreover, when the average degree of polymerization of the water-insoluble polysaccharide polymer fiber is too small, the strength of the composite particles becomes insufficient.
 本発明において平均重合度は、次に示す銅エチレンジアミン溶液を用いた粘度法で求められる。
  凍結乾燥した非水溶性多糖高分子繊維を銅エチレンジアミン溶液1に溶解して溶液2を調製し、粘度計を用いて粘度を測定する。溶液2の粘度をη、溶液1の粘度をη0として、次の計算式により非水溶性多糖高分子繊維溶液の極限粘度[η]を求める。
In the present invention, the average degree of polymerization is determined by a viscosity method using the following copper ethylenediamine solution.
A freeze-dried water-insoluble polysaccharide polymer fiber is dissolved in a copper ethylenediamine solution 1 to prepare a solution 2, and the viscosity is measured using a viscometer. The intrinsic viscosity [η] of the water-insoluble polysaccharide polymer fiber solution is obtained by the following calculation formula where the viscosity of the solution 2 is η and the viscosity of the solution 1 is η0.
  極限粘度[η]=(η/η0)/{c(1+A×η/η0)}
  ここでcは、非水溶性多糖高分子繊維濃度(g/dL)であり、Aは、溶液1の種類によって決まる値である。0.5M銅エチレンジアミン溶液を溶液1として用いた場合、Aは0.28である。
Intrinsic viscosity [η] = (η / η0) / {c (1 + A × η / η0)}
Here, c is the water-insoluble polysaccharide polymer fiber concentration (g / dL), and A is a value determined by the type of the solution 1. When 0.5 M copper ethylenediamine solution is used as solution 1, A is 0.28.
  そして、平均重合度DPを以下の式より求める。
  極限粘度[η]=K×DP
  ここでKとaは高分子の種類によって決まる値である。例えばセルロースの場合、Kは5.7×10-3、aは1である。
And average polymerization degree DP is calculated | required from the following formula | equation.
Intrinsic viscosity [η] = K × DP a
Here, K and a are values determined by the type of polymer. For example, in the case of cellulose, K is 5.7 × 10 −3 and a is 1.
  粘度計は毛細管粘度計が好ましく、その例にはキャノン・フェンスケ粘度計が含まれる。 The soot viscometer is preferably a capillary viscometer, examples of which include a Canon-Fenske viscometer.
 非水溶性多糖高分子繊維(D)の配合量は、得られる複合粒子100重量部に対して、固形分換算量で好ましくは0.1~2重量部、より好ましくは0.2~1.5重量部、さらに好ましくは0.3~1重量部である。非水溶性多糖高分子繊維の配合量が多すぎると、得られる電気化学素子の内部抵抗が上昇する。また、均一な電極層(負極活物質層)の形成が困難となる。また、非水溶性多糖高分子繊維(D)の配合量が少なすぎると、非水溶性多糖高分子繊維による補強効果が小さく、複合粒子の強度が不十分となる。また、非水溶性多糖高分子繊維(D)の配合量が多すぎると、複合粒子の造粒を行うことができない。 The blending amount of the water-insoluble polysaccharide polymer fiber (D) is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1. part by weight in terms of solid content with respect to 100 parts by weight of the resulting composite particles. 5 parts by weight, more preferably 0.3 to 1 part by weight. When the blending amount of the water-insoluble polysaccharide polymer fiber is too large, the internal resistance of the obtained electrochemical element increases. In addition, it becomes difficult to form a uniform electrode layer (negative electrode active material layer). Moreover, when there are too few compounding quantities of water-insoluble polysaccharide polymer fiber (D), the reinforcement effect by water-insoluble polysaccharide polymer fiber will be small, and the intensity | strength of composite particle will become inadequate. Moreover, when there are too many compounding quantities of a water-insoluble polysaccharide polymer fiber (D), granulation of a composite particle cannot be performed.
 なお、非水溶性多糖高分子繊維(D)の配合量を増やすことで複合粒子用スラリーの粘度が上昇する場合には、上記水溶性高分子の配合量を減らすことにより粘度を適宜調整することができる。 In addition, when the viscosity of the slurry for composite particles increases by increasing the blending amount of the water-insoluble polysaccharide polymer fiber (D), the viscosity is appropriately adjusted by reducing the blending amount of the water-soluble polymer. Can do.
 本発明に用いる水溶性高分子(C)と、非水溶性多糖高分子繊維(D)との割合は、非水溶性多糖高分子繊維(D)の分散性を良好とする観点から、固形分換算における重量比にて、水溶性高分子(C)/非水溶性多糖高分子繊維(D)=0.2~18、好ましくは0.25~15、より好ましくは0.3~10である。 The ratio of the water-soluble polymer (C) and the water-insoluble polysaccharide polymer fiber (D) used in the present invention is determined from the viewpoint of improving the dispersibility of the water-insoluble polysaccharide polymer fiber (D). In terms of weight ratio in terms of conversion, water-soluble polymer (C) / water-insoluble polysaccharide polymer fiber (D) = 0.2 to 18, preferably 0.25 to 15, more preferably 0.3 to 10. .
 (導電助剤)
 本発明の電気化学素子電極用複合粒子は、上記各成分に加えて、必要に応じて導電助剤を含有していてもよい。
(Conductive aid)
The composite particle for an electrochemical element electrode of the present invention may contain a conductive additive as necessary in addition to the above components.
 導電助剤としては、導電性を有する材料であれば特に限定されないが、導電性を有する粒子状の材料が好ましく、たとえば、ファーネスブラック、アセチレンブラック、及びケッチェンブラック等の導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維等の炭素繊維;が挙げられる。導電助剤が粒子状の材料である場合の平均粒子径は、特に限定されないが、負極活物質の平均粒子径よりも小さいものが好ましく、より少ない使用量で十分な導電性を発現させる観点から、好ましくは0.001~10μm、より好ましくは0.05~5μm、さらに好ましくは0.1~1μmである。 The conductive auxiliary agent is not particularly limited as long as it is a conductive material, but a conductive particulate material is preferable. For example, conductive carbon black such as furnace black, acetylene black, and ketjen black; natural And graphite such as graphite and artificial graphite; and carbon fibers such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, and vapor grown carbon fiber. The average particle diameter when the conductive additive is a particulate material is not particularly limited, but is preferably smaller than the average particle diameter of the negative electrode active material, from the viewpoint of expressing sufficient conductivity with a smaller amount of use. The thickness is preferably 0.001 to 10 μm, more preferably 0.05 to 5 μm, and still more preferably 0.1 to 1 μm.
 本発明の電気化学素子電極用複合粒子中における、導電助剤の配合量は、得られる電気化学素子の容量を高く保ちながら、内部抵抗を十分に低減する観点から、負極活物質100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~15重量部、さらに好ましくは1~10重量部である。 In the composite particle for an electrochemical element electrode of the present invention, the compounding amount of the conductive assistant is 100 parts by weight of the negative electrode active material from the viewpoint of sufficiently reducing the internal resistance while keeping the capacity of the obtained electrochemical element high. On the other hand, it is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 15 parts by weight, still more preferably 1 to 10 parts by weight.
 (複合粒子の製造)
 複合粒子は、負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)、非水溶性多糖高分子繊維(D)および必要に応じ添加される導電助剤等他の成分を用いて造粒することにより得られる。複合粒子は、負極活物質(A)、粒子状結着樹脂(B)を含んでなるが、負極活物質(A)および粒子状結着樹脂(B)のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である負極活物質(A)、粒子状結着樹脂(B)を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子が実質的に形状を維持した状態で複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の負極活物質(A)が、粒子状結着樹脂(B)によって結着されて粒子を形成しているものが好ましい。
(Manufacture of composite particles)
The composite particles include a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), a water-insoluble polysaccharide polymer fiber (D), and a conductive additive added as necessary. It is obtained by granulating using the above ingredients. The composite particles include the negative electrode active material (A) and the particulate binder resin (B), but each of the negative electrode active material (A) and the particulate binder resin (B) exists as independent particles. Instead, one particle is formed by two or more components including the negative electrode active material (A) and the particulate binder resin (B), which are constituent components. Specifically, a plurality of (preferably several to several tens) secondary particles are formed by combining a plurality of the individual particles of the two or more components while maintaining the shape substantially. It is preferable that the negative electrode active material (A) is bound by the particulate binder resin (B) to form particles.
 複合粒子の形状は、流動性の観点から実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、走査型電子顕微鏡写真像より測定される値である。 The shape of the composite particles is preferably substantially spherical from the viewpoint of fluidity. That is, the short axis diameter of the composite particles is L s , the long axis diameter is L l , L a = (L s + L l ) / 2, and a value of (1− (L l −L s ) / L a ) × 100 Is a sphericity (%), the sphericity is preferably 80% or more, more preferably 90% or more. Here, the minor axis diameter L s and the major axis diameter L l are values measured from a scanning electron micrograph image.
 複合粒子の平均粒子径は、所望の厚みの電極層(負極活物質層)を容易に得ることができる観点から、好ましくは0.1~200μm、より好ましくは1~150μm、さらに好ましくは10~80μmである。なお、本発明において平均粒子径とは、レーザー回折式粒度分布測定装置(たとえば、SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。 The average particle diameter of the composite particles is preferably 0.1 to 200 μm, more preferably 1 to 150 μm, and still more preferably 10 to 10 from the viewpoint that an electrode layer (negative electrode active material layer) having a desired thickness can be easily obtained. 80 μm. In the present invention, the average particle size is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
 複合粒子の製造方法は特に限定されないが、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、および溶融造粒法などの製造方法によって複合粒子を得ることができる。 The production method of the composite particles is not particularly limited, but is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation method. Composite particles can be obtained by production methods such as a granulation method, a fluidized bed multifunctional granulation method, and a melt granulation method.
 複合粒子の製造方法は、粒子径制御の容易性、生産性、粒子径分布の制御の容易性などの観点から、複合粒子の成分等に応じて最適な方法を適宜選択すればよいが、以下に説明する噴霧乾燥造粒法は、複合粒子を比較的容易に製造することができるため、好ましい。以下、噴霧乾燥造粒法について説明する。 The production method of the composite particles may be appropriately selected from the viewpoints of ease of particle size control, productivity, ease of control of particle size distribution, etc. according to the components of the composite particles, etc. The spray-drying granulation method described in 1 is preferable because the composite particles can be produced relatively easily. Hereinafter, the spray drying granulation method will be described.
 まず、負極活物質(A)及び粒子状結着樹脂(B)を含有する複合粒子用スラリー(以下、「スラリー」ということがある。)を調製する。複合粒子用スラリーは、負極活物質、結着樹脂、水溶性高分子および非水溶性多糖高分子繊維ならびに必要に応じて添加される導電助剤を、溶媒に分散又は溶解させることにより調製することができる。なお、この場合において、結着樹脂が溶媒としての水に分散されたものである場合には、水に分散させた状態で添加することができる。 First, a slurry for composite particles (hereinafter sometimes referred to as “slurry”) containing a negative electrode active material (A) and a particulate binder resin (B) is prepared. The composite particle slurry is prepared by dispersing or dissolving a negative electrode active material, a binder resin, a water-soluble polymer and a water-insoluble polysaccharide polymer fiber, and a conductive additive added as necessary, in a solvent. Can do. In this case, when the binder resin is dispersed in water as a solvent, it can be added in a state dispersed in water.
 複合粒子用スラリーを得るために用いる溶媒としては、水を用いることが好ましいが、水と有機溶媒との混合溶媒を用いてもよく、有機溶媒のみを単独または数種組み合わせて用いてもよい。この場合に用いることができる有機溶媒としては、たとえば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;等が挙げられる。有機溶媒を用いる場合には、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用することにより、噴霧乾燥時に、乾燥速度を速くすることができる。また、これにより、複合粒子用スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。 As the solvent used for obtaining the composite particle slurry, water is preferably used, but a mixed solvent of water and an organic solvent may be used, or only an organic solvent may be used alone or in combination of several kinds. Examples of the organic solvent that can be used in this case include alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane, and diglyme; diethylformamide, dimethyl Amides such as acetamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone; and the like. When using an organic solvent, alcohols are preferred. By using water and an organic solvent having a lower boiling point than water, the drying rate can be increased during spray drying. Thereby, the viscosity and fluidity of the slurry for composite particles can be adjusted, and the production efficiency can be improved.
 また、複合粒子用スラリーの粘度は、噴霧乾燥造粒工程の生産性を向上させる観点から、室温において、好ましくは10~3,000mPa・s、より好ましくは30~1,500mPa・s、さらに好ましくは50~1,000mPa・sである。 In addition, the viscosity of the composite particle slurry is preferably 10 to 3,000 mPa · s, more preferably 30 to 1,500 mPa · s, more preferably at room temperature, from the viewpoint of improving the productivity of the spray drying granulation step. Is 50 to 1,000 mPa · s.
 また、本発明においては、複合粒子用スラリーを調製する際に、必要に応じて、分散剤や界面活性剤を添加してもよい。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオン等の両性の界面活性剤が挙げられるが、アニオン性又はノニオン性界面活性剤で熱分解しやすいものが好ましい。界面活性剤の配合量は、負極活物質100重量部に対して、好ましくは50重量部以下であり、より好ましくは0.1~10重量部、さらに好ましくは0.5~5重量部である。 In the present invention, when preparing the composite particle slurry, a dispersant or a surfactant may be added as necessary. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions, and anionic or nonionic surfactants that are easily thermally decomposed are preferable. The compounding amount of the surfactant is preferably 50 parts by weight or less, more preferably 0.1 to 10 parts by weight, and further preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the negative electrode active material. .
 スラリーを調製する際に使用する溶媒の量は、スラリー中に結着樹脂を均一に分散させる観点から、スラリーの固形分濃度が、好ましくは1~50重量%、より好ましくは5~50重量%、さらに好ましくは10~40重量%となる量である。 The amount of the solvent used in preparing the slurry is such that the solid content concentration of the slurry is preferably 1 to 50% by weight, more preferably 5 to 50% by weight, from the viewpoint of uniformly dispersing the binder resin in the slurry. More preferably, the amount is 10 to 40% by weight.
 負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)および非水溶性多糖高分子繊維(D)ならびに必要に応じて添加される導電助剤を溶媒に分散又は溶解する方法又は順番は、特に限定されず、例えば、溶媒に負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)、非水溶性多糖高分子繊維(D)および導電助剤を添加し混合する方法、溶媒に水溶性高分子(C)を溶解した後、負極活物質(A)、導電助剤および非水溶性多糖高分子繊維(D)を添加して混合し、最後に溶媒に分散させた粒子状結着樹脂(B)(例えば、ラテックス)を添加して混合する方法、溶媒に分散させた粒子状結着樹脂(B)および非水溶性多糖高分子繊維(D)に負極活物質(A)および導電助剤を添加して混合し、この混合物に溶媒に溶解させた水溶性高分子(C)を添加して混合する方法等が挙げられる。 A negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), a water-insoluble polysaccharide polymer fiber (D), and a conductive additive added as necessary are dispersed in a solvent or The method or order of dissolution is not particularly limited. For example, the negative electrode active material (A), the particulate binder resin (B), the water-soluble polymer (C), and the water-insoluble polysaccharide polymer fiber (D) are used in the solvent. And after adding water-soluble polymer (C) in a solvent, adding a negative electrode active material (A), a conductive agent and water-insoluble polysaccharide polymer fiber (D) Method of mixing and finally adding particulate binder resin (B) (for example, latex) dispersed in a solvent, mixing, particulate binder resin (B) dispersed in solvent and water-insoluble polysaccharide A negative electrode active material (A) and a conductive additive are added to and mixed with the molecular fiber (D), and a solvent is added to the mixture. A method in which added to and mixed with dissolved water-soluble polymer (C) can be mentioned.
 また、混合装置としては、たとえば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、好ましくは室温~80℃で、10分~数時間行う。 Also, as the mixing device, for example, a ball mill, a sand mill, a bead mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a homomixer, a planetary mixer, or the like can be used. The mixing is preferably performed at room temperature to 80 ° C. for 10 minutes to several hours.
 次いで、得られた複合粒子用スラリーを噴霧乾燥して造粒する。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式と加圧方式との二種類の装置が挙げられ、回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、好ましくは5,000~30,000rpm、より好ましくは15,000~30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。複合粒子用スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、複合粒子用スラリーを加圧してノズルから霧状にして乾燥する方式である。 Next, the obtained composite particle slurry is spray-dried and granulated. Spray drying is a method of spraying and drying a slurry in hot air. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk system and a pressurizing system. In the rotating disk system, slurry is introduced almost at the center of a disk that rotates at high speed, and the slurry is removed from the disk by the centrifugal force of the disk. In this case, the slurry is atomized. In the rotating disk system, the rotational speed of the disk depends on the size of the disk, but is preferably 5,000 to 30,000 rpm, more preferably 15,000 to 30,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the average particle size of the resulting composite particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry for composite particles is introduced from the center of the spray disk, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry for composite particles is pressurized and sprayed from a nozzle to be dried.
 噴霧される複合粒子用スラリーの温度は、好ましくは室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、好ましくは25~250℃、より好ましくは50~200℃、さらに好ましくは80~150℃である。噴霧乾燥法において、熱風の吹き込み方法は特に限定されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。 The temperature of the slurry for composite particles to be sprayed is preferably room temperature, but may be higher than room temperature by heating. The hot air temperature during spray drying is preferably 25 to 250 ° C, more preferably 50 to 200 ° C, and still more preferably 80 to 150 ° C. In the spray drying method, the method of blowing hot air is not particularly limited. For example, the method in which the hot air and the spraying direction flow side by side, the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air flow countercurrently. Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air, then drop by gravity and contact countercurrent.
 (電気化学素子電極)
 本発明の電気化学素子電極用複合粒子を含む負極活物質層を集電体上に積層することにより、電気化学素子電極(負極)を得ることができる。集電体の材料としては、たとえば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。金属としては、通常、銅、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から、銅、アルミニウム又はアルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合には特開2001-176757号公報等で開示される高純度のアルミニウムを好適に用いることができる。集電体は、フィルム又はシート状であり、その厚みは、使用目的に応じて適宜選択されるが、好ましくは1~200μm、より好ましくは5~100μm、さらに好ましくは10~50μmである。
(Electrochemical element electrode)
An electrochemical element electrode (negative electrode) can be obtained by laminating a negative electrode active material layer containing the composite particles for electrochemical element electrodes of the present invention on a current collector. As a material for the current collector, for example, metal, carbon, conductive polymer, and the like can be used, and metal is preferably used. As the metal, copper, aluminum, platinum, nickel, tantalum, titanium, stainless steel, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance. In addition, when high voltage resistance is required, high-purity aluminum disclosed in JP 2001-176757 A can be suitably used. The current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected depending on the purpose of use, but is preferably 1 to 200 μm, more preferably 5 to 100 μm, and still more preferably 10 to 50 μm.
 負極活物質層を集電体上に積層する際には、複合粒子をシート状に成形し、次いで集電体上に積層してもよいが、集電体上で複合粒子を直接加圧成形する方法が好ましい。加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、集電体をロールで送りながら、スクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、集電体上に負極活物質層を成形するロール加圧成形法や、複合粒子を集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、複合粒子を金型に充填し、金型を加圧して成形する方法などが挙げられる。これらのなかでも、ロール加圧成形法が好ましい。特に、本発明の複合粒子は、高い流動性を有しているため、その高い流動性により、ロール加圧成形による成形が可能であり、これにより、生産性の向上が可能となる。 When laminating the negative electrode active material layer on the current collector, the composite particles may be formed into a sheet shape and then laminated on the current collector, but the composite particles are directly pressure-molded on the current collector. Is preferred. As a method for pressure molding, for example, a roll type pressure molding apparatus provided with a pair of rolls is used, and a roll type pressure molding apparatus is used to feed composite particles with a feeder such as a screw feeder while feeding a current collector with the roll. Roll pressure molding method for forming a negative electrode active material layer on a current collector, or dispersing composite particles on a current collector, adjusting the thickness by smoothing the composite particles with a blade, Next, a method of forming with a pressurizing apparatus, a method of filling composite particles into a mold, and pressurizing the mold to form are included. Among these, the roll pressure molding method is preferable. In particular, since the composite particles of the present invention have high fluidity, they can be molded by roll press molding due to the high fluidity, thereby improving productivity.
 ロール加圧成形を行う際のロール温度は、負極活物質層と集電体との密着性を十分なものとすることができる観点から、好ましくは25~200℃、より好ましくは50~150℃、さらに好ましくは80~120℃である。また、ロール加圧成形時のロール間のプレス線圧は、負極活物質層の厚みの均一性を向上させることができる観点から、好ましくは10~1000kN/m、より好ましくは200~900kN/m、さらに好ましくは300~600kN/mである。また、ロール加圧成形時の成形速度は、好ましくは0.1~20m/分、より好ましくは4~10m/分である。 The roll temperature at the time of roll press molding is preferably 25 to 200 ° C., more preferably 50 to 150 ° C., from the viewpoint of ensuring sufficient adhesion between the negative electrode active material layer and the current collector. More preferably, it is 80 to 120 ° C. In addition, the press linear pressure between the rolls during roll press molding is preferably 10 to 1000 kN / m, more preferably 200 to 900 kN / m, from the viewpoint of improving the uniformity of the thickness of the negative electrode active material layer. More preferably, it is 300 to 600 kN / m. Further, the molding speed at the time of roll press molding is preferably 0.1 to 20 m / min, more preferably 4 to 10 m / min.
 また、成形した電気化学素子電極(負極)の厚みのばらつきを無くし、負極活物質層の密度を上げて高容量化を図るために、必要に応じてさらに後加圧を行ってもよい。後加圧の方法は、ロールによるプレス工程が好ましい。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませることにより加圧する。この際においては、必要に応じて、ロールは加熱又は冷却等、温度調節してもよい。 Further, post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the formed electrochemical element electrode (negative electrode) and increase the density of the negative electrode active material layer to increase the capacity. The post-pressing method is preferably a pressing process using a roll. In the roll pressing step, two cylindrical rolls are arranged vertically in parallel with a narrow interval, each is rotated in the opposite direction, and pressure is applied by interposing an electrode therebetween. In this case, the temperature of the roll may be adjusted as necessary, such as heating or cooling.
 (電気化学素子)
 上述のようにして得られる電気化学素子電極を負極として用い、さらに正極、セパレーターおよび電解液を備えることにより、電気化学素子を得ることができる。電気化学素子としては、例えば、リチウムイオン二次電池、リチウムイオンキャパシタ等が挙げられる。
(Electrochemical element)
An electrochemical element can be obtained by using the electrochemical element electrode obtained as described above as a negative electrode and further including a positive electrode, a separator, and an electrolytic solution. Examples of the electrochemical element include a lithium ion secondary battery and a lithium ion capacitor.
 (正極)
 電気化学素子の正極は、正極活物質層を集電体上に積層してなる。電気化学素子の正極は、正極活物質、正極用結着樹脂、正極の作製に用いる溶媒、必要に応じて用いられる水溶性高分子、導電助剤等のその他の成分を含む正極用スラリーを集電体の表面に塗布し、乾燥させることにより得ることができる。即ち、正極用スラリーを集電体の表面に塗布し、乾燥させることにより集電体に正極活物質層が形成される。
(Positive electrode)
The positive electrode of the electrochemical element is formed by laminating a positive electrode active material layer on a current collector. The positive electrode of the electrochemical element is a positive electrode slurry containing a positive electrode active material, a binder resin for the positive electrode, a solvent used for preparing the positive electrode, a water-soluble polymer used as necessary, and other components such as a conductive additive. It can be obtained by applying to the surface of the electric body and drying. That is, the positive electrode active material layer is formed on the current collector by applying the slurry for the positive electrode to the surface of the current collector and drying it.
 (正極活物質)
 電気化学素子がリチウムイオン二次電池である場合の正極活物質としては、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
(Positive electrode active material)
When the electrochemical device is a lithium ion secondary battery, the positive electrode active material is an active material that can be doped and dedoped with lithium ions, and is broadly classified into an inorganic compound and an organic compound. The
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。 Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
 遷移金属酸化物としては、MnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O-P25、MoO3、V25、V613等が挙げられ、中でもサイクル安定性と容量からMnO、V25、V613、TiO2が好ましい。遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。 Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity. The transition metal sulfide, TiS 2, TiS 3, amorphous MoS 2, FeS, and the like. Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
 層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO2)(以下、「LCO」ということがある。)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn24)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O4(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiXMPO4(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。 Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ) (hereinafter sometimes referred to as “LCO”), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn. Examples thereof include lithium composite oxides, lithium composite oxides of Ni—Mn—Al, and lithium composite oxides of Ni—Co—Al. Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (here, M may be Cr, Fe, Co, Ni, Cu or the like. Li x MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, and the like) is a lithium-containing composite metal oxide having an olivine structure. An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ≦ X ≦ 2) may be mentioned.
 有機化合物としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた正極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。 As the organic compound, for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. An iron-based oxide having poor electrical conductivity may be used as a positive electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted. The positive electrode active material may be a mixture of the above inorganic compound and organic compound.
 電気化学素子がリチウムイオンキャパシタである場合の正極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであればよい。具体的には、炭素の同素体を好ましく用いることができ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ、カーボンナノチューブ及びグラファイト等が挙げられる。 When the electrochemical device is a lithium ion capacitor, the positive electrode active material may be any material that can reversibly carry lithium ions and anions such as tetrafluoroborate. Specifically, carbon allotropes can be preferably used, and electrode active materials used in electric double layer capacitors can be widely used. Specific examples of the allotrope of carbon include activated carbon, polyacene (PAS), carbon whisker, carbon nanotube, and graphite.
 正極活物質の体積平均粒子径は、正極用スラリーを調製する際の正極用の結着樹脂の配合量を少なくすることができ、電池の容量の低下を抑制できる観点、および、正極用スラリーを塗布するのに適正な粘度に調製することが容易になり、均一な電極を得ることができる観点から、好ましくは1~50μm、より好ましくは2~30μmである。 The volume average particle diameter of the positive electrode active material can reduce the blending amount of the binder resin for the positive electrode when preparing the positive electrode slurry, and can suppress the decrease in battery capacity, and the positive electrode slurry. From the viewpoint of easily preparing a viscosity suitable for application and obtaining a uniform electrode, the viscosity is preferably 1 to 50 μm, more preferably 2 to 30 μm.
 (正極用結着樹脂)
 正極用結着樹脂としては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体等が挙げられる。なお、結着樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(Binder resin for positive electrode)
Examples of the positive electrode binder resin include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like. A soft polymer such as an acrylic soft polymer, a diene soft polymer, an olefin soft polymer, and a vinyl soft polymer. In addition, a binder resin may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 (その他の成分)
 正極用スラリーに必要に応じて用いられる水溶性高分子、導電助剤としては、上述の複合粒子に用いることができる水溶性高分子および導電助剤をそれぞれ使用することができる。
(Other ingredients)
As the water-soluble polymer and conductive additive used as necessary for the positive electrode slurry, the water-soluble polymer and conductive aid that can be used for the composite particles described above can be used.
 (正極の作製に用いる溶媒)
 正極の作製に用いる溶媒としては、水及び有機溶媒のいずれを使用してもよい。有機溶媒としては、例えば、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアルキルニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、溶媒としては水を用いることが好ましい。
(Solvent used for preparation of positive electrode)
As a solvent used for producing the positive electrode, either water or an organic solvent may be used. Examples of the organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and γ-butyrolactone Esters such as ε-caprolactone; alkyl nitriles such as acetonitrile and propionitrile; ethers such as tetrahydrofuran and ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N Amides such as -methylpyrrolidone and N, N-dimethylformamide; among them, N-methylpyrrolidone (NMP) is preferred. In addition, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Of these, water is preferably used as the solvent.
 溶媒の量は、正極用スラリーの粘度が塗布に好適な粘度になるように調整すればよい。具体的には、正極用スラリーの固形分濃度が、好ましくは30~90重量%、より好ましくは40~80重量%となるように調整して用いられる。 The amount of the solvent may be adjusted so that the viscosity of the positive electrode slurry is suitable for coating. Specifically, the solid content concentration of the positive electrode slurry is preferably adjusted to 30 to 90% by weight, more preferably 40 to 80% by weight.
 (集電体)
 正極に用いる集電体は、上述の電気化学素子電極(負極)に用いる集電体と同様の集電体を用いることができる。
(Current collector)
As the current collector used for the positive electrode, the same current collector as the current collector used for the electrochemical element electrode (negative electrode) can be used.
 (正極の製造方法)
 正極用スラリーを集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
(Production method of positive electrode)
The method for applying the positive electrode slurry to the surface of the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は好ましくは5分~30分であり、乾燥温度は好ましくは40~180℃である。 Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is preferably 5 to 30 minutes, and the drying temperature is preferably 40 to 180 ° C.
 また、集電体の表面に正極用スラリーを塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、正極活物質層に加圧処理を施すことが好ましい。加圧処理により、正極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率が小さすぎると、高い体積容量が得難く、正極活物質層が集電体から剥がれ易くなる。また、空隙率が大きすぎると、充電効率及び放電効率が低下する。
 さらに、正極活物質層が硬化性の重合体を含む場合は、正極活物質層の形成後に重合体を硬化させることが好ましい。
In addition, after applying and drying the positive electrode slurry on the surface of the current collector, it is preferable to apply pressure treatment to the positive electrode active material layer, for example, using a die press or a roll press as necessary. By the pressure treatment, the porosity of the positive electrode active material layer can be lowered. The porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less. When the porosity is too small, it is difficult to obtain a high volume capacity, and the positive electrode active material layer is easily peeled off from the current collector. On the other hand, when the porosity is too large, the charging efficiency and the discharging efficiency are lowered.
Furthermore, when the positive electrode active material layer includes a curable polymer, it is preferable to cure the polymer after the positive electrode active material layer is formed.
 (セパレーター)
 セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いることができる。具体例を挙げると、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜;ポリオレフィン系の繊維を織ったもの又はその不織布;絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、リチウムイオン二次電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
(separator)
As the separator, for example, a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Specific examples include microporous membranes made of polyolefin resins (polyethylene, polypropylene, polybutene, polyvinyl chloride), and resins such as mixtures or copolymers thereof; polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, Examples thereof include a microporous film made of a resin such as polyimide, polyimide amide, polyaramid, nylon, and polytetrafluoroethylene; a polyolefin fiber woven or non-woven fabric thereof; and an aggregate of insulating substance particles. Among these, since the film thickness of the entire separator can be reduced and the active material ratio in the lithium ion secondary battery can be increased to increase the capacity per volume, a microporous film made of polyolefin resin is used. preferable.
 セパレーターの厚さは、リチウムイオン二次電池においてセパレーターによる内部抵抗を小さくすることができる観点、および、リチウムイオン二次電池を製造する際の作業性に優れる観点から、好ましくは0.5~40μm、より好ましくは1~30μm、さらに好ましくは1~25μmである。 The thickness of the separator is preferably 0.5 to 40 μm from the viewpoint of reducing the internal resistance due to the separator in the lithium ion secondary battery and from the viewpoint of excellent workability when manufacturing the lithium ion secondary battery. More preferably, the thickness is 1 to 30 μm, still more preferably 1 to 25 μm.
 (電解液)
 リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、リチウム塩が好ましく用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
(Electrolyte)
As an electrolytic solution for a lithium ion secondary battery, for example, a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used. As the supporting electrolyte, a lithium salt is preferably used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 電解液における支持電解質の濃度は、支持電解質の種類に応じて、0.5~2.5モル/Lの濃度で用いることが好ましい。支持電解質の濃度が低すぎても高すぎても、イオン導電度が低下する可能性がある。 The concentration of the supporting electrolyte in the electrolytic solution is preferably used at a concentration of 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity may decrease.
 非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;支持電解質としても使用されるイオン液体などが挙げられる。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一般に、非水溶媒の粘度が低いほどリチウムイオン伝導度が高くなり、誘電率が高いほど支持電解質の溶解度が上がるが、両者はトレードオフの関係にあるので、溶媒の種類や混合比によりリチウムイオン伝導度を調節して使用するのがよい。また、非水溶媒は全部あるいは一部の水素をフッ素に置き換えたものを併用あるいは全量用いてもよい。 The non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Examples thereof include esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; ionic liquids used also as supporting electrolytes. Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. A non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In general, the lower the viscosity of the non-aqueous solvent, the higher the lithium ion conductivity, and the higher the dielectric constant, the higher the solubility of the supporting electrolyte, but since both are in a trade-off relationship, the lithium ion conductivity depends on the type of solvent and the mixing ratio. It is recommended to adjust the conductivity. In addition, the nonaqueous solvent may be used in combination or in whole or in a form in which all or part of hydrogen is replaced with fluorine.
 また、電解液には添加剤を含有させてもより。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系;エチレンサルファイト(ES)などの含硫黄化合物;フルオロエチレンカーボネート(FEC)などのフッ素含有化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、リチウムイオンキャパシタ用の電解液としては、上述のリチウムイオン二次電池に用いることができる電解液と同様のものを用いることができる。
Moreover, the electrolyte solution may contain an additive. Examples of the additive include carbonates such as vinylene carbonate (VC); sulfur-containing compounds such as ethylene sulfite (ES); and fluorine-containing compounds such as fluoroethylene carbonate (FEC). An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
In addition, as an electrolyte solution for lithium ion capacitors, the same electrolyte solution that can be used for the above-described lithium ion secondary battery can be used.
 (電気化学素子の製造方法)
 リチウムイオン二次電池やリチウムイオンキャパシタ等の電気化学素子の具体的な製造方法としては、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。リチウムイオン二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。電池容器の材質は、電池内部への水分の侵入を阻害するものであればよく、金属製、アルミニウムなどのラミネート製など特に限定されない。
(Method for producing electrochemical element)
As a specific method for producing an electrochemical element such as a lithium ion secondary battery or a lithium ion capacitor, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery. Examples of the method include putting the battery in a battery container, injecting an electrolyte into the battery container, and sealing the battery. Further, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the lithium ion secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like. The material of the battery container is not particularly limited as long as it inhibits the penetration of moisture into the battery, and is not particularly limited, such as a metal or a laminate such as aluminum.
 本発明の電気化学素子電極用複合粒子によれば、十分な強度を有し、電極を形成する場合に十分な密着性を得ることができ、さらに柔軟性に優れる電極を得ることができる。また、本発明の電気化学素子電極用複合粒子は、優れた流動性を有する。 According to the composite particle for an electrochemical element electrode of the present invention, an electrode having sufficient strength, sufficient adhesion when forming an electrode, and excellent flexibility can be obtained. Moreover, the composite particle for electrochemical element electrodes of the present invention has excellent fluidity.
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily changed without departing from the gist and equivalent scope of the present invention. Can be implemented. In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified.
 実施例及び比較例において、複合粒子の粒子強度、ピール強度、柔軟性及びサイクル特性の評価はそれぞれ以下のように行った。また、下記において、平均繊維径は、電子顕微鏡の視野内の非水溶性多糖高分子繊維100本について繊維径を測定したときの平均値である。 In the examples and comparative examples, the particle strength, peel strength, flexibility, and cycle characteristics of the composite particles were evaluated as follows. Moreover, in the following, an average fiber diameter is an average value when a fiber diameter is measured about 100 water-insoluble polysaccharide polymer fibers in the visual field of an electron microscope.
 <複合粒子の粒子強度>
 実施例及び比較例で得られた複合粒子について、微小圧縮試験機(島津製作所製「MCT-W500」)を用いた圧縮試験を行った。圧縮試験においては、室温で複合粒子の中心方向へ荷重負荷速度4.46mN/secで荷重を加え、複合粒子の直径が40%変位するまで粒子を変形させたときの圧縮強度(MPa)を測定した。なお、この測定では直径が40~60μmの複合粒子を選び圧縮試験を行った。
<Particle strength of composite particles>
The composite particles obtained in Examples and Comparative Examples were subjected to a compression test using a micro compression tester (“MCT-W500” manufactured by Shimadzu Corporation). In the compression test, a compressive strength (MPa) is measured when a particle is deformed until the diameter of the composite particle is displaced by 40% by applying a load at a loading speed of 4.46 mN / sec in the center direction of the composite particle at room temperature. did. In this measurement, a composite particle having a diameter of 40 to 60 μm was selected and a compression test was performed.
 また、圧縮試験は10回行い、平均値を圧縮強度とした。圧縮強度を下記基準にて評価し、結果を表1及び表2に示した。なお、圧縮強度が大きいほど、負極活物質同士の密着強度に優れ、複合粒子は粒子強度に優れることを示す。
A:圧縮強度が1.00MPa以上
B:圧縮強度が0.90MPa以上、1.00MPa未満
C:圧縮強度が0.80MPa以上、0.90MPa未満
D:圧縮強度が0.70MPa以上、0.80MPa未満
E:圧縮強度が0.70MPa未満
Further, the compression test was performed 10 times, and the average value was set as the compression strength. The compressive strength was evaluated according to the following criteria, and the results are shown in Tables 1 and 2. In addition, it shows that it is excellent in the adhesive strength of negative electrode active materials, and a composite particle is excellent in particle strength, so that compressive strength is large.
A: Compressive strength is 1.00 MPa or more B: Compressive strength is 0.90 MPa or more and less than 1.00 MPa C: Compressive strength is 0.80 MPa or more and less than 0.90 MPa D: Compressive strength is 0.70 MPa or more, 0.80 MPa Less than E: Compressive strength is less than 0.70 MPa
 <ピール強度>
 実施例及び比較例で得られたリチウムイオン二次電池用負極を、幅1cm×長さ10cmの矩形状にカットした。カットしたリチウムイオン二次電池用負極を、負極活物質層面を上にして固定し、負極活物質層の表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。この応力の測定を10回行い、平均値をピール強度とした。ピール強度を下記基準にて評価し、結果を表1及び表2に示した。なお、ピール強度が大きいほど、負極活物質層内における密着性、及び負極活物質層と集電体との間の密着性が良好であることを示す。
A:ピール強度が15N/m以上
B:ピール強度が7N/m以上、15N/m未満
C:ピール強度が3N/m以上、7N/m未満
D:ピール強度が3N/m未満
E:評価不能
<Peel strength>
The negative electrodes for lithium ion secondary batteries obtained in the examples and comparative examples were cut into a rectangular shape having a width of 1 cm and a length of 10 cm. After fixing the cut negative electrode for a lithium ion secondary battery with the negative electrode active material layer side up, the cellophane tape was applied to the surface of the negative electrode active material layer, and then the cellophane tape was applied at a speed of 50 mm / min from one end of the test piece. The stress when peeled in the 180 ° direction was measured. This stress was measured 10 times, and the average value was defined as the peel strength. The peel strength was evaluated according to the following criteria, and the results are shown in Tables 1 and 2. In addition, it shows that the adhesiveness in a negative electrode active material layer and the adhesiveness between a negative electrode active material layer and a collector are so favorable that peel strength is large.
A: Peel strength is 15 N / m or more B: Peel strength is 7 N / m or more and less than 15 N / m C: Peel strength is 3 N / m or more and less than 7 N / m D: Peel strength is less than 3 N / m E: Unevaluable
 <電極柔軟性>
 実施例及び比較例で得られたリチウムイオン二次電池用負極の負極活物質層側に径の異なる棒を載置し、負極を棒に巻き付けて負極活物質層が割れるか否かについて評価し、結果を表1及び表2に示した。棒の直径が小さいほど、負極の捲回性に優れることを示す。捲回性に優れると、負極活物質層の剥がれを抑制することができるため、二次電池のサイクル特性に優れる。
A:1.2mmφで割れない
B:1.5mmφで割れない
C:2mmφで割れない
D:3mmφで割れない
E:4mmφで割れない
<Electrode flexibility>
A rod having a different diameter was placed on the negative electrode active material layer side of the negative electrode for lithium ion secondary batteries obtained in Examples and Comparative Examples, and the negative electrode was wound around the rod to evaluate whether or not the negative electrode active material layer was cracked. The results are shown in Tables 1 and 2. It shows that it is excellent in the winding property of a negative electrode, so that the diameter of a stick | rod is small. When the winding property is excellent, peeling of the negative electrode active material layer can be suppressed, and thus the cycle characteristics of the secondary battery are excellent.
A: Unbreakable at 1.2 mmφ B: Unbreakable at 1.5 mmφ C: Unbreakable at 2 mmφ D: Unbreakable at 3 mmφ E: Unbreakable at 4 mmφ
 <充放電サイクル特性>
 実施例及び比較例で得られたラミネート型のリチウムイオン二次電池について、60℃で0.5Cの定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、その後、定電圧で充電し、次いで、0.5Cの定電流で3.0Vまで放電する充放電サイクル試験を行った。充放電サイクル試験は100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率とした。容量維持率を下記基準にて評価し、結果を表1及び表2に示した。容量維持率が大きいほど繰り返し充放電による容量の減少が少ないことを示す。
A:容量維持率が90%以上
B:容量維持率が80%以上、90%未満
C:容量維持率が75%以上、80%未満
D:容量維持率が70%以上、75%未満
E:容量維持率が70%未満または評価不能
<Charge / discharge cycle characteristics>
The laminate-type lithium ion secondary batteries obtained in the examples and comparative examples were charged at a constant current until reaching 4.2 V by a constant current constant voltage charging method of 0.5 C at 60 ° C. A charge / discharge cycle test was performed in which the battery was charged with a voltage and then discharged to 3.0 V at a constant current of 0.5C. The charge / discharge cycle test was conducted up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was defined as the capacity retention rate. The capacity retention rate was evaluated according to the following criteria, and the results are shown in Tables 1 and 2. It shows that the capacity | capacitance maintenance factor is so large that there is little decrease in the capacity | capacitance by repeated charging / discharging.
A: Capacity maintenance ratio is 90% or more B: Capacity maintenance ratio is 80% or more and less than 90% C: Capacity maintenance ratio is 75% or more and less than 80% D: Capacity maintenance ratio is 70% or more and less than 75% E: Capacity maintenance rate is less than 70% or cannot be evaluated
 [実施例1]
 (粒子状結着樹脂(B)の製造)
 攪拌機付き5MPa耐圧容器に、スチレン47部、1,3-ブタジエン50部、メタクリル酸3部、ドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、連鎖移動剤としてt-ドデシルメルカプタン0.4部および重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状結着樹脂(B)(スチレン・ブタジエン共重合体;以下、「SBR」と略記することがある。)を得た。
[Example 1]
(Production of particulate binder resin (B))
In a 5 MPa pressure vessel equipped with a stirrer, 47 parts of styrene, 50 parts of 1,3-butadiene, 3 parts of methacrylic acid, 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water, 0.4 part of t-dodecyl mercaptan as a chain transfer agent Then, 0.5 part of potassium persulfate was added as a polymerization initiator, and after sufficiently stirring, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reaches 96%, the reaction is stopped by cooling to obtain a particulate binder resin (B) (styrene / butadiene copolymer; hereinafter abbreviated as “SBR”). It was.
 (複合粒子用スラリーの製造)
 負極活物質(A)として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)を91.0部とSiC 6.6部と、上記粒子状結着樹脂(B)を固形分換算量で1.2部、水溶性高分子(C)としてカルボキシメチルセルロース(以下、「CMC」と略記することがある。)の1.0%水溶液(BSH-6;第一工業製薬社製)を固形分換算量で0.4部、非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1%水分散液(原料:竹、解繊度合:高、平均重合度350;中越パルプ社製)を固形分換算量で0.8部混合し、さらにイオン交換水を固形分濃度が35%となるように加え、混合分散して複合粒子用スラリーを得た。即ち、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=0.5とした。
(Manufacture of slurry for composite particles)
As the negative electrode active material (A), artificial graphite (average particle size: 24.5 μm, graphite interlayer distance (surface distance (d value) of (002) plane by X-ray diffraction method): 0.354 nm) was 91.0 parts. 6.6 parts of SiC, 1.2 parts of the above-mentioned particulate binder resin (B) in terms of solid content, and carboxymethyl cellulose (hereinafter “CMC”) may be abbreviated as water-soluble polymer (C). ) 1.0% aqueous solution (BSH-6; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in terms of solid content, 1% aqueous dispersion of cellulose nanofibers as water-insoluble polysaccharide polymer fiber (D) (Raw material: bamboo, degree of defibration: high, average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.) is mixed with 0.8 part in terms of solid content, and ion exchange water is added so that the solid content concentration is 35%. Then, a slurry for composite particles was obtained by mixing and dispersing. That is, the ratio of the water-soluble polymer (C) to the water-insoluble polysaccharide polymer fiber (D) was (C) / (D) = 0.5.
 (複合粒子の製造)
 上記複合粒子用スラリーをスプレー乾燥機(大川原化工機社製)において、回転円盤方式のアトマイザ(直径65mm)を用い、回転数25,000rpm、熱風温度150℃、粒子回収出口の温度を90℃として、噴霧乾燥造粒を行い、複合粒子を得た。この複合粒子の平均体積粒子径は40μmであった。
(Manufacture of composite particles)
The slurry for composite particles in a spray dryer (manufactured by Okawara Kako Co., Ltd.) was used with a rotary disk type atomizer (diameter 65 mm), rotation speed 25,000 rpm, hot air temperature 150 ° C., and particle recovery outlet temperature 90 ° C. Then, spray drying granulation was performed to obtain composite particles. The composite particles had an average volume particle diameter of 40 μm.
 (リチウムイオン二次電池用負極の製造)
 次に、得られた粒子をロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度100℃、プレス線圧4.0kN/cm)に供給し、成形速度20m/分でシート状に成形し、厚さ80μmのリチウムイオン二次電池用負極を得た。
(Manufacture of negative electrodes for lithium ion secondary batteries)
Next, the obtained particles are supplied to a roll (roll temperature 100 ° C., press linear pressure 4.0 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.), and a molding speed of 20 m / min. To obtain a negative electrode for a lithium ion secondary battery having a thickness of 80 μm.
 (正極用スラリーおよびリチウムイオン二次電池用正極の製造)
 正極活物質としてLiCoO2(以下、「LCO」と略記することがある。)92部に、正極用結着樹脂としてポリフッ化ビニリデン(PVDF;クレハ化学社製「KF-1100」)を固形分量が2部となるように加え、さらに、アセチレンブラック(電気化学工業社製「HS-100」)を6部、N-メチルピロリドン20部を加えて、プラネタリーミキサーで混合して正極用スラリーを得た。この正極用スラリーを厚さ18μmのアルミニウム箔に塗布し、120℃で30分乾燥した後、ロールプレスして厚さ60μmのリチウムイオン二次電池用正極を得た。
(Production of slurry for positive electrode and positive electrode for lithium ion secondary battery)
92 parts of LiCoO 2 (hereinafter sometimes abbreviated as “LCO”) as the positive electrode active material and polyvinylidene fluoride (PVDF; “KF-1100” manufactured by Kureha Chemical Co., Ltd.) as the positive electrode binder resin Add 6 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) and 20 parts of N-methylpyrrolidone and mix with a planetary mixer to obtain a slurry for positive electrode. It was. This positive electrode slurry was applied to an aluminum foil having a thickness of 18 μm, dried at 120 ° C. for 30 minutes, and then roll-pressed to obtain a positive electrode for a lithium ion secondary battery having a thickness of 60 μm.
 (セパレーターの用意)
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cm2の正方形に切り抜いた。
(Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut into a square of 5 × 5 cm 2 .
 (リチウムイオン二次電池の製造)
 電池の外装として、アルミ包材外装を用意した。上記で得られたリチウムイオン二次電池用正極を、4×4cm2の正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。リチウムイオン二次電池用正極の正極活物質層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られたリチウムイオン二次電池用負極を、4.2×4.2cm2の正方形に切り出し、負極活物質層側の表面がセパレーターに向かい合うように、セパレーター上に配置した。更に、ビニレンカーボネートを2.0%含有する、濃度1.0MのLiPF6溶液を充填した。このLiPF6溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃でヒートシールをしてアルミニウム外装を閉口し、ラミネート型のリチウムイオン二次電池(ラミネート型セル)を製造した。
(Manufacture of lithium ion secondary batteries)
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode for a lithium ion secondary battery obtained above was cut into a 4 × 4 cm 2 square and placed so that the current collector-side surface was in contact with the aluminum packaging exterior. The square separator obtained above was disposed on the surface of the positive electrode active material layer of the positive electrode for a lithium ion secondary battery. Further, the negative electrode for a lithium ion secondary battery obtained above was cut into a square of 4.2 × 4.2 cm 2 and arranged on the separator so that the surface on the negative electrode active material layer side faced the separator. Further, containing the vinylene carbonate 2.0%, was charged with LiPF 6 solution having a concentration of 1.0 M. The solvent of this LiPF 6 solution is a mixed solvent (EC / EMC = 3/7 (volume ratio)) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing was performed at 150 ° C. to close the aluminum exterior, and a laminate type lithium ion secondary battery (laminated cell) was manufactured.
 [実施例2]
 負極活物質(A)として人造黒鉛97.6部を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 2]
Except for using 97.6 parts of artificial graphite as the negative electrode active material (A), the production of slurry for composite particles, the production of composite particles, the production of negative electrodes for lithium ion secondary batteries, lithium ion The next battery was manufactured.
 [実施例3]
 非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1.0%水分散液(原料:針葉樹、解繊度合:高、平均重合度300;中越パルプ社製)を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 3]
Carried out except that 1.0% aqueous dispersion of cellulose nanofiber (raw material: softwood, degree of defibration: high, average polymerization degree 300; manufactured by Chuetsu Pulp Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D). In the same manner as in Example 1, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [実施例4]
 非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1.0%水分散液(原料:広葉樹、解繊度合:低、平均重合度600;中越パルプ社製)を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 4]
Carried out except that 1.0% aqueous dispersion of cellulose nanofiber (raw material: hardwood, defibration degree: low, average polymerization degree 600; manufactured by Chuetsu Pulp Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D). In the same manner as in Example 1, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [実施例5]
 非水溶性多糖高分子繊維(D)としてコットンセルロースナノファイバーの10%水分散液(繊維径0.1~0.01μm、セリッシュKY100G;ダイセルファインケム社製)を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 5]
Example 1 except that a 10% aqueous dispersion of cotton cellulose nanofibers (fiber diameter 0.1 to 0.01 μm, serisch KY100G; manufactured by Daicel Finechem) was used as the water-insoluble polysaccharide polymer fiber (D). Similarly, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [実施例6]
 非水溶性多糖高分子繊維(D)としてキチンセルロースナノファイバーの2%水分散液(BiNFi-S(SFo-10002)、平均重合度300;スギノマシン社製)を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 6]
Example 1 except that a 2% aqueous dispersion of chitincellulose nanofibers (BiNFi-S (SFo-120002), average polymerization degree 300; manufactured by Sugino Machine Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D). In the same manner as above, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [実施例7]
 非水溶性多糖高分子繊維(D)としてキトサンセルロースナノファイバーの2%水分散液(BiNFi-S(EFo-10002)、平均重合度480;スギノマシン社製)を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 7]
Example 1 except that a 2% aqueous dispersion of chitosan cellulose nanofiber (BiNFi-S (EFo-120002), average polymerization degree 480; manufactured by Sugino Machine Co., Ltd.) was used as the water-insoluble polysaccharide polymer fiber (D). In the same manner as above, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [実施例8]
 水溶性高分子(C)として、ポリアクリル樹脂を用いた以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。なお、ポリアクリル樹脂の製造は下記のようにして行った。
[Example 8]
Production of slurry for composite particles, production of composite particles, production of negative electrode for lithium ion secondary battery, lithium ion secondary, as in Example 1, except that polyacrylic resin was used as the water-soluble polymer (C) The battery was manufactured. The polyacrylic resin was produced as follows.
 (ポリアクリル樹脂の製造)
 攪拌機、還流冷却管および温度計を備えた容量1LのSUS製セパラブルフラスコに、脱塩水を予め仕込み十分攪拌した後、70℃とし、過硫酸カリウム水溶液0.2部を添加した。
(Manufacture of polyacrylic resin)
Into a 1 L SUS separable flask equipped with a stirrer, a reflux condenser and a thermometer, demineralized water was charged in advance and stirred sufficiently, and then the temperature was adjusted to 70 ° C., and 0.2 part of an aqueous potassium persulfate solution was added.
 また別の攪拌機付き5MPa耐圧容器に、イオン交換水50部と、炭酸水素ナトリウム0.4部と、乳化剤として濃度30%のドデシルジフェニルエーテルスルホン酸ナトリウムを0.115部と、メタクリル酸60部、エチルアクリレート15部及びブチルアクリレート15部、並びに、これらと共重合可能なスルホン酸基含有単量体として2-アクリルアミド-2-メチルプロパンスルホン酸10部からなる単量体混合物とを仕込み、十分攪拌してエマルジョン水溶液を調製した。 In another 5 MPa pressure vessel with a stirrer, 50 parts of ion-exchanged water, 0.4 part of sodium hydrogen carbonate, 0.115 part of sodium dodecyl diphenyl ether sulfonate having a concentration of 30% as an emulsifier, 60 parts of methacrylic acid, ethyl 15 parts of acrylate and 15 parts of butyl acrylate, and a monomer mixture composed of 10 parts of 2-acrylamido-2-methylpropanesulfonic acid as a sulfonic acid group-containing monomer copolymerizable therewith are stirred sufficiently. An aqueous emulsion was prepared.
 得られたエマルジョン水溶液を、前記のセパラブルフラスコに4時間に亘って連続的に滴下した。重合転化率が90%に達したところで反応温度を80℃とし更に2時間反応を実施した後、冷却して反応を停止し、ポリアクリル樹脂を含む水系分散液を得た。なお、重合転化率は99%であった。また、得られたポリアクリル樹脂の重量平均分子量をGPCで測定したところ、25000であった。また、得られたポリアクリル樹脂を1重量%水溶液とした時の粘度は3000(mPa・s)であった。 The obtained emulsion aqueous solution was continuously dropped into the separable flask over 4 hours. When the polymerization conversion rate reached 90%, the reaction temperature was set to 80 ° C., and the reaction was further carried out for 2 hours. Then, the reaction was stopped by cooling to obtain an aqueous dispersion containing a polyacrylic resin. The polymerization conversion rate was 99%. Moreover, it was 25000 when the weight average molecular weight of the obtained polyacrylic resin was measured by GPC. Moreover, the viscosity when the obtained polyacrylic resin was made into 1 weight% aqueous solution was 3000 (mPa * s).
 [実施例9]
 水溶性高分子(C)として、ポリ-N-ビニルアセトアミド(PNVA、GE191-103;昭和電工社製)樹脂を用いた以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 9]
A slurry for composite particles was prepared in the same manner as in Example 1 except that poly-N-vinylacetamide (PNVA, GE191-103; Showa Denko) resin was used as the water-soluble polymer (C). Production, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were carried out.
 [実施例10]
 水溶性高分子(C)として、ポリビニルアルコール樹脂(PVA、JF-17;日本酢ビポバール社製)を用いた以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Example 10]
Production of slurry for composite particles, production of composite particles, lithium, except that polyvinyl alcohol resin (PVA, JF-17; manufactured by Nihon Vinegar Bipoval) was used as the water-soluble polymer (C). A negative electrode for an ion secondary battery and a lithium ion secondary battery were manufactured.
 [実施例11]
 負極活物質(A)として人造黒鉛90.6部及びSiC 6.6部、非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1%水分散液(原料:竹、解繊度合:高、平均重合度350;中越パルプ社製)を固形分換算量で1.2部を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。即ち、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=0.33とした。
[Example 11]
Artificial graphite 90.6 parts and SiC 6.6 parts as negative electrode active material (A), 1% aqueous dispersion of cellulose nanofibers as water-insoluble polysaccharide polymer fiber (D) (raw material: bamboo, degree of defibration: high , Average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.), except for using 1.2 parts in terms of solid content, producing composite particle slurry, producing composite particles, lithium ion secondary battery as in Example 1. A negative electrode for a battery and a lithium ion secondary battery were manufactured. That is, the ratio of the water-soluble polymer (C) to the water-insoluble polysaccharide polymer fiber (D) was (C) / (D) = 0.33.
 [実施例12]
 負極活物質(A)として人造黒鉛91.1部及びSiC 6.6部、水溶性高分子(C)としてCMCの1.0%水溶液(BSH-6;第一工業製薬社製)を固形分換算量で1.0部、非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1%水分散液(原料:竹、解繊度合:高、平均重合度350;中越パルプ社製)を固形分換算量で0.06部を使用した以外は、実施例1と同様に負極粒子スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。即ち、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=16.7とした。
[Example 12]
91.1 parts of artificial graphite and 6.6 parts of SiC as the negative electrode active material (A), and 1.0% aqueous solution of CMC (BSH-6; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as the water-soluble polymer (C) 1.0 part in terms of converted amount, 1% aqueous dispersion of cellulose nanofibers (raw material: bamboo, degree of defibration: high, average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.) as water-insoluble polysaccharide polymer fiber (D) Except for using 0.06 parts in terms of solid content, the production of negative electrode particle slurry, the production of composite particles, the production of a negative electrode for a lithium ion secondary battery, and the production of a lithium ion secondary battery were conducted in the same manner as in Example 1. went. That is, the ratio of the water-soluble polymer (C) to the water-insoluble polysaccharide polymer fiber (D) was (C) / (D) = 16.7.
 [実施例13]
 負極活物質(A)として人造黒鉛91.1部及びSiC 6.6部、水溶性高分子(C)としてCMCの1.0%水溶液(BSH-6;第一工業製薬社製)を固形分換算量で0.3部を使用した以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。即ち、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=0.38とした。
[Example 13]
91.1 parts of artificial graphite and 6.6 parts of SiC as the negative electrode active material (A), and 1.0% aqueous solution of CMC (BSH-6; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as the water-soluble polymer (C) Except that 0.3 parts was used in terms of conversion amount, the production of composite particle slurry, the production of composite particles, the production of negative electrodes for lithium ion secondary batteries, and the production of lithium ion secondary batteries were performed in the same manner as in Example 1. It was. That is, the ratio of the water-soluble polymer (C) to the water-insoluble polysaccharide polymer fiber (D) was (C) / (D) = 0.38.
 [比較例1]
 非水溶性多糖高分子繊維(D)を添加せず、負極活物質(A)の量を人造黒鉛91.2部及びSiC 6.6部、水溶性高分子(C)としてのCMCの量を固形分換算量で1.0部とした以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Comparative Example 1]
Without adding water-insoluble polysaccharide polymer fiber (D), the amount of negative electrode active material (A) was 91.2 parts of artificial graphite and 6.6 parts of SiC, and the amount of CMC as water-soluble polymer (C) was Production of slurry for composite particles, production of composite particles, production of negative electrode for lithium ion secondary battery, production of lithium ion secondary battery, as in Example 1, except that the solid content equivalent amount was 1.0 part. went.
 [比較例2]
 水溶性高分子(C)としてのCMCを添加せず、負極活物質(A)の量を人造黒鉛91.4部及びSiC 6.6部とした以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Comparative Example 2]
For composite particles as in Example 1, except that CMC as the water-soluble polymer (C) was not added and the amount of the negative electrode active material (A) was 91.4 parts of artificial graphite and 6.6 parts of SiC. Production of slurry, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [比較例3]
 複合粒子用スラリーの製造において、水溶性高分子(C)としてのCMCを固形分換算量で1.0部、非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1%水分散液(原料:竹、解繊度合:高、平均重合度350;中越パルプ社製)を固形分換算量で0.05部混合することにより、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=20とし、また、負極活物質(A)の量を人造黒鉛91.15部及びSiC 6.6部とした以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Comparative Example 3]
In the production of the composite particle slurry, 1.0 part of CMC as the water-soluble polymer (C) in terms of solid content and 1% aqueous dispersion of cellulose nanofibers as the water-insoluble polysaccharide polymer fiber (D) ( Raw material: bamboo, defibration degree: high, average polymerization degree 350; manufactured by Chuetsu Pulp Co., Ltd.) is mixed in an amount of 0.05 parts in terms of solid content, so that water-soluble polymer (C) and water-insoluble polysaccharide polymer fiber are mixed. Example 1 except that the ratio to (D) was (C) / (D) = 20 and the amount of the negative electrode active material (A) was 91.15 parts of artificial graphite and 6.6 parts of SiC. In the same manner as above, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
 [比較例4]
 複合粒子用スラリーの製造において、水溶性高分子(C)としてのCMCを固形分換算量で0.15部、非水溶性多糖高分子繊維(D)としてセルロースナノファイバーの1%水分散液(原料:竹、解繊度合:高、平均重合度350;中越パルプ社製)を固形分換算量で1.0部混合することにより、水溶性高分子(C)と非水溶性多糖高分子繊維(D)との比を、(C)/(D)=0.15とし、また、負極活物質(A)の量を人造黒鉛97.65部とした以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
[Comparative Example 4]
In the production of the composite particle slurry, 0.15 part of CMC as the water-soluble polymer (C) in terms of solid content, and 1% aqueous dispersion of cellulose nanofibers as the water-insoluble polysaccharide polymer fiber (D) ( Raw material: bamboo, degree of defibration: high, average degree of polymerization 350; manufactured by Chuetsu Pulp Co., Ltd.) is mixed with 1.0 part in terms of solid content, so that water-soluble polymer (C) and water-insoluble polysaccharide polymer fiber are mixed. The ratio to (D) was set to (C) / (D) = 0.15, and the composite material was the same as in Example 1 except that the amount of the negative electrode active material (A) was 97.65 parts of artificial graphite. Production of slurry for particles, production of composite particles, production of negative electrode for lithium ion secondary battery, and production of lithium ion secondary battery were performed.
 [比較例5]
 非水溶性多糖高分子繊維(D)に代えて、補強繊維としてカーボンナノファイバー(VGCF:昭和電工社製、繊維径150nm、繊維長20μm)を使用することにより、水溶性高分子(C)と補強繊維(D')との比を、(C)/(D')=0.4とし、また、負極活物質(A)の量を人造黒鉛97.4部とした以外は、実施例1と同様に複合粒子用スラリーの製造、複合粒子の製造、リチウムイオン二次電池用負極の製造、リチウムイオン二次電池の製造を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[Comparative Example 5]
Instead of water-insoluble polysaccharide polymer fiber (D), by using carbon nanofiber (VGCF: manufactured by Showa Denko KK, fiber diameter 150 nm, fiber length 20 μm) as a reinforcing fiber, water-soluble polymer (C) and Example 1 except that the ratio to the reinforcing fiber (D ′) was (C) / (D ′) = 0.4 and the amount of the negative electrode active material (A) was 97.4 parts of artificial graphite. In the same manner as above, production of a slurry for composite particles, production of composite particles, production of a negative electrode for a lithium ion secondary battery, and production of a lithium ion secondary battery were performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)及び非水溶性多糖高分子繊維(D)を含む電気化学素子電極用複合粒子であって、水溶性高分子(C)と非水溶性多糖高分子繊維(D)とを、重量比にて(C)/(D)=0.2~18の割合で含む電気化学素子電極用複合粒子の粒子強度は、良好であり、この複合粒子を用いて得られる負極のピール強度及び電極柔軟性は、良好であった。また、この複合粒子を用いて得られるリチウムイオン二次電池の充放電サイクル特性は、良好であった。 As shown in Tables 1 and 2, an electrochemical device electrode comprising a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C), and a water-insoluble polysaccharide polymer fiber (D) Composite particles for water, comprising water-soluble polymer (C) and water-insoluble polysaccharide polymer fiber (D) in a weight ratio of (C) / (D) = 0.2-18 The particle strength of the composite particles for chemical element electrodes was good, and the peel strength and electrode flexibility of the negative electrode obtained using the composite particles were good. Moreover, the charge / discharge cycle characteristics of the lithium ion secondary battery obtained using the composite particles were good.

Claims (4)

  1.  負極活物質(A)、粒子状結着樹脂(B)、水溶性高分子(C)及び非水溶性多糖高分子繊維(D)を含む電気化学素子電極用複合粒子であって、
     水溶性高分子(C)と非水溶性多糖高分子繊維(D)とを、重量比にて(C)/(D)=0.2~18の割合で含むことを特徴とする電気化学素子電極用複合粒子。
    Electrochemical element electrode composite particles comprising a negative electrode active material (A), a particulate binder resin (B), a water-soluble polymer (C) and a water-insoluble polysaccharide polymer fiber (D),
    An electrochemical element comprising water-soluble polymer (C) and water-insoluble polysaccharide polymer fiber (D) in a weight ratio of (C) / (D) = 0.2-18 Composite particles for electrodes.
  2.  前記非水溶性多糖高分子繊維(D)の平均重合度が50~1000であることを特徴とする請求項1に記載の電気化学素子電極用複合粒子。 The composite particle for an electrochemical element electrode according to claim 1, wherein the water-insoluble polysaccharide polymer fiber (D) has an average degree of polymerization of 50 to 1,000.
  3.  前記粒子状結着樹脂(B)は、共役ジエン系重合体またはアクリレート系重合体であることを特徴とする請求項1または2に記載の電気化学素子電極用複合粒子。 The composite particle for an electrochemical element electrode according to claim 1 or 2, wherein the particulate binder resin (B) is a conjugated diene polymer or an acrylate polymer.
  4.  前記水溶性高分子(C)の配合量が負極活物質(A)100重量部に対して固形分換算量で0.1~10重量部であり、
     前記非水溶性多糖高分子繊維(D)の配合量が得られる複合粒子100重量部に対して固形分換算量で0.1~2重量部であることを特徴とする請求項1~3の何れか一項に記載の電気化学素子電極用複合粒子。
    The amount of the water-soluble polymer (C) is 0.1 to 10 parts by weight in terms of solid content with respect to 100 parts by weight of the negative electrode active material (A),
    The amount of the water-insoluble polysaccharide polymer fiber (D) is 0.1 to 2 parts by weight in terms of solid content with respect to 100 parts by weight of the composite particles obtained. The composite particle for an electrochemical element electrode according to any one of the above.
PCT/JP2014/083339 2013-12-26 2014-12-17 Composite particle for electrochemical element electrode WO2015098632A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554771A JP6485359B2 (en) 2013-12-26 2014-12-17 Composite particles for electrochemical device electrodes
CN201480066528.7A CN105794025B (en) 2013-12-26 2014-12-17 Composite particle for electrochemical element electrode
KR1020167012496A KR102330766B1 (en) 2013-12-26 2014-12-17 Composite particle for electrochemical element electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013268554 2013-12-26
JP2013-268554 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098632A1 true WO2015098632A1 (en) 2015-07-02

Family

ID=53478496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083339 WO2015098632A1 (en) 2013-12-26 2014-12-17 Composite particle for electrochemical element electrode

Country Status (4)

Country Link
JP (1) JP6485359B2 (en)
KR (1) KR102330766B1 (en)
CN (1) CN105794025B (en)
WO (1) WO2015098632A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178241A1 (en) * 2014-05-20 2015-11-26 日本ゼオン株式会社 Composite particles for electrochemical element electrode and method for manufacturing composite particles for electrochemical element electrode
JPWO2017104145A1 (en) * 2015-12-16 2018-09-06 国立大学法人 東京大学 Lithium ion secondary battery
JP2019131778A (en) * 2017-07-20 2019-08-08 東ソー株式会社 Conductive polymer aqueous solution, and conductive polymer film
CN110679014A (en) * 2017-09-28 2020-01-10 株式会社Lg化学 Method for predicting manufacturability of electrode slurry and selecting electrode binder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126637B (en) * 2018-01-11 2023-10-13 辽宁石油化工大学 Silicon carbide microchannel alkylation reactor and application method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190912A (en) * 1995-01-12 1996-07-23 Fuji Photo Film Co Ltd Manufacture of negative mix of nonaqueous secondary battery
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JP2005116855A (en) * 2003-10-09 2005-04-28 Nippon Zeon Co Ltd Method for manufacturing electrode for electric double-layer capacitor
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2007224263A (en) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd Hydroxyalkylated chitosan solution
JP2009146581A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Sheet-shaped negative electrode for lithium ion secondary battery, and manufacturing method thereof
JP2010135338A (en) * 2005-02-10 2010-06-17 Showa Denko Kk Current collector for secondary battery, positive electrode for secondary battery, negative electrode for secondary battery, secondary battery, and manufacturing method of them
JP2012094331A (en) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
JP2012164632A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
JP2013175322A (en) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd Method for manufacturing electrode for storage element, and storage element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI390789B (en) * 2005-02-10 2013-03-21 Showa Denko Kk A battery current collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
WO2009044856A1 (en) 2007-10-03 2009-04-09 Zeon Corporation Electrode for electric double layer capacitor and process for producing the electrode for electric double layer capacitor
CN102046742A (en) * 2008-06-02 2011-05-04 大日精化工业株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP2009295666A (en) 2008-06-03 2009-12-17 Nippon Zeon Co Ltd Electrode for electrochemical element and electrochemical element
EP2306563A1 (en) * 2008-07-17 2011-04-06 Asahi Glass Company Limited Anode composite for nonaqueous electrolyte cell
US20120028116A1 (en) * 2009-02-17 2012-02-02 Won-Gil Choi Composition for producing positive electrode for electricity storage device, positive electrode for electricity storage device made with said composition, and electricity storage device comprising same
CN102498175B (en) * 2009-08-27 2015-03-11 大日精化工业株式会社 Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
US8900747B2 (en) * 2010-08-25 2014-12-02 Toyota Jidosha Kabushiki Kaisha Method for producing battery electrode
EP2665117A4 (en) * 2011-01-14 2014-08-13 Showa Denko Kk Current collector
EP2757620A4 (en) * 2011-09-14 2015-07-08 Zeon Corp Electrode for electrochemical element
WO2013042720A1 (en) 2011-09-20 2013-03-28 日産化学工業株式会社 Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190912A (en) * 1995-01-12 1996-07-23 Fuji Photo Film Co Ltd Manufacture of negative mix of nonaqueous secondary battery
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JP2005116855A (en) * 2003-10-09 2005-04-28 Nippon Zeon Co Ltd Method for manufacturing electrode for electric double-layer capacitor
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2010135338A (en) * 2005-02-10 2010-06-17 Showa Denko Kk Current collector for secondary battery, positive electrode for secondary battery, negative electrode for secondary battery, secondary battery, and manufacturing method of them
JP2007224263A (en) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd Hydroxyalkylated chitosan solution
JP2009146581A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Sheet-shaped negative electrode for lithium ion secondary battery, and manufacturing method thereof
JP2012094331A (en) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
JP2012164632A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
JP2013175322A (en) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd Method for manufacturing electrode for storage element, and storage element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178241A1 (en) * 2014-05-20 2015-11-26 日本ゼオン株式会社 Composite particles for electrochemical element electrode and method for manufacturing composite particles for electrochemical element electrode
JPWO2017104145A1 (en) * 2015-12-16 2018-09-06 国立大学法人 東京大学 Lithium ion secondary battery
JP2019131778A (en) * 2017-07-20 2019-08-08 東ソー株式会社 Conductive polymer aqueous solution, and conductive polymer film
CN110679014A (en) * 2017-09-28 2020-01-10 株式会社Lg化学 Method for predicting manufacturability of electrode slurry and selecting electrode binder
EP3648200A4 (en) * 2017-09-28 2020-06-03 LG Chem, Ltd. Method for predicting processability of electrode slurry and selecting electrode binder
CN110679014B (en) * 2017-09-28 2023-04-04 株式会社Lg新能源 Method for predicting manufacturability of electrode slurry and selecting electrode binder
US11735735B2 (en) 2017-09-28 2023-08-22 Lg Energy Solution, Ltd. Method for predicting processability of electrode slurry and selecting electrode binder

Also Published As

Publication number Publication date
CN105794025B (en) 2020-01-21
CN105794025A (en) 2016-07-20
JPWO2015098632A1 (en) 2017-03-23
KR20160102159A (en) 2016-08-29
JP6485359B2 (en) 2019-03-20
KR102330766B1 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6217741B2 (en) Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element
JP6344384B2 (en) Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element
JP6954424B2 (en) Composite particles for electrochemical element electrodes, electrochemical element electrodes and electrochemical elements
JP6380526B2 (en) Composite particles for electrochemical device electrodes
KR102319301B1 (en) Composite particles for electrochemical element electrode and method for manufacturing composite particles for electrochemical element electrode
JP6327249B2 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
JP6485359B2 (en) Composite particles for electrochemical device electrodes
JP6451934B2 (en) Composite particles for electrochemical device electrodes
JP2013077558A (en) Electrode for electrochemical element
JP2016046226A (en) Composite particle for electrochemical element electrode, electrochemical element electrode, electrochemical element, and method for manufacturing composite particle for electrochemical element electrode and electrochemical element electrode
JP2016024985A (en) Composite particle for electrochemical element electrode, electrochemical element electrode, electrochemical element, method for producing composite particle for electrochemical element electrode, and method for manufacturing electrochemical element electrode
JP2016024984A (en) Composite particle for electrochemical element electrode, electrochemical element electrode, electrochemical element, method for producing composite particle for electrochemical element electrode, and method for manufacturing electrochemical element electrode
JP6398461B2 (en) Method for producing composite particle for electrochemical device electrode
JP2016029630A (en) Composite particle for electrochemical element electrode, electrochemical element electrode, electrochemical element, method for producing composite particle for electrochemical element electrode, and method for manufacturing electrochemical element electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554771

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012496

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875405

Country of ref document: EP

Kind code of ref document: A1