JP2011049205A - Laminated substrate and method for manufacturing the same - Google Patents

Laminated substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2011049205A
JP2011049205A JP2009194007A JP2009194007A JP2011049205A JP 2011049205 A JP2011049205 A JP 2011049205A JP 2009194007 A JP2009194007 A JP 2009194007A JP 2009194007 A JP2009194007 A JP 2009194007A JP 2011049205 A JP2011049205 A JP 2011049205A
Authority
JP
Japan
Prior art keywords
electrode pattern
hole
dielectric layer
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009194007A
Other languages
Japanese (ja)
Inventor
Akio Hirasawa
明雄 平澤
Ichiro Kameyama
一郎 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009194007A priority Critical patent/JP2011049205A/en
Publication of JP2011049205A publication Critical patent/JP2011049205A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated substrate having a bump stabilized in height and having high connecting strength. <P>SOLUTION: The laminated substrate includes a first substrate 10 having an electrode pattern 13 on a first surface thereof, a surface layer dielectric layer 12 provided on a first surface of the first substrate, and a through-hole 20 provided on the surface layer dielectric layer 12. The through-hole 20 is provided on the electrode pattern 13 and mechanically connected to the electrode pattern 13. The substrate further includes a bump 11 filled within the through-hole 20 to protrude from the surface of the surface layer dielectric layer 12. The opening width of the through-hole 20 opposite to the first substrate is set to be smaller than the maximum opening width within the surface layer dielectric layer 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、バンプを形成した積層基板およびその製造方法に関するものである。   The present invention relates to a laminated substrate on which bumps are formed and a method for manufacturing the same.

近年機器の小型化、高機能化に対応して、配線電極を有する積層基板に半導体チップなどの機能素子をバンプ実装するものが用いられている。   In recent years, in response to miniaturization and higher functionality of devices, a device in which a functional element such as a semiconductor chip is bump-mounted on a multilayer substrate having wiring electrodes is used.

この場合、積層基板を焼成した後ビアホール上あるいは電極パターン上に半田バンプを形成してその上に機能素子を実装していた。   In this case, after firing the laminated substrate, solder bumps are formed on the via holes or electrode patterns, and functional elements are mounted thereon.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開平10−41626号公報Japanese Patent Laid-Open No. 10-41626

上記のようにビアホール上あるいは電極パターン上に半田バンプを形成した場合、半田バンプの高さがばらつきやすい、あるいはビアホールあるいは電極パターンと半田との接続強度が弱いため機能素子が外れやすいという課題があった。   When solder bumps are formed on via holes or electrode patterns as described above, there are problems that the height of solder bumps tends to vary, or that the functional elements are likely to come off because the connection strength between via holes or electrode patterns and solder is weak. It was.

本発明はこれらの課題を解決するもので、バンプの高さが安定していて、その接続強度が強い積層基板を得ることを目的とするものである。   The present invention solves these problems, and an object of the present invention is to obtain a laminated substrate in which the bump height is stable and the connection strength is strong.

上記目的を達成するために、本発明は第1の面に電極パターンを有する第1の基板と、第1の基板の第1の面に設けた表層誘電体層と、表層誘電体層に設けた貫通孔とを備え、貫通孔は電極パターンの上に設けられ、電極パターンに機械的に接続され、貫通孔の内部に充填され、かつ表層誘電体層表面から突出するバンプを形成したものであり、第1の基板とは反対側の貫通孔の開口幅を、表層誘電体層の内部の最大開口幅よりも小さくしたものである。   In order to achieve the above object, the present invention provides a first substrate having an electrode pattern on a first surface, a surface dielectric layer provided on the first surface of the first substrate, and a surface dielectric layer. The through hole is provided on the electrode pattern, mechanically connected to the electrode pattern, filled in the through hole, and formed with bumps protruding from the surface dielectric layer surface. In other words, the opening width of the through hole on the side opposite to the first substrate is made smaller than the maximum opening width inside the surface dielectric layer.

以上のように本発明の積層基板では、表面から突出するバンプを、表層誘電体層に設けた貫通孔の内部に充填したものと一体化することができるためその強度を上げることができ、さらに第1の基板とは反対側の貫通孔の開口幅を、表層誘電体層の内部の最大開口幅よりも小さくしたことにより、表層誘電体層がバンプの抜けを妨げることができ、電極パターンとバンプの強度をも向上させることができる。さらにバンプは平面状の電極パターンの上に形成するため、電極パターンの高さにはばらつきが生じず、貫通孔の体積および開口径によってバンプの高さが決まるため、結果としてバンプ高さのばらつきの小さい積層基板が得られるという作用効果を有するものである。   As described above, in the multilayer substrate of the present invention, the bumps protruding from the surface can be integrated with those filled in the through holes provided in the surface dielectric layer, so that the strength can be increased. By making the opening width of the through hole on the opposite side of the first substrate smaller than the maximum opening width inside the surface dielectric layer, the surface dielectric layer can prevent the bump from being removed, and the electrode pattern and The strength of the bump can also be improved. Furthermore, since bumps are formed on a flat electrode pattern, there is no variation in the height of the electrode pattern, and the bump height is determined by the volume and opening diameter of the through hole, resulting in variations in bump height. The effect is that a laminated substrate having a small thickness can be obtained.

本発明の一実施の形態における積層基板の断面図Sectional drawing of the multilayer substrate in one embodiment of this invention 本発明の一実施の形態における積層基板のバンプ構造の拡大図The enlarged view of the bump structure of the multilayer substrate in one embodiment of the present invention 本発明の一実施の形態における積層基板の焼成前グリーンシート状態での層構成図The layer block diagram in the green sheet state before baking of the multilayer substrate in one embodiment of this invention 本発明の一実施の形態における積層基板の焼成前積層体の断面図Sectional drawing of the laminated body before baking of the multilayer substrate in one embodiment of this invention 本発明の一実施の形態における積層基板の焼成後積層体の断面図Sectional drawing of the laminated body after baking of the laminated substrate in one embodiment of this invention 本発明の一実施の形態における積層基板の拘束層除去後の断面図Sectional drawing after removal of constraining layer of laminated substrate in one embodiment of the present invention

以下、本発明の一実施の形態における積層基板について、図面を参照しながら説明する。   Hereinafter, a laminated substrate according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態に係る積層基板の断面図であって、図2はバンプ構造の拡大図である。図1において、表面に電極パターン13を設けた第1の基板10の表面に表層誘電体層12を設けたものであり、最上層から順に、バンプ11が表層誘電体層12を介して電極パターン13に接続され、電極パターン13は誘電体層14中のビア電極15を介して電極層16に接続され、電極層16は誘電体層17中のビア電極18を介して最下層の裏面電極19に接続される。   FIG. 1 is a cross-sectional view of a multilayer substrate according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a bump structure. In FIG. 1, a surface dielectric layer 12 is provided on the surface of a first substrate 10 provided with an electrode pattern 13 on the surface, and bumps 11 are arranged in an electrode pattern via the surface dielectric layer 12 in order from the top layer. 13, the electrode pattern 13 is connected to the electrode layer 16 via the via electrode 15 in the dielectric layer 14, and the electrode layer 16 is connected to the lowermost back electrode 19 via the via electrode 18 in the dielectric layer 17. Connected to.

バンプ11は、半田材料で形成され、露出部は直径65〜85μmの擬球形状となっており、表層誘電体層12の貫通孔20を介して電極パターン13と接続されている。表層誘電体層12は、厚み10〜30μmのシート状であって、バンプ11を形成する前の焼結状態で貫通孔20が形成されている。貫通孔20は、表面から見ると直径80〜100μmの円形状をしており、表面側の開口幅よりも内部の開口幅のほうが5〜10μmほど広く、半田が充填されている。   The bump 11 is formed of a solder material, and the exposed portion has a pseudospherical shape with a diameter of 65 to 85 μm, and is connected to the electrode pattern 13 through the through hole 20 of the surface dielectric layer 12. The surface dielectric layer 12 has a sheet shape with a thickness of 10 to 30 μm, and the through holes 20 are formed in a sintered state before the bumps 11 are formed. The through-hole 20 has a circular shape with a diameter of 80 to 100 μm when viewed from the surface, and the inner opening width is 5 to 10 μm wider than the opening width on the surface side, and is filled with solder.

このように括弧形スルーホール状に形成することで、充填された半田が表層誘電体層12に抑えられることにより抜けにくくなり、バンプ上に実装された機能性チップとの密着強度を向上させることができる。さらに、この貫通孔20は、表面側の開口幅よりも電極パターン13側の開口幅のほうが大きいとよりよい効果を得ることができる。   By forming it in the shape of a bracket-shaped through hole in this way, the filled solder is suppressed by the surface dielectric layer 12, and it becomes difficult to come out, and the adhesion strength with the functional chip mounted on the bump is improved. Can do. Further, the through hole 20 can obtain a better effect when the opening width on the electrode pattern 13 side is larger than the opening width on the surface side.

電極パターン13は、厚み5〜10μmの銀や銅などの導電材料で、接続ラインやGND電極として形成され、ビア電極15と接続されている。誘電体層14中のビア電極15は、電極パターン13と接続されるが、貫通孔20の位置よりもずらして重なり合わない構造にすると、電極パターン13のバンプ形成面突き出し高さを安定することができる。すなわち、複数形成されたバンプの高さバラツキを安定させることができる。電極層16はビア電極15と接続され、インダクタやコンデンサのパターンを形成し、ビア電極18へ接続される。   The electrode pattern 13 is a conductive material such as silver or copper having a thickness of 5 to 10 μm, is formed as a connection line or a GND electrode, and is connected to the via electrode 15. The via electrode 15 in the dielectric layer 14 is connected to the electrode pattern 13, but if the structure is shifted from the position of the through hole 20 and does not overlap, the bump formation surface protrusion height of the electrode pattern 13 is stabilized. Can do. That is, it is possible to stabilize the height variation of a plurality of formed bumps. The electrode layer 16 is connected to the via electrode 15, forms an inductor or capacitor pattern, and is connected to the via electrode 18.

次に、この積層基板の形成方法について説明する。図3は、焼成前グリーンシート状態での層構成である。誘電体層14、17は、ホウケイ酸系ガラスとアルミナを主成分とする誘電体であって、900℃付近で焼結が完了され、単体で焼成すると平面方向に85%収縮されるような材料である。   Next, a method for forming this laminated substrate will be described. FIG. 3 shows a layer structure in a green sheet state before firing. The dielectric layers 14 and 17 are dielectric materials mainly composed of borosilicate glass and alumina, and are materials that are sintered at around 900 ° C. and are shrunk by 85% in the plane direction when fired alone. It is.

また、拘束層21、22は、アルミナ系の材料であり、900℃では焼結されず、誘電体層等が焼結する時に誘電体層を拘束する機能を持つ。表層誘電体層12は、金型やレーザー加工によって貫通孔20を形成する。貫通孔20は空洞のままにしておく、または、900℃焼成時に残らないようなグリーンシートに混ぜるバインダー等の樹脂材料を充填させても良い。   The constraining layers 21 and 22 are alumina-based materials, and are not sintered at 900 ° C., and have a function of constraining the dielectric layer when the dielectric layer or the like is sintered. The surface dielectric layer 12 forms the through hole 20 by a mold or laser processing. The through-hole 20 may be left hollow, or may be filled with a resin material such as a binder mixed in a green sheet that does not remain at the time of 900 ° C. baking.

誘電体層14、17は、スルーホールを形成した後に、銀などの導電性ペーストを充填させてビア電極を形成し、誘電体層面上に同じく銀などの導電性ペーストを用いて電極層16を印刷形成する。誘電体層14、17を拘束層21、22で挟むように積層し、本圧着すると図4のようになる。図4の積層体を900℃で焼成すると、平面方向は無収縮状態で焼結され、高さ方向は40〜60%収縮されて図5のような焼結状態となる。ここで、表層誘電体層12の貫通孔20において、拘束層21側の面は拘束層21によって拘束されるため収縮しない。また、電極パターン13側の面は電極層に拘束され収縮しない。しかし、貫通孔20の中ほどにおいては、拘束される材料がないため収縮が発生し、表層誘電体層12の中ほどが最大開口となるような貫通孔20が形成されることになる。   The dielectric layers 14 and 17 are formed through holes, and then filled with a conductive paste such as silver to form a via electrode, and the electrode layer 16 is formed on the dielectric layer surface using the same conductive paste such as silver. Print form. When the dielectric layers 14 and 17 are stacked so as to be sandwiched between the constraining layers 21 and 22, and finally press-bonded, the result is as shown in FIG. When the laminated body of FIG. 4 is fired at 900 ° C., the plane direction is sintered in a non-shrinked state, and the height direction is shrunk by 40 to 60%, resulting in a sintered state as shown in FIG. Here, in the through hole 20 of the surface dielectric layer 12, the surface on the constraining layer 21 side is constrained by the constraining layer 21 and thus does not shrink. Further, the surface on the electrode pattern 13 side is restrained by the electrode layer and does not shrink. However, since there is no constrained material in the middle of the through hole 20, shrinkage occurs, and the through hole 20 is formed such that the middle of the surface dielectric layer 12 has the maximum opening.

図5の拘束層21、22をブラストで除去すると図6のような焼結体となり、半田ペーストを用いて貫通孔20を覆うようにパターン印刷し、約260℃でリフローすることにより、図1のように、電極パターン13に直接半田付けされ、貫通孔20に充填された部分と外部に突出した部分が一体化したバンプ構造を形成することができ、貫通孔20は中ほどが最大開口部となっているため、引き抜く力に対して十分な強度を有するバンプを実現することができる。   When the constraining layers 21 and 22 in FIG. 5 are removed by blasting, a sintered body as shown in FIG. 6 is obtained, and pattern printing is performed so as to cover the through holes 20 using solder paste, and reflowing is performed at about 260 ° C. As described above, a bump structure can be formed in which a portion filled with the through-hole 20 and a portion protruding to the outside are integrated by soldering directly to the electrode pattern 13, and the through-hole 20 has a maximum opening at the middle. Therefore, it is possible to realize a bump having sufficient strength against the pulling force.

なお、表層誘電体層の材料は、誘電体層と同じ材料であってもかまわないが、誘電体層にメッキ液に対する耐性が低い材料を用いている場合は、例えば亜鉛系ガラスのように耐メッキ性に優れた材料を用いることが望ましい。このようにすることにより、半田バンプを形成する前に裏面電極のメッキを行う場合でも表層側がダメージを受けることがなく、バンプの強度を十分に保つことができる。   The material of the surface dielectric layer may be the same material as that of the dielectric layer. However, when a material having low resistance to the plating solution is used for the dielectric layer, for example, zinc-based glass is used. It is desirable to use a material with excellent plating properties. By doing so, even when the back electrode is plated before the solder bumps are formed, the surface layer side is not damaged, and the strength of the bumps can be sufficiently maintained.

本発明に係る積層基板は、バンプの高さが安定していて、その接続強度が強い積層基板を得ることができ、産業上有用である。   The multilayer substrate according to the present invention is industrially useful because it can obtain a multilayer substrate having a stable bump height and strong connection strength.

10 第1の基板
11 バンプ
12 表層誘電体層
13 電極パターン
14 誘電体層
15 ビア電極
16 電極層
17 誘電体層
18 ビア電極
19 裏面電極
20 貫通孔
21 拘束層
22 拘束層
DESCRIPTION OF SYMBOLS 10 1st board | substrate 11 Bump 12 Surface layer dielectric layer 13 Electrode pattern 14 Dielectric layer 15 Via electrode 16 Electrode layer 17 Dielectric layer 18 Via electrode 19 Back surface electrode 20 Through-hole 21 Constrained layer 22 Constrained layer

Claims (2)

第1の面に電極パターンを有する第1の基板と、前記第1の基板の第1の面に設けた表層誘電体層と、前記表層誘電体層に設けた貫通孔とを備え、前記貫通孔は前記電極パターンの上に設けられ、前記電極パターンに機械的に接続され、前記貫通孔の内部に充填され、かつ前記表層誘電体層表面から突出するバンプを形成したものであり、前記第1の基板とは反対側の前記貫通孔の開口幅を、前記表層誘電体層の内部の最大開口幅よりも小さくした積層基板。 A first substrate having an electrode pattern on a first surface; a surface dielectric layer provided on the first surface of the first substrate; and a through hole provided in the surface dielectric layer. A hole is provided on the electrode pattern, is mechanically connected to the electrode pattern, fills the inside of the through-hole, and forms a bump protruding from the surface dielectric layer surface. A laminated substrate in which an opening width of the through hole on the side opposite to the one substrate is made smaller than a maximum opening width inside the surface dielectric layer. 第1の面に電極パターンを有する低温焼結セラミックシートからなるグリーンシートを得る工程と、前記グリーンシートの第1の面に前記電極パターンに重なる部分に貫通孔を設けた表層誘電体シートを重ね合わせる工程と、この両面に前記グリーンシート、前記電極パターン、および前記表層誘電体シートを焼結させる温度では焼結しない材料からなる拘束層を重ね合わせる工程と、焼成炉にて前記グリーンシート、前記電極パターン、および前記表層誘電体シートを焼結させる工程と、前記拘束層を除去する工程と、前記貫通孔の部分に半田ペーストを印刷する工程と、前記半田ペーストを溶融させることにより半田バンプを形成する工程とを備えた積層基板の製造方法。 A step of obtaining a green sheet made of a low-temperature sintered ceramic sheet having an electrode pattern on the first surface, and a surface dielectric sheet having a through hole provided in a portion overlapping the electrode pattern on the first surface of the green sheet A step of combining, a step of superposing a constraining layer made of a material that does not sinter at a temperature at which the green sheet, the electrode pattern, and the surface dielectric sheet are sintered on both sides, and the green sheet in the firing furnace, A step of sintering the electrode pattern and the surface dielectric sheet, a step of removing the constraining layer, a step of printing a solder paste on a portion of the through hole, and solder bumps by melting the solder paste And a step of forming the laminate substrate.
JP2009194007A 2009-08-25 2009-08-25 Laminated substrate and method for manufacturing the same Pending JP2011049205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194007A JP2011049205A (en) 2009-08-25 2009-08-25 Laminated substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194007A JP2011049205A (en) 2009-08-25 2009-08-25 Laminated substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011049205A true JP2011049205A (en) 2011-03-10

Family

ID=43835301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194007A Pending JP2011049205A (en) 2009-08-25 2009-08-25 Laminated substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011049205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194460A1 (en) * 2014-06-20 2015-12-23 オリンパス株式会社 Cable connection structure and endoscope device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194460A1 (en) * 2014-06-20 2015-12-23 オリンパス株式会社 Cable connection structure and endoscope device
JPWO2015194460A1 (en) * 2014-06-20 2017-04-20 オリンパス株式会社 Cable connection structure and endoscope apparatus
US10517465B2 (en) 2014-06-20 2019-12-31 Olympus Corporation Cable connection structure and endoscope apparatus

Similar Documents

Publication Publication Date Title
JP5333680B2 (en) Component built-in substrate and manufacturing method thereof
JP4453702B2 (en) COMPOSITE ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF
KR101089936B1 (en) Multi-layer ceramic circuit board and method of fabricating the same
JP3928665B2 (en) Chip-type electronic component built-in multilayer substrate and method for manufacturing the same
JP5958479B2 (en) Electronic component mounting structure
JP2009206110A (en) Electronic component
JP5236371B2 (en) Manufacturing method of ceramic parts
JP2008004733A (en) Manufacturing method of ceramic substrate
JP4463045B2 (en) Ceramic electronic components and capacitors
WO2018042846A1 (en) Electronic device and multilayer ceramic substrate
JP2007180428A (en) Electronic component and method for manufacturing the same
JP4329762B2 (en) Chip type electronic component built-in multilayer board
JP2007305830A (en) Method for manufacturig electronic component, electronic component, and electronic equipment
JP5830864B2 (en) Capacitor built-in wiring board and method for manufacturing capacitor built-in wiring board
JP2010003871A (en) Wiring substrate, probe card, and electronic device
JP2011049205A (en) Laminated substrate and method for manufacturing the same
JP6128209B2 (en) MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE CARD BOARD
JP5287102B2 (en) Electronic component, substrate for electronic component, and manufacturing method thereof
KR20210054215A (en) Hybrid multi layer ceramic and probe card including the same
JP2006032747A (en) Laminated electronic component and its manufacturing method
JP6707970B2 (en) IC chip mounting board
JP4463046B2 (en) Ceramic electronic components and capacitors
JP4986500B2 (en) Laminated substrate, electronic device and manufacturing method thereof.
JP6164228B2 (en) Module and manufacturing method thereof
JP2006032442A (en) Multi-layer substrate and manufacturing method therefor