JP2011047006A - Method for producing sintered ore of raw material for blast furnace - Google Patents

Method for producing sintered ore of raw material for blast furnace Download PDF

Info

Publication number
JP2011047006A
JP2011047006A JP2009196882A JP2009196882A JP2011047006A JP 2011047006 A JP2011047006 A JP 2011047006A JP 2009196882 A JP2009196882 A JP 2009196882A JP 2009196882 A JP2009196882 A JP 2009196882A JP 2011047006 A JP2011047006 A JP 2011047006A
Authority
JP
Japan
Prior art keywords
raw material
blast furnace
sintered ore
sintered
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009196882A
Other languages
Japanese (ja)
Other versions
JP5515518B2 (en
Inventor
Shigeharu Matsubayashi
重治 松林
Shinya Naruki
紳也 成木
Masanori Nakano
正則 中野
Shinji Kawachi
慎治 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009196882A priority Critical patent/JP5515518B2/en
Publication of JP2011047006A publication Critical patent/JP2011047006A/en
Application granted granted Critical
Publication of JP5515518B2 publication Critical patent/JP5515518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a method for producing sintered ore that the air-flow resistance of a hot blast gas is difficult to increase at a temperature inside the furnace even after the sintered ore has been charged into the blast furnace, and that even if a binder for granulation, which has been added in a granulation step, is thermally decomposed in a baking step, carbon (C) or an inorganic material (Si or the like) remains between iron ores. <P>SOLUTION: The method for producing the sintered ore of a raw material for the blast furnace is a method of adding the binder for forming the raw material to be sintered into a lump shape and imparting strength to the lump, into the raw material to be sintered, granulating or molding the raw material and baking the resultant product, and includes: adding 2-12 pts.mass of at least one of a water-soluble phenol resin, water glass, a polyimide, a polysiloxane and colloidal silica to 100 pts.mass of the raw material to be sintered, as the binder; mixing the binder with the raw material to be sintered and stirring the mixture; and then granulating or molding the mixture. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、製鉄設備の高炉用原料の焼結鉱を製造する方法に関し、特に焼結鉱中にコークス粒、無煙炭粒、炭素を30質量%以上含有する燃料粒などの炭素源を多量に含有する含炭焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore as a raw material for a blast furnace of an iron making facility, and particularly contains a large amount of carbon sources such as coke grains, anthracite grains, and fuel grains containing 30% by mass or more of carbon in the sintered ore. The present invention relates to a method for producing a carbon-containing sintered ore.

高炉を用いて行われる溶銑製造プロセスでは、炉内の原料充填層内に還元ガスを効率よく流通させるため、原料及び還元剤の充填層内の空隙率を一定値以上に保つ必要がある。従って、鉄原料などの炉内装入粒の大きさが維持される強度が大きいことが望ましく、粉化を抑制することが重要である。特に大型高炉においては、粉鉱石を炭材の燃焼熱により焼き固めた焼結鉱や、粉鉱石をペレタイザーなどで球状に成形した後、約900℃以上で高温加熱硬化させた焼成ペレットの高強度化が望まれている。即ち、製鉄設備の高炉内に焼結鉱や焼成ペレットが装入された後でも強度を維持することによって破砕や粉化せず、高炉内の熱風ガスの通気抵抗が増加し難いものが望ましい焼結鉱や焼成ペレットとされている。   In the hot metal production process performed using a blast furnace, it is necessary to maintain the porosity in the packed bed of the raw material and the reducing agent at a certain value or higher in order to efficiently distribute the reducing gas in the packed bed of the raw material in the furnace. Therefore, it is desirable that the strength of maintaining the size of the granule inside the furnace such as iron raw material is large, and it is important to suppress pulverization. Especially in large blast furnaces, the high strength of sintered pellets obtained by sintering powdered ore with the heat of combustion of charcoal or by forming the powdered ore into a spherical shape with a pelletizer and then heat-curing at about 900 ° C or higher. Is desired. That is, it is desirable that the blast furnace of the steelmaking equipment should not be crushed or pulverized by maintaining the strength even after the sintered ore and fired pellets are charged, and the hot air gas ventilation resistance in the blast furnace is difficult to increase. It is considered as ore and fired pellets.

例えば、特許文献1に開示されているように、焼結原料を焼結する際の粉コークス、無煙炭の燃焼効率を向上するために焼結原料の擬似粒子の表面に粉コークス、無煙炭を多く存在させるなどの工夫がなされてきた。   For example, as disclosed in Patent Document 1, in order to improve the combustion efficiency of powdered coke and anthracite when sintering the sintered material, there are many powdered coke and anthracite on the surface of the pseudo particles of the sintered material. Some ideas have been made.

一方において、特に省エネルギーを目的として、900℃以上の高温加熱処理を行わない焼結鉱に関する検討も進められてきた。この焼結鉱は、鉄鉱石粉や製鉄ダスト等をCa3Al2O6などのセメント成分による水硬性結合剤をバインダーとして、常温又は400℃前後の蒸気廃熱等を利用した比較的低温の条件で一定期間養生することによって製造される。 On the other hand, studies on sintered ore that is not subjected to high-temperature heat treatment at 900 ° C. or higher have been promoted particularly for the purpose of energy saving. This sintered ore is made of iron ore powder, iron-making dust, etc. with a binder of a hydraulic binder made of a cement component such as Ca 3 Al 2 O 6 and a relatively low temperature condition using steam waste heat at about 400 ° C. It is manufactured by curing for a certain period of time.

セメントなどの水硬性結合剤を用いると、常温での圧潰強度は十分に確保することができ、ベルトコンベアーを用いた移送が容易になり、また、高炉の炉頂部の200〜400℃までの温度領域においては、その形状を保持させることができる。しかし、400℃以上の高温域ではセメント水和物が熱分解するため、焼結鉱の強度が著しく低下し、高炉の炉内部および炉底近くでの粉化によって通気性が低下することが以前にも指摘されていた。   When a hydraulic binder such as cement is used, the crushing strength at room temperature can be sufficiently secured, the transfer using a belt conveyor becomes easy, and the temperature of the top of the blast furnace up to 200 to 400 ° C. In the region, the shape can be maintained. However, since cement hydrate thermally decomposes at a high temperature range of 400 ° C or higher, the strength of sintered ore is significantly reduced, and air permeability is reduced due to pulverization inside and near the bottom of the blast furnace. It was also pointed out.

このような問題に対して、特許文献2に、粉鉱石にアスファルトやピッチなどの粘着性炭化水素混合物をバインダーとして添加混合し、これを圧縮成形して、硬化させた非焼成塊成鉱(成形体)が示されている。同文献によれば、この非焼成塊成鉱は200℃程度からバインダー中の揮発分が蒸発し、バインダーの粘度が大きくなるため成形体の強度が増大し、800℃程度で熱分解による揮発がほぼ終了し、アモルファス(無定形)状の炭素が粉鉱石粒子を結合するため成形体強度がさらに増加する。   In order to solve such a problem, Patent Document 2 discloses a non-fired agglomerated mineral (molded) obtained by adding and mixing a sticky hydrocarbon mixture such as asphalt or pitch as a binder to a powdered ore and compressing and curing the mixture. Body) is shown. According to the same literature, the non-fired agglomerated minerals evaporate the volatiles in the binder from about 200 ° C., and the viscosity of the binder increases, so that the strength of the molded body increases. Almost complete, and the amorphous (amorphous) carbon binds the fine ore particles, further increasing the strength of the compact.

しかしながら、この方法では、粘着性炭化水素混合物を加熱し溶融する工程が必要となる上、やはり高炉に装入した場合に炭化水素混合物の融点から炭化初期の温度域、すなわち200℃〜500℃程度の領域においては、炭化水素混合物は溶融しており、このため焼結鉱の変形や隣接する焼結鉱との融着による粗大化なども起こるため、十分な通気性確保は期待できない。   However, this method requires a step of heating and melting the sticky hydrocarbon mixture, and also when charged in a blast furnace, the temperature range from the melting point of the hydrocarbon mixture to the initial carbonization range, that is, about 200 ° C. to 500 ° C. In this region, the hydrocarbon mixture is melted. For this reason, deformation of the sintered ore and coarsening due to fusion with the adjacent sintered ore occur, so that sufficient air permeability cannot be expected.

また、従来の造粒方法として、特許文献3には、粉鉱石、粉コークスおよび返し鉱からなる粉混合物を造粒して形成した内層と、該内層の表面に該粉混合物のバインダーとして生石灰、消石灰、焼成ドロマイトまたはベントナイトのうちの1種以上を添加してなる外層とで構成したことを特徴とする焼結鉱用ペレットが記載されている。
しかしながら、特許文献3の方法は、外層のみにバインダーを所定量添加することにより、所定ペレット強度を確保しつつバインダー添加量を低減する方法であり、内層のコークス含有量はペレット全体の平均配合値にほぼ等しいため、焼結鉱中にコ−クス粒等の炭素源を多量に含有した含炭焼結鉱を製造する技術ではない。このため、高炉の燃料比を低減し、出銑比を大幅に向上させることが期待される多量の炭素を含有する含炭焼結鉱の製造法の開発が望まれていた。
In addition, as a conventional granulation method, Patent Document 3 discloses an inner layer formed by granulating a powder mixture composed of fine ore, fine coke and reverse ore, and quick lime as a binder of the fine powder mixture on the surface of the inner layer, A pellet for sintered ore characterized by comprising an outer layer formed by adding one or more of slaked lime, calcined dolomite or bentonite is described.
However, the method of Patent Document 3 is a method of reducing the amount of binder added while ensuring a predetermined pellet strength by adding a predetermined amount of binder only to the outer layer, and the coke content of the inner layer is the average blending value of the whole pellet Therefore, it is not a technique for producing a carbon-containing sintered ore containing a large amount of carbon source such as coke grains in the sintered ore. For this reason, development of the manufacturing method of the carbon-containing sintered ore containing a large amount of carbon anticipated to reduce the fuel ratio of a blast furnace and to improve a tapping ratio significantly was desired.

また、従来の結合材の添加方法として、特許文献4には、フェノール樹脂の水溶液、有機溶媒溶液、粉末を用いることを特徴とする高炉用鉱石原料の製造方法が記載されている。しかしながら、特許文献4の方法では、鉱石間に分散させることへの着眼が為されておらず、より具体的には50mass%以上の高濃度の水溶液を希釈せずに、高濃度、高粘度のまま添加しており、鉱石間に分散可能で、より高強度な造粒物を製造する技術ではない。このため、鉱石への配合時の分散性を大幅に向上させることが期待される安価で再現性に優れる高炉原料の製造法の開発が望まれていた。   Moreover, as a conventional method for adding a binder, Patent Document 4 describes a method for producing an ore raw material for a blast furnace characterized by using an aqueous solution of a phenol resin, an organic solvent solution, and powder. However, the method of Patent Document 4 does not focus on the dispersion between ores, and more specifically, it does not dilute a high-concentration aqueous solution of 50 mass% or more, and has a high concentration and high viscosity. However, it is not a technique for producing a granulated material with higher strength that can be dispersed between ores. For this reason, development of the manufacturing method of the blast furnace raw material which is anticipated to improve the dispersibility at the time of mixing | blending to an ore at low cost and excellent in reproducibility was desired.

特公昭55−15536号公報Japanese Patent Publication No.55-15536 特開昭60−248831号公報JP 60-248831 A 特開昭63−12131号公報JP 63-12131 A 特開2009−030113号公報JP 2009-030113 A

したがって、本発明の目的は、常温では1000N/粒以上の圧潰強度を有するとともに、加熱され900℃までの温度範囲においても高炉内で通気性を確保するのに十分な100N/粒以上の圧潰強度を有し、同時に、省エネルギーの観点から常温から400℃の比較的低温域で塊成化でき、高炉内に焼結鉱が装入された後でも炉内温度(900℃〜)で熱風ガスの通気抵抗が増加し難い製鉄用塊成鉱を提供することにある。   Accordingly, an object of the present invention is to have a crushing strength of 1000 N / grain or more at normal temperature and a crushing strength of 100 N / grain or more sufficient to ensure air permeability in a blast furnace even in a temperature range up to 900 ° C. when heated. At the same time, from the viewpoint of energy saving, it can be agglomerated in a relatively low temperature range from room temperature to 400 ° C., and even after the sintered ore is charged in the blast furnace, An object of the present invention is to provide an agglomerate for iron making in which ventilation resistance hardly increases.

一方で、高炉に装入する焼結鉱の焼結工程で、造粒工程で添加した造粒用バインダーが熱分解しても、鉄鉱石間に炭素(C)または無機材料(Si等)が残ることによって、高炉の炉下部反応にとって重要な焼結鉱の高温還元・軟化溶融性状を向上させ、高炉の燃料比を低減し、出銑比を大幅に向上させることが期待される多量の炭素を含有する含炭素源焼結鉱の製造法を提供することにある。   On the other hand, even if the granulation binder added in the granulation process is pyrolyzed in the sintering process of the sinter charged into the blast furnace, carbon (C) or inorganic material (Si, etc.) is present between the iron ores. By remaining, a large amount of carbon is expected to improve the high-temperature reduction / softening and melting properties of sintered ore, which is important for the blast furnace bottom reaction, reduce the fuel ratio of the blast furnace, and greatly improve the output ratio Another object of the present invention is to provide a method for producing a carbon-containing source ore containing selenium.

本発明者らは、上記課題を解決できる焼結鉱について鋭意検討を行った結果、酸化鉄原料を水溶性フェノール樹脂(残炭率30%)、水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)の少なくとも1種を結合剤として粉鉱石の粒子間に配合することにより、常温で1000N/粒以上、炉内高温域で100N/粒以上の圧潰強度が得られることを見出した。 As a result of intensive studies on the sintered ore that can solve the above-mentioned problems, the present inventors have found that the iron oxide raw material is a water-soluble phenol resin (residual carbon ratio of 30%), water glass (CaO-SiO 2 after pyrolysis, etc.) By blending at least one of polyimide (same Si 3 N 4 ), polysiloxane (similar SiO 2 ), colloidal silica (same SiO 2 ) between the particles of fine ore as a binder, 1000N / grain or more at room temperature The present inventors have found that a crushing strength of 100 N / grain or more can be obtained at a high temperature in the furnace.

即ち、本発明者は、従来のアルミナセメントと異なり、高炉内で溶湯流動性の阻害要因となるAl2O3が生じず、また、新たに煩雑工程が増えることもなく、焼結鉱の高温強度を高められることから、高炉操業の通気安定化が可能になる造粒方法を見出した。 That is, unlike the conventional alumina cement, the present inventor does not generate Al 2 O 3 which becomes an obstacle to molten metal fluidity in the blast furnace, and does not newly increase complicated processes, and does not increase the high temperature of the sintered ore. We found a granulation method that can stabilize the ventilation of blast furnace operation because the strength can be increased.

本発明はこのような知見に基づきなされたもので、その要旨を以下に示す。本発明の方法は、
(1)焼結原料に、該焼結原料を塊状にして強度を持たせるためのバインダーを添加して造粒または成形し、焼成する高炉用原料の焼結鉱の製造方法であって、前記バインダーとして、水溶性フェノール樹脂、水ガラス、ポリイミド、ポリシロキサン、コロイダルシリカの少なくとも1種を、前記焼結原料100質量部に対し、2〜12質量部添加して、前記焼結原料と混合・攪拌した後、造粒または成形することを特徴とする高炉用原料の焼結鉱の製造方法。
(2)前記水溶性フェノール樹脂の残炭率が30%以上であることを特徴とする(1)に記載の高炉用原料の焼結鉱の製造方法。
(3)前記水ガラスの熱分解後の組成が少なくともCaO-SiO2であることを特徴とする(1)に記載の高炉用原料の焼結鉱の製造方法。
(4)前記ポリイミドの熱分解後の組成がSi3N4であることを特徴とする(1)に記載の高炉用原料の焼結鉱の製造方法。
(5)前記ポリシロキサンの熱分解後の組成がSiO2であることを特徴とする(1)に記載の高炉用原料の焼結鉱の製造方法。
(6)前記コロイダルシリカの熱分解後の組成がSiO2であることを特徴とする(1)に記載の高炉用原料の焼結鉱の製造方法。
(7)前記造粒して形成した造粒物が、転動成形物、成形物、成形物の破砕体のいずれかであることを特徴とする(1)〜(6)のいずれか1項に記載の高炉用原料の焼結鉱の製造方法。
The present invention has been made on the basis of such findings, and the gist thereof will be described below. The method of the present invention comprises:
(1) A method for producing a sintered ore of a raw material for a blast furnace, which is granulated or molded by adding a binder for making the sintered raw material agglomerated and giving strength to the sintered raw material, As a binder, at least one of a water-soluble phenol resin, water glass, polyimide, polysiloxane, and colloidal silica is added to 2 to 12 parts by mass with respect to 100 parts by mass of the sintering material, and mixed with the sintering material. A method for producing a sintered ore of a raw material for a blast furnace, which is granulated or shaped after stirring.
(2) The method for producing a sintered ore of a raw material for a blast furnace as described in (1), wherein a residual carbon ratio of the water-soluble phenol resin is 30% or more.
(3) The method for producing a sintered ore of a raw material for a blast furnace as described in (1), wherein the composition after pyrolysis of the water glass is at least CaO—SiO 2 .
(4) The method for producing a sintered ore of a raw material for a blast furnace as described in (1), wherein the composition of the polyimide after pyrolysis is Si 3 N 4 .
(5) The method for producing a sintered ore of a raw material for a blast furnace as described in (1), wherein the composition after pyrolysis of the polysiloxane is SiO 2 .
(6) The method for producing a sintered ore of a raw material for a blast furnace according to (1), wherein the composition after pyrolysis of the colloidal silica is SiO 2 .
(7) Any one of (1) to (6), wherein the granulated product formed by granulation is any one of a rolling molded product, a molded product, and a crushed product of the molded product. The manufacturing method of the sintered ore of the raw material for blast furnaces as described in 1 ..

本発明の高炉用原料の焼結鉱の製造方法により製造した焼結鉱は、常温においては硬化したフェノール樹脂がもつバインダー機能に加え、900℃まで加熱されても30質量%以上の残炭が起こることにより、常温で1000N/粒以上、900℃でも100N/粒以上の圧潰強度を保持することができる。   The sintered ore produced by the method for producing sintered ore of the raw material for blast furnace of the present invention has a residual carbon of 30% by mass or more even when heated to 900 ° C. in addition to the binder function of a cured phenol resin at room temperature. As a result, a crushing strength of 1000 N / grain or more at room temperature and 100 N / grain or more at 900 ° C. can be maintained.

同様に、水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)でも、900℃まで加熱されても揮発しない30質量%以上の無機成分が残ることにより、常温で1000N/粒以上、900℃でも100N/粒以上の圧潰強度を保持することができる。 Similarly, water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (Si 3 N 4 ), polysiloxane (SiO 2 ), colloidal silica (SiO 2 ), volatilizes even when heated to 900 ° C. By leaving 30% by mass or more of the inorganic component, it is possible to maintain a crushing strength of 1000 N / grain or more at normal temperature and 100 N / grain or more even at 900 ° C.

したがって、焼結鉱のベルトコンベアー搬送時及び高炉内において粉化が少なく、フェノール樹脂が加熱されて残炭することに伴う鉄鉱石の還元作用を有するなど、優れた性能を有する。このため、高炉設備の通気安定性が確保され、安定操業ができ、還元作用によって高炉の燃料比低減と出銑比大幅向上を実現する。   Therefore, it has excellent performance such that it is less pulverized at the time of conveying the sintered ore belt conveyor and in the blast furnace, and has a reducing action of iron ore due to heating of the phenol resin and residual coal. For this reason, the ventilation stability of the blast furnace equipment is ensured, stable operation is possible, and reduction of the fuel ratio of the blast furnace and a significant improvement of the output ratio are realized by the reduction action.

造粒物の断面を表す模式図である。It is a schematic diagram showing the cross section of a granulated material.

本発明にて規定する高炉用原料の造粒用結合剤(バインダー)成分の限定理由について、以下に説明する。本発明の方法により製造された焼結鉱は、高炉において鉄原料として用いられる。鉄原料としては、粉鉱石、塊状鉄鉱石などが挙げられるが、これに限定されるものではなく、高炉用の鉄原料となり得るものであって、そのままでは高炉に装入できない微細粒、粉状のものであればよい。   The reasons for the limitation of the granulating binder (binder) component of the blast furnace raw material defined in the present invention will be described below. The sintered ore produced by the method of the present invention is used as an iron raw material in a blast furnace. Examples of the iron raw material include fine ore and massive iron ore, but are not limited to this, and can be used as an iron raw material for a blast furnace, and cannot be charged into the blast furnace as it is. If it is a thing.

粉状焼結鉱の代表例は、鉄鉱石の焼結プロセスで発生する返し鉱と呼ばれる焼結鉱粉であり、従来の一般的な焼結プロセスでは、この焼結鉱粉は焼結工程に送り返され、焼結原料として再利用されている。この焼結鉱粉の大部分は、成品焼結鉱を得る際の粒度選別(スクリーン、篩がけ)工程で発生するが、一部、高炉へのベルトコンベアー搬送時や高炉周辺で発生するものもある。従来の焼結プロセスでは、成品歩留りは80%程度であり、残りの20%程度が返し鉱(焼結鉱粉)として焼結工程に返送されている。即ち、成品焼結鉱としてそのまま使われることがなく、粒度選別と焼結プロセス内で循環し、再利用されている。   A typical example of powdered ore is a sintered ore called reverse ore generated in the iron ore sintering process. In the conventional general sintering process, this sintered ore is used in the sintering process. It is sent back and reused as a raw material for sintering. Most of this sintered ore powder is generated in the particle size sorting (screen, sieving) process when obtaining the product sintered ore, but some of it is also generated when transporting the belt conveyor to the blast furnace and around the blast furnace. is there. In the conventional sintering process, the product yield is about 80%, and the remaining 20% is returned to the sintering step as a return ore (sintered ore powder). In other words, it is not used as it is as a product sinter, but it is circulated and reused in the particle size sorting and sintering process.

したがって、本発明の焼結鉱の鉄原料として、そのような粉状焼結鉱を利用できることにより、焼結鉱のトータル歩留りを大きく向上させることができる。   Therefore, by using such a powdery sintered ore as the iron raw material of the sintered ore of the present invention, the total yield of the sintered ore can be greatly improved.

塊状鉄鉱石には鉄鉱石粒も含まれる。また、元々粒度の小さい鉄鉱石、整粒工程で生じた粒度の小さい鉄鉱石などのいずれを用いてもよい。高炉用原料は、異なる種類のものを2種以上ブレンドして用いてもよい。この返し鉱を含め、高炉用原料の粒径は、一般には5.5mm以下である。   The massive iron ore includes iron ore grains. Moreover, any of iron ore having a small particle size and iron ore having a small particle size generated in the sizing process may be used. Two or more different types of blast furnace raw materials may be blended and used. The particle size of the blast furnace raw material including this reverse ore is generally 5.5 mm or less.

水溶性フェノール樹脂は、常温においてはそれ自体がバインダー(結合剤)として機能するとともに、400℃〜900℃の高温域においては炭化することで生成した炭素がバインダー(結合剤)として機能する。外掛けで2〜12質量部が好適な添加量である。2質量部未満では、造粒物を形成し難く、12質量部を超えると熱分解後の造粒物の強度が低下し、好ましくない。   The water-soluble phenol resin itself functions as a binder (binder) at room temperature, and carbon generated by carbonization functions as a binder (binder) in a high temperature range of 400 ° C. to 900 ° C. A suitable addition amount is 2 to 12 parts by mass. If it is less than 2 parts by mass, it is difficult to form a granulated product, and if it exceeds 12 parts by mass, the strength of the granulated product after pyrolysis is unfavorable.

本発明の焼結鉱中で結合剤として存在する水溶性フェノール樹脂とは、フェノール樹脂前駆体を分子骨格に含む水溶性樹脂である。最も一般的な組合せはフェノールとホルムアルデヒドの1:0.5〜2配合である。   The water-soluble phenol resin present as a binder in the sintered ore of the present invention is a water-soluble resin containing a phenol resin precursor in a molecular skeleton. The most common combination is a 1: 0.5 to 2 blend of phenol and formaldehyde.

フェノール樹脂前駆体は、水溶性、有機溶媒中に溶ける性質、固体粉末など様々な形態があるが、本発明では散布時の安全性、コストに加え、最も重要な粉鉱石間に分散させることが容易な点で水溶性に着目し、水溶性フェノール樹脂を選択した。   Phenolic resin precursors have various forms such as water solubility, solubility in organic solvents, solid powders, etc. In the present invention, in addition to safety during spraying and cost, they can be dispersed among the most important powder ores. Focusing on water solubility from an easy point, a water-soluble phenol resin was selected.

フェノール樹脂製造時、フェノール系原料とアルデヒド系原料を反応させる際に、通常、酸又はアルカリ触媒を添加する。酸触媒を用いたものをノボラック型、アルカリ触媒を用いたものをレゾール型と称する。最も一般的なフェノールとホルムアルデヒドの組合せの場合、酸触媒を用いるノボラック型のフェノール樹脂前駆体は、フェノールがメチレン結合で主に直鎖状に繋がった分子量2000以下の種々の縮合物であり、アルカリ触媒を用いるレゾール型の場合は、トリメチロールフェノールを中心としたメチロールフェノール及びそれらのダイマー(二量体)、トリマー(三量体)の混合物である。本発明ではレゾール型、ノボラック型のどちらも使用できる。   In the production of a phenol resin, an acid or alkali catalyst is usually added when the phenolic raw material and the aldehyde raw material are reacted. The one using an acid catalyst is called a novolak type, and the one using an alkali catalyst is called a resol type. In the case of the most common combination of phenol and formaldehyde, the novolak type phenol resin precursor using an acid catalyst is a variety of condensates having a molecular weight of 2000 or less in which phenol is mainly connected in a straight chain by a methylene bond. In the case of a resol type using a catalyst, it is a mixture of methylolphenol mainly composed of trimethylolphenol, dimer (dimer) and trimer (trimer) thereof. In the present invention, both a resol type and a novolac type can be used.

一般にレゾール型は150℃以上に加熱することで自己架橋するが、ノボラック型ではヘキサメチレンテトラミン等の硬化剤を必要とする。硬化剤もそれぞれの塊成化法に適した方法で添加すればよいが、水溶性に限定する。   In general, the resol type self-crosslinks by heating to 150 ° C. or higher, but the novolac type requires a curing agent such as hexamethylenetetramine. The curing agent may be added by a method suitable for each agglomeration method, but is limited to water solubility.

また、本発明で用いるフェノール樹脂には、フェノール類の一部を尿素で置換した、水溶性のフェノール−尿素樹脂も含まれる。   Further, the phenol resin used in the present invention includes a water-soluble phenol-urea resin in which a part of phenols is substituted with urea.

高炉内に焼結鉱の結合剤として分散、添加されたフェノール樹脂は、熱分解して一部は揮発するが、焼結鉱内の粒子間に炭素(熱分解後の残渣)分として残留する。一般的に樹脂の熱分解後も揮発せずに残留する炭素量は、残炭率(質量%)で表すことができる。   The phenol resin dispersed and added in the blast furnace as a binder for sintered ore is thermally decomposed and partially volatilized, but remains as carbon (residue after pyrolysis) between the particles in the sintered ore. . In general, the amount of carbon remaining without volatilization after the thermal decomposition of the resin can be represented by the residual carbon ratio (% by mass).

大気中で500℃以上に加熱した際に残存する炭素の割合(残炭率)は、アクリルやポリビニルアルコールといった一般的な樹脂がほぼ0%なのに対し、フェノール樹脂は30質量%以上と高い。したがって、フェノール樹脂を結合剤として塊成化した本発明の焼結鉱は、高炉装入時から炉頂部までの常温〜400℃程度まではフェノール樹脂そのもののバインダー機能により圧潰強度1000N/粒以上が保持され、400℃以上の炉内部からフェノール樹脂が徐々に熱分解して炭素化する。500℃以上においてはフェノール樹脂が炭素化後、粉鉱石の粒子間成分として機能することにより、900℃までの熱間でも圧潰強度100N/粒以上の圧潰強度を発現する。   The ratio of carbon remaining when heated to 500 ° C. or higher in the atmosphere (residual carbon ratio) is approximately 0% for general resins such as acrylic and polyvinyl alcohol, whereas phenol resin is as high as 30% by mass or higher. Therefore, the sintered ore of the present invention agglomerated with a phenol resin as a binder has a crushing strength of 1000 N / grain or more due to the binder function of the phenol resin itself from normal temperature to about 400 ° C. from the time of charging the blast furnace to the top of the furnace. The phenol resin is gradually pyrolyzed and carbonized from inside the furnace at 400 ° C. or higher. At 500 ° C. or higher, the phenol resin functions as an interparticle component of the fine ore after carbonization, thereby exhibiting a crushing strength of 100 N / grain or higher even during heat up to 900 ° C.

フェノール樹脂の添加量は、焼結鉱が常温で1000N/粒以上の圧潰強度を発現するだけの量が必要である。具体的な添加量は、酸化鉄原料の粒度分布等の条件により異なるため、一義的には規定できないが、一般的には必要とされる圧潰強度と結合剤の分散性、混合時間、コストなどの面から、焼結鉱(成品)中での割合で2〜12質量部程度が適当である。フェノール樹脂を結合剤とした、常温で1000N/粒以上の圧潰強度を有する塊成鉱は、900℃までの温度範囲では100N/粒以上の熱間圧潰強度を保持することができる。   The addition amount of the phenol resin is required so that the sintered ore exhibits a crushing strength of 1000 N / grain or more at room temperature. The specific amount of addition varies depending on conditions such as the particle size distribution of the iron oxide raw material, so it cannot be uniquely defined, but generally the required crushing strength and binder dispersibility, mixing time, cost, etc. From the above aspect, about 2 to 12 parts by mass is appropriate as a ratio in the sintered ore (product). An agglomerated mineral having a crushing strength of 1000 N / grain or more at normal temperature using a phenol resin as a binder can maintain a hot crushing strength of 100 N / grain or more in a temperature range up to 900 ° C.

本発明の方法による高炉用原料の焼結鉱は、鉄原料、結合剤及び粉状コークスを主たる構成成分とするものであるが、必要に応じて他の成分、例えば、各種分散剤、硬化促進剤、セメント、石灰石微粉、フライアッシュ、シリカ微粉などの1種以上を、本発明の効果を損なわない限度で適量配合することもできる。これらその他成分の焼結鉱中での合計配合量は4質量%以下、より好ましくは2質量%程度を上限とする。   The sintered ore of the raw material for blast furnaces according to the method of the present invention is mainly composed of iron raw material, binder and powdered coke, but other components such as various dispersants, hardening accelerators as necessary. One or more kinds of agents, cement, limestone fine powder, fly ash, silica fine powder and the like can be blended in an appropriate amount as long as the effects of the present invention are not impaired. The total amount of these other components in the sintered ore is 4% by mass or less, more preferably about 2% by mass.

本発明の方法による高炉用原料の焼結鉱の粒径は5.5〜25mm程度が好ましい。焼結鉱の粒径が5.5mm未満では、炉に装入した際の原料充填層の通気性が悪化し、一方、粒径が25mmを超えると還元に長時間を有し、かつ未還元の酸化鉄が残存するためである。   As for the particle size of the sintered ore of the raw material for blast furnaces by the method of this invention, about 5.5-25 mm is preferable. If the particle size of the sintered ore is less than 5.5 mm, the air permeability of the raw material packed layer when charged in the furnace deteriorates. On the other hand, if the particle size exceeds 25 mm, the reduction takes a long time and is not reduced. This is because the iron oxide remains.

本発明の方法による高炉用原料の焼結鉱を得るための原料の塊成化方法としては、公知の塊成化法を利用できるが、使用するフェノール樹脂前駆体の形態に適した方法を選ぶ必要がある。例えば、溶液状のフェノール樹脂前駆体は、鉄原料への混合が容易であるが、粉体のフェノール樹脂前駆体の場合は、融点以上に加熱しながら鉄原料と混合した方が、粉体のまま粒状化するよりも高い圧潰強度が得られる傾向がある。工業的に量産可能な塊成化方法の具体例としては、造粒、成形、成形物の破砕といった方法が挙げられ、これらの塊成化方法で得られる焼結鉱は、造粒物、成形物、成形物の破砕体となる。   As the agglomeration method of the raw material for obtaining the sintered ore of the blast furnace raw material by the method of the present invention, a known agglomeration method can be used, but a method suitable for the form of the phenol resin precursor to be used is selected. There is a need. For example, a solution-like phenol resin precursor can be easily mixed with an iron raw material, but in the case of a powdered phenol resin precursor, it is better to mix with an iron raw material while heating to a melting point or higher. There is a tendency that a higher crushing strength can be obtained than when granulating as it is. Specific examples of agglomeration methods that can be industrially mass-produced include methods such as granulation, molding, and crushing of molded products. Sintered ore obtained by these agglomeration methods includes granulated products, moldings, and the like. It becomes a crushed body of a product and a molded product.

造粒には回転式のグラニュレーター、成形にはブリケッティングマシン等が使用できるが、これらに限らず、造粒、成形可能であれば特に使用する設備は問わない。例えば、造粒法や成形法では、原料と樹脂溶液などを混合・撹拌(混練)した後、造粒又は成形を行う。成形法は、金型に充填後、加圧する方法でもよい。
回転式のグラニュレーターにはドラムミキサーやディスクペレタイザー、パッグミルなどがあり、成形機としてはロール型が代表例である。混合後、混合・造粒または成形することにより、粒状または粉状の鉄原料の表面を バインダー(結合剤)でコーティングすることにより塊状混合物を造る。
A rotary granulator can be used for granulation, and a briquetting machine or the like can be used for molding. However, the present invention is not limited to these, and any equipment that can be used for granulation and molding can be used. For example, in a granulation method or a molding method, a raw material and a resin solution are mixed and stirred (kneaded), and then granulated or molded. The molding method may be a method of pressurizing after filling the mold.
A rotary granulator includes a drum mixer, a disk pelletizer, a pug mill, and the like, and a roll type is a typical example of a molding machine. After mixing, by mixing, granulating, or shaping, the surface of the granular or powdered iron raw material is coated with a binder (binder) to form a block mixture.

通常の焼結原料である主原料(粉鉱石、篩下粉等)、副原料(石灰石、蛇紋岩等)、粉コークス・無煙炭などの他の焼結原料とともに1次ミキサー、2次ミキサーで混合、造粒した後、焼結機に装入して約900℃で焼成する。
または、通常の焼結原料である主原料(粉鉱石、篩下粉等)、副原料(石灰石、蛇紋岩等)、粉コークス・無煙炭などを1次ミキサーで混合、造粒後に、粉コークス・無煙炭などの炭素源を添加して、その後、2次ミキサーで混合、造粒した後、焼結機に装入して同じく焼成する。
Mix in primary and secondary mixers together with other sintering materials such as main materials (mineral ore, sieving powder, etc.), auxiliary materials (limestone, serpentine, etc.), powdered coke, anthracite, etc. After granulation, it is charged into a sintering machine and fired at about 900 ° C.
Or, the main raw materials (sintered ore, sieving powder, etc.), auxiliary raw materials (limestone, serpentine, etc.), powdered coke, anthracite, etc., which are ordinary sintering raw materials, are mixed with a primary mixer, granulated, A carbon source such as anthracite is added, then mixed and granulated with a secondary mixer, and then charged into a sintering machine and fired in the same manner.

造粒、成形された焼結鉱は、加熱処理してフェノール樹脂前駆体を熱硬化させることにより、高炉用原料の焼結鉱の成品となる。一般には、150℃以上に加熱することでフェノール樹脂前駆体を硬化させ、3次元架橋したフェノール樹脂とすることが可能であるが、加熱温度、加熱時間等の最適条件は使用するフェノール樹脂前駆体により異なるため、それぞれに合った条件を選択すればよい。   The granulated and shaped sintered ore is heat treated to thermally cure the phenol resin precursor, thereby becoming a product of the sintered ore of the blast furnace raw material. In general, the phenol resin precursor can be cured by heating to 150 ° C. or higher to obtain a three-dimensionally crosslinked phenol resin. However, the optimum conditions such as the heating temperature and the heating time are the phenol resin precursor to be used. Therefore, it is only necessary to select conditions suitable for each.

また、十分に熱硬化していなくても、常温で1000N/粒以上、900℃で100N/粒以上の圧潰強度が発現していれば、それをもって焼結鉱の成品としてもよい。   Moreover, even if it is not sufficiently heat-cured, if a crushing strength of 1000 N / grain or more at normal temperature and 100 N / grain or more at 900 ° C. is developed, it may be a sintered ore product.

水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)でも、900℃まで加熱されても揮発しない30質量%以上の無機成分が残ることにより、常温で1000N/粒以上、900℃でも100N/粒以上の圧潰強度を保持することができる。さらに好ましくは、水ガラスについて、CaO成分が30質量%以上、SiO2成分が50質量%以上で、その他は、MgO、Al2O3、B2O3が好ましく、Na2OやK2O、Cr2O3、PbO2、Li2Oは5%以下であることである。水溶性フェノール樹脂と同様に、外掛けで2〜12質量部が好適な添加量である。2質量部未満では造粒物を形成し難く、12質量部を超えると熱分解後の造粒物の強度の低下が著しく、好ましくない。水溶性フェノール樹脂と異なる点は、高炉の炉下部反応にとって重要な焼結鉱の高温還元性を向上させ、高炉の燃料比を低減し、出銑比を大幅に向上させることが期待される多量の炭素が含まれていないことである。 Water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (same Si 3 N 4 ), polysiloxane (same SiO 2 ), colloidal silica (same SiO 2 ), 30 mass that does not volatilize when heated to 900 ° C % Of inorganic components remain, so that a crushing strength of 1000 N / grain or more at room temperature and 100 N / grain or more at 900 ° C. can be maintained. More preferably, for water glass, the CaO component is 30% by mass or more, the SiO 2 component is 50% by mass or more, and the other is preferably MgO, Al 2 O 3 , B 2 O 3 , Na 2 O or K 2 O , Cr 2 O 3 , PbO 2 and Li 2 O are 5% or less. Similar to the water-soluble phenolic resin, 2 to 12 parts by mass is a suitable addition amount. If it is less than 2 parts by mass, it is difficult to form a granulated product, and if it exceeds 12 parts by mass, the strength of the granulated product after thermal decomposition is significantly reduced, which is not preferable. The difference from water-soluble phenolic resin is that it is expected to improve the high temperature reducibility of sintered ore, which is important for blast furnace lower reaction, to reduce the fuel ratio of blast furnace, and to greatly improve the output ratio. The carbon is not included.

上記炭素源を形成させるための水溶性フェノール樹脂の添加効果は、該水溶性フェノール樹脂を添加後の鉄原料との混合物の粘度が1.5mPa・s以上になると生じ始めるが、5,000mPa・sを超えると塊状造粒物が粗密になるなどの悪影響が顕著になる。より好ましくは5mPa・s以上1,000mPa・s以下の範囲で造粒効率が高い。したがって、本発明では、水溶性フェノール添加の混合物の粘度は1.5〜5,000mPa・sに制御するのが好ましい。また、水溶液中のフェノール樹脂は低分子量の方がより効果が大きくなり、分子量30万以下が好ましい。   The addition effect of the water-soluble phenol resin for forming the carbon source starts to occur when the viscosity of the mixture with the iron raw material after the addition of the water-soluble phenol resin is 1.5 mPa · s or more, but is 5,000 mPa · s. If it exceeds s, adverse effects such as the coarse granulated material becoming dense will become remarkable. More preferably, the granulation efficiency is high in the range of 5 mPa · s to 1,000 mPa · s. Therefore, in this invention, it is preferable to control the viscosity of the mixture with water-soluble phenol addition to 1.5 to 5,000 mPa · s. In addition, the phenol resin in the aqueous solution is more effective when the molecular weight is low, and the molecular weight is preferably 300,000 or less.

本発明で、鉄原料の質量を100とした場合、水溶性フェノール樹脂や水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を外数で2質量部以上の割合になるように配合すると好ましい。これは添加割合が2質量部以上になるとマトリックスである鉄原料の粒子同士を結合する効果が顕著に出始めるからである。本発明では、水溶性フェノール樹脂や水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)の上限割合として30質量部を超えるとそれらの結合剤同士の結合が大きくなり、常温〜高温強度が頭打ちになるため、好適ではない。また経済性の点からもその割合の上限値を30質量部とするのが好ましい。 In the present invention, when the mass of the iron raw material is 100, water-soluble phenol resin, water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (Si 3 N 4 ), polysiloxane (SiO 2 ), colloidal It is preferable to mix silica (the same SiO 2 ) so that the ratio of the external number is 2 parts by mass or more. This is because when the addition ratio is 2 parts by mass or more, the effect of binding the particles of the iron raw material, which is the matrix, starts to appear significantly. In the present invention, the upper limit ratio of water-soluble phenol resin, water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (same Si 3 N 4 ), polysiloxane (same SiO 2 ), colloidal silica (same SiO 2 ) If the amount exceeds 30 parts by mass, the bonding between these binders increases, and the room temperature to high temperature strength reaches its peak, which is not suitable. From the economical point of view, the upper limit of the ratio is preferably 30 parts by mass.

本発明で、フェノール樹脂の残炭率を30質量%以上としたのは、高温強度の発現と鉄原料の還元反応の促進作用が30質量%以上で顕著になるからである。   The reason why the residual carbon ratio of the phenol resin is set to 30% by mass or more in the present invention is that the expression of high-temperature strength and the promoting action of the reduction reaction of the iron raw material become remarkable at 30% by mass or more.

まず、粒径5mm未満の返し鉱(焼結鉱粉)を20質量%含む鉄原料を篩い分け法でφ5〜10mmの粒度に調整した。表1に示すように、水溶性フェノール樹脂の水溶液、水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を右端欄に記載の水分量の水を添加して希釈した後、鉄原料に少しずつ噴霧しながら添加して混合した。 First, an iron raw material containing 20% by mass of reverse ore (sintered ore powder) having a particle size of less than 5 mm was adjusted to a particle size of φ5 to 10 mm by a sieving method. As shown in Table 1, aqueous solution of water-soluble phenol resin, water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (same Si 3 N 4 ), polysiloxane (same SiO 2 ), colloidal silica (similar SiO 2 ) Was diluted by adding water having the amount of water described in the rightmost column, and then added and mixed while gradually spraying the iron raw material.

これを転動造粒機(ドラムミキサー、φ750×L1,200mm、回転数40rpm)を用いて常温下で造粒し、得られた造粒物を恒温恒湿機を用いて200℃で20分加熱して水溶性フェノール樹脂を熱硬化させ、水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を添加した造粒物を恒温恒湿機を用いて120℃で60分加熱・乾燥し、解砕・分級によって、φ5.5〜25mmの造粒物を製造した。 This was granulated at room temperature using a rolling granulator (drum mixer, φ750 × L1,200 mm, rotation speed 40 rpm), and the resulting granulated product was heated at 200 ° C. for 20 minutes using a constant temperature and humidity machine. Heat to cure the water-soluble phenolic resin, water glass (CaO-SiO 2 after pyrolysis, etc.), polyimide (Si 3 N 4 ), polysiloxane (SiO 2 ), colloidal silica (SiO 2 ) The added granulated product was heated and dried at 120 ° C. for 60 minutes using a thermo-hygrostat, and a granulated product having a diameter of 5.5 to 25 mm was produced by crushing and classification.

[発明例1、2]
水溶性フェノール樹脂として、カナエ化学工業(株)製「ヴィナールKC−1300」(商品名,不揮発分70質量%、粘度120mPa・s at 25℃)と、カナエ化学工業(株)製「ヴィナールKC−1408A」(商品名,不揮発分55.1質量%、粘度33mPa・s at 25℃)を使用した。KC−1300とKC−1408Aの残炭率はそれぞれ50質量%、35質量%である。鉄原料の塊成化では、酸化鉄原料と該水溶性フェノール樹脂を混合、造粒した。
[Invention Examples 1 and 2]
As a water-soluble phenol resin, “Vinal KC-1300” (trade name, non-volatile content: 70 mass%, viscosity: 120 mPa · s at 25 ° C.) manufactured by Kanae Chemical Industry Co., Ltd. 1408A "(trade name, non-volatile content 55.1% by mass, viscosity 33 mPa · s at 25 ° C). The residual carbon ratios of KC-1300 and KC-1408A are 50% by mass and 35% by mass, respectively. In the agglomeration of the iron raw material, the iron oxide raw material and the water-soluble phenol resin were mixed and granulated.

[発明例3、4、5、6]
水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を添加して、混合後、造粒した。それぞれの大気中900℃での熱分解後の残留は60、40、50、30質量%である。
[Invention Examples 3, 4, 5, 6]
Water glass (CaO—SiO 2 after pyrolysis, etc.), polyimide (the same Si 3 N 4 ), polysiloxane (the same SiO 2 ) and colloidal silica (the same SiO 2 ) were added, mixed and granulated. Residues after pyrolysis at 900 ° C. in each atmosphere are 60, 40, 50, and 30% by mass.

[発明例7、8、9、10]
水溶性フェノール樹脂として、前記カナエ化学工業(株)製「ヴィナールKC−1300」、「ヴィナールKC−1408A」と水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を同時添加して、混合後、造粒した。
鉄原料の塊成化では、酸化鉄原料とフェノール樹脂等の混合物に対し、表1右端欄に記載の水分量の水を添加したものを、回転式造粒機を用いて常温下で造粒した。得られた造粒物を恒温恒湿機を用いて200℃で20分間加熱してフェノール樹脂は熱硬化させ、他の結合剤は乾燥させ、焼結前の造粒物を製造した。
[Invention Examples 7, 8, 9, 10]
As the water-soluble phenol resin, “Vinal KC-1300”, “Vinal KC-1408A” manufactured by Kanae Chemical Industries, Ltd., water glass (CaO—SiO 2 after pyrolysis, etc.), polyimide (the same Si 3 N 4 ), Polysiloxane (the same SiO 2 ) and colloidal silica (the same SiO 2 ) were added simultaneously, mixed and granulated.
In the agglomeration of iron raw material, a mixture of iron oxide raw material and phenol resin, etc., with the water content shown in the right column of Table 1 added, is granulated at room temperature using a rotary granulator. did. The obtained granulated material was heated at 200 ° C. for 20 minutes using a constant temperature and humidity machine to thermally cure the phenol resin, and the other binders were dried to produce a granulated product before sintering.

[比較例11、12]
結合剤としてフェノール樹脂の代わりに、アクリル系エマルジョン(東亜合成(株)製「AS−1800」(商品名、固形分濃度45質量%)、アクリル系エマルジョン東亜合成(株)製「AS−2000」(商品名、固形分濃度35質量%)を用い、鉄原料にこの結合剤を混合したものを、発明例1に準じて転動式造粒機を用いて常温下で造粒し、120℃で60分加熱して焼結前の造粒物を製造した。使用したアクリル系エマルジョンの樹脂成分の窒素雰囲気下500℃での残炭率は1質量%以下である。
[Comparative Examples 11 and 12]
Instead of phenol resin as a binder, acrylic emulsion ("AS-1800" manufactured by Toa Gosei Co., Ltd. (trade name, solid concentration 45% by mass), "AS-2000" made by acrylic emulsion Toa Gosei Co., Ltd.) (Trade name, solid content concentration: 35% by mass), and the iron raw material mixed with this binder is granulated at room temperature using a rolling granulator according to Invention Example 1, at 120 ° C. The granulated product before sintering was manufactured by heating at 60 ° C. The residual carbon ratio at 500 ° C. in a nitrogen atmosphere of the resin component of the acrylic emulsion used was 1% by mass or less.

[比較例13]
本発明の代わりの結合剤として、高炉セメント(ポルトランドセメント)を用いた。鉄原料と高炉セメントを混合し、セメントの1.2倍の質量の水を加えた後、転動式造粒機を用いて常温下で造粒し、この造粒物を常温で5日間養生した。
[Comparative Example 13]
Blast furnace cement (Portland cement) was used as a binder instead of the present invention. After mixing iron raw material and blast furnace cement, adding 1.2 times as much water as cement, granulate it at room temperature using a rolling granulator, and cure this granulated material at room temperature for 5 days. did.

Figure 2011047006
Figure 2011047006

以上のようにして得られた発明例1〜10及び比較例11〜13の造粒物について、粒径が20〜21mmのものを対象に室温(22℃)、500℃、900℃の3水準の温度で、圧潰強度を測定した。   About the granulated material of Invention Examples 1-10 and Comparative Examples 11-13 obtained as described above, three levels of room temperature (22 ° C.), 500 ° C., and 900 ° C. for particles having a particle size of 20 to 21 mm. The crushing strength was measured at a temperature of.

圧潰強度の測定においては、大気雰囲気下で各測定温度に2時間以上保持後、島津製作所(株)製オートグラフ(最大荷重500kgf(4900N))圧縮試験機による圧縮試験で造粒物の1粒が圧潰する荷重を測定した。同一の条件で各8粒の測定を行い、各サンプルの各温度水準で、それらの平均値を圧潰強度とした。   In crushing strength measurement, after holding at each measurement temperature for 2 hours or more in an air atmosphere, one granulated product in a compression test using an autograph (maximum load 500 kgf (4900N)) made by Shimadzu Corporation. The load which crushes was measured. Eight grains were measured under the same conditions, and the average value thereof was taken as the crushing strength at each temperature level of each sample.

表2に、発明例及び比較例の塊成鉱の組成及び各温度での圧潰強度を示す。これによれば、本発明例の塊成鉱は、常温で1000N/粒以上、常温以外の500℃、900℃の各温度でも100N/粒以上の圧潰強度を有している。これに対して、結合剤としてアクリルエマルジョンを使用した比較例11や12では、常温では圧潰強度1000N/粒を超えるが、500℃以上では100N/粒を下回り、比較例12の900℃では形状を保てずに粉化してしまった。また、結合剤として高炉セメントを使用した比較例13では、900℃以上で圧潰強度は100N/粒を下回っている。500℃以上の高温領域では、比較例の圧潰強度は発明例に比べ著しく劣っていることが判る。   Table 2 shows the compositions of the agglomerates of the invention examples and comparative examples and the crushing strength at each temperature. According to this, the agglomerate of the present invention has a crushing strength of 1000 N / grain or more at room temperature, and 100 N / grain or more at each temperature of 500 ° C. and 900 ° C. other than room temperature. On the other hand, in Comparative Examples 11 and 12 using an acrylic emulsion as a binder, the crushing strength exceeds 1000 N / grain at room temperature, but is lower than 100 N / grain at 500 ° C. or higher, and the shape at 900 ° C. in Comparative Example 12 has a shape. It was pulverized without keeping. Moreover, in the comparative example 13 which uses blast furnace cement as a binder, crushing strength is less than 100 N / grain at 900 degreeC or more. It can be seen that in the high temperature region of 500 ° C. or higher, the crushing strength of the comparative example is significantly inferior to that of the inventive example.

Figure 2011047006
Figure 2011047006

本発明により、水溶性フェノール樹脂では炭素源を増大させることにより、焼結鉱中に多量の炭素源を残存させ、冷間強度や還元粉化性、被還元性等の焼結鉱品質を維持しつつ、高炉下部反応にとって最も重要な高温還元・軟化溶融性状の特性を大幅に向上できた。
特に、本発明例1、2、7、8、9、10の還元粉化性(RDI)、被還元性(JIS−RI)は、いずれの焼結後の造粒物でも比較例の3例と比べて大きな差は認められなかった。従って、高炉炉下部の通気抵抗を改善するので、出銑比を大幅に向上できることになる。
According to the present invention, by increasing the carbon source in the water-soluble phenolic resin, a large amount of carbon source remains in the sintered ore, and the sintered ore quality such as cold strength, reduced powdering property, reducibility, etc. is maintained. However, the characteristics of the high-temperature reduction / softening and melting properties, which are the most important for the blast furnace lower reaction, were greatly improved.
In particular, the reduced powdering property (RDI) and the reducible property (JIS-RI) of Invention Examples 1, 2, 7, 8, 9, and 10 are 3 examples of comparative examples for any granulated product after sintering. There was no significant difference. Therefore, since the ventilation resistance at the lower part of the blast furnace is improved, the output ratio can be greatly improved.

また、水ガラス(熱分解後CaO-SiO2等)、ポリイミド(同Si3N4)、ポリシロキサン(同SiO2)、コロイダルシリカ(同SiO2)を添加した場合には、焼結鉱中に多量の無機成分を残存させ、冷間強度や高炉内の通気抵抗の安定化にとって最も重要な高温強度特性を大幅に向上できる。よって、本発明で得られる含炭焼結鉱の高炉の燃料比低減と出銑比向上に寄与する効果は多大である。 In addition, when water glass (CaO-SiO 2 etc. after pyrolysis), polyimide (Si 3 N 4 ), polysiloxane (SiO 2 ), colloidal silica (SiO 2 ) is added, In addition, a large amount of inorganic components can be allowed to remain, and the high-temperature strength characteristics that are most important for stabilizing the cold strength and the ventilation resistance in the blast furnace can be greatly improved. Therefore, the effect which contributes to the fuel ratio reduction of the blast furnace of the carbon-containing sintered ore obtained by this invention and an improvement in a tapping ratio is great.

1 鉄原料及び粉状コークス、返し鉱
2 バインダー(水溶性フェノール樹脂、水ガラス、ポリイミド、ポリシロキサン、コロイダルシリカの少なくとも1種)
1 Iron raw material and powdered coke, reverse ore 2 Binder (at least one of water-soluble phenol resin, water glass, polyimide, polysiloxane, colloidal silica)

Claims (7)

焼結原料に、該焼結原料を塊状にして強度を持たせるためのバインダーを添加して造粒または成形し、焼成する高炉用原料の焼結鉱の製造方法であって、
前記バインダーとして、水溶性フェノール樹脂、水ガラス、ポリイミド、ポリシロキサン、コロイダルシリカの少なくとも1種を、前記焼結原料100質量部に対し、2〜12質量部添加して、前記焼結原料と混合・攪拌した後、造粒または成形することを特徴とする高炉用原料の焼結鉱の製造方法。
A method for producing a sintered ore of a raw material for a blast furnace, which is granulated or molded by adding a binder for making the sintered raw material agglomerated and giving strength to the sintered raw material,
As the binder, at least one of water-soluble phenol resin, water glass, polyimide, polysiloxane, and colloidal silica is added to 2 to 12 parts by mass with respect to 100 parts by mass of the sintering material, and mixed with the sintering material. A method for producing a sintered ore of a raw material for a blast furnace, characterized by granulating or forming after stirring.
前記水溶性フェノール樹脂の残炭率が30%以上であることを特徴とする請求項1に記載の高炉用原料の焼結鉱の製造方法。   The method for producing a sintered ore of a raw material for a blast furnace according to claim 1, wherein the residual carbon ratio of the water-soluble phenol resin is 30% or more. 前記水ガラスの熱分解後の組成が少なくともCaO-SiO2であることを特徴とする請求項1に記載の高炉用原料の焼結鉱の製造方法。 The method of producing sintered ore of the blast furnace raw material according to claim 1, wherein the composition after the thermal decomposition of the water glass is at least CaO-SiO 2. 前記ポリイミドの熱分解後の組成がSi3N4であることを特徴とする請求項1に記載の高炉用原料の焼結鉱の製造方法。 2. The method for producing a sintered ore of a raw material for a blast furnace according to claim 1, wherein the composition of the polyimide after pyrolysis is Si 3 N 4 . 前記ポリシロキサンの熱分解後の組成がSiO2であることを特徴とする請求項1に記載の高炉用原料の焼結鉱の製造方法。 The method of producing sintered ore of the blast furnace raw material according to claim 1, wherein the composition after the thermal decomposition of the polysiloxane is SiO 2. 前記コロイダルシリカの熱分解後の組成がSiO2であることを特徴とする請求項1に記載の高炉用原料の焼結鉱の製造方法。 2. The method for producing a sintered ore of a raw material for a blast furnace according to claim 1, wherein the composition after pyrolysis of the colloidal silica is SiO2. 前記造粒して形成した造粒物が、転動成形物、成形物、成形物の破砕体のいずれかであることを特徴とする請求項1〜6のいずれか1項に記載の高炉用原料の焼結鉱の製造方法。   The granulated product formed by the granulation is any one of a rolling molded product, a molded product, and a crushed product of the molded product, for a blast furnace according to any one of claims 1 to 6. Manufacturing method of raw material sintered ore.
JP2009196882A 2009-08-27 2009-08-27 Method for producing sintered ore as raw material for blast furnace Active JP5515518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196882A JP5515518B2 (en) 2009-08-27 2009-08-27 Method for producing sintered ore as raw material for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196882A JP5515518B2 (en) 2009-08-27 2009-08-27 Method for producing sintered ore as raw material for blast furnace

Publications (2)

Publication Number Publication Date
JP2011047006A true JP2011047006A (en) 2011-03-10
JP5515518B2 JP5515518B2 (en) 2014-06-11

Family

ID=43833627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196882A Active JP5515518B2 (en) 2009-08-27 2009-08-27 Method for producing sintered ore as raw material for blast furnace

Country Status (1)

Country Link
JP (1) JP5515518B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300175B1 (en) 2011-11-08 2013-08-26 주식회사 포스코 Manufacturing method of mixing raw material for sintering
KR101908482B1 (en) 2016-11-28 2018-12-10 주식회사 포스코 Method of sintered ore
KR20210017811A (en) * 2019-08-09 2021-02-17 주식회사 포스코 Method of manufacturing sintered ore
CN114574694A (en) * 2022-01-19 2022-06-03 中南大学 New method for sintering fine iron powder pellets
CN114574695A (en) * 2022-01-19 2022-06-03 中南大学 Sintering method of ferromanganese ore pellets
EP4230711A3 (en) * 2016-08-15 2023-10-04 Binding Solutions Limited Briquettes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500984A (en) * 1988-07-26 1992-02-20 コモンウェルス・サイエンテイフィック・アンド・インダストリアル・リサーチ・オーガナイゼイション Sintered high titanium-containing agglomerates
JPH05509358A (en) * 1990-04-26 1993-12-22 アライド・コロイズ・リミテッド Granulation method
JP2002317228A (en) * 2001-04-18 2002-10-31 Nippon Steel Corp Method for treating iron ore powder hard to be granulated
JP2003239024A (en) * 2002-02-14 2003-08-27 Nippon Steel Corp Pelletizing method of iron-making raw material
JP2003526008A (en) * 2000-03-08 2003-09-02 ハーキュリーズ・インコーポレイテッド Sintering method and sintered bed composition
JP2005154823A (en) * 2003-11-25 2005-06-16 Nippon Steel Corp Granulation treatment method for sintering raw material in iron making
JP2007191748A (en) * 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2009030113A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method for producing ore raw material for blast furnace
WO2009020890A1 (en) * 2007-08-07 2009-02-12 Dow Corning Corporation Method of producing metals and alloys by carbothermal reduction of metal oxides

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500984A (en) * 1988-07-26 1992-02-20 コモンウェルス・サイエンテイフィック・アンド・インダストリアル・リサーチ・オーガナイゼイション Sintered high titanium-containing agglomerates
JPH05509358A (en) * 1990-04-26 1993-12-22 アライド・コロイズ・リミテッド Granulation method
JP2003526008A (en) * 2000-03-08 2003-09-02 ハーキュリーズ・インコーポレイテッド Sintering method and sintered bed composition
JP2002317228A (en) * 2001-04-18 2002-10-31 Nippon Steel Corp Method for treating iron ore powder hard to be granulated
JP2003239024A (en) * 2002-02-14 2003-08-27 Nippon Steel Corp Pelletizing method of iron-making raw material
JP2005154823A (en) * 2003-11-25 2005-06-16 Nippon Steel Corp Granulation treatment method for sintering raw material in iron making
JP2007191748A (en) * 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2009030113A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method for producing ore raw material for blast furnace
WO2009020890A1 (en) * 2007-08-07 2009-02-12 Dow Corning Corporation Method of producing metals and alloys by carbothermal reduction of metal oxides

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300175B1 (en) 2011-11-08 2013-08-26 주식회사 포스코 Manufacturing method of mixing raw material for sintering
EP4230711A3 (en) * 2016-08-15 2023-10-04 Binding Solutions Limited Briquettes
KR101908482B1 (en) 2016-11-28 2018-12-10 주식회사 포스코 Method of sintered ore
KR20210017811A (en) * 2019-08-09 2021-02-17 주식회사 포스코 Method of manufacturing sintered ore
KR102251037B1 (en) 2019-08-09 2021-05-12 주식회사 포스코 Method of manufacturing sintered ore
CN114574694A (en) * 2022-01-19 2022-06-03 中南大学 New method for sintering fine iron powder pellets
CN114574695A (en) * 2022-01-19 2022-06-03 中南大学 Sintering method of ferromanganese ore pellets
CN114574694B (en) * 2022-01-19 2023-08-22 中南大学 Novel method for sintering iron concentrate powder balls
CN114574695B (en) * 2022-01-19 2023-08-22 中南大学 Sintering method of iron-manganese ore pellets

Also Published As

Publication number Publication date
JP5515518B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CA2736535C (en) Process for producing agglomerates of finely particulate iron carriers
JP5515518B2 (en) Method for producing sintered ore as raw material for blast furnace
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
TWI776268B (en) Iron ore powder agglomerate production method and agglomerate product
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
KR20150071388A (en) Method for manufacturing sintered iron ore
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2009030113A (en) Method for producing ore raw material for blast furnace
JP2009030112A (en) Method for producing ore raw material for blast furnace
JP2009030115A (en) Method for producing ore raw material for blast furnace
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP2007270260A (en) Unbaked agglomerated ore for iron manufacture
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2009030116A (en) Method for producing ore raw material for blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6992644B2 (en) Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material
JP2002241853A (en) Non-burning agglomerate for blast furnace
JP7188033B2 (en) Method for producing coal-bearing agglomerate ore
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2007270259A (en) Unbaked agglomerated ore for iron manufacture
KR101676227B1 (en) The method for preparing molten iron by recycling by-product emitted from coal-based iron making process
JP2007211271A (en) Method and equipment for manufacturing carbonaceous-material-containing agglomerate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350