JP2011046976A - Lead alloy for lead storage battery and lead storage battery - Google Patents

Lead alloy for lead storage battery and lead storage battery Download PDF

Info

Publication number
JP2011046976A
JP2011046976A JP2009194009A JP2009194009A JP2011046976A JP 2011046976 A JP2011046976 A JP 2011046976A JP 2009194009 A JP2009194009 A JP 2009194009A JP 2009194009 A JP2009194009 A JP 2009194009A JP 2011046976 A JP2011046976 A JP 2011046976A
Authority
JP
Japan
Prior art keywords
lead
mass
alloy
lead alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194009A
Other languages
Japanese (ja)
Other versions
JP5428645B2 (en
Inventor
Kazunari Ando
和成 安藤
Katsuhiko Tokuya
勝彦 徳屋
Akane Uchida
あかね 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009194009A priority Critical patent/JP5428645B2/en
Publication of JP2011046976A publication Critical patent/JP2011046976A/en
Application granted granted Critical
Publication of JP5428645B2 publication Critical patent/JP5428645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Sb-containing lead alloy for a lead storage battery, the alloy undergoing no deterioration in mechanical strength, corrosion resistance and castability even when an As content is reduced in consideration of the environment. <P>SOLUTION: In Pb-Sb-As alloy in which the content of As in an Sb-containing lead alloy for a lead storage battery is controlled to ≤0.09%, and the content of Sb is controlled to 1.7 to 3.5%, the mechanical strength, corrosion resistance and castability of the lead alloy can be remarkably improved by controlling the content of Ag to 0.0015 to 0.015%, controlling the content of Sn to 0.0015 to 0.015%, and controlling the mass ratio of Sb/As to ≤70. Further, by incorporating 0.0015 to 0.015% Cu therein, the various properties of the above lead alloy can be improved more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池用の鉛合金と鉛蓄電池に関するものである。   The present invention relates to a lead alloy for a lead storage battery and a lead storage battery.

従来、鉛蓄電池の格子に用いる鉛合金や、端子ブッシング、接続体、ストラップあるいは極柱等の鉛部品用の鉛合金には、それぞれ使用される部位の特性に応じた硬さや耐食性が必要であり、このような鉛合金として、1.5質量%〜6.0質量%程度のアンチモン(Sb)、0.2質量%〜0.5質量%程度のヒ素(As)を添加した、Pb−Sb−As合金が一般的に用いられている。   Conventionally, lead alloys used for grids of lead-acid batteries and lead alloys for lead parts such as terminal bushings, connectors, straps or pole poles must have hardness and corrosion resistance according to the characteristics of the parts used. As such a lead alloy, Pb—Sb to which 1.5% by mass to 6.0% by mass of antimony (Sb) and 0.2% by mass to 0.5% by mass of arsenic (As) are added. -As alloys are generally used.

鉛蓄電池に用いる、Pb−Sb−As合金に関して、これまで種々の技術開発が行なわれてきたが、これらの多くは、Pb−Sb−As合金の耐食性を向上するための、Sb、As以外の他の合金成分およびその含有量の検討や、電解液中の水分の減液を抑制することを目的とした、Sb含有量の削減に関するものであった。   Various technologies have been developed so far for Pb—Sb—As alloys used in lead-acid batteries, but many of these are other than Sb and As for improving the corrosion resistance of Pb—Sb—As alloys. The present invention relates to the study of other alloy components and their contents, and the reduction of the Sb content for the purpose of suppressing the reduction of water in the electrolyte.

例えば、特許文献1には、Sb含有量が1.6質量%〜3.5質量%、As含有量が0.2質量%未満、Sn含有量が0.06質量%〜1質量%、Cu含有量が0.002質量%〜0.01質量%、Se含有量が0.006質量%〜0.1質量%、残部を鉛から成る蓄電池用の鉛合金が提案されている。特許文献1の鉛合金では、Sb含有量を低減しても、鉛合金の結晶粒が微細な状態となり、良好な耐食性が得られること、また、溶湯表面上での酸化皮膜の発生量が抑制でき、材料ロスが削減できることが示されている。   For example, in Patent Document 1, the Sb content is 1.6 mass% to 3.5 mass%, the As content is less than 0.2 mass%, the Sn content is 0.06 mass% to 1 mass%, Cu There has been proposed a lead alloy for a storage battery having a content of 0.002% by mass to 0.01% by mass, an Se content of 0.006% by mass to 0.1% by mass, and the balance being lead. In the lead alloy of Patent Document 1, even if the Sb content is reduced, the crystal grains of the lead alloy become fine and good corrosion resistance can be obtained, and the amount of oxide film generated on the molten metal surface is suppressed. It has been shown that material loss can be reduced.

特許文献1に示された鉛合金では、As含有量が0.2質量%未満に制限されているものの、Asおよびその無機化合物は人体や他の生物に対して強い毒性を有し、環境衛生上好ましくない物質であり、As含有量をさらに制限することが環境負荷を低減する上で好ましい。特に、このようなAsを含む鉛合金を用いて蓄電池を製造したり、あるいはこのような蓄電池から鉛を回収する際、鉛合金を溶融する工程は不可避的に存在し、鉛合金の溶湯からAsが昇華したり、あるいは、Asを含むフュームとして空気中に放散する場合があった。   In the lead alloy disclosed in Patent Document 1, As content is limited to less than 0.2% by mass, As and its inorganic compounds are highly toxic to the human body and other organisms, and environmental health It is an unpreferable substance, and it is preferable to further limit the As content in order to reduce the environmental load. In particular, when a storage battery is manufactured using such a lead alloy containing As or when lead is recovered from such a storage battery, there is an unavoidable process of melting the lead alloy. May sublimate or may diffuse into the air as a fume containing As.

そのため、鉛合金中のAsによる環境負荷を低減することを目的として、鉛蓄電池用のPb−Sb系合金中のAs含有量をさらに削減するか、あるいはAsを含まない鉛合金の検討が行なわれてきた。しかしながら、Pb−Sb−As合金中のAs含有量を、ただ単に削減しただけでは、鉛蓄電池用の鉛合金に必要な硬度が得られない。   Therefore, for the purpose of reducing the environmental load due to As in the lead alloy, the As content in the Pb—Sb alloy for the lead storage battery is further reduced, or a lead alloy not containing As has been studied. I came. However, merely reducing the As content in the Pb—Sb—As alloy does not provide the hardness required for the lead alloy for lead-acid batteries.

このような状況に鑑み、特許文献2では、As含有量が0.095質量%以下であり、Sbを含有し、Snが0.001質量%〜0.02質量%、Agが0.001質量〜0.02質量%、残部を鉛から成る鉛合金が提案されている。このような組成によれば、鉛蓄電池に用いる、Pb−Sb系の鉛合金中の、As含有量を低減しても、鉛合金の硬さを低下させることのないことが示されている。   In view of such a situation, in Patent Document 2, the As content is 0.095 mass% or less, Sb is contained, Sn is 0.001 mass% to 0.02 mass%, and Ag is 0.001 mass%. A lead alloy composed of ~ 0.02 mass% and the balance being lead has been proposed. According to such a composition, it is shown that even if the As content in the Pb—Sb-based lead alloy used in the lead storage battery is reduced, the hardness of the lead alloy is not lowered.

また、特許文献3では、As含有量が0.1質量%以下、Sb含有量が0.7質量%〜3.0質量%、Sn含有量が0.001質量%〜0.02質量%、Zn含有量が0.001質量%〜0.02質量%、残部を鉛から成る、Pb−Sb系の鉛蓄電池用鉛合金が提案されている。このような組成によれば、As含有量を0.1質量%以下に制限した場合においても、鉛合金中の、Sb、SnおよびZnの含有量を上記の値に規定することによって、鉛蓄電池用鉛合金として必要な硬度が得られることが示されている。   Moreover, in patent document 3, As content is 0.1 mass% or less, Sb content is 0.7 mass%-3.0 mass%, Sn content is 0.001 mass%-0.02 mass%, Pb-Sb lead alloys for lead-acid batteries that have a Zn content of 0.001 mass% to 0.02 mass% and the balance consisting of lead have been proposed. According to such a composition, even when the As content is limited to 0.1% by mass or less, by specifying the contents of Sb, Sn and Zn in the lead alloy to the above values, the lead storage battery It has been shown that the required hardness can be obtained as a lead alloy.

特開平4−2055号公報JP-A-4-2055 特開2008−266739号公報JP 2008-266739 A 特開2009−68094号公報JP 2009-68094 A

前記したような、特許文献2および特許文献3によれば、Pb−Sb系合金中のAs含有量を削減しつつ、合金の硬度低下を抑制できることが示されているが、依然として、従来から使用されてきた、0.2質量%〜0.5質量%のAsを含むPb−Sb−As合金に比較して、機械的強度に劣ったものであった。また、鉛合金の耐食性も未だ十分ではなく、また、鋳造性にも優れているとは言えなかった。   According to Patent Document 2 and Patent Document 3 as described above, it has been shown that the decrease in the hardness of the alloy can be suppressed while reducing the As content in the Pb—Sb-based alloy. Compared with the Pb—Sb—As alloy containing 0.2% by mass to 0.5% by mass of As, the mechanical strength was inferior. Moreover, the corrosion resistance of the lead alloy is not yet sufficient, and it cannot be said that the castability is excellent.

本発明は、Sbを含むPb−Sb系の鉛蓄電池用鉛合金において、生体に対して強い毒性を有するAsを削減することによって、環境負荷を低減するとともに、機械的強度および耐食性に優れた鉛合金と、この鉛合金を用いることにより、耐久性に優れた鉛蓄電池を提供することを課題とする。   In the lead alloy for Pb-Sb lead storage battery containing Sb, the present invention reduces the environmental load by reducing As which has a strong toxicity to the living body, and has excellent mechanical strength and corrosion resistance. It is an object to provide a lead storage battery having excellent durability by using an alloy and this lead alloy.

また、同時に鋳造性に優れ、鉛蓄電池生産時の、生産性に有利な鉛合金を提供することを課題とする。   It is another object of the present invention to provide a lead alloy that is excellent in castability and advantageous in productivity at the time of producing a lead storage battery.

前記した課題を解決するために、本発明の請求項1に係る発明は、Sb含有量が1.7質量%〜3.5質量%である鉛蓄電池用の鉛合金であって、前記鉛合金のAs含有量は0.09質量%以下であり、前記鉛合金は、0.0015質量%〜0.15質量%のAgおよび0.0015質量%〜0.015質量%のSnを含み、かつ、前記鉛合金中に含まれるAsの質量(MAs)に対する、前記鉛合金中に含まれるSbの質量(MSb)の質量比率(MSb/MAs)を70.0以下としたことを特徴とする鉛蓄電池用の鉛合金を示すものである。   In order to solve the above-described problems, the invention according to claim 1 of the present invention is a lead alloy for a lead storage battery having an Sb content of 1.7 mass% to 3.5 mass%, wherein the lead alloy As content of 0.09 mass% or less, the lead alloy contains 0.0015 mass% to 0.15 mass% Ag and 0.0015 mass% to 0.015 mass% Sn, and The lead is characterized in that the mass ratio (MSb / MAs) of the mass (MSb) of Sb contained in the lead alloy to the mass (MAs) of As contained in the lead alloy is 70.0 or less. The lead alloy for storage batteries is shown.

また、本発明の請求項2に係る発明は、請求項1の鉛合金において、さらに0.0015質量%〜0.015質量%のCuを含むことを特徴とする鉛蓄電池用の鉛合金を示すものである。   The invention according to claim 2 of the present invention shows a lead alloy for a lead storage battery, characterized in that the lead alloy of claim 1 further contains 0.0015 mass% to 0.015 mass% of Cu. Is.

また、本発明の請求項3に係る発明は、請求項1〜2に記載の鉛蓄電池用の鉛合金を備えた鉛蓄電池を示す。なお、鉛合金の鉛蓄電池の使用部位としては、正極格子、負極格子、同極性の極板耳を集合溶接するストラップ、セル間接続部品、端子、および端子とセルとを接続する極柱に適用することができる。   Moreover, the invention which concerns on Claim 3 of this invention shows the lead acid battery provided with the lead alloy for lead acid batteries of Claims 1-2. In addition, as the use part of lead storage battery of lead alloy, it applies to the positive pole, the negative pole grid, the strap that collects and welds the same polarity electrode plate ear, the inter-cell connection parts, the terminal, and the pole column that connects the terminal and the cell. can do.

さらに、本発明の請求項4に係る発明は、請求項1〜2の鉛蓄電池用の鉛合金をバーニング溶接によって形成されたストラップに用いることを特徴とした鉛蓄電池を示すものである。鉛蓄電池に用いる部材、すなわち、正負の格子、セル間接続部品、端子および極柱といった部材は、溶融鉛を鋳造やその鋳造物を圧延することによって製造される。   Furthermore, the invention according to claim 4 of the present invention shows a lead storage battery characterized in that the lead alloy for a lead storage battery according to claims 1 to 2 is used for a strap formed by burning welding. Members used for lead-acid batteries, that is, members such as positive and negative grids, inter-cell connection components, terminals, and poles are manufactured by casting molten lead or rolling the cast product.

一方、ストラップ、特にバーニング方式により形成されるストラップは、足し鉛を高温の炎により熱するため、鉛合金中のAsが、前記した部材に比較して放散されやすい。したがって、製造時の環境負荷を考慮すれば、バーニング方式により形成するストラップに形成することが好ましい。   On the other hand, the strap, particularly the strap formed by the burning method, heats the added lead with a high-temperature flame, so As in the lead alloy is more easily diffused than the above-described members. Therefore, in consideration of the environmental load at the time of manufacture, it is preferable to form the strap formed by the burning method.

さらに、本発明の請求項5に係る発明は、請求項1〜2の鉛合金を互いにバーナー溶接によって溶接される極柱および端子部品のいずれか一方に用いた鉛蓄電池を示すものである。本構成によれば、端子溶接時に生じ、溶接後に端子表面に残存するAsを含む酸化皮膜の発生が抑制され、電池外部でのAsの露出量が抑制され、環境上好ましい。   Furthermore, the invention which concerns on Claim 5 of this invention shows the lead acid battery which used the lead alloy of Claims 1-2 for any one of the pole pole and terminal components which are welded by burner welding mutually. According to this configuration, the generation of an oxide film containing As that occurs at the time of terminal welding and remains on the terminal surface after welding is suppressed, and the exposure amount of As outside the battery is suppressed, which is preferable in terms of the environment.

前記した本発明の構成によれば、従来、鉛蓄電池に使用するPb−Sb系合金に対して機械的強度を向上させるために添加していた、Asの含有量を削減しているにもかかわらず、鉛蓄電池の実使用で十分な機械的強度、耐食性および鋳造性を確保することが可能となる。従って、Asの含有量を低減させることによって、環境負荷を低減でき、従来の0.2質量%〜0.5質量%程度のAsを含有するPb−Sb系合金より優れた機械的強度、耐食性および鋳造性を有した鉛蓄電池の鉛合金を適用できるという、顕著な効果が得られる。   According to the configuration of the present invention described above, although the content of As, which has been conventionally added to improve the mechanical strength with respect to the Pb—Sb alloy used in the lead storage battery, is reduced. Therefore, it is possible to ensure sufficient mechanical strength, corrosion resistance, and castability by actual use of the lead storage battery. Therefore, by reducing the content of As, the environmental load can be reduced, and mechanical strength and corrosion resistance superior to the conventional Pb-Sb alloy containing about 0.2% to 0.5% by weight of As. And the remarkable effect that the lead alloy of lead storage battery with castability can be applied is acquired.

また、本発明による鉛蓄電池用の鉛合金を用いることにより、耐久性に優れた鉛蓄電池を得ることができる。   Moreover, the lead acid battery excellent in durability can be obtained by using the lead alloy for lead acid batteries by this invention.

(第1の実施形態)
本発明の第1の実施形態による鉛蓄電池用の鉛合金は、1.7質量%〜3.5質量%のSbを含む鉛合金である。本発明の鉛蓄電池用の鉛合金(以下、本発明の鉛合金)に含まれるAs含有量は0.09%以下とする。また、本発明の鉛合金は、0.0015質量%〜0.015質量%のAgおよび0.0015質量%〜0.015質量%のSnを含み、さらに、本発明では、本発明の鉛合金に含有するAsの質量(MAs)に対する、本発明の鉛合金中に含有するSbの質量(MSb)の質量比率(MSb/MAs)を70.0の範囲に規定する。なお、本発明においては、Sb含有量の範囲が1.7質量%から3.5質量%、As含有量の範囲が0.09質量%以下であることを考慮すると、本発明が規定するところの質量比率(MSb/MAs)の下限値は、一義的に18.8となる。
(First embodiment)
The lead alloy for lead acid battery by the 1st Embodiment of this invention is a lead alloy containing 1.7 mass%-3.5 mass% Sb. The As content contained in the lead alloy for the lead storage battery of the present invention (hereinafter referred to as the lead alloy of the present invention) is 0.09% or less. The lead alloy of the present invention contains 0.0015 mass% to 0.015 mass% of Ag and 0.0015 mass% to 0.015 mass% of Sn. The mass ratio (MSb / MAs) of the mass (MSb) of Sb contained in the lead alloy of the present invention to the mass (MAs) of As contained in is defined in a range of 70.0. In the present invention, the present invention stipulates that the range of Sb content is 1.7 to 3.5% by mass and the range of As content is 0.09% by mass or less. The lower limit of the mass ratio (MSb / MAs) is uniquely 18.8.

本発明の発明者は、Pb−Sb合金へのAs添加による機械的強度向上のメカニズムを詳細に検討する過程で、Pb−Sb系合金に含まれるAsの質量(MAs)に対する、Sbの質量(MSb)の質量比率(MSb/MAs)が鉛合金の機械的強度に強く影響することを見出した。本発明では、当該質量比率(MSb/MAs)を70.0以下とすることにより、鉛蓄電池用のPb−Sb系鉛合金の強度を高めるものである。   The inventor of the present invention, in the process of examining in detail the mechanism of mechanical strength improvement by adding As to the Pb-Sb alloy, the mass of Sb relative to the mass of As (MAs) contained in the Pb-Sb alloy ( It was found that the mass ratio of MSb) (MSb / MAs) strongly affects the mechanical strength of the lead alloy. In this invention, the said mass ratio (MSb / MAs) shall be 70.0 or less, and the intensity | strength of the Pb-Sb system lead alloy for lead acid batteries is raised.

一方、Pb−Sb系の鉛合金の強度を高めるメカニズムとして、前記した検討において、本発明の発明者らは、以下のように考察したものである。   On the other hand, as a mechanism for increasing the strength of the Pb—Sb-based lead alloy, the inventors of the present invention have considered as follows in the above-described examination.

すなわち、溶融されたPb−Sb系合金が冷却されて凝固していく過程で、Pbおよび微量のSbを固溶したPbの結晶が成長するとともに、Pb結晶間でSbが結晶化する。Pb−Sb系合金の凝固が終了した時点では、Pb結晶とPb結晶の間の結晶粒界にSbが析出する。鉛合金中のSb含有量を少なくするにつれ、当然のことながら粒界析出物であるSb結晶は少なくなるため、Pb結晶成長は、粒界析出物であるSb結晶に妨げられることがなく、凝固後のPb結晶粒は粗大化するとともに、粒界の厚みが薄くなる。   That is, in the process where the melted Pb—Sb alloy is cooled and solidified, Pb crystals in which Pb and a small amount of Sb are dissolved are grown, and Sb is crystallized between the Pb crystals. When the solidification of the Pb-Sb alloy is completed, Sb is precipitated at the crystal grain boundary between the Pb crystal and the Pb crystal. As the Sb content in the lead alloy is reduced, the Sb crystals that are grain boundary precipitates are naturally reduced, so that the Pb crystal growth is not hindered by the Sb crystals that are grain boundary precipitates and is solidified. The subsequent Pb crystal grains are coarsened and the grain boundary thickness is reduced.

粒界の析出物であるSbは、Pb結晶粒間の結合力を高め、鉛合金強度を高めることから、ある程度の厚みで粒界の析出物であるSbを成長させることが重要であり、本発明はこのような観点から、Pb−Sb系の鉛合金中におけるSb含有量は1.7質量%以上とする。また、Sb含有量が3.5質量%を超える領域では、鉛合金の粒界腐食によって溶出したSbにより、鉛蓄電池の減液性能が低下し、減液量が多くなるため、Pb−Sb系合金中のSb含有量は3.5質量%以下とする。   Since Sb, which is a grain boundary precipitate, increases the bonding strength between Pb crystal grains and increases the strength of the lead alloy, it is important to grow Sb, which is a grain boundary precipitate, with a certain thickness. From this viewpoint, the Sb content in the Pb—Sb-based lead alloy is 1.7% by mass or more. Moreover, in the area | region where Sb content exceeds 3.5 mass%, since the liquid reduction performance of a lead storage battery falls by Sb eluted by the intergranular corrosion of lead alloy, and the amount of liquid reduction increases, Pb-Sb type | system | group Sb content in an alloy shall be 3.5 mass% or less.

そして、質量比率(MSb/MAs)と鉛合金強度との相関関係に注目したところ、Sb含有量が1.7質量%〜3.5質量%であるPb−Sb系の鉛合金において、As含有量が0.09質量%以下である場合には、質量比(MSb/MAs)が70.0を超えると、結晶粒界に析出するSb結晶の核となるAsが不足し、粒界におけるSb結晶のサイズが粗大化し、Pb結晶粒間の結合力が低下し、結果として、鉛合金の強度が低下する。   Then, when attention was paid to the correlation between the mass ratio (MSb / MAs) and the strength of the lead alloy, the Pb-Sb lead alloy having an Sb content of 1.7% to 3.5% by mass contained As. When the amount is 0.09% by mass or less, when the mass ratio (MSb / MAs) exceeds 70.0, As which becomes the nucleus of Sb crystals precipitated at the crystal grain boundary is insufficient, and Sb at the grain boundary is insufficient. The crystal size becomes coarse, the bonding strength between the Pb crystal grains decreases, and as a result, the strength of the lead alloy decreases.

以上のことから、1.7質量%〜3.5質量%のSbを含むPb−Sb系の鉛蓄電池用の鉛合金において、Asによる環境負荷を低減する目的で、As含有量を0.09質量%以下とした場合、鉛合金の機械的強度を確保するためには、質量比(MSb/MAs)を70.0以下の範囲内とすることが必要である。   From the above, in the lead alloy for Pb-Sb lead storage battery containing 1.7 mass% to 3.5 mass% of Sb, the As content is set to 0.09 for the purpose of reducing the environmental load due to As. When the content is less than or equal to mass%, in order to ensure the mechanical strength of the lead alloy, the mass ratio (MSb / MAs) needs to be within the range of 70.0 or less.

また、本発明の発明者らは、従来のPb−Sb系の鉛合金において、0.2質量%〜0.5質量%程度の含有量で存在するAsによって得られていたものと同等以上の耐食性を確保するため、Sbを1.7質量%〜3.5質量%含み、かつAs含有量を0.09質量%以下とした鉛合金に、Agを0.0015質量%以上で含有させることが極めて効果的であることを見出した。Ag含有量を0.0015%未満とした場合には、鉛合金の耐食性が低下するため、本発明においては、Ag含有量を0.0015質量%以上とする。   In addition, the inventors of the present invention have a Pb—Sb-based lead alloy that is equivalent to or better than that obtained by As present at a content of about 0.2% by mass to 0.5% by mass. In order to ensure corrosion resistance, a lead alloy containing 1.7% to 3.5% by mass of Sb and having an As content of 0.09% by mass or less should contain Ag in an amount of 0.0015% by mass or more. Has been found to be extremely effective. When the Ag content is less than 0.0015%, the corrosion resistance of the lead alloy is lowered. Therefore, in the present invention, the Ag content is set to 0.0015% by mass or more.

なお、As含有量が0.09質量%以下のPb−Sb系合金において、Ag含有量が0.015質量%を超えた領域では、さらなる耐食性向上は認められず、過剰なAgの添加は耐食性を低下させる場合もあり、また、Ag自体が鉛に比較して極めて高価であるため、鉛合金価格が高くなることから、実用的でない。したがって、本発明においては、Ag含有量は0.015%以下とすべきである。   In addition, in the Pb-Sb-based alloy having an As content of 0.09% by mass or less, in a region where the Ag content exceeds 0.015% by mass, no further improvement in corrosion resistance is observed, and excessive addition of Ag is corrosion resistance. In addition, since Ag itself is extremely expensive compared to lead, the price of the lead alloy becomes high, which is not practical. Therefore, in the present invention, the Ag content should be 0.015% or less.

さらに、従来の0.2質量%〜0.5質量%程度の含有量のAsを含むPb−Sb系合金において、Asは合金溶湯の湯流れ性を改善する効果を有しており、ただ単にAs含有量を、本発明のように、0.09質量%以下にすると、合金溶湯の湯流れ性が低下し、結果として鋳造性が低下する。鋳造性の低下により、格子、端子および接続体といった鉛部品中に引け巣やクラックといった欠陥が生じるため、鋳造不良が生じ、鋳造工程での歩留まりが低下する。また、このような鋳造欠陥によって、部品の機械的強度や耐食性が著しく低下する。   Furthermore, in the conventional Pb—Sb-based alloy containing As with a content of about 0.2% by mass to 0.5% by mass, As has an effect of improving the flowability of the molten alloy, When the As content is 0.09% by mass or less as in the present invention, the molten metal flowability of the molten alloy is lowered, and as a result, the castability is lowered. Deterioration of castability causes defects such as shrinkage cavities and cracks in lead parts such as grids, terminals, and connectors, resulting in poor casting and reduced yield in the casting process. Further, due to such casting defects, the mechanical strength and corrosion resistance of the parts are significantly reduced.

本発明の鉛蓄電池用の鉛合金では、Sn含有量を0.0015質量%〜0.015質量%とすることにより、鉛合金の鋳造性を改善し、引け巣やクラックといった、鋳造欠陥によって生じる機械的強度および耐食性の低下を抑制できる。なお、鋳造性の向上の結果、鉛合金から格子や鉛部品を鋳造する際の歩留まりが向上し、同時に、鉛部品の機械的強度および耐食性の低下を抑制できる。なお、0.015質量%を超えるSnの含有は、それ以上の鋳造性向上の効果が期待できないため、Snの含有量は0.015質量%以下とすべきである。また、Sn含有量が0.0015質量%未満では、鋳造性向上の効果が十分に得られないため、Sn含有量を0.0015質量%以上とする。   In the lead alloy for the lead storage battery of the present invention, the Sn content is set to 0.0015 mass% to 0.015 mass%, thereby improving the castability of the lead alloy and caused by casting defects such as shrinkage cavities and cracks. Decrease in mechanical strength and corrosion resistance can be suppressed. As a result of improving the castability, the yield when casting a grid or a lead part from a lead alloy is improved, and at the same time, the mechanical strength and corrosion resistance of the lead part can be suppressed. In addition, since Sn containing more than 0.015 mass% cannot expect the effect of the further castability improvement, content of Sn should be 0.015 mass% or less. Further, if the Sn content is less than 0.0015% by mass, the effect of improving the castability cannot be obtained sufficiently, so the Sn content is set to 0.0015% by mass or more.

(第2の実施形態)
本発明の第2の実施形態による鉛蓄電池用の鉛合金は、第1の実施形態による鉛蓄電池用の鉛合金に、さらに0.0015質量%〜0.015質量%のCuを含む。このような量のCuの含有によって、粗大なPb結晶の成長が抑制され、鉛合金の機械的強度と耐食性をさらに改善することができる。
(Second Embodiment)
The lead alloy for a lead storage battery according to the second embodiment of the present invention further contains 0.0015 mass% to 0.015 mass% of Cu in the lead alloy for the lead storage battery according to the first embodiment. By containing such an amount of Cu, the growth of coarse Pb crystals is suppressed, and the mechanical strength and corrosion resistance of the lead alloy can be further improved.

なお、Cuの含有量が0.0015質量%未満の場合には、実質的に本発明の第1の実施の形態による鉛合金と差がない。また、Cuの含有量が0.015質量%を超えると、鉛蓄電池の減液量や自己放電量が増大するため、Cuの含有量は0.015質量%以下とすべきである。   When the Cu content is less than 0.0015% by mass, there is substantially no difference from the lead alloy according to the first embodiment of the present invention. Further, if the Cu content exceeds 0.015 mass%, the liquid reduction amount and self-discharge amount of the lead storage battery increase, so the Cu content should be 0.015 mass% or less.

本発明の第1および第2の実施形態による鉛蓄電池用の鉛合金は、鉛蓄電池に用いる格子、ストラップ、接続体、極柱、端子部品に用いるPb−Sb合金中におけるAs含有量を従来の鉛合金に比較して削減しているため、鉛部品製造工程や鉛蓄電池からの鉛回収工程におけるAsの大気中への飛散が抑制され、生体に対するAsの被曝や、環境へのAsの放散が抑制され、環境衛生上、好ましい。   The lead alloy for the lead storage battery according to the first and second embodiments of the present invention has a conventional As content in the Pb-Sb alloy used for the lattice, strap, connector, pole pole, and terminal component used for the lead storage battery. Since it is reduced compared to lead alloys, As is scattered in the atmosphere in the lead component manufacturing process and the lead recovery process from the lead-acid battery, the As exposure to the living body and the As emission to the environment are suppressed. It is suppressed and preferable from the viewpoint of environmental hygiene.

また、As含有量を低減することによって、従来発生していた、鉛合金の強度と耐食性および鋳造性の低下が、本発明によって抑制され、As含有量の低減と、鉛合金の強度と耐食性および優れた鋳造性を両立した鉛蓄電池用の鉛合金を提供できるという、顕著な効果を奏する。   Further, by reducing the As content, the reduction in strength, corrosion resistance and castability of the lead alloy, which has been conventionally generated, is suppressed by the present invention, and the reduction in As content, the strength and corrosion resistance of the lead alloy, and There is a remarkable effect that it is possible to provide a lead alloy for a lead storage battery having both excellent castability.

(第3の実施形態)
前記した第1の実施形態による鉛合金および第2の実施形態による鉛合金を、正負両極の格子、ストラップ、接続体、極柱および端子部品の少なくともいずれかに適用することにより、本発明の鉛蓄電池を得ることができる。
(Third embodiment)
By applying the lead alloy according to the first embodiment and the lead alloy according to the second embodiment to at least one of positive and negative grids, straps, connectors, pole posts, and terminal components, the lead of the present invention A storage battery can be obtained.

また、本発明の鉛合金を用いる部位としては、一般的にPb−Sb系合金が用いられる、ストラップ、接続体、極柱および端子部品に適用することが好ましく、特にバーニング法によって形成されるストラップ、および溶接によって互いに接合される極柱と端子部品に適用することが最も好ましい。   Moreover, as a site | part using the lead alloy of this invention, it is preferable to apply to a strap, a connection body, a pole pole, and a terminal component in which a Pb-Sb system alloy is generally used, and especially the strap formed by the burning method. And most preferably applied to the pole and terminal parts joined together by welding.

バーニング法によって形成されるストラップおよび溶接によって互いに接合される極柱と端子部品は、それぞれの形成時に溶融鉛を炎で熱するため、溶融鉛の温度が鋳造での溶融鉛の温度(450℃〜550℃)よりも高くなる(約600℃〜1200℃程度)ため、Asの環境への放散が行なわれやすいからである。   The strap formed by the burning method and the pole column and the terminal component joined to each other by welding heat the molten lead with a flame at the time of each formation, so the temperature of the molten lead is the temperature of the molten lead in the casting (450 ° C ~ This is because the As is easily diffused into the environment because the temperature is higher than (550 ° C.) (about 600 ° C. to 1200 ° C.).

特に、バーニング法では、ストラップと極板耳、ストラップと接続体もしくは極柱との溶接を強固なものとするために、溶接炎を放出するトーチを動かしたり、あるいは溶接炎の放出圧によって溶融鉛を揺動させることから、溶融鉛の温度は高くなりやすく、また、揺動によって、酸化膜も発生しやすいことから、鉛合金中のAsが昇華したり、あるいは溶接フューム(溶湯表面に形成された酸化物が粉体として吹き飛ばされた煙状のもの)中の含有物としてAsが大気中に放散される。   In particular, in the burning method, in order to strengthen the welding between the strap and the electrode plate ear, or between the strap and the connection body or the pole column, the molten lead is moved by moving the torch that releases the welding flame or by the discharge pressure of the welding flame. Since the temperature of the molten lead is likely to rise and the oxide film is likely to be generated due to the oscillation, As in the lead alloy is sublimated or welded fume (formed on the surface of the molten metal). As is contained in the smoke-like oxide in which the oxide is blown off as a powder), As is diffused into the atmosphere.

したがって、本発明の好ましい形態の鉛蓄電池は、第1もしくは第2の実施形態による鉛合金をバーニング法によって形成するストラップに適用した鉛蓄電池であり、また、第1もしくは第2の実施形態による鉛合金を互いに溶接して接合される極柱および端子部品に用いる鉛蓄電池も好ましいものである。   Therefore, the lead acid battery according to the preferred embodiment of the present invention is a lead acid battery in which the lead alloy according to the first or second embodiment is applied to a strap formed by the burning method, and the lead according to the first or second embodiment. A lead-acid battery used for a pole column and a terminal component joined by welding the alloys together is also preferable.

また、極柱あるいはこれに接続される端子部品のいずれか一方に本発明の鉛合金を用い、両者をバーナー溶接によって溶接する鉛蓄電池にも好ましいものである。このような鉛蓄電池においては、バーナー溶接時に飛散するAs量を削減することができる。また、溶接終了後の端子を覆う、Asを含む酸化皮膜の発生が抑制され、端子表面でのAsの暴露が抑制され、好ましい。   Moreover, it is preferable also for the lead storage battery which uses the lead alloy of this invention for any one of a pole pole or the terminal components connected to this, and welds both by burner welding. In such a lead storage battery, the amount of As scattered during burner welding can be reduced. Moreover, generation | occurrence | production of the oxide film containing As which covers the terminal after completion | finish of welding is suppressed, and exposure of As on the terminal surface is suppressed, and it is preferable.

また、極板群同士を接続する、接続体および/もしくは極柱に本発明の第1もしくは第2の実施形態による鉛合金を適用してもよい。バーニング法、キャストン法ともに接続体は鋳造によって形成される。本発明の鉛合金を接続体に適用した場合、鋳造欠陥が少なく、強度および耐食性に優れた鉛蓄電池を得ることができる。また、接続体や極柱を溶融、すなわち、鉛蓄電池製造時の部品鋳造工程および鉛蓄電池から鉛を再生回収する工程で鉛合金を溶融する際のAsの大気中への放散を抑制することができる。   Moreover, you may apply the lead alloy by the 1st or 2nd embodiment of this invention to the connection body and / or pole column which connect electrode board groups. In both the burning method and the caston method, the connection body is formed by casting. When the lead alloy of the present invention is applied to a connection body, a lead storage battery having few casting defects and excellent in strength and corrosion resistance can be obtained. Moreover, melting of the connecting body and the pole pole, that is, suppressing the release of As into the atmosphere when melting the lead alloy in the parts casting process at the time of lead acid battery manufacturing and the process of regenerating and recovering lead from the lead acid battery it can.

また、本発明の第1の実施形態もしくは第2の実施形態による鉛合金を正極格子および/もしくは負極格子に適用することができる。本発明の鉛合金は強度に優れるため、正極、負極ともに用いることにより、極板の変形が抑制され、機械的強度に優れた極板を得ることができ、鉛蓄電池の信頼性を向上することができる。   Moreover, the lead alloy according to the first embodiment or the second embodiment of the present invention can be applied to the positive grid and / or the negative grid. Since the lead alloy of the present invention is excellent in strength, by using both the positive electrode and the negative electrode, deformation of the electrode plate can be suppressed, an electrode plate excellent in mechanical strength can be obtained, and the reliability of the lead storage battery can be improved. Can do.

また、特に正極格子に用いた場合は、本発明の鉛合金が有する優れた耐食性によって、信頼性の高い鉛蓄電池を得ることができる。   In particular, when used in a positive electrode grid, a highly reliable lead storage battery can be obtained due to the excellent corrosion resistance of the lead alloy of the present invention.

一方、Pb−Sb系合金である、本発明の鉛合金を正極格子および/もしくは負極格子に用いることによれば、長寿命ではあるが、鉛合金中に含まれるSbの作用によって鉛蓄電池の減液が増大するため、補水作業が必要となる。   On the other hand, when the lead alloy of the present invention, which is a Pb—Sb alloy, is used for the positive electrode lattice and / or the negative electrode lattice, the life of the lead storage battery is reduced by the action of Sb contained in the lead alloy although it has a long life. Since the liquid increases, rehydration work is required.

したがって、本発明においては、正極格子および/負極格子に本発明の鉛合金を用いず、Sbを含まないPb−Ca合金、あるいはPb−Sn合金を用い、ストラップ、接続体、極柱および端子部品の少なくともいずれかに本発明の鉛合金を用いてよい。ただし、そのような場合、格子合金として用いるPb−Ca合金あるいはPb−Sn合金は、本発明のAs含有量の削減による環境負荷の削減効果を損なわないよう、本発明の鉛合金と同様、Asの含有量は0質量%であるか、含んだとしても0.09質量%以下に制限されるべきである。   Therefore, in the present invention, the lead alloy of the present invention is not used for the positive electrode lattice and / the negative electrode lattice, and the Sb-free Pb—Ca alloy or Pb—Sn alloy is used. The lead alloy of the present invention may be used for at least one of the above. However, in such a case, the Pb—Ca alloy or the Pb—Sn alloy used as the lattice alloy, like the lead alloy of the present invention, does not impair the environmental load reduction effect due to the reduction of the As content of the present invention. The content of is 0% by mass or, if included, should be limited to 0.09% by mass or less.

本発明の鉛蓄電池は、その内部に用いる鉛合金のAs含有量が削減されているため、その製造あるいは回収工程におけるAsの環境への放散が抑制され、環境衛生上、好ましい。また、As含有量が従来の鉛蓄電池用鉛合金に比較して大幅に削減したにも関らず、鉛合金の強度、耐食性および鋳造性の面で、従来のAsを0.2質量%〜0.5質量%含有する鉛合金に遜色がなく、信頼性に優れた鉛蓄電池を歩留まりよく製造することができるという、顕著な効果を奏する。   Since the As content of the lead alloy used in the lead storage battery of the present invention is reduced, the release of As into the environment in the production or recovery process is suppressed, which is preferable in terms of environmental hygiene. Moreover, although the As content is significantly reduced as compared with the conventional lead alloy for lead-acid batteries, the conventional As is 0.2 mass% or more in terms of strength, corrosion resistance and castability of the lead alloy. The lead alloy containing 0.5% by mass has no inferiority, and has a remarkable effect that a highly reliable lead storage battery can be manufactured with a high yield.

(実施例1)
以下、実施例により、本発明の効果を説明する。
Example 1
Hereinafter, the effects of the present invention will be described with reference to examples.

本実施例ではPb−Sb合金について、表1に示すように、種々の含有量でSb、As、Ag、SnおよびCuを含有する鉛蓄電池用の鉛合金を作成した。これらの鉛合金に含まれるSb、As、SnおよびCuの含有量と、鉛合金に含まれるAsの質量(MAs)に対する鉛合金に含まれるSbの質量(MSb)の比率(MSb/MAs)を表1に示す。   In this example, as shown in Table 1, lead alloys for lead storage batteries containing Sb, As, Ag, Sn, and Cu with various contents were prepared for the Pb—Sb alloy. The content of Sb, As, Sn and Cu contained in these lead alloys and the ratio (MSb / MAs) of the mass (MSb) of Sb contained in the lead alloy to the mass of As (MAs) contained in the lead alloy Table 1 shows.

Figure 2011046976
Figure 2011046976

表1に示した各鉛合金の機械的強度を、JIS Z2244「ビッカース硬さ−試験方法」に規定されたビッカース硬さ測定において、測定時の荷重を10gf(0.098N)としたマイクロビッカース硬さ試験によって評価した。   In the Vickers hardness measurement specified in JIS Z2244 “Vickers Hardness-Test Method”, the mechanical strength of each lead alloy shown in Table 1 was set to 10 gf (0.098 N) at the time of measurement. It was evaluated by a thickness test.

また、表1の各鉛合金の耐食性を以下の方法で行った。すなわち、各鉛合金を溶融し、鋳造によって幅80mm、高さ80mmおよび厚さ1.0mmの板状テストピースを作成した。また、板状テストピースとは別に純鉛(Pb含有量99.999質量%)で幅80mm、高さ80mm、厚さ1.0mmの純鉛板を準備した。   Moreover, the corrosion resistance of each lead alloy of Table 1 was performed by the following method. That is, each lead alloy was melted, and a plate-shaped test piece having a width of 80 mm, a height of 80 mm, and a thickness of 1.0 mm was produced by casting. Separately from the plate-shaped test piece, a pure lead plate (Pb content 99.999 mass%) having a width of 80 mm, a height of 80 mm, and a thickness of 1.0 mm was prepared.

板状テストピースを厚み1mmの微孔性ポリエチレン製のセパレータで袋詰めした。セパレータの両面に純鉛板を重ね合わせてアクリル製の容器に収納し、モデルセルとした。   The plate-like test piece was packed into a bag with a separator made of microporous polyethylene having a thickness of 1 mm. A pure lead plate was placed on both sides of the separator and stored in an acrylic container to form a model cell.

アクリル製の容器に密度1.30g/cm(25℃換算値)の希硫酸を注液した。希硫酸の液面は、板状テストピースの上端から上に30mmの位置とした。そして、板状テストピースを陽極、純鉛板を陰極として連続通電を行なった。通電時の電流密度は、板状テストピースの面積を基準として0.5mA/cmとした。また、通電期間は60日間連続とした。通電中、モデルセルは75℃に温度制御された恒温槽に配置した。モデルセルの希硫酸液面が低下した場合、イオン交換水を適宜補充し、希硫酸液面が純鉛板上端より上方5mmの位置を下回らないようにした。 Dilute sulfuric acid with a density of 1.30 g / cm 3 (25 ° C. converted value) was poured into an acrylic container. The liquid level of the dilute sulfuric acid was 30 mm above the upper end of the plate-shaped test piece. Then, continuous energization was performed using the plate-like test piece as the anode and the pure lead plate as the cathode. The current density during energization was set to 0.5 mA / cm 2 based on the area of the plate-shaped test piece. The energization period was 60 consecutive days. During energization, the model cell was placed in a thermostat controlled at 75 ° C. When the dilute sulfuric acid liquid level of the model cell was lowered, ion exchange water was appropriately replenished so that the dilute sulfuric acid liquid surface did not fall below the position of 5 mm above the upper end of the pure lead plate.

60日間の連続通電の終了後、板状テストピースを水洗した。その後、作用極を水洗した後にマンニトールのアルカリ性水溶液に浸漬することにより、板状テストピース表面に生成した腐食物を除去し、水洗乾燥した。   After the continuous energization for 60 days, the plate-like test piece was washed with water. Thereafter, the working electrode was washed with water and then immersed in an alkaline aqueous solution of mannitol to remove the corrosive matter generated on the surface of the plate-shaped test piece, and then washed with water and dried.

次に、腐食物を除去した状態の板状テストピースの質量(W1)を計量した。通電前に予め計量した板状テストピース質量(W0)と、通電後の板状テストピースの質量(W1)の差(W0−W1)を腐食量として求め、この腐食量の、通電前の板状テストピース質量(W0)に対する百分率を腐食減量として算出し、この腐食減量の多寡によって耐食性の評価を行なった。鉛合金の腐食減量が少ない程、より耐食性に優れていることになる。この板状テストピースを用いたビッカース硬さと腐食減量の評価結果については後述する。   Next, the mass (W1) of the plate-like test piece from which the corrosive substance was removed was weighed. The difference (W0-W1) between the plate-like test piece mass (W0) weighed in advance before energization and the mass (W1) of the plate-like test piece after energization is determined as the corrosion amount. The percentage of the test piece mass (W0) was calculated as corrosion weight loss, and the corrosion resistance was evaluated based on the amount of the corrosion weight loss. The smaller the corrosion weight loss of the lead alloy, the better the corrosion resistance. Evaluation results of Vickers hardness and corrosion weight loss using this plate-like test piece will be described later.

更に、表1に示した各鉛合金を用いて鉛蓄電池用の格子を鋳造した。鋳造格子の骨切れ不良や、やけ巣不良等の鋳造不良の発生率で、各鉛合金の鋳造性を評価した。なお、骨切れ不良は、格子鋳造型の枠骨および中骨の掘り込み部分に十分に溶融鉛合金が流入せず、枠骨や中骨が途中で不連続になったものを目視で確認した。   Further, a lead storage battery grid was cast using each lead alloy shown in Table 1. The castability of each lead alloy was evaluated based on the rate of occurrence of casting defects such as broken bones in the casting grid and defective nests. In addition, the defect of bone breakage was confirmed by visual observation that the molten lead alloy did not sufficiently flow into the digging portion of the frame bone and the middle bone of the lattice casting mold, and the frame bone and the middle bone became discontinuous in the middle. .

また、目視確認後の各格子をV字形に折り曲げた際、折り曲げ部分で切断したものや、目視で確認できるレベルの亀裂が折り曲げ部に発生したものをやけ巣不良とした。なお、鋳造不良の計数について、骨切れ不良とやけ巣不良が一枚の格子に同時に発生している場合、骨切れ不良のみが発生している場合、やけ巣不良のみが発生している場合および骨切れ不良もやけ巣不良も発生していない場合(良品)に場合わけし、良品を除く格子の発生率を鋳造不良率として算出した。   Further, when each lattice after visual confirmation was bent into a V-shape, one that was cut at the bent portion or one that had a crack that could be visually confirmed at the bent portion was regarded as a poor nest. In addition, regarding the count of casting defects, when bone breakage defects and shrinkage defects occur simultaneously on one lattice, when bone breakage defects only occur, when shrinkage defect only occurs and In the case where neither a bone defect nor a hollow defect occurred (non-defective product), the occurrence rate of the lattice excluding the non-defective product was calculated as a defective casting rate.

表1に示した各鉛合金の各鉛合金のビッカース硬さ、腐食減量および鋳造不良率の測定結果を表2に示す。   Table 2 shows the measurement results of Vickers hardness, corrosion weight loss and casting defect rate of each lead alloy shown in Table 1.

Figure 2011046976
Figure 2011046976

鉛合金1はSbを1.7質量%、Asを0.2質量%それぞれ含有し、鉛合金2はSbを3.5質量%、Asを0.2質量%それぞれ含有しており、いずれも比較例であり、鉛蓄電池用の鉛合金として一般的に使用されているPb−Sb−As合金である。   The lead alloy 1 contains 1.7% by mass of Sb and 0.2% by mass of As, respectively, and the lead alloy 2 contains 3.5% by mass of Sb and 0.2% by mass of As. It is a comparative example, and is a Pb—Sb—As alloy generally used as a lead alloy for a lead storage battery.

鉛合金3〜38は、Sbの含有量を1.7質量%から3.5質量%の範囲で変化させるとともに、Asの含有量を0.025質量%から0.09質量%の範囲で変化させた鉛合金である。   The lead alloys 3 to 38 change the Sb content in the range of 1.7 mass% to 3.5 mass% and the As content in the range of 0.025 mass% to 0.09 mass%. Lead alloy.

表1に示した各鉛合金のビッカース硬さを比較すると、鉛合金中に含有されるSbの質量(MSb)とAsの質量(MAs)の比(MSb/MAs)が70以下とすることにより、Asを0.095質量%以下とした場合であっても、従来のAsの含有量が0.2質量%である鉛合金1および2と同等の強度を得られることが分かる。すなわち、Pb−Sb合金中のAs含有量を削減することによる、環境負荷の緩和効果と、鉛合金の機械的強度の低下を抑制する効果を両立して得ることができる。   Comparing the Vickers hardness of each lead alloy shown in Table 1, the ratio (MSb / MAs) of Sb mass (MSb) and As mass (MAs) contained in the lead alloy is 70 or less. It can be seen that even when As is 0.095% by mass or less, the strength equivalent to that of lead alloys 1 and 2 having a conventional As content of 0.2% by mass can be obtained. That is, it is possible to obtain both the effect of mitigating the environmental load and the effect of suppressing the decrease in mechanical strength of the lead alloy by reducing the As content in the Pb—Sb alloy.

一方、鉛合金21、22、24、28、37および38での比率(MSb/MAs)は、それぞれ85、85、83.3、80、78および78であり、表2に示した結果によれば、これらの各鉛合金のビッカース硬さは、比較例の鉛合金1と鉛合金2のそれと比較すると、より小さく、機械的強度が低下したことを示している。   On the other hand, the ratios (MSb / MAs) in the lead alloys 21, 22, 24, 28, 37 and 38 are 85, 85, 83.3, 80, 78 and 78, respectively, according to the results shown in Table 2. For example, the Vickers hardness of each of these lead alloys is smaller than that of the lead alloys 1 and 2 of the comparative example, indicating that the mechanical strength has decreased.

このような鉛合金の強度が低下する要因として、前記した比率(MSb/MAs)比が70を超えると、鉛合金を溶融状態から急冷した際、Sbに対するAsが非常に少ないため、結晶粒界に析出する粒界析出物であるSbの結晶粒径が粗大化し、粒界析出物自体の強度が低下する、あるいは粒界析出物と鉛結晶間の結合強度が低下することが推測される。   As a factor for reducing the strength of such a lead alloy, when the ratio (MSb / MAs) ratio exceeds 70, when the lead alloy is rapidly cooled from a molten state, there is very little As for Sb. It is presumed that the crystal grain size of Sb, which is a grain boundary precipitate that precipitates, becomes coarse and the strength of the grain boundary precipitate itself decreases, or the bond strength between the grain boundary precipitate and the lead crystal decreases.

したがって、Pb−Sb系合金中のAs量を削減することによる鉛合金の強度低下を抑制するためには、少なくとも、前記した比率(MSb/MAs)を70以下とすべきである。   Therefore, in order to suppress a decrease in the strength of the lead alloy by reducing the amount of As in the Pb—Sb alloy, at least the above ratio (MSb / MAs) should be 70 or less.

また、AgとSnを含まないか、どちらか一方のみを含む、あるいは、比率(MSb/MAs)比が70を超える鉛合金、すなわち、鉛合金3〜5、鉛合金8〜9、鉛合金12〜14、鉛合金17〜18、鉛合金21〜22、鉛合金24、鉛合金28〜30、鉛合金33〜34および鉛合金37〜38は、AgとSnを共に含む、あるいは、比率(MSb/MAs)が70以下になる鉛合金と比較して、腐食減量が増加し、鋳造不良率が増加した。   Moreover, it is the lead alloy which does not contain Ag and Sn, or contains either one or the ratio (MSb / MAs) ratio exceeds 70, that is, lead alloys 3 to 5, lead alloys 8 to 9, lead alloy 12 -14, lead alloys 17-18, lead alloys 21-22, lead alloy 24, lead alloys 28-30, lead alloys 33-34 and lead alloys 37-38 contain both Ag and Sn, or the ratio (MSb / MAs), compared to lead alloys with 70 or less, the corrosion weight loss increased and the casting defect rate increased.

以上の結果から、As含有量を削減した鉛合金の中には、鉛合金の機械的強度の低下とともに、耐食性の低下(腐食減量の増加)とともに、鋳造性の低下(鋳造不良率の増大)が認められた。したがって、Pb−Sb合金中に添加するAsは鉛合金の機械的強度を改善するとともに、鉛合金の耐食性を向上し、鋳造性を向上する作用を有していると推測される。   From the above results, among lead alloys with reduced As content, the mechanical strength of lead alloys decreases, corrosion resistance decreases (increased corrosion weight loss), and castability decreases (increased casting defect rate). Was recognized. Therefore, it is presumed that As added to the Pb—Sb alloy has the effects of improving the mechanical strength of the lead alloy, improving the corrosion resistance of the lead alloy, and improving the castability.

一方、比率(MSb/MAs)を70以下とし、鉛合金中のAs含有量を0.09質量%以下とするとともに、鉛合金中にAgとSnを含有させた鉛合金6、10、15、19、22〜28、31、35および38は、ビッカース硬度も鉛蓄電池に使用する鉛合金として十分な水準にあり、また腐食減量や鋳造不良率も低い水準で抑制されていた。このことから、本発明では、As含有量削減による耐食性や鋳造性の低下を、鉛合金中にAgとSnとを共存させることによって抑制できると考えられる。   On the other hand, the ratio (MSb / MAs) is 70 or less, the As content in the lead alloy is 0.09% by mass or less, and the lead alloys 6, 10, 15 and Ag containing Ag and Sn in the lead alloy. Nos. 19, 22 to 28, 31, 35 and 38 have Vickers hardness at a level sufficient as a lead alloy used for a lead storage battery, and corrosion weight loss and casting defect rate are suppressed to a low level. From this, in this invention, it is thought that the corrosion resistance and castability fall by As content reduction can be suppressed by making Ag and Sn coexist in a lead alloy.

以上のことから、環境負荷の削減を目的として、鉛蓄電池用のPb−Sb鉛合金に添加するAsを、環境負荷への影響が殆ど問題とならないレベルである、0.09%以下に削減する場合、鉛蓄電池用の鉛合金として実用的な機械的強度、耐食性および鋳造性を得るために、前記した比率(MSb/MAs)を70以下とするとともに、0.0015質量%〜0.015質量%の含有量のAgと0.0015質量%〜0.015質量%の含有量のSnを共存させることによって得られるものであり、AgとSnのいずれか一方を含むだけでは、本発明の効果は得られない。   From the above, for the purpose of reducing the environmental load, As added to the Pb—Sb lead alloy for lead-acid batteries is reduced to 0.09% or less, which is a level at which the influence on the environmental load hardly poses a problem. In this case, in order to obtain a practical mechanical strength, corrosion resistance and castability as a lead alloy for a lead storage battery, the ratio (MSb / MAs) is set to 70 or less, and 0.0015% by mass to 0.015% by mass. % Ag and 0.0015% by mass to 0.015% by mass Sn can be obtained by coexisting only one of Ag and Sn. Cannot be obtained.

したがって、本発明の効果を得るためには、前記した比率(MSb/MAs)を70以下とし、かつ鉛合金中にSnとAgとを共存させることが必要である。   Therefore, in order to obtain the effect of the present invention, it is necessary to set the ratio (MSb / MAs) to 70 or less and to allow Sn and Ag to coexist in the lead alloy.

そして、本発明では、鉛合金中のAg含有量を0.0015質量%〜0.015質量%の範囲とする。Ag含有量が0.0015%未満の場合、機械的強度および耐食性が低下する。一方、Ag含有量が0.015質量を超えても、機械的強度や耐食性の向上に対してさらなる効果はないこと、さらには、Ag増量によるコスト増加が障害となりうるため、Ag含有量の上限は0.015質量%とすべきである。   And in this invention, Ag content in a lead alloy shall be the range of 0.0015 mass%-0.015 mass%. When the Ag content is less than 0.0015%, the mechanical strength and the corrosion resistance are lowered. On the other hand, even if the Ag content exceeds 0.015 mass, there is no further effect on the improvement of mechanical strength and corrosion resistance, and further, the cost increase due to the Ag increase can be an obstacle, so the upper limit of the Ag content Should be 0.015% by weight.

また、Sn含有量についても、Agと同様の理由から0.0015質量〜0.015質量%とする。Sn含有量が0.0015%未満の場合、機械的強度および耐食性を向上させる効果を得ることができない。一方、Sn含有量が0.015質量%を超えた場合、機械的強度や耐食性に対してさらなる効果はなく、むしろ鉛蓄電池の減液量や自己放電量を増大させるため、避けるべきである。   Further, the Sn content is also set to 0.0015 mass% to 0.015 mass% for the same reason as Ag. When Sn content is less than 0.0015%, the effect of improving mechanical strength and corrosion resistance cannot be obtained. On the other hand, if the Sn content exceeds 0.015% by mass, there is no further effect on the mechanical strength and corrosion resistance, but rather the liquid reduction amount and the self-discharge amount of the lead storage battery are increased.

さらに、本発明の鉛合金において、0.0015質量%〜0.015質量%のCuを含む鉛合金7、11、16、20、32および36は、Cuを含まない本発明の鉛合金6,10、15、19、31および35と比較して、ビッカース硬さが向上し、腐食減量および鋳造不良率も、より抑制されることから、本実施例において、鉛蓄電池用の鉛合金として最も好ましいことがわかる。   Furthermore, in the lead alloy of the present invention, the lead alloys 7, 11, 16, 20, 32, and 36 containing 0.0015 mass% to 0.015 mass% of Cu are the lead alloys 6 and 6 of the present invention that do not contain Cu. Compared with 10, 15, 19, 31, and 35, Vickers hardness is improved, and corrosion weight loss and casting failure rate are further suppressed. Therefore, in this embodiment, the lead alloy is most preferable as a lead alloy. I understand that.

なお、Cu含有量は、0.0015質量%〜0.015質量%の範囲にすべきである。0.0015%未満の含有量では、Cu含有による機械的強度および耐食性が向上する効果を得ることができない。0.015質量%を超えるCuの添加は、鉛蓄電池の自己放電および減液が増大するため、Cu含有量の上限は0.015質量%とすべきである。   In addition, Cu content should be in the range of 0.0015 mass%-0.015 mass%. If the content is less than 0.0015%, the effect of improving the mechanical strength and corrosion resistance due to the Cu content cannot be obtained. Since addition of Cu exceeding 0.015 mass% increases self-discharge and liquid reduction of the lead storage battery, the upper limit of the Cu content should be 0.015 mass%.

本発明によれば、鉛蓄電池用のSbを含む鉛合金において、As含有量を0.09質量%以下に削減できることから、環境負荷を削減した鉛合金が得られ、この鉛合金を使用することにより、鉛蓄電池の製造および鉛蓄電池からの鉛回収工程における環境中へのAsの放散が抑制される。また、従来の0.2質量%程度の多量のAsを含む鉛合金に比較して、同等以上の機械的強度を有し、耐食性および鋳造性に優れた鉛合金を得ることができる。   According to the present invention, in the lead alloy containing Sb for lead-acid batteries, the As content can be reduced to 0.09% by mass or less, so a lead alloy with reduced environmental load is obtained, and this lead alloy is used. As a result, the emission of As into the environment during the production of the lead storage battery and the lead recovery process from the lead storage battery is suppressed. In addition, a lead alloy having mechanical strength equal to or higher than that of a conventional lead alloy containing a large amount of As of about 0.2% by mass and excellent in corrosion resistance and castability can be obtained.

さらに、本発明の鉛合金を格子やストラップ、接続体、極柱や端子に用いることにより、耐久性に優れた鉛蓄電池を得ることができる。   Furthermore, the lead storage battery excellent in durability can be obtained by using the lead alloy of this invention for a grating | lattice, a strap, a connection body, a pole pole, and a terminal.

(実施例2)
実施例2として、前記した実施例1の鉛合金1(比較例)と、鉛合金6(本発明例)を足し鉛として用い、バーニング法およびキャストン法によってストラップを形成した。いずれのストラップにも溶湯が空気に触れた面にAsを含む酸化皮膜が形成されるが、Asを含む酸化皮膜の厚みは、鉛合金1のバーニング法によるストラップの表面に生成する酸化皮膜の厚みを1とすると、鉛合金1のキャストン法によるストラップ2の表面に生成するAsを含む酸化皮膜の厚みは0.2であった。
(Example 2)
As Example 2, the lead alloy 1 (comparative example) of Example 1 and the lead alloy 6 (example of the present invention) were added as lead, and a strap was formed by the burning method and the caston method. In any strap, an oxide film containing As is formed on the surface of the molten metal exposed to air. The thickness of the oxide film containing As is the thickness of the oxide film formed on the surface of the strap by the burning method of lead alloy 1. Is 1, the thickness of the oxide film containing As produced on the surface of the strap 2 of the lead alloy 1 by the Caston method was 0.2.

一方、鉛合金6(本発明例)のバーニング法によるストラップの表面に生成する酸化皮膜の厚みは0.2、キャストン法によるストラップ表面に生成する酸化皮膜の厚みは0.15であり、いずれも本発明の鉛合金6を用いたストラップにおいて、その表面での酸化皮膜の生成が抑制されており、特にバーニング法によるストラップにおいてその削減効果は特に顕著であった。また、鉛合金1と鉛合金2から生成する酸化皮膜に含まれるAs含有量は、鉛合金中のAsの含有量に相関しており、本発明の鉛合金を特にバーニング法により形成されるストラップ合金に適用することにより、ストラップ溶接時に生成するAsを含む酸化物の生成が抑制され、作業者へのAsの暴露抑制という、環境衛生上の観点から好ましいことが解る。   On the other hand, the thickness of the oxide film formed on the surface of the strap by the burning method of the lead alloy 6 (example of the present invention) is 0.2, and the thickness of the oxide film generated on the strap surface by the Caston method is 0.15. In the strap using the lead alloy 6 of the present invention, the formation of an oxide film on the surface was suppressed, and the reduction effect was particularly remarkable in the strap by the burning method. Moreover, the As content contained in the oxide film produced from the lead alloy 1 and the lead alloy 2 correlates with the content of As in the lead alloy, and the strap formed by the burning method particularly of the lead alloy of the present invention. By applying to an alloy, it can be understood that the production of oxides containing As produced during strap welding is suppressed, which is preferable from the viewpoint of environmental hygiene, that is, the exposure of As to workers is suppressed.

(実施例3)
実施例1で表1に示した鉛合金1および鉛合金6を鋳造して端子ブッシング(JIS D5301(始動用鉛蓄電池)で規定するテーパ端子用)を2種類の端子ブッシングを作成した。
(Example 3)
Lead alloy 1 and lead alloy 6 shown in Table 1 in Example 1 were cast to prepare two types of terminal bushings for terminal bushings (for tapered terminals specified by JIS D5301 (lead storage battery for starting)).

次に、上記した端子ブッシングに適合する極柱を、鉛合金1および鉛合金6を用いて鋳造により作成した。   Next, a pole column suitable for the terminal bushing described above was prepared by casting using lead alloy 1 and lead alloy 6.

前記した端子ブッシングと極柱を表3に示す組み合わせで、端子ブッシングに形成した貫通孔に極柱の先端を挿通し、端子ブッシング天面から3.0mmの高さで極柱が突出した状態とし、これら両者を溶接して端子を形成した。端子の形成方法としては、端子ブッシングの側面に鉛流失防止用の金型を配置した状態で、端子ブッシングの天面にバーナー火炎を放出し、この火炎の熱によって、端子ブッシングの天面と極柱の先端を溶融し、凝固させる、バーナー溶接と、端子ブッシングの側面に鉛流出防止用の金型を配置した状態で、端子ブッシングの天面とこれから突出する極柱先端に、鉛合金の融点以上の温度に保温された底面が円形平面の円筒状の加熱体を圧接することにより、端子ブッシングと極柱を溶融させ、両者を溶接する溶接法(以下、加熱体溶接という)を用いて端子を形成した。   With the combination of the terminal bushing and the pole column shown in Table 3, the tip of the pole column is inserted into the through hole formed in the terminal bushing, and the pole column protrudes at a height of 3.0 mm from the top surface of the terminal bushing. These were welded to form a terminal. As a method of forming the terminal, with the lead bushing die placed on the side surface of the terminal bushing, a burner flame is emitted to the top surface of the terminal bushing, and the heat of this flame causes the top surface of the terminal bushing to contact the pole. The melting point of the lead alloy on the top of the terminal bushing and the tip of the pole column protruding from it, with the burner welding that melts and solidifies the tip of the pillar, and the lead outflow prevention mold placed on the side of the terminal bushing A terminal using a welding method (hereinafter referred to as heating body welding) in which the terminal bushing and the pole column are melted by welding a cylindrical heating body whose bottom surface is kept in a circular plane and maintained at the above temperature. Formed.

Figure 2011046976
Figure 2011046976

前記した鉛合金と端子溶接方法を表3に示した組み合わせで端子を形成した際の端子天面の酸化皮膜の厚みと、酸化皮膜中のAsのEPMA分析を行なった。これらの結果を表4に示す。なお、酸化皮膜の厚みは同一端子中で最大の値とし、端子ブッシングと極柱の両者に鉛合金1を用い、かつ両者をバーナー溶接で溶接した端子での酸化皮膜の最大厚みを1とした相対値で示した。また、酸化皮膜中のAsは、EPMAにおけるAsの検出ピーク値を比較した。検出ピーク値は、前記した、端子ブッシングと極柱の両者に鉛合金1を用い、かつ両者をバーナー溶接で溶接した端子の酸化皮膜で検出されたAsの検出ピークを1としたときの相対値で示した。   EPMA analysis of the thickness of the oxide film on the terminal top surface and As in the oxide film when the terminal was formed by the combination shown in Table 3 with the lead alloy and terminal welding method described above was performed. These results are shown in Table 4. The thickness of the oxide film is the maximum value in the same terminal, the lead alloy 1 is used for both the terminal bushing and the pole column, and the maximum thickness of the oxide film at the terminal welded by burner welding is 1. Shown as a relative value. As for As in the oxide film, the detection peak value of As in EPMA was compared. The detection peak value is a relative value when the detection peak of As detected by the oxide film of the terminal using the lead alloy 1 for both the terminal bushing and the pole column and welding both by burner welding is 1. It showed in.

Figure 2011046976
Figure 2011046976

表4に示した結果から、端子ブッシングもしくは極柱の一方、あるいは両方を本発明の鉛合金を用いることにより、端子天面でのAsを含んだ酸化皮膜の厚みが減少するとともに、酸化皮膜中のAs量も減少していることがわかる。また、これらの減少量は、特にバーナー溶接の方が、加熱体溶接に比較して多く、本発明の効果がより顕著に得られていることがわかる。   From the results shown in Table 4, by using the lead alloy of the present invention for one or both of the terminal bushing and the pole pole, the thickness of the oxide film containing As on the terminal top surface is reduced, and the oxide film It can be seen that the amount of As also decreased. Moreover, these reduction amounts are especially larger in the burner welding than in the heating body welding, and it can be seen that the effects of the present invention are obtained more remarkably.

実施例3から、本発明の鉛蓄電池用の鉛合金を端子および/あるいは極柱に用いて鉛蓄電池を構成することにより、鉛蓄電池の外部に露出した部分でのAsの暴露量が低減でき、環境負荷が低減した鉛蓄電池を提供することができる。また、このようにして得た鉛蓄電池の端子の強度は、少なくとも従来の鉛合金1で構成した端子と同等の強度を有しているものである。   From Example 3, by configuring the lead storage battery using the lead alloy for the lead storage battery of the present invention for the terminal and / or the pole, the exposure amount of As in the portion exposed to the outside of the lead storage battery can be reduced, A lead-acid battery with reduced environmental load can be provided. In addition, the strength of the terminal of the lead storage battery thus obtained is at least equal to that of a terminal composed of the conventional lead alloy 1.

また、本発明の鉛蓄電池用の鉛合金は、従来の鉛合金と同等の強度あるいは鋳造性を有するとともに、従来の鉛合金に比較して優れた耐食性を有することから、本発明の鉛合金をセル間接続体、あるいは格子体に用いることができる。   In addition, the lead alloy for the lead storage battery of the present invention has the same strength or castability as that of the conventional lead alloy, and has superior corrosion resistance compared to the conventional lead alloy. It can be used for an inter-cell connection body or a lattice body.

Pb−Sb系合金を正極格子に用いる場合、Sbによる正極活物質改質効果と、活物質と正極格子間の結合力向上効果によって長寿命の鉛蓄電池を得ることができる。但し、正極格子中のSbが負極に移行するため、鉛蓄電池の自己放電特性や減液特性を低下させる場合がある。したがって、求められる自己放電特性および減液特性に応じて本発明の鉛合金を正極格子に用いてもよい。   When a Pb—Sb-based alloy is used for the positive electrode lattice, a long-life lead-acid battery can be obtained due to the positive electrode active material modification effect by Sb and the effect of improving the bonding force between the active material and the positive electrode lattice. However, since Sb in the positive electrode lattice moves to the negative electrode, the self-discharge characteristic and the liquid reducing characteristic of the lead storage battery may be deteriorated. Therefore, the lead alloy of the present invention may be used for the positive electrode grid in accordance with required self-discharge characteristics and liquid reduction characteristics.

鉛蓄電池の負極格子に、本発明の鉛合金を用いることもできる。但し、前記した本発明の鉛合金を正極格子に用いた場合と同様、鉛合金中のSbの存在によって、鉛蓄電池の自己放電特性や減液特性を低下させる場合がある。したがって、求められる自己放電特性および減液特性に応じて本発明の鉛合金を負極格子に用いてもよい。   The lead alloy of the present invention can also be used for the negative electrode lattice of the lead storage battery. However, as in the case where the lead alloy of the present invention described above is used for the positive electrode grid, the presence of Sb in the lead alloy may reduce the self-discharge characteristics and the liquid reduction characteristics of the lead storage battery. Therefore, the lead alloy of the present invention may be used for the negative electrode grid according to the required self-discharge characteristics and liquid reduction characteristics.

本発明の構成によれば、鉛蓄電池に必要な機械的強度や耐食性および鋳造性を低下させることなく、鉛合金中のAs含有量を低減でき、Asによる環境負荷を緩和することができる。また、本発明の鉛合金を端子、極柱、ストラップ、接続体および格子といった部位に適用することができる。また、このような鉛蓄電池は、始動用鉛蓄電池やサイクルサービス用鉛蓄電池等、各種用途に適用することができる。   According to the configuration of the present invention, the As content in the lead alloy can be reduced without reducing the mechanical strength, corrosion resistance, and castability required for the lead storage battery, and the environmental load due to As can be reduced. Moreover, the lead alloy of the present invention can be applied to parts such as terminals, pole columns, straps, connectors, and grids. Moreover, such a lead storage battery can be applied to various uses such as a lead storage battery for start-up and a lead storage battery for cycle service.

Claims (5)

Sb含有量が1.7質量%〜3.5質量%である鉛蓄電池用の鉛合金であって、
前記鉛合金のAs含有量は0.09質量%以下であり、
前記鉛合金は、0.0015質量%〜0.15質量%のAgおよび0.0015質量%〜0.015質量%のSnを含み、
かつ、前記鉛合金中に含まれるAsの質量(MAs)に対する、前記鉛合金中に含まれるSbの質量(MSb)の質量比率(MSb/MAs)を70.0以下としたことを特徴とする鉛蓄電池用の鉛合金。
A lead alloy for a lead-acid battery having an Sb content of 1.7 mass% to 3.5 mass%,
As content of the lead alloy is 0.09 mass% or less,
The lead alloy contains 0.0015 mass% to 0.15 mass% Ag and 0.0015 mass% to 0.015 mass% Sn,
In addition, the mass ratio (MSb / MAs) of the mass (MSb) of Sb contained in the lead alloy to the mass (MAs) of As contained in the lead alloy is 70.0 or less. Lead alloy for lead-acid batteries.
0.0015質量%〜0.015質量%のCuを含むことを特徴とする請求項1に記載の鉛蓄電池用の鉛合金。 The lead alloy for a lead-acid battery according to claim 1, comprising 0.0015 mass% to 0.015 mass% Cu. 請求項1〜2に記載の鉛蓄電池用の鉛合金を備えた鉛蓄電池。 The lead acid battery provided with the lead alloy for lead acid batteries of Claims 1-2. 請求項1〜2に記載の鉛蓄電池用の鉛合金をバーニング溶接によって形成されたストラップに用いた鉛蓄電池。 The lead acid battery which used the lead alloy for lead acid batteries of Claims 1-2 for the strap formed by burning welding. 請求項1〜2に記載の鉛蓄電池用の鉛合金を互いにバーナー溶接によって溶接される極柱もしくは端子のいずれか一方、もしくは両方に用いた鉛蓄電池。 The lead acid battery which used the lead alloy for lead acid batteries of Claims 1-2 for any one or both of the pole pole and terminal which are welded mutually by burner welding.
JP2009194009A 2009-08-25 2009-08-25 Lead alloys and lead-acid batteries for lead-acid batteries Active JP5428645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194009A JP5428645B2 (en) 2009-08-25 2009-08-25 Lead alloys and lead-acid batteries for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194009A JP5428645B2 (en) 2009-08-25 2009-08-25 Lead alloys and lead-acid batteries for lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2011046976A true JP2011046976A (en) 2011-03-10
JP5428645B2 JP5428645B2 (en) 2014-02-26

Family

ID=43833597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194009A Active JP5428645B2 (en) 2009-08-25 2009-08-25 Lead alloys and lead-acid batteries for lead-acid batteries

Country Status (1)

Country Link
JP (1) JP5428645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006412A (en) * 2014-05-26 2016-01-14 株式会社Gsユアサ Sensor
JP2019040873A (en) * 2016-11-15 2019-03-14 日立化成株式会社 Method for forming strap for lead storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819835A (en) * 2019-11-21 2020-02-21 广州市讯天电子科技有限公司 Long-life high-power storage battery and grid alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365041A (en) * 1986-09-04 1988-03-23 Japan Storage Battery Co Ltd Lead alloy for storage battery
US6300007B1 (en) * 1998-10-30 2001-10-09 Johnson Controls Technology Company Lead alloy for lead-acid battery terminals
WO2008109429A2 (en) * 2007-03-02 2008-09-12 Johnson Controls Technology Company Negative grid for battery
JP2008266739A (en) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd Lead alloy for lead storage battery, and lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365041A (en) * 1986-09-04 1988-03-23 Japan Storage Battery Co Ltd Lead alloy for storage battery
US6300007B1 (en) * 1998-10-30 2001-10-09 Johnson Controls Technology Company Lead alloy for lead-acid battery terminals
WO2008109429A2 (en) * 2007-03-02 2008-09-12 Johnson Controls Technology Company Negative grid for battery
JP2010520607A (en) * 2007-03-02 2010-06-10 ジョンソン コントロールズ テクノロジー カンパニー Battery negative grid
JP2008266739A (en) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd Lead alloy for lead storage battery, and lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006412A (en) * 2014-05-26 2016-01-14 株式会社Gsユアサ Sensor
JP2019040873A (en) * 2016-11-15 2019-03-14 日立化成株式会社 Method for forming strap for lead storage battery

Also Published As

Publication number Publication date
JP5428645B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
KR20180136547A (en) Lead-based alloys and related processes and products
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP2013122838A (en) Positive electrode grid for lead acid battery
JP5428645B2 (en) Lead alloys and lead-acid batteries for lead-acid batteries
JP2005290421A (en) Lead alloy and lead storage battery using it
JP6123943B2 (en) Method for producing lead-acid battery and method for producing electrode current collector for lead-acid battery
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP2002175798A (en) Sealed lead-acid battery
JP2000077076A (en) Lead base alloy for storage battery
JP6455105B2 (en) Lead acid battery
JP6601654B2 (en) Control valve type lead acid battery
JP2008218258A (en) Lead acid battery
JP2007157610A (en) Lead-acid battery
JP4896392B2 (en) Lead acid battery
JP2005228685A (en) Lead-acid storage battery
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JP4793518B2 (en) Lead acid battery
JP5236228B2 (en) Lead alloy for lead-acid battery and lead-acid battery using the same
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JP2000021414A (en) Manufacture of grid for positive electrode for lead-acid battery, and manufacture of the positive electrode for the lead-acid battery
JP2003323881A (en) Control valve lead-acid battery
JP2006079951A (en) Lead-acid storage battery grid body and lead alloy for it
JPH09167611A (en) Lead-acid battery
JP2008266739A (en) Lead alloy for lead storage battery, and lead storage battery
JPH08339794A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350