JP5236228B2 - Lead alloy for lead-acid battery and lead-acid battery using the same - Google Patents

Lead alloy for lead-acid battery and lead-acid battery using the same Download PDF

Info

Publication number
JP5236228B2
JP5236228B2 JP2007202487A JP2007202487A JP5236228B2 JP 5236228 B2 JP5236228 B2 JP 5236228B2 JP 2007202487 A JP2007202487 A JP 2007202487A JP 2007202487 A JP2007202487 A JP 2007202487A JP 5236228 B2 JP5236228 B2 JP 5236228B2
Authority
JP
Japan
Prior art keywords
lead
alloy
content
mass
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007202487A
Other languages
Japanese (ja)
Other versions
JP2009037941A (en
JP2009037941A5 (en
Inventor
和成 安藤
晶 明城
信也 鯵坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007202487A priority Critical patent/JP5236228B2/en
Publication of JP2009037941A publication Critical patent/JP2009037941A/en
Publication of JP2009037941A5 publication Critical patent/JP2009037941A5/ja
Application granted granted Critical
Publication of JP5236228B2 publication Critical patent/JP5236228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、鉛蓄電池用鉛合金及び鉛蓄電池に関するものである。   The present invention relates to a lead alloy for a lead storage battery and a lead storage battery.

従来、鉛蓄電池のストラップ・セル間接続部・極柱等の鉛部品には、本来非常に軟らかくて鉛蓄電池の鉛部品に適さない純鉛に3.5〜6.0%のSbを含有したPb−Sb合金、あるいは1.0〜5.0%のSnを含有したPb−Sn系合金が用いられている。Pb−Sb系合金は、機械的強度を向上させるためには非常に有効であるが、水素過電圧を低くするために充電中の減液量が多いという欠点を有している。一方、Sbを含まないPb−Sn系合金は、水素過電圧が前記純鉛に3.5〜6.0%のSbを含有したPb−Sb合金、あるいは1.0〜5.0%のSnを含有したPb−Sn系合金に比較し高いため、充電中の減液量が少ない反面、機械的強度や耐食性が劣るという課題を有している。   Conventionally, lead parts such as straps of lead-acid batteries, inter-cell connections, and pole poles contain 3.5 to 6.0% Sb in pure lead which is inherently very soft and unsuitable for lead-acid battery lead parts. Pb—Sb alloys or Pb—Sn alloys containing 1.0 to 5.0% Sn are used. Pb—Sb alloys are very effective for improving the mechanical strength, but have the disadvantage that the amount of liquid reduction during charging is large in order to reduce the hydrogen overvoltage. On the other hand, the Pb—Sn alloy containing no Sb is a Pb—Sb alloy containing 3.5 to 6.0% Sb in the pure lead, or 1.0 to 5.0% Sn. Since it is higher than the contained Pb—Sn alloy, the amount of liquid reduction during charging is small, but the mechanical strength and corrosion resistance are inferior.

これらの課題を解決する方法として、Pb−Sn系合金へ適当な量のAsやAgを含有した技術が提案されている。   As a method for solving these problems, a technique in which an appropriate amount of As or Ag is contained in a Pb—Sn alloy has been proposed.

特許文献1では、正極格子及び負極格子のうち、少なくとも一方がSbを含まない鉛合金からなり、ストラップ・セル間接続部・極柱などの鉛部品のAs含有量が0.02〜0.5%、Sn含有量が1.0〜5.0%、Ag含有量が0.02〜0.3%、残部がPbからなる鉛合金が提案され、これらの微量元素の添加によりPb−Sn系合金に関する機械的強度及び耐食性の課題が改善されている。   In Patent Document 1, at least one of the positive electrode lattice and the negative electrode lattice is made of a lead alloy not containing Sb, and the As content of the lead component such as the strap / cell connection portion / pole column is 0.02 to 0.5. %, Sn content of 1.0 to 5.0%, Ag content of 0.02 to 0.3%, and the balance being Pb, Pb-Sn system is proposed by adding these trace elements. The mechanical strength and corrosion resistance issues associated with alloys are improved.

近年、鉛蓄電池を製造する工場の作業環境及びその周辺への配慮の高まりから、鉛蓄電池のストラップ・セル間接続部・極柱等の鉛部品に用いられるPb−Sn−As合金中に含まれるAsの濃度を削減することが求められるようになってきた。   Included in lead-battery Pb-Sn-As alloys used in lead parts such as straps, inter-cell connection parts, and poles of lead-acid batteries due to the recent increase in consideration of the work environment of factories that manufacture lead-acid batteries and their surroundings It has been demanded to reduce the concentration of As.

Pb−Sn−As合金中に含まれるAs含有量は0.5%程度であるため、鉛蓄電池(製品)でみるとAs含有量の絶対値は、非常に小さく環境への影響は軽微であると考えられている。   Since the As content contained in the Pb-Sn-As alloy is about 0.5%, the absolute value of the As content is very small when viewed from a lead storage battery (product), and its impact on the environment is negligible. It is believed that.

しかし、As及びその無機化合物は「特定第一種指定化学物質」に指定されており、Pb−Sn−As合金中のAs含有量が削減可能となれば、より環境への負荷の少ない鉛蓄電池になると考えられる。   However, As and its inorganic compounds are designated as “Specified Class I Designated Chemical Substances”, and if the As content in the Pb—Sn—As alloy can be reduced, the lead storage battery has a lower environmental impact. It is thought that it becomes.

しかしながら、特許文献1のようにAs含有量が0.15%、Sn含有量が3.0%、Ag含有量が0.02%であれば機械的強度と耐食性を両立させることができるが、As含有量が0.1%未満の場合、これらの微量元素を添加しても当該鉛合金の機械的強度と耐食性が低下してしまうことが課題であった。
特開平01−189860号公報
However, as in Patent Document 1, if the As content is 0.15%, the Sn content is 3.0%, and the Ag content is 0.02%, both mechanical strength and corrosion resistance can be achieved. When the As content is less than 0.1%, the problem is that the mechanical strength and corrosion resistance of the lead alloy are reduced even when these trace elements are added.
Japanese Patent Laid-Open No. 01-189860

本発明は、鉛蓄電池を製造する工場の作業環境及びその周辺への配慮の高まりから、As濃度を削減したPb−Sn合金を鉛蓄電池のストラップ・セル間接続部・極柱等の鉛部品に使用しても機械的強度と耐食性を確保した鉛蓄電池用鉛合金と、これを用いた鉛蓄電池を提供するものである。 The present invention is, from the growing concern for the working environment and around the plant for manufacturing the lead-acid battery, a Pb-S n alloy having a reduced concentration of As between strap cell connecting portion, the terminal post and the like of the lead storage battery lead The present invention provides a lead alloy for a lead storage battery that ensures mechanical strength and corrosion resistance even when used in a component, and a lead storage battery using the lead alloy.

本発明の請求項1に係る発明は、鉛蓄電池のストラップ、セル間接続体または極柱用の鉛合金であって、化学組成が質量%で、Snが1.0〜5.0%、Biが0.001〜0.02%、Asが0.095%以下(0を含む)、残部がPbからなる鉛合金を示すものである。 The invention according to claim 1 of the present invention is a lead storage battery strap, an inter-cell connector or a lead alloy for a pole pole, having a chemical composition of mass%, Sn of 1.0 to 5.0%, Bi Represents a lead alloy composed of 0.001 to 0.02%, As is 0.095% or less (including 0), and the balance is Pb .

本発明の請求項2に係る発明は、さらにAgを0.001〜0.02%含有することを特徴とする。請求項1または2に記載の鉛合金をストラップ、セル間接続体または極柱に用いることにより耐久性に優れた鉛蓄電池を得ることができる。 The invention according to claim 2 of the present invention is characterized by further containing 0.001 to 0.02% of Ag. The lead storage battery excellent in durability can be obtained by using the lead alloy of Claim 1 or 2 for a strap, a connection body between cells, or a pole pole .

前記した本発明の構成によれば、従来、Pb−Sn系合金に対して機械的強度と耐食性を高めるために添加していたAs含有量を削減しているにもかかわらず、実使用で十分な機械的強度、耐食性及び生産性(鋳造性)を確保することが可能となる。従って、As含有量を削減することによってAsの環境に与える影響を顕著に低下させる一方で、従来の0.2質量%〜0.5質量%程度のAsを含むPb−Sn−As合金と同等以上の機械的強度及び耐食性を得ることができる。さらに、PbとSn以外の元素の添加量を必要最小限にすることで、コストアップや電池特性への悪影響が殆どない鉛蓄電池を得ることもできる。 According to the configuration of the present invention described above, it is sufficient to actually use the Pb—Sn-based alloy in spite of reducing the As content which has been added to increase mechanical strength and corrosion resistance. It is possible to ensure high mechanical strength, corrosion resistance, and productivity (castability). Therefore, equivalent while significantly reduces impact on the As environmental, Pb-Sn-As alloy containing conventional about 0.2 wt% to 0.5 wt% As by reducing the As content The above mechanical strength and corrosion resistance can be obtained. Furthermore, by reducing the amount of addition of elements other than Pb and Sn to the minimum necessary, it is possible to obtain a lead storage battery that has almost no adverse effects on cost and battery characteristics.

本発明の鉛蓄電池は、化学組成が質量%で、Snが1.0〜5.0%、Biが0.001〜0.02%、Asが0.095%以下(0を含む)、残部がPbからなる鉛合金を、ストラップ、セル間接続体または極柱に用いているThe lead storage battery of the present invention has a chemical composition of mass%, Sn of 1.0 to 5.0%, Bi of 0.001 to 0.02%, As of 0.095% or less (including 0), the balance A lead alloy made of Pb is used for the strap, the inter-cell connector or the pole column .

本発明の鉛蓄電池は、Asの環境に与える影響を軽減させる目的で、As含有量が0.095質量%以下のPb−Sn−Bi金、もしくはPb−Sn−Bi−Ag合金を使用している。 Lead-acid battery of the present invention for the purpose of reducing the influence on As environmental, As content is 0.095 mass% or less of Pb-Sn- Bi alloys, also it is properly P b-Sn -Bi-Ag alloy Is used.

本発明の鉛蓄電池用鉛合金は、従来のPb−Sn合金中において、添加したAsによって得られていた機械的強度と同等以上の水準を維持するため、Snを1.0〜5.0質量%含有させるとともにBiを0.001〜0.02質量%含有させる。一方、Biは、0.02質量%を超えて含有しても更なる耐食性・機械的強度の向上が期待できない以外に、自己放電特性や減液特性の低下も顕在化する。 Lead-acid battery for a lead alloy of the present invention is the conventional Pb-S n alloy in order to maintain the added mechanical strength equal to or higher than the level that was obtained by the As, the Sn 1.0 to 5. While containing 0 mass%, Bi is contained 0.001-0.02 mass%. On the other hand, even if Bi is contained in an amount exceeding 0.02% by mass, a further improvement in corrosion resistance and mechanical strength cannot be expected, and a reduction in self-discharge characteristics and liquid reduction characteristics is also manifested.

本発明の形態として、前記Pb−Sn−Bi合金中のSnとBi以外にAg含有量を0.02質量%以下とすることである。Agの含有によって合金の結晶成長が阻害され、機械的強度や耐食性が増大する。しかしながら、核化剤として鉛合金の結晶成長を抑制するため、Ag含有量を0.02質量%より多くすると、自己放電特性や減液特性の低下が顕在化する。 In the form status of the present invention, the Ag content in addition to Sn and Bi in the Pb-Sn -Bi alloy 0. It is to be 02% by mass or less . By containing Ag, crystal growth of the alloy is inhibited, and mechanical strength and corrosion resistance increase. However, when the Ag content is more than 0.02% by mass in order to suppress the crystal growth of the lead alloy as a nucleating agent, the self-discharge characteristics and the liquid reduction characteristics are significantly deteriorated.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

本実施例では表1に示すようにAs含有量が0〜0.15質量%、Sn含有量が1.0〜5.0質量%、Bi含有量が0〜0.02質量%、Ag含有量が0〜0.02質量%、残部がPbからなる鉛合金で鉛蓄電池用鉛部品を鋳造し、機械的強度や耐食性及び生産性の評価を実施した。 In this example, as shown in Table 1, the As content was 0 to 0.15 mass %, the Sn content was 1.0 to 5.0 mass %, the Bi content was 0 to 0.02 mass %, and the Ag content was Lead components for lead-acid batteries were cast with a lead alloy having an amount of 0 to 0.02 mass % and the balance being Pb, and mechanical strength, corrosion resistance, and productivity were evaluated.

Figure 0005236228
Figure 0005236228

表1に示した鉛合金について、それらの機械的強度をJIS Z2244「ビッカース硬さ−試験方法」に規定されたビッカース硬さ測定において、測定時の荷重を10gfとしたマイクロビッカース硬さ試験によって評価した。   About the lead alloys shown in Table 1, their mechanical strength was evaluated by a micro Vickers hardness test in which the load at the time of measurement was 10 gf in the Vickers hardness measurement specified in JIS Z2244 “Vickers hardness-test method”. did.

また、表1の鉛合金の耐食性評価を以下の方法で行なった。各鉛合金について、幅80mm、高さ80mm、厚さ1mmの板状テストピースを鋳造して作用極、幅80mm、高さ80mm、厚さ1mmの純鉛板を対極とし、作用極を1mmの微孔性セパレータで袋詰めした。その後、作用極を対極で挟み込んでモデルセルを製作した。   Further, the corrosion resistance of the lead alloys shown in Table 1 was evaluated by the following method. For each lead alloy, a plate-shaped test piece having a width of 80 mm, a height of 80 mm, and a thickness of 1 mm is cast, and a working electrode, a pure lead plate having a width of 80 mm, a height of 80 mm, and a thickness of 1 mm is used as a counter electrode, and the working electrode is 1 mm. Bagged with a microporous separator. After that, the model cell was manufactured by sandwiching the working electrode with the counter electrode.

このモデルセル中に、密度1.30g/cm3(25℃換算値)の希硫酸を注液し、75℃気槽中、作用極−対極間に見かけ密度0.5A/cm2で2ヶ月間通電させて、作用極の腐食減量を評価した。実験中、ガス発生や水分蒸発によってモデルセル中の希硫酸液面が低下した際には適宜イオン交換水を補充した。   Into this model cell, dilute sulfuric acid with a density of 1.30 g / cm3 (converted at 25 ° C) was injected, and the current was passed for 2 months at an apparent density of 0.5 A / cm2 between the working electrode and the counter electrode in a 75 ° C air tank. Thus, the weight loss of the working electrode was evaluated. During the experiment, when the dilute sulfuric acid liquid level in the model cell decreased due to gas generation or moisture evaporation, ion exchange water was appropriately supplemented.

2ヶ月間の連続通電の終了後、作用極を水洗、マニトール溶液で作用極表面の腐食物を除去し、再び水洗した後に乾燥させ、次いで腐食物を除去した状態の作用極の質量(W1)を計量した。実験前に予め計量した作用極の質量(W0)と実験後の作用極の質量(W1)の差(W0−W1)の質量(W0)に対する百分率を腐食減量として算出し、この腐食減量の多寡によって耐食性の評価を行なった。鉛合金の腐食減量が少ない程、より耐食性に優れていることになる。   After two months of continuous energization, the working electrode is washed with water, the corrosive material on the working electrode surface is removed with a mannitol solution, washed again with water, dried, and then the mass of the working electrode with the corroded material removed (W1) Weighed. The percentage of the weight (W0) of the difference (W0-W1) between the mass (W0) of the working electrode measured in advance before the experiment and the mass (W1) of the working electrode after the experiment is calculated as the corrosion weight loss. The corrosion resistance was evaluated by The smaller the corrosion weight loss of the lead alloy, the better the corrosion resistance.

さらに、表1に示した各鉛合金を用いて鉛蓄電池用の格子を鋳造した。鋳造格子の骨切れ不良および、やけ巣不良等の鋳造不良の発生率で各合金の鋳造性を評価した。なお、骨切れ不良は格子の枠骨や中骨が途中で不連続になった格子体を目視で確認することで実施した。また、目視確認後の格子をV字形に折り曲げた際、折り曲げ部で切断した格子体や目視で確認できるレベルの亀裂が折り曲げ部に発生した格子体をやけ不良とした。   Furthermore, a grid for a lead storage battery was cast using each lead alloy shown in Table 1. The castability of each alloy was evaluated based on the occurrence rate of casting defects such as broken bones in the casting lattice and defective defects. In addition, the bone defect was implemented by visually confirming the lattice body in which the frame bone and the middle bone of the lattice became discontinuous. Further, when the lattice after visual confirmation was folded into a V-shape, the lattice body cut at the bent portion and the lattice body where cracks of a level that can be visually confirmed occurred at the bent portion were regarded as burned.

表1に示した各種鉛合金の機械的強度(ビッカース硬さ)、耐食性(腐食減量)及び鋳造性(鋳造不良率)の結果を表2に示す。
Table 2 shows the mechanical strength (Vickers hardness), corrosion resistance (corrosion weight loss) and castability (casting failure rate) of various lead alloys shown in Table 1.

Figure 0005236228
Figure 0005236228

鉛合金19〜22はAs含有量が0.15質量%の比較例による鉛合金である。0.15質量%のAsに加えてSnを含有し、Biを含有しない鉛合金19,21とBiを含有する鉛合金20,22はビッカース硬さ、腐食減量及び鋳造不良率に大きな差はない。また、これらの鉛合金は、鉛蓄電池用の鉛合金として市場での実績もあり、As含有量が多いことを除き、鉛蓄電池用鉛合金として実用的なものである。 Lead alloys 19 to 22 are lead alloys according to comparative examples having an As content of 0.15% by mass . The lead alloys 19 and 21 containing Sn in addition to 0.15% by mass of As and containing no Bi and the lead alloys 20 and 22 containing Bi are not significantly different from each other in Vickers hardness, corrosion weight loss, and casting defect rate. . Moreover, these lead alloys have a track record in the market as lead alloys for lead-acid batteries, and are practical as lead alloys for lead-acid batteries except that they have a high As content.

なお、As含有量を0.15質量%とし、SnとBi含有させた鉛合金20,22の方がSnのみ含有した鉛合金19,21に比較してビッカース硬さが向上する傾向にある。 In addition, it is in the tendency for the Vickers hardness to improve the lead alloys 20 and 22 which made As content 0.15 mass % and contained Sn and Bi compared with the lead alloys 19 and 21 which contained only Sn.

一方、As含有量を0,0.01,0.095質量%とした鉛合金1〜18については、特に、Bi含有の有無が、ビッカース硬さ、腐食減量、鋳造時の不良率に顕著に影響を及ぼしている。 On the other hand, with regard to lead alloys 1 to 18 having an As content of 0, 0.01, 0.095% by mass , the presence or absence of Bi is particularly significant in the Vickers hardness, corrosion weight loss, and defective rate during casting. It has an influence.

Biを含有しない鉛合金1,6,7,12,13,18ではSnの含有量にかかわらず前記As含有量が0.15質量%の鉛合金19〜22と比較し、ビッカース硬さは低下し、腐食減量と鋳造時の不良率が増加している。As含有量を0.095質量%以下に削減した場合、Sn含有量を増加させるだけでは、従来の鉛蓄電池用の鉛合金19〜22と比較して実用的な機械的強度や耐食性を有しておらず、鉛蓄電池用の鉛合金としては不適切と考える。 In the lead alloys 1, 6, 7, 12, 13, and 18 not containing Bi, the Vickers hardness is lower than the lead alloys 19 to 22 having the As content of 0.15% by mass regardless of the Sn content. However, corrosion weight loss and the defective rate during casting are increasing. When the As content is reduced to 0.095 mass % or less, simply increasing the Sn content has practical mechanical strength and corrosion resistance compared to conventional lead alloys 19 to 22 for lead acid batteries. It is not suitable as a lead alloy for lead-acid batteries.

一方、As含有量を0.095質量%以下に削減した場合においてもSnを1.0〜5.0質量%,Biを0.001〜0.02質量%で含有させた鉛合金2,4,8,10,14,16は、前記市場で実績のある従来例のAs含有量を0.15質量%とした鉛合金と同等のビッカース硬さであり、腐食減量や鋳造時の不良率を低減させる効果が認められた。 On the other hand, even when the As content is reduced to 0.095% by mass or less, lead alloys containing Sn in an amount of 1.0 to 5.0% by mass and Bi in an amount of 0.001 to 0.02% by mass 2,4 , 8, 10, 14, and 16 have the same Vickers hardness as a lead alloy with an As content of 0.15% by mass in the conventional example that has a proven track record in the market. A reduction effect was observed.

さらに、前記As含有量を0.095質量%以下でSnを1.0〜5.0質量%、Biを0.001〜0.02質量%で含有させた鉛合金に、Agを0.001〜0.02質量%で含有させた鉛合金3,5,9,11,15,17は、Agを含有しない鉛合金2,4,8,10,14,16よりビッカース硬さは硬くなる傾向を示し、腐食減量は低下する傾向であり、Agが所定量含有された方が鉛蓄電池用の鉛合金としてより好ましいことがわかる。 Furthermore, in the lead alloy in which the As content is 0.095% by mass or less, Sn is 1.0 to 5.0% by mass , and Bi is 0.001 to 0.02% by mass , Ag is 0.001%. Lead alloy 3,5,9,11,15,17 contained at ~ 0.02% by mass tends to have a Vickers hardness higher than that of lead alloys 2, 4, 8, 10, 14, 16 containing no Ag It can be seen that the weight loss of corrosion tends to decrease, and that a predetermined amount of Ag is more preferable as a lead alloy for a lead storage battery.

また、Bi含有量については0.001〜0.02質量%とすべきである。0.001質量%未満の含有量では、Bi含有による機械的強度及び耐食性の向上、鋳造不良率の低減効果が認められない。また、Bi含有量を0.02質量%を越えて増大させても機械的強度や耐食性向上等の効果がなく、自己放電特性および、減液特性も低下させるため、Bi含有量は0.02質量%以下とすべきである。 Further, the Bi content should be 0.001 to 0.02 mass %. When the content is less than 0.001% by mass, the improvement of mechanical strength and corrosion resistance due to the Bi content and the effect of reducing the casting defect rate are not recognized. Further, even if the Bi content exceeds 0.02% by mass , there is no effect of improving the mechanical strength and corrosion resistance, and the self-discharge characteristics and the liquid reduction characteristics are also lowered. Therefore, the Bi content is 0.02%. Should be less than mass %.

また、Ag含有量については、0.001〜0.02質量%とすることが好ましい。Ag含有量が0.001質量%未満の場合、機械的強度及び耐食性の向上効果が期待できない。逆に、Ag含有量を0.02質量%より増大させた場合、さらなる機械的強度及び耐食性の向上効果はなく、むしろAg増加によるコスト増加が懸念される。 Also, the Ag content, preferably in the 0.001 to 0.02 wt%. When Ag content is less than 0.001 mass%, the improvement effect of mechanical strength and corrosion resistance cannot be expected. On the other hand, when the Ag content is increased from 0.02% by mass, there is no further effect of improving the mechanical strength and corrosion resistance, but rather there is a concern about an increase in cost due to an increase in Ag.

本発明の構成によれば、Sbを含まない鉛蓄電池用の鉛合金において、As含有量を削減することが可能で、環境面で好ましい鉛合金及びこれを用いた鉛蓄電池を提供することが可能となる。   According to the configuration of the present invention, it is possible to reduce the As content in a lead alloy for a lead storage battery that does not contain Sb, and to provide a lead alloy that uses an environment-friendly lead alloy and the lead alloy. It becomes.

本発明の構成によれば、実質上Sbを含まない鉛蓄電池に必要な機械的強度や耐食性及び生産性を低下させることなく、むしろ、これら各種特性が鉛蓄電池にとってより好ましい特性とした上で合金中のAs含有量を削減できるため、環境により好ましい鉛蓄電池を得ることができ、工業上、極めて有用である。   According to the configuration of the present invention, the alloy is obtained by making these various characteristics more preferable for the lead storage battery without deteriorating the mechanical strength, corrosion resistance and productivity required for the lead storage battery substantially free of Sb. As the content of As can be reduced, a lead-acid battery that is more favorable to the environment can be obtained, which is extremely useful industrially.

Claims (3)

鉛蓄電池のストラップ、セル間接続体または極柱用の鉛合金であって、Lead alloy for lead-acid battery straps, inter-cell connectors or pole poles,
化学組成が質量%で、Chemical composition is mass%,
Snが1.0〜5.0%、Sn is 1.0 to 5.0%,
Biが0.001〜0.02%、Bi is 0.001 to 0.02%,
Asが0.095%以下(0を含む)、As is 0.095% or less (including 0),
残部がPbからなる鉛合金。Lead alloy with the balance being Pb.
さらに、Agを0.001〜0.02%含有することを特徴とする請求項1に記載の鉛合金。Furthermore, 0.001-0.02% of Ag is contained, The lead alloy of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の鉛合金を用いたストラップ、セル間接続体または極柱を有する鉛蓄電池。The lead acid battery which has a strap using the lead alloy of Claim 1 or 2, a connection body between cells, or a pole column.
JP2007202487A 2007-08-03 2007-08-03 Lead alloy for lead-acid battery and lead-acid battery using the same Active JP5236228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202487A JP5236228B2 (en) 2007-08-03 2007-08-03 Lead alloy for lead-acid battery and lead-acid battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202487A JP5236228B2 (en) 2007-08-03 2007-08-03 Lead alloy for lead-acid battery and lead-acid battery using the same

Publications (3)

Publication Number Publication Date
JP2009037941A JP2009037941A (en) 2009-02-19
JP2009037941A5 JP2009037941A5 (en) 2010-07-22
JP5236228B2 true JP5236228B2 (en) 2013-07-17

Family

ID=40439655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202487A Active JP5236228B2 (en) 2007-08-03 2007-08-03 Lead alloy for lead-acid battery and lead-acid battery using the same

Country Status (1)

Country Link
JP (1) JP5236228B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203619A (en) * 2002-01-08 2003-07-18 Japan Storage Battery Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JP2009037941A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP6331161B2 (en) Control valve type lead acid battery
JP6572918B2 (en) Lead storage battery and electrode current collector for lead storage battery
CN101675175A (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
JP2005290421A (en) Lead alloy and lead storage battery using it
JP6836315B2 (en) Control valve type lead acid battery
JP2006049025A (en) Control valve type lead-acid storage battery
JP5236228B2 (en) Lead alloy for lead-acid battery and lead-acid battery using the same
JP2002175798A (en) Sealed lead-acid battery
JP2000077076A (en) Lead base alloy for storage battery
JP5428645B2 (en) Lead alloys and lead-acid batteries for lead-acid batteries
JP6601654B2 (en) Control valve type lead acid battery
JPH0817438A (en) Lead acid battery
JP2000315519A (en) Lead acid storage battery
CN1055321C (en) Fully closed maintenance-free lead-acid accumulator super-low antimoney grid alloy material
JP4896392B2 (en) Lead acid battery
JP2012193421A (en) Lead alloy for lead acid battery and lead acid battery using the same
JP2007157610A (en) Lead-acid battery
CN105742555B (en) Valve-controlled lead accumulator
JP6830615B2 (en) Control valve type lead acid battery
JP2008266739A (en) Lead alloy for lead storage battery, and lead storage battery
JP2012113956A (en) Lead-acid battery
JP3509294B2 (en) Lead storage battery
JP2003323881A (en) Control valve lead-acid battery
JP2009037941A5 (en)
KR20070069495A (en) Grid alloy for lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121001

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R151 Written notification of patent or utility model registration

Ref document number: 5236228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350