JP2006079951A - Lead-acid storage battery grid body and lead alloy for it - Google Patents
Lead-acid storage battery grid body and lead alloy for it Download PDFInfo
- Publication number
- JP2006079951A JP2006079951A JP2004263176A JP2004263176A JP2006079951A JP 2006079951 A JP2006079951 A JP 2006079951A JP 2004263176 A JP2004263176 A JP 2004263176A JP 2004263176 A JP2004263176 A JP 2004263176A JP 2006079951 A JP2006079951 A JP 2006079951A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- alloy
- storage battery
- lead alloy
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
この発明は鉛蓄電池格子体及びその鉛蓄電池格子体に用いる鉛合金に関し、特に、機械的強度を向上させた鉛蓄電池格子体及びその鉛蓄電池格子体に用いる鉛合金に関する。 The present invention relates to a lead storage battery grid and a lead alloy used for the lead storage battery grid, and more particularly to a lead storage battery grid with improved mechanical strength and a lead alloy used for the lead storage battery grid.
従来、鉛蓄電池格子体用鉛合金としては、主として機械的強度を重視しているために、Sbを4.5〜8.0重量%と多量に配合したものが用いられてきた。
しかしながら、この鉛合金を鉛蓄電池格子体に適用した場合は、上記Sbが原因となって電池の自己放電を促進し、容量を低下するのみならず、充電完了状態や過充電状態において激しい水分解反応が生じ水の補給を必要とするものであった。
Conventionally, as lead alloys for lead-acid battery grids, since mechanical strength is mainly emphasized, alloys containing a large amount of Sb of 4.5 to 8.0% by weight have been used.
However, when this lead alloy is applied to a lead-acid battery grid, it promotes self-discharge of the battery due to the above Sb, and not only lowers the capacity, but also severe water decomposition in a fully charged or overcharged state A reaction took place requiring water replenishment.
したがって、上記のような欠点のない鉛蓄電池格子体用鉛合金として、Sbを含有しないPb−Ca−Sn合金もしくはPb−Ca−Sn−Al合金が提案され、これらの合金の耐食性、機械的強度等を向上させるために、Ba−Ag、Mg、Bi−Ag、Ba−Bi、Ba−Ce、In等を添加して鉛蓄電池格子体用鉛合金とする技術が開発されている(例えば、特許文献1〜7)。
特許文献1及び2には、「カルシウムが0.04〜0.10重量%、スズが0.80〜2.00重量%、アルミニウムが0.01〜0.03重量%、銀が0.01〜0.10重量%、バリウムが0.001〜0.015重量%で、残部が鉛よりなる鉛蓄電池用鉛基合金。」及び「カルシウムが0.04〜0.10重量%、スズが0.50〜2.00重量%、アルミニウムが0.04重量%を超えて0.06重量%以下、バリウムが0.001〜0.015重量%、銀が0.01〜0.10重量%、残部が鉛からなる鉛蓄電池用鉛基合金。」が記載され、これらの鉛蓄電池用鉛基合金の発明は、鋳造性が問題のないレベルに維持されているので連続鋳造や重力鋳造に適しており、また、伸びの低下や0.2%耐力の向上、さらには腐食減量の大幅な低減により、従来の鉛基合金を基板に用いた鉛蓄電池と比して更なる寿命向上が期待できる(特許文献1、段落[0027]、特許文献2、段落[0026])という効果を奏するものであるが、銀に機械的強度向上の効果は認められず、また、バリウムは、耐食性や鋳造性との関係で最大でも0.015重量%までしか添加できないので、バリウムによる機械的強度の向上は限定的なものであった。さらに、バリウムを添加して時効硬化させると、強度は向上するが、60〜70℃の温度下で2〜3日間放置する必要があった。
In
特許文献3には、「カルシウムが0.04〜0.10重量%、スズが0.80〜2.00重量%、アルミニウムが0.01〜0.03重量%、マグネシウムが0.0005〜0.05重量%で、残部が鉛よりなる鉛蓄電池用鉛基合金。」が記載され、この鉛蓄電池用鉛基合金の発明は、「鋳造性は良好なレベルに維持されたままで連続鋳造や重力鋳造に適しているとともに、伸びの低下や最大引張強度の向上、また高温長時間における0.2%耐力の低下を少なく抑えることが可能となったものである。さらに、時効初期段階での耐力の向上、腐食減量の低減などにより、従来の鉛基合金を基板に用いた鉛蓄電池と比較して一層寿命向上が期待できるとともに、時効初期から高い機械的強度を示すことから時効期間を短縮させて生産効率を上げることができる。」(段落[0019])という効果を奏するものであるが、マグネシウムの添加によっても、機械的強度の向上は十分ではない。 Patent Document 3 states that “0.04 to 0.10% by weight of calcium, 0.80 to 2.00% by weight of tin, 0.01 to 0.03% by weight of aluminum, and 0.0005 to 0 of magnesium. .05% by weight, the balance being lead-based alloy for lead-acid battery. The invention of the lead-based battery for lead-acid battery is “continuous casting and gravity while maintaining castability at a good level”. In addition to being suitable for casting, it has become possible to reduce elongation, increase maximum tensile strength, and reduce 0.2% yield strength at high temperatures for a long time. As a result of improvements in corrosion resistance and reduction in corrosion weight, the life expectancy can be further improved compared to lead-acid batteries using conventional lead-based alloys for the substrate, and the aging period can be shortened by showing high mechanical strength from the beginning of aging. Increase production efficiency Rukoto can. "But in which an effect that (paragraph [0019]), with the addition of magnesium, improvement of mechanical strength is not sufficient.
特許文献4には、「 カルシウム含有量が0.03〜0.10重量%、スズ含有量が0.60〜2.00重量%、アルミニウム含有量が0.01〜0.03重量%、銀含有量が0.005〜0.10重量%、ビスマス含有量が0.05〜0.15重量%で、残部が鉛よりなる鉛蓄電池用鉛基合金。」が記載され、この鉛蓄電池用鉛基合金の発明は、「伸びの低下や最大引張強度、0.2%耐力の向上、耐食性の大幅な向上などが図られ、電池の一層の寿命向上が期待できるようなった。」(段落[0018])という効果を奏するものであるが、ビスマスの添加によっても、機械的強度の向上は十分ではない。 Patent Document 4 states that “a calcium content is 0.03 to 0.10% by weight, a tin content is 0.60 to 2.00% by weight, an aluminum content is 0.01 to 0.03% by weight, silver A lead-based alloy for a lead storage battery having a content of 0.005 to 0.10% by weight, a bismuth content of 0.05 to 0.15% by weight, and the balance being made of lead. " The invention of the base alloy “has been expected to further improve the life of the battery by reducing elongation, increasing the maximum tensile strength, improving 0.2% proof stress, and greatly improving the corrosion resistance” (paragraph [ [0018] However, even when bismuth is added, the mechanical strength is not sufficiently improved.
特許文献5には、「カルシウムが0.03〜0.10重量%、スズが0.60〜2.00重量%、アルミニウムが0.01〜0.03重量%、バリウムが0.001〜0.01重量%、ビスマスが0.05〜0.15重量%で、残部が鉛よりなる鉛蓄電池用鉛基合金。」が記載され、この鉛蓄電池用鉛基合金の発明は、「伸びの低下や過時効時の0.2%耐力の向上、高温クリープ性の向上、耐食性の大幅な向上などが図られ、従来の鉛基合金を基板に用いた鉛蓄電池と比べて高温時の格子強度が向上し、その強度不足による破断やグロスを抑制できて、電池の一層の寿命向上が期待できるようなった」(段落[0019])という効果を奏するものであるが、バリウム及びビスマスを併用しても、機械的強度の向上は十分ではない。 Patent Document 5 states that “0.03-0.10% by weight of calcium, 0.60-2.00% by weight of tin, 0.01-0.03% by weight of aluminum, and 0.001-0 of barium. .01% by weight, bismuth 0.05-0.15% by weight, and the balance being lead-based alloy for lead-acid batteries, which is composed of lead. " And 0.2% proof stress when over-aged, improved high-temperature creep resistance, and greatly improved corrosion resistance. Compared to conventional lead-acid batteries using lead-based alloys as the substrate, the lattice strength at high temperatures is higher. It has the effect of being able to suppress breakage and gloss due to lack of strength and to expect a further improvement in battery life ”(paragraph [0019]). However, barium and bismuth are used in combination. However, the mechanical strength is not sufficiently improved.
特許文献6には、「カルシウムが0.04〜0.10重量%、スズが0.80〜2.00重量%、アルミニウムが0.01〜0.03重量%、セリウムまたはセリウムとバリウムの合計が0.001〜0.05重量%で、残部が鉛よりなる鉛蓄電池用鉛基合金。」が記載され、この鉛蓄電池用鉛基合金の発明は、「鋳造性は問題の無いレベルに維持されているので連続鋳造や重力鋳造に適している。また、伸びの低下や最大引張強度の向上、過時効における0.2%耐力の低下が少ないこと、さらには腐食減量が低いレベルで抑えられていることから、従来の鉛基合金を基板に用いた鉛蓄電池に比べ格子の腐食の低下、変形の低下および粒界腐食による格子破断の危険の少ないなどによって、電池の使用において長期間格子と活物質の密着が保たれ、高温化での更なる寿命向上が期待できる。」(段落[0024])という効果を奏するものであり、また、「セリウムとバリウムを組み合わせて含有すると、鋳造直後の時効機能を著しく向上させて機械的強度が早期に現れること、またその強度が高いこと、さらにはその強度が長期間保たれるなどの効果がある。」(段落[0010])と記載されているものの、セリウムとバリウムを組み合わせても、機械的強度の向上は十分ではない。 Patent Document 6 states that “0.04 to 0.10% by weight of calcium, 0.80 to 2.00% by weight of tin, 0.01 to 0.03% by weight of aluminum, cerium or the sum of cerium and barium. Is 0.001 to 0.05% by weight, and the balance is lead-based alloy for lead-acid batteries. The invention of this lead-based alloy for lead-acid batteries states that “castability is maintained at a level at which there is no problem. It is suitable for continuous casting and gravity casting, and has a low elongation, improved maximum tensile strength, low 0.2% proof stress during overaging, and low corrosion weight loss. Therefore, compared to conventional lead-acid batteries using a lead-based alloy as a substrate, there is less risk of lattice breakage due to reduced corrosion and deformation of the lattice and lattice breakage due to intergranular corrosion. Active material adhesion Satisfactory life expectancy at higher temperatures can be expected ”(paragraph [0024]), and“ the inclusion of a combination of cerium and barium significantly improves the aging function immediately after casting. The mechanical strength appears early, the strength is high, and the strength is maintained for a long period of time. ”(Paragraph [0010]). Even in combination, mechanical strength is not sufficiently improved.
特許文献7には、「鉛―カルシウム―錫合金からなる正極格子体を備えた鉛蓄電池において、前記格子体は0.01〜0.1wt%のカルシウム、1.0〜2.5wt%の錫およびインジウムを含むことを特徴とする鉛蓄電池。」が記載され、この発明は、「インジウムを加えた正極格子体を用いれば格子体の局部腐食を押さえ、鉛蓄電池の容量の低下を抑制するので、寿命性能の優れた鉛蓄電池を提供できる。」(段落[0017])という効果を奏するものであるが、格子体の機械的強度の向上を目的とするものではない。 Patent Document 7 states that “in a lead storage battery including a positive electrode lattice body made of a lead-calcium-tin alloy, the lattice body is 0.01-0.1 wt% calcium, 1.0-2.5 wt% tin. In the present invention, the use of a positive electrode grid body with indium added suppresses local corrosion of the grid body and suppresses a decrease in the capacity of the lead storage battery. The lead storage battery having excellent life performance can be provided "(paragraph [0017]), but it is not intended to improve the mechanical strength of the lattice.
本発明は、鉛蓄電池格子体用鉛合金である鉛−カルシウム−スズ系鉛合金もしくは鉛−カルシウム−スズ−アルミニウム系鉛合金に種々の元素を添加しても機械的強度の向上が十分ではなく、また、時効硬化に長時間を要するという上記従来技術の課題を解決し、機械的強度が向上し、硬化処理の時間を短縮し、もしくはなくすことができる鉛蓄電池格子体及びその鉛蓄電池格子体に用いる鉛合金を提供することを課題とする。 Even if various elements are added to the lead-calcium-tin-based lead alloy or lead-calcium-tin-aluminum-based lead alloy, which is a lead alloy for lead-acid battery grids, the mechanical strength is not sufficiently improved. Moreover, a lead-acid battery lattice body and the lead-acid battery lattice body that can solve the above-mentioned problems of the prior art that require a long time for age-hardening, improve mechanical strength, and shorten or eliminate the time for curing treatment It is an object of the present invention to provide a lead alloy for use in the manufacturing process.
本発明者は、鉛蓄電池格子体に用いられる公知の鉛−カルシウム−スズ系鉛合金等の鉛合金にイッテルビウム(Yb)を含有させることが鉛蓄電池格子体の機械的強度を向上させるために有効であることを見出し、本発明を完成させたものである。
すなわち、本発明は、鉛蓄電池格子体の機械的強度を向上させるという上記の課題を解決するために、以下のような手段を採用する。
(1)鉛合金を用いた鉛蓄電池格子体において、前記鉛合金が、質量%(以下、同じ)で、イッテルビウムを0.05〜1%含有することを特徴とする鉛蓄電池格子体である。
(2)前記鉛合金が、鉛−カルシウム系鉛合金、鉛−スズ系鉛合金、若しくは鉛−カルシウム−スズ系鉛合金であることを特徴とする前記(1)の鉛蓄電池格子体である。
(3)前記鉛合金が、カルシウム0.10%以下を含有することを特徴とする前記(2)の鉛蓄電池格子体である。
(4)前記鉛合金が、スズ0.3〜2.0%を含有することを特徴とする前記(2)又は(3)の鉛蓄電池格子体である。
(5)前記鉛合金が、さらにアルミニウム0.01〜0.05%を含有することを特徴とする前記(2)〜(4)のいずれか一の鉛蓄電池格子体である。
(6)イッテルビウム0.05〜1%を含有し、残部が鉛及び不可避的不純物からなる鉛蓄電池格子体用鉛合金である。
(7)カルシウム0.10%以下、イッテルビウム0.05〜1%を含有し、残部が鉛及び不可避的不純物からなる鉛蓄電池格子体用鉛合金である。
(8)スズ0.3〜2.0%、イッテルビウム0.05〜1%を含有し、残部が鉛及び不可避的不純物からなる鉛蓄電池格子体用鉛合金である。
(9)カルシウム0.10%以下、スズ0.3〜2.0%、イッテルビウム0.05〜1%を含有し、残部が鉛及び不可避的不純物からなる鉛蓄電池格子体用鉛合金である。
(10)さらにアルミニウム0.01〜0.05%を含有する前記(6)〜(9)のいずれか一の鉛蓄電池格子体用鉛合金である。
The present inventor is effective in improving the mechanical strength of a lead storage battery grid by including ytterbium (Yb) in a lead alloy such as a known lead-calcium-tin lead alloy used in the lead storage battery grid. The present invention has been found and completed.
That is, the present invention employs the following means in order to solve the above-described problem of improving the mechanical strength of the lead-acid battery grid.
(1) A lead storage battery grid using a lead alloy, wherein the lead alloy contains 0.05 to 1% ytterbium in mass% (hereinafter the same).
(2) The lead storage battery grid according to (1), wherein the lead alloy is a lead-calcium lead alloy, a lead-tin lead alloy, or a lead-calcium-tin lead alloy.
(3) The lead storage battery grid according to (2), wherein the lead alloy contains 0.10% or less of calcium.
(4) The lead storage battery grid according to (2) or (3), wherein the lead alloy contains 0.3 to 2.0% tin.
(5) The lead storage battery grid according to any one of (2) to (4), wherein the lead alloy further contains 0.01 to 0.05% of aluminum.
(6) A lead alloy for lead-acid battery grids containing 0.05 to 1% ytterbium, with the balance being lead and inevitable impurities.
(7) A lead alloy for lead-acid battery grids containing not more than 0.10% calcium and 0.05 to 1% ytterbium, with the balance being composed of lead and inevitable impurities.
(8) A lead alloy for lead-acid battery grids containing 0.3 to 2.0% tin and 0.05 to 1% ytterbium, with the balance being lead and inevitable impurities.
(9) A lead alloy for lead-acid battery grids containing 0.10% or less of calcium, tin of 0.3 to 2.0%, ytterbium of 0.05 to 1%, and the balance consisting of lead and inevitable impurities.
(10) The lead alloy for a lead storage battery grid according to any one of (6) to (9), further containing 0.01 to 0.05% of aluminum.
本発明によれば、鉛蓄電池格子体の機械的強度が向上し、硬化処理の時間が短縮され、もしくは必要なくなるため、格子体の製造時間が短縮され、生産性が向上するという効果を奏する。 According to the present invention, the mechanical strength of the lead-acid battery grid body is improved, and the time for the curing process is shortened or no longer required. Therefore, the manufacturing time of the grid body is shortened and the productivity is improved.
本発明は、鉛−カルシウム−スズ系鉛合金等の公知の鉛蓄電池格子用鉛合金に対してイッテルビウム(Yb)を含有させ、鉛蓄電池格子体とすることを特徴とし、これによりYbを含有しない鉛蓄電池格子体と比較して機械的強度を向上させるものである。 The present invention is characterized in that ytterbium (Yb) is contained in a known lead alloy for lead-acid battery grids such as lead-calcium-tin-based lead alloys to form a lead-acid battery grid, thereby not containing Yb. Compared with the lead-acid battery grid, the mechanical strength is improved.
Ybの含有量は0.05〜1%が好ましい。
Ybが0.05%未満では、図1に示すように、機械的強度(抗張力)向上の効果が十分ではない。
また、1%を超えると、図1及び図2に示すように、機械的強度の向上は飽和し、伸びが次第に低下してくる。これは、金属間化合物Pb3Ybが合金中に過剰に生成し、脆くなったためと推定される。さらに、Ybは価格が高く、多量に添加すると、鋳造が困難になるといった問題があるため、1%以下が好ましい。
The content of Yb is preferably 0.05 to 1%.
If Yb is less than 0.05%, as shown in FIG. 1, the effect of improving the mechanical strength (tensile strength) is not sufficient.
If it exceeds 1%, as shown in FIGS. 1 and 2, the improvement in mechanical strength is saturated, and the elongation gradually decreases. This is presumably because the intermetallic compound Pb 3 Yb was excessively generated in the alloy and became brittle. Furthermore, Yb is expensive, and if added in a large amount, there is a problem that casting becomes difficult, so 1% or less is preferable.
図1及び図2に、PbにYb、Mg、Ba、Bi、Ce、Ca、Sbを含有させた合金の機械的強度(抗張力)、伸びを比較して示す。
図1及び図2より、PbにMgと同量のYbを含有させた場合は、含有量の少ない範囲では、Ybを含有させたPb−Yb合金の方が、Mgを含有させたPb−Mg合金よりも機械的強度(抗張力)が大きく、伸びも良いことが分かる。
FIG. 1 and FIG. 2 show a comparison of mechanical strength (tensile strength) and elongation of alloys containing Yb, Mg, Ba, Bi, Ce, Ca, and Sb in Pb.
1 and 2, when Pb contains the same amount of Yb as Mg, the Pb—Yb alloy containing Yb is more Pb—Mg containing Mg in the range where the content is small. It can be seen that the mechanical strength (tensile strength) is higher than that of the alloy and the elongation is good.
PbにBaは0.023原子%(0.015質量%)までしか含有させることができない(特許文献1及び2参照)が、この範囲においては、Pb−Yb合金の方が、Pb−Ba合金よりも機械的強度が大きい。
Ba can contain only 0.023 atomic% (0.015 mass%) in Pb (see
図1及び図2より、PbにYbを含有させたPb−Yb合金は、PbにBi、Ceを含有させたPb−Bi合金、Pb−Ce合金よりも伸びはやや劣るが、機械的強度が大きいのがわかる。 1 and 2, the Pb—Yb alloy containing Yb in Pb is slightly inferior to the Pb—Bi alloy and Pb—Ce alloy containing Bi and Ce in Pb, but the mechanical strength is low. I can see it's big.
また、Pb−Yb合金は、Pb−Sb合金よりも伸びはやや劣るが、Yb、Sbの含有量の少ない範囲では、機械的強度が大きいのがわかる。 The Pb—Yb alloy is slightly inferior in elongation to the Pb—Sb alloy, but it can be seen that the mechanical strength is large in the range where the contents of Yb and Sb are small.
図1及び図2からみると、Pb−Yb合金は、機械的強度(抗張力)、伸びについて、Caを含有させたPb−Ca合金には及ばないが、図3に示すように、Pb−Ca(−Sn−Al)合金より結晶粒が微細化し、粒界が複雑になるため、Pb−Ca合金で見られるような、格子体が突然破断して寿命になるといったことは生じにくいと考えられる。 From FIG. 1 and FIG. 2, the Pb—Yb alloy is less than the Pb—Ca alloy containing Ca in mechanical strength (tensile strength) and elongation, but as shown in FIG. Since the crystal grains are finer than (-Sn-Al) alloy and the grain boundary is complicated, it is considered unlikely that the lattice body suddenly breaks and has a lifetime as seen in Pb-Ca alloys. .
本発明において、Caを含有させるのは、機械的強度(抗張力)を向上させるためであるが、その含有量は0.10%以下が好ましい。
Caを含有させることによる抗張力の確保をYbにさせることができるため、寿命性能に悪影響を及ぼすCaを含有させないことができ、また、含有させる場合でも、0.10%以下にすることができる。
In the present invention, Ca is contained to improve mechanical strength (tensile strength), but the content is preferably 0.10% or less.
Since Yb can ensure the tensile strength by containing Ca, Ca that adversely affects the life performance can be prevented from being contained, and even when contained, it can be made 0.10% or less.
Snを含有させるのは、合金の湯流れ性や機械的強度を向上させるためであるが、その含有量は0.3〜2.0%が好ましい。0.3〜1.8%がより好ましい。
Snが0.3%未満の場合にはその効果が十分ではなく、また、2.0%を超えた場合にはSn量の増加とともに耐食性が劣り好ましくない。
Sn is added to improve the flowability and mechanical strength of the alloy, but the content is preferably 0.3 to 2.0%. 0.3 to 1.8% is more preferable.
When Sn is less than 0.3%, the effect is not sufficient, and when it exceeds 2.0%, corrosion resistance is inferior with an increase in Sn content, which is not preferable.
Alは、溶湯の酸化によるCa、Ybの損失を防止するために、必要により含有させるが、その含有量は0.01〜0.05%が好ましい。
0.01%未満の場合にはその効果が十分ではなく、また、0.05%を超えた場合には上記の効果が顕著に現れないためである。
Al is contained as necessary in order to prevent loss of Ca and Yb due to oxidation of the molten metal, but the content is preferably 0.01 to 0.05%.
This is because the effect is not sufficient when the content is less than 0.01%, and the above effect does not appear remarkably when the content exceeds 0.05%.
さらに、本発明の鉛蓄電池格子体に用いる鉛合金には、耐食性を向上させ、機械的強度をさらに向上させるために、必要により、上記以外の元素を含有させることもできる。 Furthermore, in order to improve corrosion resistance and further improve mechanical strength, the lead alloy used in the lead-acid battery grid of the present invention can contain elements other than those described above as necessary.
本発明においては、鉛合金を上記の組成としたことによって鉛蓄電池格子体の機械的強度が向上し、また、格子体を作製する場合に、鋳造性はほとんど損なわれないため重力鋳造や連続鋳造に適しており、さらに、エキスパンド加工も可能である。 In the present invention, the mechanical strength of the lead-acid battery grid body is improved by making the lead alloy into the above composition, and when producing the grid body, the castability is hardly impaired, so that gravity casting or continuous casting is performed. Furthermore, it can be expanded.
そして、本発明の格子体を用いた鉛蓄電池は、格子体の機械的強度が向上するために、サイクル特性の優れたものとなる。 And the lead acid battery using the grid body of the present invention has excellent cycle characteristics because the mechanical strength of the grid body is improved.
表1の量となるようにCa、Sn、Al及びYbを含有させた鉛合金を溶解温度470℃で溶融し、鋳型温度170℃で鋳造し、引張試験用サンプルNo.1〜18を得た。
サンプル形状:引張試験片(JIS Z 2201規定の6号試験片)
Lead alloys containing Ca, Sn, Al, and Yb so as to have the amounts shown in Table 1 were melted at a melting temperature of 470 ° C. and cast at a mold temperature of 170 ° C. to obtain tensile test samples No. 1 to 18 .
Sample shape: Tensile specimen (No. 6 specimen according to JIS Z 2201)
以下の条件で、引張試験を行い、上記サンプルの抗張力を測定した。抗張力の測定結果を表1に併記する。
引張試験条件:引張速度 30mm/min、硬化時間 25日、硬化温度 室温(25℃)
A tensile test was performed under the following conditions to measure the tensile strength of the sample. The measurement results of tensile strength are also shown in Table 1.
Tensile test conditions:
表1より、0.1〜1%のYbを含有させたPb−Yb合金の格子体(サンプルNo.3〜5)は、図1に示された現行の低Sb(1.85〜2.45%)−Pb合金の格子体と同程度の抗張力を有することが分かる。
Ybの含有量がサンプルNo.1のように0.01%程度(0.05%未満)では抗張力が低いから、0.05%(サンプルNo.2)以上とすることが好ましい。サンプルNo.6のように3%になる(1%を超える)と、抗張力も減少し、伸びも小さくなるから、1%以下とすることが好ましい。
また、Pb−0.06Ca−1.5Sn合金では約450kgf/cm2、Pb−0.09Ca−1.2Sn合金では約550kgf/cm2であり(時効硬化25日)、Yb単独の添加では、現行のPb−Ca−Sn合金の抗張力(比較例1及び2)に到達しないが、Pb−Ca合金で抗張力を高くしているのは腐食による格子体の伸びを抑えショート防止を図るためであり、Pb−Ca合金の腐食の原因となるCaを減らすことができるならば、Pb−Ca合金レベルの抗張力は必要ないと考えられる。
すなわち、Caの含有量を少なくすると抗張力は低下するが、腐食の原因となるCaを少なくできるので、本発明のPb−Yb合金としては、実際に使用されている図1に示されたPb−Sb合金と同レベルの抗張力を有するもので十分である。
Caは必要に応じて添加すればよいものであり、Ybと共にCaを0.01〜0.09%含有させると抗張力が向上する(サンプルNo.7〜11)のが分かる。
さらに、Snを0.3〜2.0%含有させると抗張力が向上する(サンプルNo.13〜18)。
From Table 1, the Pb—Yb alloy lattice (sample Nos. 3 to 5) containing 0.1 to 1% of Yb is the current low Sb (1.85 to 2.5) shown in FIG. It can be seen that it has a tensile strength comparable to that of the lattice body of 45%)-Pb alloy.
When the Yb content is about 0.01% (less than 0.05%) as in sample No. 1, the tensile strength is low, so 0.05% (sample No. 2) or more is preferable. When it is 3% (exceeding 1%) as in sample No. 6, the tensile strength is reduced and the elongation is also reduced.
In addition, the Pb-0.06Ca-1.5Sn alloy is about 450 kgf / cm 2 , the Pb-0.09Ca-1.2Sn alloy is about 550 kgf / cm 2 (age hardening 25 days), and with the addition of Yb alone, Although the tensile strength (comparative examples 1 and 2) of the current Pb-Ca-Sn alloy is not reached, the tensile strength is increased with the Pb-Ca alloy in order to prevent the lattice body from being stretched by corrosion and to prevent short circuit. If the Ca that causes corrosion of the Pb—Ca alloy can be reduced, it is considered that the tensile strength at the Pb—Ca alloy level is not necessary.
That is, if the Ca content is reduced, the tensile strength is lowered, but Ca that causes corrosion can be reduced. Therefore, the Pb—Yb alloy of the present invention is actually used as the Pb— shown in FIG. Those having the same level of tensile strength as the Sb alloy are sufficient.
Ca can be added as necessary, and it can be seen that when 0.01 to 0.09% of Ca is contained together with Yb, the tensile strength is improved (Sample Nos. 7 to 11).
Furthermore, when Sn is contained in an amount of 0.3 to 2.0%, the tensile strength is improved (Sample Nos. 13 to 18).
実施例においては、AlをCa、Ybの酸化ロス防止作用のために、0.02%添加したが、Alは抗張力に影響を与えるものではないから、Alを添加しないPb−Yb合金、Pb−Ca−Yb合金、Pb−Sn−Yb合金、Pb−Ca−Sn−Yb合金についても同様に抗張力向上の効果がある。 In the examples, Al was added in an amount of 0.02% to prevent the oxidation loss of Ca and Yb. However, since Al does not affect the tensile strength, a Pb—Yb alloy without addition of Al, Pb— Ca-Yb alloy, Pb-Sn-Yb alloy, and Pb-Ca-Sn-Yb alloy also have the effect of improving tensile strength.
Claims (10)
Furthermore, the lead alloy for lead acid battery lattice bodies as described in any one of Claims 6-9 containing 0.01 to 0.05% of aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263176A JP2006079951A (en) | 2004-09-10 | 2004-09-10 | Lead-acid storage battery grid body and lead alloy for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263176A JP2006079951A (en) | 2004-09-10 | 2004-09-10 | Lead-acid storage battery grid body and lead alloy for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006079951A true JP2006079951A (en) | 2006-03-23 |
Family
ID=36159226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004263176A Pending JP2006079951A (en) | 2004-09-10 | 2004-09-10 | Lead-acid storage battery grid body and lead alloy for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006079951A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306801A (en) * | 2011-03-17 | 2012-01-04 | 肇庆理士电源技术有限公司 | Grid arrangement of lead-acid storage battery |
CN110423917A (en) * | 2018-07-31 | 2019-11-08 | 荷贝克电池有限责任及两合公司 | Metal, electrode and battery |
CN113540701A (en) * | 2021-06-28 | 2021-10-22 | 天能电池集团股份有限公司 | Lead storage battery wiring terminal and preparation method thereof |
CN115418527A (en) * | 2022-08-22 | 2022-12-02 | 铅锂智行(北京)科技有限公司 | Grid alloy of lead-acid storage battery |
-
2004
- 2004-09-10 JP JP2004263176A patent/JP2006079951A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306801A (en) * | 2011-03-17 | 2012-01-04 | 肇庆理士电源技术有限公司 | Grid arrangement of lead-acid storage battery |
CN102306801B (en) * | 2011-03-17 | 2014-01-01 | 肇庆理士电源技术有限公司 | Grid arrangement of lead-acid storage battery |
CN110423917A (en) * | 2018-07-31 | 2019-11-08 | 荷贝克电池有限责任及两合公司 | Metal, electrode and battery |
EP3604576A1 (en) * | 2018-07-31 | 2020-02-05 | HOPPECKE Batterien GmbH & Co. KG. | Lead alloy, electrode and accumulator |
EP3604577A1 (en) * | 2018-07-31 | 2020-02-05 | HOPPECKE Batterien GmbH & Co. KG. | Lead alloy, electrode and accumulator |
US10669612B2 (en) * | 2018-07-31 | 2020-06-02 | Hoppecke Batterien Gmbh & Co. Kg | Lead alloy, electrode and accumulator |
CN113540701A (en) * | 2021-06-28 | 2021-10-22 | 天能电池集团股份有限公司 | Lead storage battery wiring terminal and preparation method thereof |
CN113540701B (en) * | 2021-06-28 | 2023-08-04 | 天能电池集团股份有限公司 | Lead storage battery wiring terminal and preparation method thereof |
CN115418527A (en) * | 2022-08-22 | 2022-12-02 | 铅锂智行(北京)科技有限公司 | Grid alloy of lead-acid storage battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4160856B2 (en) | Lead-based alloy for lead-acid battery and lead-acid battery using the same | |
CN101675175B (en) | Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries | |
JP5322423B2 (en) | Method for producing lead-based alloy substrate for lead battery | |
JP4148175B2 (en) | Lead alloy and lead storage battery using the same | |
CN110777282A (en) | Lead alloy, electrode and storage battery | |
JP3987370B2 (en) | Positive electrode plate for lead acid battery and lead acid battery using the same | |
JP5207708B2 (en) | Method for producing lead-based alloy substrate for lead battery | |
JP2006079951A (en) | Lead-acid storage battery grid body and lead alloy for it | |
JP2000077076A (en) | Lead base alloy for storage battery | |
JP2002175798A (en) | Sealed lead-acid battery | |
JP3113895B2 (en) | Lead alloy for storage battery | |
JP2008130231A (en) | Positive electrode grid for lead acid storage battery and lead acid storage battery | |
JP2720029B2 (en) | Lead alloy for storage battery | |
JP6601654B2 (en) | Control valve type lead acid battery | |
JP4093749B2 (en) | Lead-based alloys for lead-acid batteries | |
JP4502346B2 (en) | Lead-based alloys for lead-acid batteries | |
JP4868847B2 (en) | Lead acid battery | |
JP4430227B2 (en) | Lead-based alloys for lead-acid batteries | |
JP2003221633A (en) | Lead-based alloy for lead storage battery | |
JP2005044760A (en) | Manufacturing method of lead-acid storage battery positive electrode plate lattice | |
JP4248446B2 (en) | Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate | |
JP2003151562A (en) | Lead-base alloy for lead storage battery | |
JP2002329498A (en) | Lead-based alloy for lead storage battery | |
JP2002329499A (en) | Lead-based alloy for lead storage battery | |
JPS63141263A (en) | Lead-base alloy for storage battery |