JP2011046569A - Method for producing diborane - Google Patents

Method for producing diborane Download PDF

Info

Publication number
JP2011046569A
JP2011046569A JP2009197316A JP2009197316A JP2011046569A JP 2011046569 A JP2011046569 A JP 2011046569A JP 2009197316 A JP2009197316 A JP 2009197316A JP 2009197316 A JP2009197316 A JP 2009197316A JP 2011046569 A JP2011046569 A JP 2011046569A
Authority
JP
Japan
Prior art keywords
diborane
boron
reaction
sodium borohydride
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197316A
Other languages
Japanese (ja)
Other versions
JP5373508B2 (en
Inventor
Nobuyuki Kitagishi
信之 北岸
Junichi Sakamoto
純一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2009197316A priority Critical patent/JP5373508B2/en
Publication of JP2011046569A publication Critical patent/JP2011046569A/en
Application granted granted Critical
Publication of JP5373508B2 publication Critical patent/JP5373508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high purity diborane having a low higher-order borane content and useful as a dopant and a BPSG (boron phosphor silicate glass) insulating film-forming material in semiconductor manufacturing and solar cell manufacturing, and as a rocket propellant and the like in an easy and inexpensive way in good yield. <P>SOLUTION: The method for producing diborane includes reacting a sodium borohydride with a trihalogenated boron in an atmosphere of an inert gas having hydrogen concentration of 0.01-50 vol.% in the presence of a solvent. Ultrahigh purity diborane required in semiconductor use and the like can be produced industrially efficiently. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体製造や太陽電池製造におけるドーパントやBPSG絶縁膜形成材料およびロケット推進薬等として有用なジボランの製造方法に関する。   The present invention relates to a method for producing diborane useful as a dopant, a BPSG insulating film forming material, a rocket propellant or the like in semiconductor production or solar cell production.

ジボランの製造方法としては、三塩化ホウ素や三フッ化ホウ素の還元による方法が知られ、ソジウムボロハイドライドと三塩化ホウ素からジボランを得る方法が、提案されている(特許文献1、特許文献2)。しかしながら、ジボラン分子(B)は、重合しやすく、高次ボラン(例えば、B10、B、B11等)を生成する性質を有することから、ジボランの製造において、高次ボランが生成して純度が低下する場合がある。特に、半導体製造用の材料に適したホウ素源として、超高純度のジボランが求められる場合には、ジボランの製造後、引き続き、精製する必要があるが、蒸留精製に要する負荷が大きくなることや収率が低下するなどの不具合がある。そこで、高次ボラン含有量が低く、純度の高いジボランが得られる製造方法の開発が望まれている。 As a method for producing diborane, a method by reduction of boron trichloride or boron trifluoride is known, and methods for obtaining diborane from sodium borohydride and boron trichloride have been proposed (Patent Documents 1 and 2). ). However, since diborane molecules (B 2 H 6 ) are easily polymerized and have the property of producing higher-order boranes (eg, B 4 H 10 , B 5 H 9 , B 5 H 11, etc.), production of diborane In this case, higher-order borane may be generated to lower the purity. In particular, when ultra-high-purity diborane is required as a boron source suitable for semiconductor manufacturing materials, it is necessary to continue purification after the production of diborane. There are problems such as a decrease in yield. Therefore, development of a production method that can obtain diborane having a low high-order borane content and high purity is desired.

米国特許第3142538号明細書US Pat. No. 3,142,538 特開平3−197301号公報Japanese Patent Laid-Open No. 3-197301

本発明は、簡便で安価な方法により、高次ボラン含量が低く、純度の高いジボランを収率よく製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing diborane having a low high-order borane content and high purity in a high yield by a simple and inexpensive method.

本発明は、ソジウムボロハイドライドと、三ハロゲン化ホウ素とを、溶媒の存在下、水素濃度が0.01〜50vol%である不活性ガスの雰囲気で反応させる、ジボランの製造方法に関する。   The present invention relates to a method for producing diborane, in which sodium borohydride and boron trihalide are reacted in an inert gas atmosphere having a hydrogen concentration of 0.01 to 50 vol% in the presence of a solvent.

本発明にかかるソジウムボロハイドライドと、三ハロゲン化ホウ素とからジボランを得る反応は、ソジウムボロハイドライド1モルに対して、三ハロゲン化ホウ素0.12〜0.16モルを反応温度−10〜40℃で、反応させる第1の反応工程と、三ハロゲン化ホウ素0.17〜0.21モルを反応温度20〜60℃で、反応させる第2の反応工程とからなることが好ましい。   In the reaction for obtaining diborane from the sodium borohydride and boron trihalide according to the present invention, 0.12 to 0.16 mol of boron trihalide is added at a reaction temperature of -10 to 0.1 mol per 1 mol of sodium borohydride. It preferably comprises a first reaction step for reacting at 40 ° C. and a second reaction step for reacting 0.17 to 0.21 mol of boron trihalide at a reaction temperature of 20 to 60 ° C.

前記第1の反応工程における反応温度は、−10〜40℃であり、0〜40℃であることが好適である。反応時間としては、例えば、1〜2時間とするのが好ましい。   The reaction temperature in the first reaction step is −10 to 40 ° C., and preferably 0 to 40 ° C. As reaction time, it is preferable to set it as 1-2 hours, for example.

前記第2の反応工程における反応温度は、20〜60℃であり、30〜50℃であることが好適である。反応時間としては、例えば、1〜6時間とするのが好ましい。   The reaction temperature in the second reaction step is 20 to 60 ° C, and preferably 30 to 50 ° C. The reaction time is preferably 1 to 6 hours, for example.

前記三ハロゲン化ホウ素は、例えば、三塩化ホウ素、三フッ化ホウ素および三臭化ホウ素等が挙げられる。これらの中でも、三塩化ホウ素および三フッ化ホウ素である場合が好ましい。   Examples of the boron trihalide include boron trichloride, boron trifluoride, and boron tribromide. Of these, boron trichloride and boron trifluoride are preferred.

本発明にかかる第1の反応工程および第2の反応工程は、三ハロゲン化ホウ素が三塩化ホウ素である場合、それぞれ、下式(1)、(2)の反応式で表されるものと考えられる。   When the boron trihalide is boron trichloride, the first reaction step and the second reaction step according to the present invention are considered to be represented by the following reaction formulas (1) and (2), respectively. It is done.

7NaBH+BCl→4NaB+3NaCl (1)
6NaB+2BCl→7B+6NaCl (2)
即ち、式(1)で表される第1の発熱反応と式(2)で表される第2の吸熱反応により、2工程に分けて反応を行えば、目的とするジボランを収率よく、高純度で得られるので好適である。
7NaBH 4 + BCl 3 → 4NaB 2 H 7 + 3NaCl (1)
6NaB 2 H 7 + 2BCl 3 → 7B 2 H 6 + 6NaCl (2)
That is, if the reaction is carried out in two steps by the first exothermic reaction represented by the formula (1) and the second endothermic reaction represented by the formula (2), the target diborane is obtained in a high yield, It is suitable because it is obtained with high purity.

本発明にかかるソジウムボロハイドライドと、三ハロゲン化ホウ素との反応に用いられる溶媒としては、例えば、ジグライムおよびトリグライム等のエチレングリコールジメチルエーテル化合物が挙げられる。これらの中でも、ジグライムおよびトリグライムが好ましく用いられる。   Examples of the solvent used in the reaction of the sodium borohydride according to the present invention with boron trihalide include ethylene glycol dimethyl ether compounds such as diglyme and triglyme. Among these, diglyme and triglyme are preferably used.

前記溶媒の使用量としては、例えば、ソジウムボロハイドライド1kgに対して、8〜30Lであることが好ましく、10〜18Lであることがより好ましい。   As the usage-amount of the said solvent, it is preferable that it is 8-30L with respect to 1 kg of sodium borohydride, for example, and it is more preferable that it is 10-18L.

前記溶媒の使用量が、ソジウムボロハイドライド1kgに対して、8L未満の場合、ソジウムボロハイドライドが、十分に溶解せず、反応しにくくなるおそれがあり、30Lを超える場合、容積効率が低く経済的でない。   When the amount of the solvent used is less than 8 L with respect to 1 kg of sodium borohydride, the sodium borohydride may not be sufficiently dissolved and may become difficult to react. When it exceeds 30 L, volume efficiency is low. Not economical.

前記不活性ガスとしては、例えば、窒素、ヘリウムおよびアルゴン等が挙げられる。これらの中でも、窒素およびヘリウムが好ましく、窒素がより好ましく用いられる。   Examples of the inert gas include nitrogen, helium, and argon. Among these, nitrogen and helium are preferable, and nitrogen is more preferably used.

本発明にかかる水素ガスと前記不活性ガスとの混合ガス中における水素ガスの濃度は、0.01〜50vol%であり、1〜30vol%であることが好ましい。混合ガス中の水素濃度が、0.01vol%未満である場合、高次ジボランの生成が抑制されにくく、50vol%を超える場合、使用量に見合う効果がなく経済的でない。   The density | concentration of the hydrogen gas in the mixed gas of the hydrogen gas concerning this invention and the said inert gas is 0.01-50 vol%, and it is preferable that it is 1-30 vol%. When the hydrogen concentration in the mixed gas is less than 0.01 vol%, the formation of higher-order diborane is difficult to suppress, and when it exceeds 50 vol%, there is no effect commensurate with the amount used and it is not economical.

次に、本発明の実施態様について、具体的に説明する。   Next, embodiments of the present invention will be specifically described.

ガス吹込み管,撹拌器および還流冷却器を備えたステンレス製の反応容器に、所定量の溶媒およびソジウムボロハイドライドを仕込み、所定濃度の水素含有不活性ガスを冷却下(例えば、30℃以下)に液相に吹き込んで反応系内を置換する。次に、所定濃度の水素含有不活性ガスを用いて加圧状態(例えば、0.03MPaG)とし、所定の反応温度に保って、第1反応を行なう。この場合、未溶解のソジウムボロハイドライドが、懸濁状態を示す場合もあるが、そのまま、三ハロゲン化ホウ素の吹き込みを始め、所定量を添加して停止する。第1の反応工程は1〜2時間で完結するのがよい。時間が長くなるとメタン生成等の副反応等が起こって、収率や純度を向上する上で好ましくない。   A stainless steel reaction vessel equipped with a gas blowing tube, a stirrer, and a reflux condenser is charged with a predetermined amount of solvent and sodium borohydride, and a predetermined concentration of hydrogen-containing inert gas is cooled (for example, 30 ° C. or less) B) into the liquid phase to replace the reaction system. Next, a pressurized state (for example, 0.03 MPaG) is set using a hydrogen-containing inert gas having a predetermined concentration, and the first reaction is performed while maintaining a predetermined reaction temperature. In this case, undissolved sodium borohydride may show a suspended state, but as it is, blowing of boron trihalide is started, and a predetermined amount is added and stopped. The first reaction step is preferably completed in 1 to 2 hours. If the time is long, side reactions such as methane formation occur, which is not preferable for improving yield and purity.

第1反応において、少量のメタンや塩化メチル等のガスが発生するため、次の第2の反応工程に先立って、所定濃度の水素含有不活性ガスを用いて反応系内から排出させる。   Since a small amount of gas such as methane or methyl chloride is generated in the first reaction, the hydrogen-containing inert gas having a predetermined concentration is discharged from the reaction system prior to the next second reaction step.

所定濃度の水素含有不活性ガスによって、前述の副生ガスを含むガス成分をパージ後、引き続き、所定濃度の水素含有不活性ガスを用いて加圧状態(例えば、0.04MPaG)とし、所定の反応温度まで上げ、所定量の三ハロゲン化ホウ素を吹き込んで第2の反応工程を行なう。   After purging the gas component containing the by-product gas with a hydrogen-containing inert gas having a predetermined concentration, the hydrogen-containing inert gas having a predetermined concentration is subsequently used to be pressurized (for example, 0.04 MPaG). The temperature is raised to the reaction temperature, and a predetermined amount of boron trihalide is blown into the second reaction step.

第2の反応工程の三ハロゲン化ホウ素の吹き込みにともなって、反応液中にジボランが生成する。かくして得られたジボランは、水素含有不活性ガスとともに、例えば、液体窒素を用いて約−196℃に冷却されたコールドトラップに導き、ジボランを凝縮、固化させることにより単離することができる。   As the boron trihalide is blown in the second reaction step, diborane is generated in the reaction solution. The diborane thus obtained can be isolated by condensing and solidifying the diborane together with a hydrogen-containing inert gas, for example, in a cold trap cooled to about −196 ° C. using liquid nitrogen.

このようにして得られたジボランは、従来法で得られたものと比べて、高次ボラン含有量は低く、高い純度を有し、その結果、後述する蒸留精製における負荷を低減し、収率を高めることができる。   The diborane obtained in this way has a lower high-order borane content and higher purity than those obtained by the conventional method. Can be increased.

本発明にかかる製造方法によって得られたジボランは、例えば、次のような方法で精製するとよい。   For example, diborane obtained by the production method according to the present invention may be purified by the following method.

即ち、上記のようにして得られたジボランをリボイラーでガス化し、次いで均一な細孔を持つ吸着剤を充填した充填塔で、ジボランと沸点が近接するCOやC等の不純物を吸着除去するとともに、還流液と向流接触させた後、塔上部に付設したコンデンサーで凝縮し、還流させることで精製することができる。 That is, the diborane obtained as described above is gasified with a reboiler, and then impurities such as CO 2 and C 2 H 6 that have a boiling point close to that of diborane are packed in a packed tower packed with an adsorbent having uniform pores. It can be purified by adsorbing and removing, condensing with refluxing liquid, condensing with a condenser attached to the upper part of the tower, and refluxing.

前記吸着剤としては、シリカゲル、ゼオライトモレキュラーシーブおよび活性アルミナ等が挙げられるが、ジボランの品質に影響を及ぼさないものがよく、ゼオライトモレキュラーシーブが好適に用いられる。   Examples of the adsorbent include silica gel, zeolite molecular sieve, activated alumina, and the like, but those that do not affect the quality of diborane are good, and zeolite molecular sieve is preferably used.

蒸留の圧力は0.01〜1.5MPaGであることが好ましい。0.01MPaG未満の場合、外気の漏れこみ等、安全上の問題を生じるおそれがあり、1.5MPaGを超える場合、装置の安全設計にコストがかかり経済的ではない。   The distillation pressure is preferably 0.01 to 1.5 MPaG. If it is less than 0.01 MPaG, there is a risk of causing safety problems such as leakage of outside air. If it exceeds 1.5 MPaG, the safety design of the apparatus is costly and not economical.

また、蒸留温度は、前記圧力に対応して定まり、−90〜−20℃であることが好ましい。   The distillation temperature is determined according to the pressure and is preferably -90 to -20 ° C.

本発明により、簡便で安価な方法により、高次ボラン含量が低く、純度の高いジボランを収率よく製造することができる。例えば、半導体用途などで要求される超高純度ジボランを工業的に効率よく製造することができる。   According to the present invention, diborane having a low high-order borane content and high purity can be produced with high yield by a simple and inexpensive method. For example, ultra-high purity diborane required for semiconductor applications can be industrially efficiently produced.

以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例のみに何ら限定されるものでない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
反応器出口に−50℃に冷却した還流冷却器を備え、その後に約−78℃に冷却した第1コールドトラップおよび約−196℃に冷却した第2コールドトラップを備えた内容積10LのSUS304製電磁撹拌式の反応器を用意した。
Example 1
Made of SUS304 with an internal volume of 10 L equipped with a reflux condenser cooled to −50 ° C. at the outlet of the reactor, followed by a first cold trap cooled to about −78 ° C. and a second cold trap cooled to about −196 ° C. An electromagnetic stirring type reactor was prepared.

前記反応器に、トリグライム6Lを仕込み、さらに粉末状のソジウムボロハイドライド500g(13.2モル)を加え、1vol%水素含有窒素ガスを、10L/分で吹き込みながら、内容液を25℃にした。   The reactor was charged with 6 L of triglyme, 500 g (13.2 mol) of powdered sodium borohydride was added, and the content liquid was brought to 25 ° C. while blowing 1 vol% hydrogen-containing nitrogen gas at 10 L / min. .

次に、前記反応器の内容液中に、ガス状の三塩化ホウ素221.0g(1.89モル)を、流量計を用いて、1時間かけて吹き込み、第1の反応工程を行った。反応は発熱反応であり、少量のメタン含むガスが発生した。   Next, 221.0 g (1.89 mol) of gaseous boron trichloride was blown into the content liquid of the reactor over a period of 1 hour using a flow meter to perform the first reaction step. The reaction was exothermic and a small amount of methane-containing gas was generated.

次に、反応系内を1vol%水素含有窒素ガスで置換した後、昇温して反応液温を40℃とし、三塩化ホウ素294.6g(2.51モル)を1.5時間かけて吹き込み第2反応を行った。   Next, after replacing the inside of the reaction system with nitrogen gas containing 1 vol% hydrogen, the temperature was raised to 40 ° C., and 294.6 g (2.51 mol) of boron trichloride was blown in over 1.5 hours. A second reaction was performed.

全量の三塩化ホウ素を吹き込んだ後も、さらに40℃にて3時間、1vol%水素含有窒素ガスの吹き込みを継続し、生成するジボランの発生を完結させた。前記第2コールドトラップに捕集されたジボランのソジウムボロハイドライドに対する収率、純度および高次ボラン含量を表1に示す。   After blowing all the amount of boron trichloride, blowing of nitrogen gas containing 1 vol% hydrogen was further continued at 40 ° C. for 3 hours to complete generation of diborane to be generated. Table 1 shows the yield, purity, and high-order borane content of diborane collected in the second cold trap with respect to sodium borohydride.

得られたジボランを気化させた後、内径31mmφ、有効長さ1000mmのSUS316管に、吸着剤としてゼオライト モレキュラーシーブ(東ソー株式会社製ゼオラム4A(平均細孔径4Å))を充填したカラムを用い、吸着低温蒸留精製を行った。   After the obtained diborane was vaporized, a SUS316 tube having an inner diameter of 31 mmφ and an effective length of 1000 mm was adsorbed using a column packed with zeolite molecular sieve (Zeoram 4A (average pore diameter 4 mm) manufactured by Tosoh Corporation) as an adsorbent. Low temperature distillation purification was performed.

ゼオラム4Aは予め1.6mmφ×5〜7mmの押出円柱品を、400℃でヘリウム気流中で、4時間焼成したものを700ml充填した。原料ガスを導入する前に、全系を1vol%水素含有窒素ガスで置換し、無酸素状態にした。その後、リボイラーのジャケットを液体窒素で冷却しながら、前述で得られたジボランを仕込み、コンデンサーを−80℃、充填塔を−76℃に冷却した。リボイラーの温度を徐々に昇温し、ジボランを蒸発させた。昇温方法はリボイラーの冷媒を液体窒素からドライアイスメタノール液に切替え、これにメタノールを添加することにより約−71℃に温度調節しながら、前記ジボランを蒸発させ、精留を行った。この時の蒸留圧力は0.15MPaGに保った。全還流運転を実施した後、コンデンサー頂部に濃縮した低沸点ガスを放出し、精製された液化ジボランを分析し、メタン濃度が10ppm以下になった時点で精製ジボランとして回収した。精製ジボランのソジウムボロハイドライドに対する収率、純度および高次ボラン含量を表1に示す。   ZEOLAM 4A was previously filled with 700 ml of an extruded cylindrical product having a diameter of 1.6 mmφ × 5 to 7 mm, which was fired at 400 ° C. in a helium stream for 4 hours. Before introducing the raw material gas, the entire system was replaced with nitrogen gas containing 1 vol% hydrogen to make it oxygen-free. Then, while cooling the reboiler jacket with liquid nitrogen, the diborane obtained above was charged, and the condenser was cooled to -80 ° C and the packed tower was cooled to -76 ° C. The temperature of the reboiler was gradually raised to evaporate diborane. In the temperature raising method, the reboiler refrigerant was switched from liquid nitrogen to dry ice methanol solution, and methanol was added thereto to adjust the temperature to about -71 ° C, while evaporating the diborane to perform rectification. The distillation pressure at this time was kept at 0.15 MPaG. After carrying out the total reflux operation, the concentrated low boiling point gas was discharged to the top of the condenser, and the purified liquefied diborane was analyzed, and recovered as purified diborane when the methane concentration became 10 ppm or less. Table 1 shows the yield, purity, and high-order borane content of purified diborane relative to sodium borohydride.

実施例2
実施例1において、1vol%水素含有窒素ガスに代えて、20vol%水素含有窒素ガスを用いた以外は、実施例1と同様にして、ジポランを製造した。また、実施例1において、全系を1vol%水素含有窒素ガスで置換する代わりに、20vol%水素含有窒素ガスを用いた以外は、実施例1と同様にして、前記ジボランを精製し、精製ジボランを得た。得られたジボランおよび精製ジボランのソジウムボロハイドライドに対する収率、純度および高次ボラン含量を表1に示す。
Example 2
In Example 1, dipolane was produced in the same manner as in Example 1 except that 20 vol% hydrogen-containing nitrogen gas was used instead of 1 vol% hydrogen-containing nitrogen gas. In Example 1, the diborane was purified in the same manner as in Example 1 except that 20 vol% hydrogen-containing nitrogen gas was used instead of replacing the entire system with 1 vol% hydrogen-containing nitrogen gas. Got. Table 1 shows the yield, purity, and high-order borane content of the obtained diborane and purified diborane with respect to sodium borohydride.

実施例3
実施例1において、トリグライム6Lに代えて、ジグライム6Lを、第1の反応工程における三塩化ホウ素221.0g(1.89モル)に代えて、三フッ化ホウ素128.1g(1.89モル)を、第2の反応工程における三塩化ホウ素294.6g(2.51モル)に代えて、三フッ化ホウ素170.2g(2.51モル)を、それぞれ用いた以外は、実施例1と同様にして、ジボランを製造した。また、実施例1と同様にして、前記ジボランを精製し、精製ジボランを得た。得られたジボランおよび精製ジボランのソジウムボロハイドライドに対する収率、純度および高次ボラン含量を表1に示す。
Example 3
In Example 1, instead of triglyme 6L, diglyme 6L was replaced with 221.0 g (1.89 mol) of boron trichloride in the first reaction step, and 128.1 g (1.89 mol) of boron trifluoride. Was replaced with 294.6 g (2.51 mol) of boron trichloride in the second reaction step, except that 170.2 g (2.51 mol) of boron trifluoride was used. Thus, diborane was produced. Further, in the same manner as in Example 1, the diborane was purified to obtain purified diborane. Table 1 shows the yield, purity, and high-order borane content of the obtained diborane and purified diborane with respect to sodium borohydride.

比較例1
実施例1において、1vol%水素含有窒素ガスに代えて、窒素ガス単独を用いた以外は、実施例1と同様にして、ジボランを製造した。また、実施例1において、全系を1vol%水素含有窒素ガスで置換する代わりに、窒素ガス単独を用いた以外は、実施例1と同様にして、前記ジボランを精製し、精製ジボランを得た。得られたジボランおよび精製ジボランのソジウムボロハイドライドに対する収率、純度および高次ボラン含量を表1に示す。
Comparative Example 1
In Example 1, diborane was produced in the same manner as in Example 1 except that nitrogen gas alone was used instead of 1 vol% hydrogen-containing nitrogen gas. In Example 1, the diborane was purified in the same manner as in Example 1 except that nitrogen gas alone was used instead of replacing the entire system with 1 vol% hydrogen-containing nitrogen gas to obtain purified diborane. . Table 1 shows the yield, purity, and high-order borane content of the obtained diborane and purified diborane with respect to sodium borohydride.

Figure 2011046569
Figure 2011046569

Claims (5)

ソジウムボロハイドライドと、三ハロゲン化ホウ素とを、溶媒の存在下、水素濃度が0.01〜50vol%である不活性ガスの雰囲気で反応させる、ジボランの製造方法。   A method for producing diborane, in which sodium borohydride and boron trihalide are reacted in an inert gas atmosphere having a hydrogen concentration of 0.01 to 50 vol% in the presence of a solvent. 前記反応が、ソジウムボロハイドライド1モルに対して、三ハロゲン化ホウ素0.12〜0.16モルを反応温度−10〜40℃で反応させる第1の反応工程と、三ハロゲン化ホウ素0.17〜0.21モルを反応温度20〜60℃で反応させる第2の反応工程とからなる請求項1に記載のジボランの製造方法。   The reaction comprises a first reaction step in which 0.12 to 0.16 mol of boron trihalide is reacted at a reaction temperature of −10 to 40 ° C. with respect to 1 mol of sodium borohydride; The method for producing diborane according to claim 1, comprising a second reaction step in which 17 to 0.21 mol is reacted at a reaction temperature of 20 to 60 ° C. 三ハロゲン化ホウ素が、三塩化ホウ素または三フッ化ホウ素である請求項1または2に記載のジボランの製造方法。   The method for producing diborane according to claim 1 or 2, wherein the boron trihalide is boron trichloride or boron trifluoride. 溶媒が、ジグライムまたはトリグライムである請求項1〜3のいずれか1つに記載のジボランの製造方法。   The method for producing diborane according to any one of claims 1 to 3, wherein the solvent is diglyme or triglyme. 不活性ガスが、窒素、ヘリウムまたはアルゴンである請求項1〜4のいずれか1つに記載のジボランの製造方法。   The method for producing diborane according to any one of claims 1 to 4, wherein the inert gas is nitrogen, helium, or argon.
JP2009197316A 2009-08-27 2009-08-27 Production method of diborane Active JP5373508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197316A JP5373508B2 (en) 2009-08-27 2009-08-27 Production method of diborane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197316A JP5373508B2 (en) 2009-08-27 2009-08-27 Production method of diborane

Publications (2)

Publication Number Publication Date
JP2011046569A true JP2011046569A (en) 2011-03-10
JP5373508B2 JP5373508B2 (en) 2013-12-18

Family

ID=43833312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197316A Active JP5373508B2 (en) 2009-08-27 2009-08-27 Production method of diborane

Country Status (1)

Country Link
JP (1) JP5373508B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188214A1 (en) * 2015-12-29 2017-07-05 Praxair Technology, Inc. Boron-containing dopant compositions, systems and methods of use thereof for improving ion beam current and performance during boron ion implantation
CN106935465A (en) * 2014-03-03 2017-07-07 普莱克斯技术有限公司 For improving in the boron doped agent composition of boron ion injection period ion beam current and performance, system and its application method
KR20200088600A (en) * 2019-01-15 2020-07-23 대성산업가스 주식회사 Method for generating high purity diborane using BF3 simultaneous reaction process and apparatus for the same
CN111892020A (en) * 2020-08-14 2020-11-06 河南科技大学 Synthesis method and device of high-purity electronic-grade diborane
CN116437057A (en) * 2023-06-13 2023-07-14 博纯材料股份有限公司 System optimization method and system for diborane production monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221322A (en) * 1984-04-13 1985-11-06 Mitsui Toatsu Chem Inc Preparation of germanes
JPH0393603A (en) * 1989-09-05 1991-04-18 Sumitomo Seika Chem Co Ltd Production of diborane
JP2002511376A (en) * 1998-04-09 2002-04-16 ユーエイチピー・マテリアルズ・インコーポレーテッド Preparation and purification of diborane
JP2002193604A (en) * 2000-12-22 2002-07-10 Toyota Central Res & Dev Lab Inc Method for manufacturing metal borohydride
JP2006206553A (en) * 2005-01-31 2006-08-10 Japan Science & Technology Agency (1S,2S)- OR (1R,2R)-cis-1-ARYLPHOSPHOLANE-2-CARBOXYLIC ACID BORANE COMPLEX AND METHOD FOR PRODUCING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221322A (en) * 1984-04-13 1985-11-06 Mitsui Toatsu Chem Inc Preparation of germanes
JPH0393603A (en) * 1989-09-05 1991-04-18 Sumitomo Seika Chem Co Ltd Production of diborane
JP2002511376A (en) * 1998-04-09 2002-04-16 ユーエイチピー・マテリアルズ・インコーポレーテッド Preparation and purification of diborane
JP2002193604A (en) * 2000-12-22 2002-07-10 Toyota Central Res & Dev Lab Inc Method for manufacturing metal borohydride
JP2006206553A (en) * 2005-01-31 2006-08-10 Japan Science & Technology Agency (1S,2S)- OR (1R,2R)-cis-1-ARYLPHOSPHOLANE-2-CARBOXYLIC ACID BORANE COMPLEX AND METHOD FOR PRODUCING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935465A (en) * 2014-03-03 2017-07-07 普莱克斯技术有限公司 For improving in the boron doped agent composition of boron ion injection period ion beam current and performance, system and its application method
EP3188214A1 (en) * 2015-12-29 2017-07-05 Praxair Technology, Inc. Boron-containing dopant compositions, systems and methods of use thereof for improving ion beam current and performance during boron ion implantation
KR20200088600A (en) * 2019-01-15 2020-07-23 대성산업가스 주식회사 Method for generating high purity diborane using BF3 simultaneous reaction process and apparatus for the same
KR102193572B1 (en) * 2019-01-15 2020-12-22 대성산업가스 주식회사 Method for generating high purity diborane using BF3 simultaneous reaction process and apparatus for the same
CN111892020A (en) * 2020-08-14 2020-11-06 河南科技大学 Synthesis method and device of high-purity electronic-grade diborane
CN116437057A (en) * 2023-06-13 2023-07-14 博纯材料股份有限公司 System optimization method and system for diborane production monitoring system
CN116437057B (en) * 2023-06-13 2023-09-19 博纯材料股份有限公司 System optimization method and system for diborane production monitoring system

Also Published As

Publication number Publication date
JP5373508B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373508B2 (en) Production method of diborane
JP6175439B2 (en) Apparatus and method for the production of trisilylamine by concentrated phase
KR101159674B1 (en) Process for purification of monosilane
RU2592794C2 (en) Method and system for production of high-purity hydrogen chloride
JP4867474B2 (en) Method for producing perfluoroalkyne compound
CN103980087B (en) A kind of preparation method of fluorizating agent
JP2013545704A5 (en)
CN110606490A (en) Synthesis and purification method of high-purity silicon tetrafluoride
JP2003183021A (en) Method and apparatus for continuously purifying ammonia gas
CN103910600A (en) Method for preparing ultrapure fluoromethane
KR101203490B1 (en) A production method and production system for high purity hydrogen chloride
JP2018093233A (en) Dry etching method
Wang et al. Thiazole functionalized covalent triazine frameworks for C 2 H 6/C 2 H 4 separation with remarkable ethane uptake
JP4765630B2 (en) Method and apparatus for producing carbonyl fluoride
JP5495642B2 (en) Method for purifying carbonyl difluoride
KR20130039249A (en) A production method and production system for high purity hydrogen chloride
JP6941035B2 (en) Acetic acid (2,2,2-trifluoroethyl) and its production method
JP2021014410A (en) Production method of vinyl compound
JP4904032B2 (en) Process for producing purified borazine compound
JP5373259B2 (en) Method for producing N-alkylborazine
JP4498152B2 (en) Method for purifying trimethylsilane
KR101609011B1 (en) Process for producing high-purity chlorine
CN108250230B (en) Refining method of diisopropylamine silane
JP5215600B2 (en) Method for producing N-alkylborazine
JP5213408B2 (en) Method for handling alkali borohydride and method for producing borazine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250