JP2011041441A - Charge power limit value calculating device - Google Patents

Charge power limit value calculating device Download PDF

Info

Publication number
JP2011041441A
JP2011041441A JP2009189242A JP2009189242A JP2011041441A JP 2011041441 A JP2011041441 A JP 2011041441A JP 2009189242 A JP2009189242 A JP 2009189242A JP 2009189242 A JP2009189242 A JP 2009189242A JP 2011041441 A JP2011041441 A JP 2011041441A
Authority
JP
Japan
Prior art keywords
limit value
battery
charging
power
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009189242A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ito
嘉昭 伊藤
Shuji Tomura
修二 戸村
Tomokazu Yamauchi
友和 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009189242A priority Critical patent/JP2011041441A/en
Publication of JP2011041441A publication Critical patent/JP2011041441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge power limit value calculating device for optimally obtaining a charge power limit value for a battery for supplying power for driving a vehicle in accordance with utilization conditions of the battery. <P>SOLUTION: The charge power limit value calculating device includes: a usage state detecting section for detecting a power exchange state of the battery; a battery state estimating section 26 for obtaining a battery state amount on the basis of a result of detection by the usage state estimating section; a first chargeable power estimating section 28 for obtaining chargeable power when the battery is charged at a charge current limited value, on the basis of the battery state amount; a second chargeable power estimating section 36 for obtaining chargeable power when the battery is charged at a charge voltage limit value, on the basis of the battery state amount; and a selecting section 32 for selecting either the chargeable power obtained by the first chargeable power estimating section 28 or the chargeable power obtained by the second chargeable power estimating section 36 in accordance with a result of comparison between an output voltage of the battery and the charge voltage limit value, and obtaining chargeable power characteristics indicating a change in the chargeable power with time on the basis of a result of selection. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置に関する。   The present invention relates to a charging power limit value calculation device that determines a charging power limit value for a battery for supplying vehicle driving power.

電気自動車、ハイブリッド自動車等の電動車両が広く用いられている。電動車両は、モータジェネレータを備え、モータジェネレータの駆動力によって加速し、モータジェネレータの回生発電制動によって減速する。モータジェネレータに電力を供給し、モータジェネレータによる発電電力を回収するため、電動車両には繰り返し充放電が可能な二次電池が搭載される。   Electric vehicles such as electric vehicles and hybrid vehicles are widely used. The electric vehicle includes a motor generator, and is accelerated by a driving force of the motor generator and decelerated by regenerative power generation braking of the motor generator. In order to supply electric power to the motor generator and collect electric power generated by the motor generator, a secondary battery that can be repeatedly charged and discharged is mounted on the electric vehicle.

下記の特許文献1および特許文献2には、本発明が解決しようとする課題に関連して、電池の充放電電力を制限する技術について記載されている。また、下記の非特許文献1および特許文献2には、本発明に係る充放電制御に用いられる、電池の電気化学的モデルについて記載されている。   The following Patent Document 1 and Patent Document 2 describe a technique for limiting the charge / discharge power of a battery in relation to the problem to be solved by the present invention. Non-Patent Document 1 and Patent Document 2 below describe an electrochemical model of a battery used for charge / discharge control according to the present invention.

特開2003−219510号公報JP 2003-219510 A 特開2008−42960号公報JP 2008-42960 A

グおよびワン(W.B.Gu and C.Y.Wang)著、「リチウムイオン電池の熱−電気化学結合モデリング(THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL)」、ECS Proceedings Vol.99-25 (1),2000、(米国)、電気化学学会(ECS)、2000年、pp 743-762WBGu and CYWang, “THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL”, ECS Proceedings Vol.99-25 (1), 2000 (USA), Electrochemical Society (ECS), 2000, pp 743-762

電池の充電性能は、充電電力、電池温度等の使用条件に応じて変化する。そのため、一定の電力で充電を行うよう充電制御を行うと、許容され得る最大限の電力を以て電池を充電することができない等の問題が生じる。一方、電池は、過剰な電力で充電を行うと、充電容量が早期に低下する等、電池の寿命が短くなるという問題が生ずる。   The charging performance of the battery varies depending on usage conditions such as charging power and battery temperature. For this reason, when charge control is performed so that charging is performed with a constant power, there arises a problem that the battery cannot be charged with the maximum allowable power. On the other hand, when the battery is charged with excessive power, there arises a problem that the life of the battery is shortened, for example, the charge capacity is quickly reduced.

本発明はこのような課題に対してなされたものである。すなわち、車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置において、電池の使用条件や電池の状態および電池の充電特性に応じて最適に充電電力制限値を求めることを目的とする。   The present invention has been made for such a problem. That is, in a charging power limit value calculation device that calculates a charging power limit value for a battery for supplying vehicle driving power, an optimum charging power limit value is determined according to the use condition of the battery, the state of the battery, and the charging characteristics of the battery. Objective.

本発明は、車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置において、前記電池の電力授受状態を検出する使用状態検出部と、前記使用状態検出部の検出結果に基づいて、電池状態量を求める電池状態量推定部と、充電電流制限値を取得し、充電電流制限値の電流で電池を充電したときの充電可能電力を、前記電池状態量に基づいて求める第1充電可能電力予測部と、充電電圧制限値を取得し、充電電圧制限値の電圧で電池を充電したときの充電可能電力を、前記電池状態量に基づいて求める第2充電可能電力予測部と、前記電池の出力電圧と前記充電電圧制限値とを比較し、比較結果に応じて前記第1充電可能電力予測部によって求められた充電可能電力または前記第2充電可能電力予測部によって求められた充電可能電力のいずれかを選択し、充電可能電力の時間変化を示す充電可能電力特性を選択結果に基づいて求める選択部と、を備え、前記充電可能電力特性に基づく充電電力制限値を出力することを特徴とする。   The present invention provides a charge power limit value calculation device that calculates a charge power limit value for a battery for supplying vehicle driving power, a use state detection unit that detects a power transfer state of the battery, and a detection result of the use state detection unit. Based on the battery state quantity, a battery state quantity estimating unit that obtains a battery state quantity, a charge current limit value is obtained, and chargeable power when the battery is charged with the current of the charge current limit value is obtained based on the battery state quantity. A chargeable power predicting unit, a second chargeable power predicting unit that obtains a charge voltage limit value and obtains chargeable power when the battery is charged with the voltage of the charge voltage limit value based on the battery state quantity; The output voltage of the battery and the charge voltage limit value are compared, and the chargeable power obtained by the first chargeable power prediction unit or the second chargeable power prediction unit is obtained according to the comparison result. And a selection unit that selects a chargeable power characteristic indicating a change over time of the chargeable power based on a selection result, and sets a charge power limit value based on the chargeable power characteristic. It is characterized by outputting.

また、本発明に係る充電電力制限値演算装置においては、前記充電可能電力特性に基づいて、基準時刻から所定の時間が経過した時における充電可能電力を充電電力制限値として求める電力制限値設定部を備えることが好適である。   Further, in the charge power limit value calculation device according to the present invention, a power limit value setting unit that obtains chargeable power as a charge power limit value when a predetermined time has elapsed from a reference time based on the chargeable power characteristic. Is preferably provided.

また、本発明に係る充電電力制限値演算装置においては、前記選択部は、前記電池の出力電圧が前記充電電圧制限値未満であるときは、前記第1充電可能電力予測部によって求められた充電可能電力を選択することが好適である。   Moreover, in the charging power limit value calculating device according to the present invention, the selection unit is configured to obtain the charging obtained by the first chargeable power prediction unit when the output voltage of the battery is less than the charging voltage limit value. It is preferable to select the possible power.

また、本発明に係る充電電力制限値演算装置においては、前記使用状態検出部の検出結果に基づいて、前記電池の充電能力の劣化度を求める劣化度推定部と、前記劣化度推定部によって求められた劣化度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部と、を備えることが好適である。   Further, in the charging power limit value calculation device according to the present invention, the deterioration level estimation unit that determines the deterioration level of the charging capacity of the battery and the deterioration level estimation unit based on the detection result of the use state detection unit. It is preferable to include a permissible current setting unit that determines a smaller charging current limit value as the deterioration degree is larger and provides the determined charging current limit value to the first chargeable power prediction unit.

また、本発明に係る充電電力制限値演算装置においては、前記使用状態検出部の検出結果に基づいて、前記電池の充電能力の劣化度を求める劣化度推定部と、前記劣化度推定部によって求められた劣化度が大きい程小さい充電電圧制限値を定め、定められた充電電圧制限値を前記第2充電可能電力予測部に与える許容電圧設定部と、を備えることが好適である。   Further, in the charging power limit value calculation device according to the present invention, the deterioration level estimation unit that determines the deterioration level of the charging capacity of the battery and the deterioration level estimation unit based on the detection result of the use state detection unit. It is preferable to include a permissible voltage setting unit that determines a charging voltage limit value that is smaller as the degree of deterioration is greater, and that provides the determined charging voltage limit value to the second chargeable power prediction unit.

また、本発明に係る充電電力制限値演算装置においては、前記劣化度推定部によって求められた劣化度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、を備えることが好適である。   In the charging power limit value calculation device according to the present invention, a smaller charging current limit value is determined as the deterioration degree obtained by the deterioration degree estimating unit is larger, and the predetermined charging current limit value can be charged in the first charge. It is preferable to include an allowable current setting unit to be provided to the power prediction unit.

また、本発明に係る充電電力制限値演算装置においては、前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、を備えることが好適である。   Further, in the charging power limit value calculation device according to the present invention, the charging depth of the battery is obtained based on the battery state quantity, and a smaller charging current limit value is determined as the obtained charging depth is larger. It is preferable to include an allowable current setting unit that supplies a current limit value to the first chargeable power prediction unit.

また、本発明に係る充電電力制限値演算装置においては、前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電圧制限値を定め、定められた充電電圧制限値を前記第2充電可能電力予測部に与える許容電圧設定部、を備えることが好適である。   Further, in the charging power limit value calculation device according to the present invention, the charging depth of the battery is determined based on the battery state quantity, and the charging voltage limit value is set to be smaller as the determined charging depth is larger, and the determined charging is performed. It is preferable that an allowable voltage setting unit that provides a voltage limit value to the second chargeable power prediction unit is provided.

また、本発明に係る充電電力制限値演算装置においては、前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、を備えることが好適である。   Further, in the charging power limit value calculation device according to the present invention, the charging depth of the battery is obtained based on the battery state quantity, and a smaller charging current limit value is determined as the obtained charging depth is larger. It is preferable to include an allowable current setting unit that supplies a current limit value to the first chargeable power prediction unit.

また、本発明に係る充電電力制限値演算装置においては、前記電池に流れる電流を変化させる電池電流制御部と、前記電池電流制御部による電流変化に対する前記電池の出力電圧の変化に基づいて、前記電池の特性定数を求める電池特性決定部と、を備え、前記電池状態量推定部は、前記電池特性決定部によって求められた特定定数に基づいて電池状態量を求め、前記第1および第2充電可能電力予測部は、前記電池決定部によって求められた特定定数に基づいて充電可能電力を求めることが好適である。   Further, in the charging power limit value calculation device according to the present invention, based on the battery current control unit that changes the current flowing through the battery, and the change in the output voltage of the battery with respect to the current change by the battery current control unit, A battery characteristic determining unit for determining a battery characteristic constant, wherein the battery state quantity estimating unit obtains a battery state quantity based on the specific constant obtained by the battery characteristic determining unit, and the first and second charging It is preferable that the possible power prediction unit obtains the chargeable power based on the specific constant obtained by the battery determination unit.

本発明によれば、電池の使用条件に応じて最適に電池の充電電力制限値を求めることができる。   According to the present invention, the charging power limit value of the battery can be optimally determined according to the use condition of the battery.

第1の実施形態に係る車両用電力制御システムの構成を示す図である。It is a figure which shows the structure of the vehicle electric power control system which concerns on 1st Embodiment. 第1実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 1st Example. 電池セルの構成および電気化学的モデルを示す図である。It is a figure which shows the structure and electrochemical model of a battery cell. 電池モデルパラメータを示す図である。It is a figure which shows a battery model parameter. 充電電流制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging current limiting value. 充電電圧制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging voltage limiting value. 第2実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 2nd Example. 電池電流測定値、電池電圧測定値、および充電可能電力の各時間波形を示す図である。It is a figure which shows each time waveform of a battery current measured value, a battery voltage measured value, and chargeable electric power. 第3実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 3rd Example. 充電深度対電流制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a charging depth vs. current limiting value table shows. 充電電流制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging current limiting value. 充電深度対電圧制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a charging depth versus voltage limiting value table shows. 充電電圧制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging voltage limiting value. 電池電流測定値、電池電圧測定値、および充電可能電力の各時間波形を示す図である。It is a figure which shows each time waveform of a battery current measured value, a battery voltage measured value, and chargeable electric power. 第2の実施形態に係る車両用電力制御システムの構成を示す図である。It is a figure which shows the structure of the electric power control system for vehicles which concerns on 2nd Embodiment. 第1実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / electric power limit value calculating apparatus which concerns on 1st Example. 電流制御装置によって制御された電池電流の時間波形およびその電池電流に応じた測定電池電圧の時間波形の例を示す図である。It is a figure which shows the example of the time waveform of the battery current controlled by the current control apparatus, and the time waveform of the measurement battery voltage according to the battery current. 第2実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / power limit value calculating apparatus which concerns on 2nd Example. 劣化度対電流制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a degradation degree vs. current limiting value table shows. 充電電流制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging current limiting value. 劣化度対電圧制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a deterioration degree versus voltage limiting value table shows. 電池電流測定値、電池電圧測定値、および充電可能電力の各時間波形を示す図である。It is a figure which shows each time waveform of a battery current measured value, a battery voltage measured value, and chargeable electric power.

図1に本発明の第1の実施形態に係る車両用電力制御システムの構成を示す。車両用電力制御システムは、電池10の電力をモータジェネレータ14に供給して車両を駆動し、モータジェネレータ14の発電電力によって電池10を充電して車両を回生制動する。電池10には、繰り返し充放電が可能なリチウムイオン電池等を用いることができる。   FIG. 1 shows a configuration of a vehicle power control system according to a first embodiment of the present invention. The vehicle power control system supplies the electric power of the battery 10 to the motor generator 14 to drive the vehicle, charges the battery 10 with the electric power generated by the motor generator 14 and regeneratively brakes the vehicle. The battery 10 can be a lithium ion battery that can be repeatedly charged and discharged.

操作部16は、アクセルペダル、ブレーキペダル等を含み、ユーザの操作に応じた操作指令情報を電力制御装置12に出力する。   The operation unit 16 includes an accelerator pedal, a brake pedal, and the like, and outputs operation command information corresponding to a user operation to the power control device 12.

電力制御装置12は、モータジェネレータ14と電池10との間で、各印加電圧を調整しつつ交流直流変換を行う。電力制御装置12は、操作指令情報に応じてモータジェネレータ14に加速トルクを発生させるときは、電池10からモータジェネレータ14に電力が供給されるよう、電池10およびモータジェネレータ14に印加される電圧を調整する。また、電力制御装置12は、操作指令情報に基づきモータジェネレータ14に回生制動トルクを発生させるときは、モータジェネレータ14から電池10に電力が供給されるよう、電池10およびモータジェネレータ14に印加される電圧を調整する。   The power control device 12 performs AC / DC conversion between the motor generator 14 and the battery 10 while adjusting each applied voltage. When the electric power control device 12 causes the motor generator 14 to generate acceleration torque in accordance with the operation command information, the electric power control device 12 sets the voltage applied to the battery 10 and the motor generator 14 so that electric power is supplied from the battery 10 to the motor generator 14. adjust. Further, the power control device 12 is applied to the battery 10 and the motor generator 14 so that power is supplied from the motor generator 14 to the battery 10 when the motor generator 14 generates regenerative braking torque based on the operation command information. Adjust the voltage.

モータジェネレータ14から電池10に電力が供給されることによって、電池10は電荷を充電する。このとき、電力制御装置12は、電力制限値演算装置24が出力する充電電力制限値Winを超えないよう電池10に供給される充電電力を調整する。   When electric power is supplied from the motor generator 14 to the battery 10, the battery 10 is charged. At this time, the power control device 12 adjusts the charging power supplied to the battery 10 so as not to exceed the charging power limit value Win output by the power limit value calculation device 24.

車両用電力制御システムは、電力制限値演算装置24が充電電力制限値Winを求めるため、電池10に流れる電流を測定する電流センサ18、電池10の出力電圧を測定する電圧センサ20、および電池10の温度を測定する温度センサ22を備える。電流センサ18は測定結果を電池電流測定値Ibとして電力制限値演算装置24に出力し、電圧センサ20は測定結果を電池電圧測定値Vbとして電力制限値演算装置24に出力する。また、温度センサ22は測定結果を電池温度測定値Tbとして電力制限値演算装置24に出力する。   The vehicle power control system includes a current sensor 18 that measures the current flowing through the battery 10, a voltage sensor 20 that measures the output voltage of the battery 10, and the battery 10, in order for the power limit value calculation device 24 to obtain the charging power limit value Win. The temperature sensor 22 which measures the temperature of is provided. The current sensor 18 outputs the measurement result as the battery current measurement value Ib to the power limit value calculation device 24, and the voltage sensor 20 outputs the measurement result as the battery voltage measurement value Vb to the power limit value calculation device 24. Further, the temperature sensor 22 outputs the measurement result to the power limit value calculation device 24 as the battery temperature measurement value Tb.

電力制限値演算装置24は、電池電流測定値Ib、電池電圧測定値Vb、および電池温度測定値Tbに基づいて、充電電力制限値Winを求め電力制御装置12に出力する。   Based on the battery current measurement value Ib, the battery voltage measurement value Vb, and the battery temperature measurement value Tb, the power limit value calculation device 24 calculates the charge power limit value Win and outputs it to the power control device 12.

図2に第1実施例に係る電力制限値演算装置24の構成を示す。電池状態量推定部26が実行する処理を説明するため、ここでは、電池10の電気化学的モデルの例について特許文献2の内容に基づき説明する。   FIG. 2 shows the configuration of the power limit value calculation device 24 according to the first embodiment. In order to describe the process executed by the battery state quantity estimation unit 26, here, an example of an electrochemical model of the battery 10 will be described based on the content of Patent Document 2.

電池10は、複数の電池セルの直列接続によって構成することができる。図3に電池セルの構成を示す。電池セルは、負極40、セパレータ44、および正極42を備える。セパレータ44は、負極40と正極42との間に設けられた樹脂に電解液を浸透させることで構成される。   The battery 10 can be configured by connecting a plurality of battery cells in series. FIG. 3 shows the configuration of the battery cell. The battery cell includes a negative electrode 40, a separator 44, and a positive electrode 42. The separator 44 is configured by infiltrating an electrolytic solution into a resin provided between the negative electrode 40 and the positive electrode 42.

負極40および正極42は、球状の活物質の集合体で構成される。負極40の活物質46の界面上では、リチウムイオンLi+および電子e-を放出または吸収する化学反応が行われる。一方、正極42の活物質48の界面上では、リチウムイオンLi+および電子e-を吸収または放出する化学反応が行われる。 The negative electrode 40 and the positive electrode 42 are composed of an aggregate of spherical active materials. On the interface of the active material 46 of the negative electrode 40, a chemical reaction that releases or absorbs lithium ions Li + and electrons e is performed. On the other hand, a chemical reaction that absorbs or releases lithium ions Li + and electrons e is performed on the interface of the active material 48 of the positive electrode 42.

負極40には負極端子54との間で電子e-を導く負極コレクタ50が設けられ、正極42には正極端子56との間で電子e-を導く正極コレクタ52が設けられる。負極コレクタ50および正極コレクタ52に用いる金属材料は、イオン化傾向の大小関係に基づき決定される。一般的には、負極コレクタ50は銅で構成され、正極コレクタ52はアルミニウムで構成される。 The negative electrode 40 is provided with a negative electrode collector 50 that conducts electrons e with the negative electrode terminal 54, and the positive electrode 42 is provided with a positive electrode collector 52 that conducts electrons e with the positive electrode terminal 56. The metal material used for the negative electrode collector 50 and the positive electrode collector 52 is determined based on the magnitude relationship of the ionization tendency. Generally, the negative electrode collector 50 is made of copper, and the positive electrode collector 52 is made of aluminum.

セパレータ44を介して正極42と負極40との間でリチウムイオンLi+が授受されることで、電池セルには、正極端子56から流出し外部回路58を介して負極端子54に流入する充電電流、または、負極端子54から流出し外部回路58を介して正極端子56に流入する放電電流が流れる。 When the lithium ions Li + are exchanged between the positive electrode 42 and the negative electrode 40 via the separator 44, the charging current flows out of the positive electrode terminal 56 and flows into the negative electrode terminal 54 via the external circuit 58 to the battery cell. Alternatively, a discharge current that flows out from the negative terminal 54 and flows into the positive terminal 56 through the external circuit 58 flows.

電池セルの電気化学的モデルについて図3を参照して説明する。放電時には、負極40の活物質46からは電子e-が負極コレクタ50に放出され、負極40の活物質46内のリチウム原子LiはリチウムイオンLi+となる。これと共に負極40の活物質46からはリチウムイオンLi+がセパレータ44中の電解液に放出される。そして、正極42の活物質48は、電解液からリチウムイオンLi+を取込むと共に正極コレクタ52から電子e-を吸収し、正極42の活物質48の内部にリチウム原子Liを取込む。これによって、正極コレクタ52から流出し外部回路58を介して負極コレクタ50に流入する放電電流が流れる。 An electrochemical model of the battery cell will be described with reference to FIG. At the time of discharging, electrons e are emitted from the active material 46 of the negative electrode 40 to the negative electrode collector 50, and the lithium atoms Li in the active material 46 of the negative electrode 40 become lithium ions Li + . At the same time, lithium ions Li + are released from the active material 46 of the negative electrode 40 to the electrolytic solution in the separator 44. The active material 48 of the positive electrode 42 takes in lithium ions Li + from the electrolytic solution, absorbs electrons e from the positive electrode collector 52, and takes in lithium atoms Li inside the active material 48 of the positive electrode 42. As a result, a discharge current that flows out from the positive electrode collector 52 and flows into the negative electrode collector 50 through the external circuit 58 flows.

一方、充電時には、正極42の活物質48から電子e-が正極コレクタ52に放出されると共に、正極42の活物質48からリチウムイオンLi+がセパレータ44中の電解液に放出される。そして、負極40の活物質46は、電解液からリチウムイオンLi+を取込むと共に負極コレクタ50から電子e-を吸収し、負極40の活物質46の内部にリチウム原子Liを取込む。これによって、負極コレクタ50から流出し外部回路58を介して正極コレクタ52に流入する充電電流が流れる。 On the other hand, at the time of charging, electrons e are released from the active material 48 of the positive electrode 42 to the positive electrode collector 52, and lithium ions Li + are released from the active material 48 of the positive electrode 42 to the electrolytic solution in the separator 44. The active material 46 of the negative electrode 40 takes in lithium ions Li + from the electrolytic solution, absorbs electrons e from the negative electrode collector 50, and takes in lithium atoms Li inside the active material 46 of the negative electrode 40. As a result, a charging current that flows out from the negative collector 50 and flows into the positive collector 52 through the external circuit 58 flows.

電気化学的モデルの解析には、充放電時における活物質46および48の各表面での電極反応、活物質46および48の各内部でのリチウムイオンの径方向への拡散、電解液中のリチウムイオンの拡散、各部位での電位分布等についての電池モデル式を用いる。電池モデル式は、以下の(M1)式〜(M15)式によって表される。これらの式の詳細については非特許文献1に記載されている。   For the analysis of the electrochemical model, the electrode reaction on each surface of the active materials 46 and 48 during charge and discharge, the diffusion of lithium ions in each active material 46 and 48 in the radial direction, the lithium in the electrolyte A battery model formula for ion diffusion, potential distribution at each site, and the like is used. The battery model formula is expressed by the following formulas (M1) to (M15). Details of these equations are described in Non-Patent Document 1.

図3に、(M1)式〜(M15)式で用いられる電池モデルパラメータを掲載する。   FIG. 3 shows battery model parameters used in equations (M1) to (M15).

Figure 2011041441
Figure 2011041441

(M1)式〜(M3)式は電極反応を示す式であり、バトラーボルマーの式と称される。(M1)式において交換電流密度i0は、活物質の界面におけるリチウムイオン濃度の関数で与えられる(詳細は非特許文献1参照)。また、αaは正極における電極反応の移動係数を示し、αcは負極における電極反応の移動係数を示す。(M2)式は(M1)式におけるηを与え、(M3)式は(M2)式におけるUを与える。 The formulas (M1) to (M3) are formulas indicating an electrode reaction, and are called Butler-Volmer formulas. In the equation (M1), the exchange current density i 0 is given as a function of the lithium ion concentration at the interface of the active material (refer to Non-Patent Document 1 for details). Α a represents the transfer coefficient of the electrode reaction at the positive electrode, and α c represents the transfer coefficient of the electrode reaction at the negative electrode. The expression (M2) gives η in the expression (M1), and the expression (M3) gives U in the expression (M2).

Figure 2011041441
Figure 2011041441

(M4)式〜(M6)式は電解液中でのリチウムイオン保存則を示す。(M5)式は電解液中での実効拡散係数の定義を示し、(M6)式は反応電流jLiが電極の単位体積あたりの活物質表面積asと(M1)式に示された輸送電流密度/inとの積で与えられることを示す。なお、反応電流jLiの電極全体での体積積分は、電池セルに流れる電流Iに対応する。 Equations (M4) to (M6) represent the law of conservation of lithium ions in the electrolyte. The equation (M5) shows the definition of the effective diffusion coefficient in the electrolyte, and the equation (M6) shows that the reaction current j Li is the active material surface area a s per unit volume of the electrode and the transport current shown in the equation (M1). It indicates that given by the product of the density / i n. The volume integral of the reaction current j Li over the entire electrode corresponds to the current I flowing through the battery cell.

Figure 2011041441
Figure 2011041441

(M7)式および(M8)式は、固層中でのリチウムイオン保存則を示す。(M7)式は球体の活物質中での拡散方程式を示し、(M8)式は、電極単位体積あたりの活物質表面積asを示す。 Equations (M7) and (M8) indicate the conservation law of lithium ions in the solid layer. (M7) equation represents the diffusion equation in an active material in the sphere shows (M8) expression per electrode unit volume active material surface area a s.

Figure 2011041441
Figure 2011041441

(M9)式〜(M11)式は、電解液中での電荷保存則に基づくものである。これらの式より電解液中での電位が示される。   Expressions (M9) to (M11) are based on the law of conservation of charge in the electrolyte. These equations show the potential in the electrolyte.

(M10)式は実効イオン伝導率κeffを示し、(M11)式は電解液中での拡散導電係数κD effを示す。 The equation (M10) represents the effective ionic conductivity κ eff and the equation (M11) represents the diffusion conductivity coefficient κ D eff in the electrolytic solution.

Figure 2011041441
Figure 2011041441

(M12)式および(M13)式は、活物質での電荷保存則に基づくものである。これらの式より固層中での電位が示される。   Equations (M12) and (M13) are based on the law of conservation of charge in the active material. These formulas show the potential in the solid layer.

Figure 2011041441
Figure 2011041441

(M14)式および(M15)式は熱エネルギ保存則に基づくものである。これらの式により、充放電現象による電池内部への局所的な温度変化を解析することが可能となる。   Equations (M14) and (M15) are based on the thermal energy conservation law. By these equations, it becomes possible to analyze a local temperature change inside the battery due to a charge / discharge phenomenon.

(M1)〜(M15)の電池モデル式は上記非特許文献1に基づくものであるので、各式の詳細な説明については、非特許文献1を援用する。   Since the battery model formulas (M1) to (M15) are based on Non-Patent Document 1, Non-Patent Document 1 is used for detailed description of each formula.

図4に示した電池モデルパラメータは、(M1)〜(M15)の電池モデル式を連立させることで求めることができる。すなわち、(M1)式〜(M15)式を、活物質、および電解液中の各点において境界条件が満たされるよう差分方程式を逐次解くことにより、図4に示した電池モデルパラメータのうち未知のものを逐次算出することができる。この際、図4に示した電池モデルパラメータのうちいずれを既知量とし、いずれを未知量とするかは、数値解析の理論において可能な限り任意とすることができる。なお、各活物質内でのリチウムイオン濃度は、活物質の半径rの関数とされ、その周方向ではリチウムイオン濃度は一様なものとして扱われる。   The battery model parameters shown in FIG. 4 can be obtained by combining battery model expressions (M1) to (M15). That is, the unknown equation among the battery model parameters shown in FIG. 4 is obtained by sequentially solving the equation (M1) to (M15) so that the boundary condition is satisfied at each point in the active material and the electrolytic solution. Things can be calculated sequentially. In this case, which of the battery model parameters shown in FIG. 4 is a known amount and which is an unknown amount can be arbitrarily determined in the theory of numerical analysis. The lithium ion concentration in each active material is a function of the radius r of the active material, and the lithium ion concentration is treated as uniform in the circumferential direction.

電池状態量推定部26は、電池電流測定値Ib、電池電圧測定値Vb、電池温度測定値Tb、および電池モデルパラメータに基づいて電池状態量BSを求める。ここで、電池状態量BSは、電池モデルパラメータのうち、固層中の電位φs、電解液中の電位φe、活物質のリチウムイオン濃度cs、電解液のリチウムイオン濃度ce、および活物質界面でのリチウムイオン濃度cseの組からなる物理化学量である。 The battery state quantity estimation unit 26 obtains the battery state quantity BS based on the battery current measurement value Ib, the battery voltage measurement value Vb, the battery temperature measurement value Tb, and the battery model parameter. Here, the battery state quantity BS includes, among the battery model parameters, the potential φ s in the solid layer, the potential φ e in the electrolytic solution, the lithium ion concentration c s of the active material, the lithium ion concentration c e of the electrolytic solution, and It is a physical stoichiometry comprising a set of lithium ion concentrations c se at the active material interface.

電池状態量推定部26は、(M1)〜(M15)の電池モデル式に基づき電池状態量BS(φs、φe、cs、ce、およびcse)を求め、その電池状態量BSを第1充電可能電力予測部28および第2充電可能電力予測部36に出力する。 The battery state quantity estimation unit 26 obtains a battery state quantity BS (φ s , φ e , c s , c e , and c se ) based on the battery model equations (M1) to (M15), and the battery state quantity BS Is output to the first chargeable power prediction unit 28 and the second chargeable power prediction unit 36.

充電許容電流設定部30は、一定電流で充電する場合の充電電流制限値Icを決定し第1充電可能電力予測部28に出力する。ここで、充電電流制限値とは、第1充電可能電力予測部28の演算用に設定する演算上の値をいう。   The charge allowable current setting unit 30 determines a charge current limit value Ic when charging with a constant current and outputs the charge current limit value Ic to the first chargeable power prediction unit 28. Here, the charging current limit value is an arithmetic value set for calculation by the first chargeable power prediction unit 28.

図5(a)に充電電流制限値の波形の例を示す。図5(a)の横軸は時間を示し縦軸は充電電流制限値を示す。図5(a)に示す充電電流制限値は、基準時刻t0に電池電流測定値Ibから充電電流制限値Icに増加する。   FIG. 5A shows an example of a waveform of the charging current limit value. The horizontal axis of Fig.5 (a) shows time, and a vertical axis | shaft shows a charging current limiting value. The charging current limit value shown in FIG. 5 (a) increases from the battery current measured value Ib to the charging current limit value Ic at the reference time t0.

第1充電可能電力予測部28は、電池状態量BS、電池温度測定値Tbを初期値とし、充電電流制限値Icで一定電流充電した場合の電池10の出力電圧Vの時間変化を、上記(M1)式〜(M15)式に基づいて予測する。この際、充電電流制限値Icによって与えられる電流は、反応電流jLiの電極全体での体積積分に対応付けられる。また、電池10の出力電圧Vは、固層中の電位φs、反応電流jLi、および固層中電子伝導度σとの間に成立する周知の物理的関係に基づいて求められる。第1充電可能電力予測部28は、求められた電圧Vおよび充電電流制限値に基づいて充電可能電力の時間変化を示す充電可能電力特性を求める。 The first chargeable power prediction unit 28 uses the battery state quantity BS and the battery temperature measurement value Tb as initial values, and changes the time change of the output voltage V of the battery 10 when the battery 10 is charged with a constant current at the charge current limit value Ic. Predict based on the formulas (M1) to (M15). At this time, the current given by the charging current limit value Ic is associated with the volume integration of the reaction current j Li over the entire electrode. Further, the output voltage V of the battery 10 is determined based on a well-known physical relationship established among the potential φ s in the solid layer, the reaction current j Li , and the electron conductivity σ in the solid layer. The first chargeable power prediction unit 28 obtains a chargeable power characteristic indicating a change over time of the chargeable power based on the obtained voltage V and the charge current limit value.

図5(a)に示される充電電流に基づいて、第1充電可能電力予測部28が求めた充電可能電力特性の例を図5(b)に示す。図5(b)の横軸は時間を示し縦軸は充電可能電力を示す。この例では、充電可能電力特性によって示される値は、時間の経過と共に増加する。   FIG. 5B shows an example of chargeable power characteristics obtained by the first chargeable power prediction unit 28 based on the charging current shown in FIG. In FIG. 5B, the horizontal axis indicates time, and the vertical axis indicates chargeable power. In this example, the value indicated by the chargeable power characteristic increases with time.

一方、充電許容電圧設定部34は、一定の充電電圧制限値Vcを第2充電可能電力予測部36および選択部32に出力する。ここで、充電電圧制限値とは、第2充電可能電力予測部36および選択部32の処理用に設定する演算上の値である。   On the other hand, the allowable charging voltage setting unit 34 outputs a constant charging voltage limit value Vc to the second chargeable power prediction unit 36 and the selection unit 32. Here, the charge voltage limit value is an arithmetic value set for processing of the second chargeable power prediction unit 36 and the selection unit 32.

図6(a)に充電電圧制限値の時間波形を示す。図6(a)の横軸は時間を示し縦軸は充電電圧制限値を示す。充電電圧制限値は一定の値Vcをとる。   FIG. 6A shows a time waveform of the charging voltage limit value. In FIG. 6A, the horizontal axis indicates time, and the vertical axis indicates the charging voltage limit value. The charging voltage limit value has a constant value Vc.

第2充電可能電力予測部36は、電池状態量BS、電池温度測定値Tbを初期値とし、充電電圧制限値Vcで定電圧充電した場合に電池10に流れる電流Iの時間変化を、上記(M1)式〜(M15)式に基づいて予測する。この際、充電電圧制限値、固層中の電位φs、反応電流jLi、および固層中電子伝導度σとの間に成立する周知の物理的関係が用いられる。また、電流Iは、反応電流jLiの電極全体での体積積分に基づいて求められる。第2充電可能電力予測部36は、求められた電流Iおよび充電電圧制限値に基づいて充電可能電力の時間変化を示す充電可能電力特性を求める。第2充電可能電力予測部36は、充電可能電力特性データを選択部32に出力する。 The second chargeable power predicting unit 36 uses the battery state quantity BS and the battery temperature measurement value Tb as initial values, and changes the time change of the current I flowing through the battery 10 when constant voltage charging is performed with the charge voltage limit value Vc ( Predict based on the formulas (M1) to (M15). At this time, a well-known physical relationship established among the charge voltage limit value, the potential φ s in the solid layer, the reaction current j Li , and the electron conductivity σ in the solid layer is used. The current I is obtained based on the volume integration of the reaction current j Li over the entire electrode. The second rechargeable power prediction unit 36 obtains a rechargeable power characteristic indicating a change over time of the rechargeable power based on the obtained current I and the charge voltage limit value. The second chargeable power prediction unit 36 outputs chargeable power characteristic data to the selection unit 32.

図6(a)に示される充電電圧制限値に基づいて、第2充電可能電力予測部36が求めた充電可能電力特性の例を図6(b)に示す。図6(b)の横軸は時間を示し縦軸は充電可能電力を示す。この例では、充電可能電力特性によって示される値は、時間の経過と共に減少する。   FIG. 6B shows an example of the chargeable power characteristic obtained by the second chargeable power prediction unit 36 based on the charge voltage limit value shown in FIG. In FIG. 6B, the horizontal axis indicates time, and the vertical axis indicates chargeable power. In this example, the value indicated by the chargeable power characteristic decreases with time.

選択部32は、電池電圧測定値Vbと充電電圧制限値Vcとを比較する。そして、電池電圧測定値Vbが充電電圧制限値Vc未満であるときには、第1充電可能電力予測部28が出力する充電可能電力特性によって与えられる値を充電電力制限値Winとして出力する。一方、電池電圧測定値Vbが充電電圧制限値Vcに達したときには、選択部32は、第2充電可能電力予測部36が出力する充電可能電力特性によって与えられる値を充電電力制限値Winとして出力する。電力制御装置12は、充電電力制限値Winを超えないよう電池10を充電制御する。   The selection unit 32 compares the battery voltage measurement value Vb with the charge voltage limit value Vc. Then, when the battery voltage measurement value Vb is less than the charge voltage limit value Vc, a value given by the chargeable power characteristic output by the first chargeable power prediction unit 28 is output as the charge power limit value Win. On the other hand, when the battery voltage measurement value Vb reaches the charge voltage limit value Vc, the selection unit 32 outputs the value given by the chargeable power characteristic output by the second chargeable power prediction unit 36 as the charge power limit value Win. To do. The power control device 12 controls the charging of the battery 10 so as not to exceed the charging power limit value Win.

図2に示す構成では、充電電力制限値Winが、電池10を充電する回路の許容電力以上の値となる場合がある。そこで、図7に示す第2実施例のように、電力制限値設定部38を設けてもよい。図2に示す構成部と同一の構成部については同一の符号を付してその説明を省略する。   In the configuration illustrated in FIG. 2, the charge power limit value Win may be a value that is greater than or equal to the allowable power of the circuit that charges the battery 10. Therefore, a power limit value setting unit 38 may be provided as in the second embodiment shown in FIG. The same components as those shown in FIG. 2 are denoted by the same reference numerals and description thereof is omitted.

電力制限値設定部38は、選択部32から出力された充電可能電力特性データに基づいて充電電力制限値Winを求める。ここで、電力制限値設定部38は、充電電力制限値を求めるための所定のWin演算用時間tcを予め記憶しているものとする。電力制限値設定部38は、充電可能電力特性データを参照し、基準時刻t0からWin演算用時間tcが経過したときにおける充電可能電力を充電電力制限値Winとして求める。電力制限値設定部38は、充電電力制限値Winを電力制御装置12に出力する。   The power limit value setting unit 38 obtains the charge power limit value Win based on the chargeable power characteristic data output from the selection unit 32. Here, it is assumed that the power limit value setting unit 38 stores a predetermined Win calculation time tc for obtaining the charge power limit value in advance. The power limit value setting unit 38 refers to the chargeable power characteristic data, and obtains the chargeable power when the Win calculation time tc has elapsed from the reference time t0 as the charge power limit value Win. The power limit value setting unit 38 outputs the charging power limit value Win to the power control device 12.

第1充電可能電力予測部28が出力する充電可能電力特性データが電力制限値設定部38に出力された場合には、図5(b)に示すように、基準時刻t0からWin演算用時間tcが経過したときの縦軸の値が充電電力制限値Winとして求められる。また、第2充電可能電力予測部36が出力する充電可能電力特性データが電力制限値設定部38に出力された場合には、図6(b)に示すように、基準時刻t0からWin演算用時間tcが経過したときの縦軸の値が充電電力制限値Winとして求められる。   When the chargeable power characteristic data output by the first chargeable power prediction unit 28 is output to the power limit value setting unit 38, as shown in FIG. 5B, the time for Win calculation tc from the reference time t0. The value on the vertical axis when the time elapses is obtained as the charging power limit value Win. In addition, when the chargeable power characteristic data output from the second chargeable power prediction unit 36 is output to the power limit value setting unit 38, as shown in FIG. The value on the vertical axis when the time tc has elapsed is obtained as the charging power limit value Win.

電力制限値演算装置24は、充電電力制限値Winを求める処理を所定の時間Tdごとに行い、充電電力制限値Winを時間間隔Tdで電力制御装置12に出力する。電力制御装置12は、充電電力制限値Winを超えないよう電池10を充電制御する。   The power limit value calculation device 24 performs processing for obtaining the charge power limit value Win every predetermined time Td, and outputs the charge power limit value Win to the power control device 12 at a time interval Td. The power control device 12 controls the charging of the battery 10 so as not to exceed the charging power limit value Win.

Win演算用時間tcを、充電電力制限値Winを求める時間間隔Tdより長くすることで、時々刻々と変化する電池10の電池状態量BSおよび電池温度測定値Tbに応じて、各演算時点より時間tcだけ先の充電電力制限値Winを適応的に求めることができる。これによって、電池10の電池状態量BSおよび電池温度測定値Tbに応じたできる限り大きい電力を以て電池10を充電することができる。   By making the Win calculation time tc longer than the time interval Td for obtaining the charging power limit value Win, the time from each calculation time point depends on the battery state quantity BS and the battery temperature measurement value Tb of the battery 10 that change every moment. The charging power limit value Win ahead by tc can be determined adaptively. As a result, the battery 10 can be charged with as much power as possible according to the battery state quantity BS and the battery temperature measurement value Tb of the battery 10.

第1充電可能電力予測部28による充電可能電力特性が示す値は充電電流制限値Icを大きくする程大きくなり、求められる充電電力制限値Winは大きくなる。さらに、図5(b)に示されるように、充電可能電力特性が示す値はWin演算用時間tcを長くする程大きくなり、求められる充電電力制限値Winは大きくなる。   The value indicated by the chargeable power characteristic by the first chargeable power prediction unit 28 increases as the charging current limit value Ic increases, and the required charging power limit value Win increases. Further, as shown in FIG. 5B, the value indicated by the chargeable power characteristic increases as the Win calculation time tc increases, and the required charging power limit value Win increases.

また、第2充電可能電力予測部36による充電可能電力特性が示す値は充電電圧制限値Vcを大きくする程大きくなり、求められる充電電力制限値Winは大きくなる。さらに、図6(b)に示されるように、充電可能電力特性が示す値はWin演算用時間tcを短くする程大きくなり、求められる充電電力制限値Winは大きくなる。   Further, the value indicated by the chargeable power characteristic by the second chargeable power prediction unit 36 increases as the charge voltage limit value Vc increases, and the required charge power limit value Win increases. Further, as shown in FIG. 6B, the value indicated by the chargeable power characteristic increases as the Win calculation time tc is shortened, and the required charging power limit value Win increases.

ここで、電池を所定の充電深度まで充電するのに要する時間は、充電電力が大きい程短くなる一方、所定値以上の充電容量を維持できる期間等で定義される電池の寿命は、充電電力が大きい程短くなる。したがって、充電電流制限値Ic、充電電圧制限値VcおよびWin演算用時間tcは、電池10の寿命と充電時間の迅速性とを鑑みて実験等に基づいて決定することが好ましい。   Here, the time required to charge the battery to a predetermined charging depth is shorter as the charging power is larger, while the battery life defined by a period in which a charging capacity of a predetermined value or more can be maintained is the charging power. The larger the size, the shorter. Therefore, it is preferable that the charging current limit value Ic, the charging voltage limit value Vc, and the Win calculation time tc are determined based on experiments or the like in view of the life of the battery 10 and the quickness of the charging time.

このような構成によれば、電池10の充電が行われているときに、電池10の出力電圧が充電電圧制限値Vc未満であるときは、第1充電可能電力予測部28が出力する充電可能電力特性データに基づいて充電電力制限値Winが求められる。一方、電池10の出力電圧が充電電圧制限値Vcに達した時から、第2充電可能電力予測部36が出力する充電可能電力特性データに基づいて充電電力制限値Winが求められる。   According to such a configuration, when the battery 10 is being charged, if the output voltage of the battery 10 is less than the charging voltage limit value Vc, the chargeable power output from the first chargeable power prediction unit 28 is possible. Based on the power characteristic data, charging power limit value Win is obtained. On the other hand, when the output voltage of the battery 10 reaches the charge voltage limit value Vc, the charge power limit value Win is obtained based on the chargeable power characteristic data output by the second chargeable power prediction unit 36.

すなわち、電池10の出力電圧が充電電圧制限値Vcに達するまでの間は、充電電流制限値Icの電流を充電電流として電池10が充電されるものとして充電電力制限値Winを求めることにより、電池10に対する電気的負担を低減することができる。一方、電池10の出力電圧が充電電圧制限値Vcに達した後は、出力電圧が充電電圧制限値Vcに維持されつつ電池10が充電されるものとして充電電力制限値Winを求めることにより、できるだけ大きな充電電力を以て電池10を充電して迅速な充電をすることができる。これによって、電池10への電気的負担を抑えつつ迅速な充電を行うことができる。   That is, until the output voltage of the battery 10 reaches the charging voltage limit value Vc, the battery 10 is charged by using the current of the charging current limit value Ic as the charging current, thereby obtaining the charging power limit value Win. 10 can be reduced. On the other hand, after the output voltage of the battery 10 reaches the charging voltage limit value Vc, the charging power limit value Win is determined as much as possible by determining that the battery 10 is charged while the output voltage is maintained at the charging voltage limit value Vc. The battery 10 can be charged with a large charge power and can be quickly charged. Thereby, it is possible to perform quick charging while suppressing an electrical load on the battery 10.

なお、一つの充電可能電力特性が求められる途中で選択部32における選択状態が切り換わった場合における、電池電流測定値Ib、電池電圧測定値Vbおよび充電可能電力の各時間波形の例を、それぞれ、図8(a)、(b)および(c)に示す。これらの図は、基準時刻t0から時刻t1までの間、電池電圧測定値Vbが充電電圧制限値未満であり、時刻t1以降に電池電圧測定値Vbが充電電圧制限値に達した場合を示す。   It should be noted that examples of time waveforms of the battery current measurement value Ib, the battery voltage measurement value Vb, and the chargeable power when the selection state in the selection unit 32 is switched while one chargeable power characteristic is obtained are respectively 8 (a), (b) and (c). These figures show the case where the battery voltage measurement value Vb is less than the charging voltage limit value from the reference time t0 to the time t1, and the battery voltage measurement value Vb reaches the charging voltage limit value after the time t1.

図9に第3実施例に係る電力制限値演算装置24の構成を示す。この実施例では、充電許容電圧設定部60が、電池状態量BSに基づいて充電電圧制限値Vcを求め、充電許容電流設定部30が、電池状態量BSに基づいて充電電流制限値Icを求める。図7に示した第2実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 9 shows the configuration of the power limit value calculation device 24 according to the third embodiment. In this embodiment, the allowable charging voltage setting unit 60 determines the charging voltage limit value Vc based on the battery state quantity BS, and the allowable charging current setting unit 30 determines the charging current limit value Ic based on the battery state quantity BS. . The same components as those of the second embodiment shown in FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted.

電池状態量推定部26は、電池状態量BSおよび電池状態量BSから求めた電池10の充電深度を第1充電可能電力予測部28、第2充電可能電力予測部36、充電許容電流設定部30および充電許容電圧設定部60に出力する。充電許容電圧設定部60は、上記(M1)式〜(M15)式を用い、電池状態量BSに基づいて電池10の充電深度を求める。ここで、充電深度とは、満充電時の充電電荷量に対する現時点で充電されている電荷量の割合を示す量をいう。電気化学的モデルにおいては、充電深度は、負極40の活物質46内のリチウム原子数により求めることができる。   The battery state quantity estimation unit 26 calculates the charge depth of the battery 10 obtained from the battery state quantity BS and the battery state quantity BS by a first chargeable power prediction unit 28, a second chargeable power prediction unit 36, and a charge allowable current setting unit 30. And output to the charge allowable voltage setting unit 60. The allowable charging voltage setting unit 60 obtains the charging depth of the battery 10 based on the battery state quantity BS using the equations (M1) to (M15). Here, the charge depth refers to an amount indicating the ratio of the charge amount currently charged to the charge amount at the time of full charge. In the electrochemical model, the charging depth can be obtained from the number of lithium atoms in the active material 46 of the negative electrode 40.

充電許容電流設定部30は、充電深度と充電電流制限値Icとを対応付けた充電深度対電流制限値テーブルを記憶し、充電許容電圧設定部60は、充電深度と充電電圧制限値Vcとを対応付けた充電深度対電圧制限値テーブルを記憶している。充電許容電流設定部30および充電許容電圧設定部60は、これらのテーブルを参照し、充電深度に対応する充電電流制限値Icおよび充電電圧制限値Vcを求める。   The charge allowable current setting unit 30 stores a charge depth versus current limit value table in which the charge depth and the charge current limit value Ic are associated with each other, and the charge allowable voltage setting unit 60 stores the charge depth and the charge voltage limit value Vc. The associated charge depth vs. voltage limit value table is stored. The allowable charging current setting unit 30 and the allowable charging voltage setting unit 60 refer to these tables to obtain the charging current limit value Ic and the charging voltage limit value Vc corresponding to the charging depth.

充電許容電流設定部30は、充電電流制限値Icを第1充電可能電力予測部28に出力し、充電許容電圧設定部60は、充電電圧制限値Vcを第2充電可能電力予測部36および選択部32に出力する。   The chargeable current setting unit 30 outputs the charge current limit value Ic to the first chargeable power prediction unit 28, and the charge allowable voltage setting unit 60 selects the charge voltage limit value Vc and the second chargeable power prediction unit 36 and the selection. To the unit 32.

図10に、充電深度対電流制限値テーブルが示す関係の例をグラフによって示す。図10の横軸は充電深度を示し縦軸は充電電流制限値Icを示す。図10の例では、充電深度が所定の閾値SOCt未満のときは、充電深度の変化に対し充電電流制限値Icを一定とする。一方、充電深度が所定の閾値SOCt以上のときは、充電深度が増加すると共に充電電流制限値Icを減少させる。   In FIG. 10, the example of the relationship which a charging depth vs. current limiting value table shows is shown with a graph. The horizontal axis of FIG. 10 indicates the charging depth, and the vertical axis indicates the charging current limit value Ic. In the example of FIG. 10, when the charging depth is less than the predetermined threshold SOCt, the charging current limit value Ic is constant with respect to the change in the charging depth. On the other hand, when the charging depth is equal to or greater than the predetermined threshold SOCt, the charging depth increases and the charging current limit value Ic is decreased.

充電深度SOC1およびSOC2の間に、SOCt<SOC1<SOC2の関係があるとき、それぞれに対応する充電電流制限値Ic1およびIc2の関係は、Ic1>Ic2となる。これによって、充電許容電流設定部30が出力する充電電流制限値・時間波形データによって示される充電電流制限値の時間波形は、それぞれ、図11(a)の時間波形62−1および62−2のようになる。そして、図11(a)の時間波形62−1および62−2に対応して、第1充電可能電力予測部28において求められる充電可能電力特性は、それぞれ、図11(b)の特性64−1および64−2のようになる。特性64−1および64−2からは、Win演算用時間tcに対して、それぞれ、充電電力制限値Win1AおよびWin2Aが求められる。これらの充電電力制限値には、Win1A>Win2Aの関係がある。   When there is a relationship SOCt <SOC1 <SOC2 between the charging depths SOC1 and SOC2, the relationship between the charging current limit values Ic1 and Ic2 corresponding to each is Ic1> Ic2. As a result, the time waveform of the charge current limit value indicated by the charge current limit value / time waveform data output by the charge allowable current setting unit 30 is the time waveform 62-1 and 62-2 of FIG. It becomes like this. Then, corresponding to the time waveforms 62-1 and 62-2 in FIG. 11A, the chargeable power characteristics obtained by the first chargeable power prediction unit 28 are the characteristics 64- in FIG. 11B, respectively. 1 and 64-2. From the characteristics 64-1 and 64-2, charging power limit values Win1A and Win2A are obtained for the Win calculation time tc, respectively. These charging power limit values have a relationship of Win1A> Win2A.

また、図12に、充電深度対電圧制限値テーブルが示す関係の例をグラフによって示す。図12の横軸は充電深度を示し縦軸は充電電圧制限値Vcを示す。図12の例では、充電深度が所定の閾値SOCt未満のときは、充電深度の変化に対し充電電圧制限値Vcを一定とする。一方、充電深度が所定の閾値SOCt以上のときは、充電深度を増加すると共に充電電圧制限値Vcを減少させる。   FIG. 12 is a graph showing an example of the relationship indicated by the charging depth versus voltage limit value table. The horizontal axis of FIG. 12 indicates the charging depth, and the vertical axis indicates the charging voltage limit value Vc. In the example of FIG. 12, when the charging depth is less than the predetermined threshold SOCt, the charging voltage limit value Vc is fixed with respect to the change in the charging depth. On the other hand, when the charging depth is equal to or greater than the predetermined threshold SOCt, the charging depth is increased and the charging voltage limit value Vc is decreased.

充電深度SOC1およびSOC2にそれぞれ対応する充電電圧制限値Vc1およびVc2の関係は、Vc1>Vc2となる。これによって、充電許容電流設定部30が出力する充電電圧制限値の時間波形は、それぞれ、図13(a)の時間波形66−1および66−2のようになる。そして、図13(a)の時間波形66−1および66−2に対応して、第2充電可能電力予測部36において求められる充電可能電力特性は、それぞれ、図13(b)の特性68−1および68−2のようになる。特性68−1および68−2からは、Win演算用時間tcに対して、それぞれ、充電電力制限値Win1BおよびWin2Bが求められる。これらの充電電力制限値には、Win1B>Win2Bの関係がある。   The relationship between the charging voltage limit values Vc1 and Vc2 corresponding to the charging depths SOC1 and SOC2 is Vc1> Vc2. As a result, the time waveforms of the charge voltage limit value output by the charge allowable current setting unit 30 are as shown by time waveforms 66-1 and 66-2 in FIG. Then, corresponding to the time waveforms 66-1 and 66-2 in FIG. 13A, the chargeable power characteristics obtained in the second chargeable power prediction unit 36 are the characteristics 68- in FIG. 13B, respectively. 1 and 68-2. From the characteristics 68-1 and 68-2, charging power limit values Win1B and Win2B are obtained for the Win calculation time tc, respectively. These charging power limit values have a relationship of Win1B> Win2B.

一つの充電可能電力特性が求められる途中で選択部32における選択状態が切り換わった場合における、電池電流測定値Ib、電池電圧測定値Vbおよび充電可能電力の各時間波形の例を、それぞれ、図14(a)、(b)および(c)に示す。これらの図は、基準時刻t0から時刻t1までの間、電池電圧測定値Vbが充電電圧制限値未満であり、時刻t1以降に電池電圧測定値Vbが充電電圧制限値に達した場合を示す。図14(c)における時刻t1より前の特性70−1および70−2は、それぞれ、図11(b)における特性64−1および64−2に相当する。図14(c)における時刻t1以降の特性72−1および72−2は、それぞれ、図13(b)における特性68−1および68−2に相当する。   Examples of respective time waveforms of the battery current measurement value Ib, the battery voltage measurement value Vb, and the chargeable power when the selection state in the selection unit 32 is switched in the middle of obtaining one chargeable power characteristic are shown in FIG. 14 (a), (b) and (c). These figures show the case where the battery voltage measurement value Vb is less than the charging voltage limit value from the reference time t0 to the time t1, and the battery voltage measurement value Vb reaches the charging voltage limit value after the time t1. Characteristics 70-1 and 70-2 before time t1 in FIG. 14C correspond to characteristics 64-1 and 64-2 in FIG. 11B, respectively. Characteristics 72-1 and 72-2 after time t1 in FIG. 14C correspond to characteristics 68-1 and 68-2 in FIG. 13B, respectively.

このように、本実施例では、充電許容電圧設定部60は、充電深度が所定の閾値以上となったときには、充電深度が大きい程値が小さくなるよう、充電電流制限値Icおよび充電電圧制限値Vcが求められる。これによって、充電深度が所定の閾値以上となったときには、充電深度が大きい程充電電力制限値Winを小さくすることができる。   Thus, in this embodiment, the charge allowable voltage setting unit 60 determines that the charge current limit value Ic and the charge voltage limit value are such that the value decreases as the charge depth increases when the charge depth exceeds a predetermined threshold. Vc is determined. As a result, when the charging depth becomes equal to or greater than a predetermined threshold, the charging power limit value Win can be reduced as the charging depth increases.

一般に、電池は、充電深度が大きい場合には迅速な充電を要さない場合が多い。したがって、本実施例によれば、充電深度が所定の閾値以上であるときには充電電力を小さくし、電池10への電気的負担を小さくすることができる。   In general, batteries often do not require quick charging when the charging depth is large. Therefore, according to the present embodiment, when the charging depth is equal to or greater than the predetermined threshold value, the charging power can be reduced and the electrical burden on the battery 10 can be reduced.

なお、ここでは、充電深度を用いた処理について説明したが、電池状態量BSから求め得る電池10の充電状態を示すその他の量を用いても同様の処理を行うことができる。   Here, the processing using the charging depth has been described, but the same processing can be performed using other amounts indicating the charging state of the battery 10 that can be obtained from the battery state amount BS.

図15に本発明の別の実施形態に係る車両用電力制御システムの構成を示す。図1の車両用電力制御システムの構成部と同一の構成部については同一の符号を付してその説明を省略する。電池診断/電力制限値演算装置76は電池診断モード時に電池10に流れる電流を変化させ、これに伴う電池10の出力電圧の変化に基づいて電池10の電池モデルパラメータ、電池10の劣化度等を求める。そして、求められた電池モデルパラメータ、劣化度等を用い(M1)式〜(M15)式より充電電力制限値Winを求める。   FIG. 15 shows the configuration of a vehicle power control system according to another embodiment of the present invention. The same components as those of the vehicle power control system of FIG. 1 are denoted by the same reference numerals and description thereof is omitted. The battery diagnosis / power limit value calculation device 76 changes the current flowing through the battery 10 in the battery diagnosis mode, and determines the battery model parameters of the battery 10, the degree of deterioration of the battery 10, etc. based on the change in the output voltage of the battery 10. Ask. Then, the charging power limit value Win is obtained from the equations (M1) to (M15) using the obtained battery model parameters, the degree of deterioration, and the like.

図16に第1実施例に係る電池診断/電力制限値演算装置76の構成を示す。図2に示す電力制限値演算装置24と同一の構成部については同一の符号を付してその説明を省略する。この実施例は、電池10の交換電流密度i0および拡散係数Dsを測定する電池特性決定部78を備える。 FIG. 16 shows the configuration of the battery diagnosis / power limit value calculation device 76 according to the first embodiment. The same components as those of the power limit value calculation device 24 shown in FIG. This embodiment includes a battery characteristic determination unit 78 that measures the exchange current density i 0 and the diffusion coefficient D s of the battery 10.

電池10の両端には、それぞれモード切り換えスイッチ74が接続される。モード切り換えスイッチ74は、通常走行モード時には、電池10を電力制御装置12に接続する。一方、電池診断モード時には、電池10を電池診断/電力制限値演算装置76に接続する。電池診断モード時に、電池診断/電力制限値演算装置76は、電池10に流れる電流の時間波形が、例えば、図17(a)に示す時間波形となるよう、電池10に流れる電流の制御を行う。図17(a)の横軸は時間を示し縦軸は電池10に流れる充電電流を示す。図17(a)の電流時間波形は、時刻t1で電池10の充電電流がある初期値I1から診断電流値I2となり、その後時刻t2まで診断電流値I2を維持した後、初期値I1に戻る。図17(b)に、このときの電池電圧測定値Vbpの時間波形の例を示す。横軸は時間を示し縦軸は電池電圧測定値Vbpを示す。   A mode changeover switch 74 is connected to each end of the battery 10. The mode changeover switch 74 connects the battery 10 to the power control device 12 in the normal travel mode. On the other hand, in the battery diagnosis mode, the battery 10 is connected to the battery diagnosis / power limit value calculation device 76. In the battery diagnosis mode, the battery diagnosis / power limit value calculation device 76 controls the current flowing through the battery 10 so that the time waveform of the current flowing through the battery 10 becomes, for example, the time waveform shown in FIG. . In FIG. 17A, the horizontal axis indicates time, and the vertical axis indicates the charging current flowing through the battery 10. The current time waveform in FIG. 17A changes from the initial value I1 at which the charging current of the battery 10 is at the diagnostic current value I2 at time t1, and then maintains the diagnostic current value I2 until time t2, and then returns to the initial value I1. FIG. 17B shows an example of a time waveform of the battery voltage measurement value Vbp at this time. The horizontal axis represents time, and the vertical axis represents the measured battery voltage value Vbp.

電池特性決定部78は、図17(a)のように電池10の電流が変化したときにおける電池電圧測定値Vbp、電池電流測定値Ibp、および電池温度測定値Tbpの各時間変化に基づいて、図4に掲げる電池モデルパラメータのうち交換電流密度i0および拡散係数Dsを求める。 The battery characteristic determining unit 78 is based on the time variation of the battery voltage measurement value Vbp, the battery current measurement value Ibp, and the battery temperature measurement value Tbp when the current of the battery 10 changes as shown in FIG. Among the battery model parameters listed in FIG. 4, the exchange current density i 0 and the diffusion coefficient D s are obtained.

電池特性決定部78は、求められた交換電流密度i0および拡散係数Dsを、電池状態量推定部26、第1充電可能電力予測部28、および第2充電可能電力予測部36に出力する。 The battery characteristic determination unit 78 outputs the obtained exchange current density i 0 and the diffusion coefficient D s to the battery state quantity estimation unit 26, the first chargeable power prediction unit 28, and the second chargeable power prediction unit 36. .

電池状態量推定部26は、先に用いていた交換電流密度i0および拡散係数Dsを、電池特性決定部78から新たに与えられた交換電流密度i0および拡散係数Dsに更新し、電池状態量BSを求める。第1充電可能電力予測部28および第2充電可能電力予測部36は、先に用いていた交換電流密度i0および拡散係数Dsを、電池特性決定部78から新たに与えられた交換電流密度i0および拡散係数Dsに更新し、充電可能電力特性を求める。 The battery state quantity estimation unit 26 updates the exchange current density i 0 and the diffusion coefficient D s previously used to the exchange current density i 0 and the diffusion coefficient D s newly given from the battery characteristic determination unit 78, The battery state quantity BS is obtained. The first chargeable power prediction unit 28 and the second chargeable power prediction unit 36 use the exchange current density i 0 and the diffusion coefficient D s previously used as the exchange current density newly given from the battery characteristic determination unit 78. The chargeable power characteristic is obtained by updating to i 0 and the diffusion coefficient D s .

本実施例によれば、経時変化等により電池10の交換電流密度i0および拡散係数Dsが変化した場合であっても、変化後の交換電流密度i0および拡散係数Dsを用いて適切な充電制御を行うことができる。 According to this embodiment, even when the exchange current density i 0 and the diffusion coefficient D s of the battery 10 changes due to aging or the like, suitably using an exchange current density i 0 and the diffusion coefficient D s after the change Charge control can be performed.

電池診断モードの処理は、イグニッションオン時等、車両用電力制御システムが動作可能な状態で車両が停止している時に行うことが好適である。   The processing in the battery diagnosis mode is preferably performed when the vehicle is stopped with the vehicle power control system operable, such as when the ignition is on.

図18に第2実施例に係る電池診断/電力制限値演算装置76の構成を示す。この実施例では、劣化度推定部80が、電池診断モード時の測定電池電流Ibp、測定電池電圧Vbp、および測定電池温度Tbpに基づいて電池10の劣化度を求め、充電許容電流設定部30および充電許容電圧設定部82に出力する。充電許容電流設定部30は、劣化度に基づいて充電電流制限値Icを求め第1充電可能電力予測部28に出力する。充電許容電圧設定部82は、劣化度に基づいて充電電圧制限値Vcを求め、第2充電可能電力予測部36および選択部32に出力する。図16に示した第1実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 18 shows a configuration of a battery diagnosis / power limit value calculation device 76 according to the second embodiment. In this embodiment, the deterioration degree estimation unit 80 obtains the deterioration degree of the battery 10 based on the measured battery current Ibp, the measured battery voltage Vbp, and the measured battery temperature Tbp in the battery diagnosis mode, and the charge allowable current setting unit 30 and This is output to the charge allowable voltage setting unit 82. Charging allowable current setting unit 30 obtains charging current limit value Ic based on the degree of deterioration, and outputs it to first chargeable power prediction unit 28. Charging allowable voltage setting unit 82 obtains charging voltage limit value Vc based on the degree of deterioration, and outputs it to second chargeable power prediction unit 36 and selection unit 32. The same components as those of the first embodiment shown in FIG. 16 are denoted by the same reference numerals and description thereof is omitted.

電池診断/電力制限値演算装置76は、電池診断モード時に、電池10に流れる電流の時間波形が、例えば、図17(a)に示す時間波形となるよう、電池10に流れる電流を制御する。劣化度推定部80は、図17(a)のように電池10の電流が変化したときにおける測定電池電圧Vbp、電池電流測定値Ibp、および電池温度測定値Tbpに基づいて電池10の劣化度を求める。ここで、電池10の劣化度は、例えば、SOH(State Of Health)等によって評価することができる。SOHは、新品時における、電池を満充電状態にした場合に放電可能な電荷量(満充電時放電可能電荷量)に対する、現時点における満充電時放電可能電荷量の比として定義される。SOHは、電池モデルパラメータの値とSOHとの関係を実験等によって定めたテーブルを参照することで求めることができる。劣化度推定部80は、求められた劣化度を充電許容電圧設定部82に出力する。   The battery diagnosis / power limit value calculation device 76 controls the current flowing through the battery 10 so that the time waveform of the current flowing through the battery 10 becomes, for example, the time waveform shown in FIG. Deterioration degree estimation unit 80 determines the degree of deterioration of battery 10 based on measured battery voltage Vbp, battery current measurement value Ibp, and battery temperature measurement value Tbp when the current of battery 10 changes as shown in FIG. Ask. Here, the deterioration degree of the battery 10 can be evaluated by, for example, SOH (State Of Health). SOH is defined as the ratio of the current chargeable discharge amount at full charge to the chargeable charge amount (full chargeable charge amount) when the battery is fully charged when new. The SOH can be obtained by referring to a table in which the relationship between the value of the battery model parameter and the SOH is determined by experiments or the like. The deterioration degree estimation unit 80 outputs the obtained deterioration degree to the charge allowable voltage setting unit 82.

充電許容電流設定部30は、劣化度と充電電流制限値Icとを対応付けた劣化度対電流制限値テーブルを記憶し、充電許容電圧設定部82は、劣化度と充電電圧制限値Vcとを対応付けた劣化度対電圧制限値テーブルを記憶している。充電許容電流設定部30および充電許容電圧設定部82は、これらのテーブルを参照し、求められた劣化度に対応する充電電流制限値Icおよび充電電圧制限値Vcを求める。   The allowable charge current setting unit 30 stores a deterioration degree vs. current limit value table in which the deterioration degree and the charge current limit value Ic are associated with each other. The allowable charge voltage setting unit 82 stores the deterioration degree and the charge voltage limit value Vc. The associated deterioration degree versus voltage limit value table is stored. The allowable charging current setting unit 30 and the allowable charging voltage setting unit 82 refer to these tables to determine the charging current limit value Ic and the charging voltage limit value Vc corresponding to the obtained degree of deterioration.

充電許容電流設定部30は、充電電流制限値Icを第1充電可能電力予測部28に出力し、充電許容電圧設定部82は、充電電圧制限値Vcを第2充電可能電力予測部36および選択部32に出力する。   Charging allowable current setting unit 30 outputs charging current limit value Ic to first chargeable power prediction unit 28, and charging allowable voltage setting unit 82 selects charging voltage limit value Vc and second chargeable power prediction unit 36 and selection. To the unit 32.

図19に、劣化度対電流制限値テーブルが示す関係の例をグラフによって示す。図19の横軸は劣化度を示し縦軸は充電電流制限値Icを示す。図19の例では、劣化度が所定の閾値Ht未満のときは、劣化度の変化に対し充電電流制限値Icを一定とする。一方、劣化度が所定の閾値Ht以上のときは、劣化度が増加すると共に充電電流制限値Icを減少させる。   FIG. 19 is a graph showing an example of the relationship indicated by the deterioration degree vs. current limit value table. The horizontal axis in FIG. 19 indicates the degree of deterioration, and the vertical axis indicates the charging current limit value Ic. In the example of FIG. 19, when the degree of deterioration is less than a predetermined threshold value Ht, the charging current limit value Ic is constant with respect to the change in the degree of deterioration. On the other hand, when the deterioration level is equal to or higher than the predetermined threshold Ht, the deterioration level increases and the charging current limit value Ic is decreased.

劣化度H3およびH4の間に、Ht<H3<H4の関係があるとき、それぞれに対応する充電電流制限値Ic3およびIc4の関係は、Ic3>Ic4となる。これによって、充電許容電流設定部30が出力する充電電流制限値の時間波形は、それぞれ、図20(a)の時間波形84−3および84−4のようになる。そして、図20(a)の時間波形84−3および84−4に対応して、第1充電可能電力予測部28において求められる充電可能電力特性は、それぞれ、図20(b)の特性86−3および86−4のようになる。特性86−3および86−4からは、Win演算用時間tcに対して、それぞれ、充電電力制限値Win3AおよびWin4Aが求められる。これらの充電電力制限値には、Win3A>Win4Aの関係がある。   When there is a relationship of Ht <H3 <H4 between the degradation levels H3 and H4, the relationship between the charging current limit values Ic3 and Ic4 corresponding to each is Ic3> Ic4. As a result, the time waveforms of the charge current limit values output by the charge allowable current setting unit 30 are as shown by time waveforms 84-3 and 84-4 in FIG. And the chargeable power characteristic calculated | required in the 1st chargeable electric power estimation part 28 corresponding to the time waveforms 84-3 and 84-4 of Fig.20 (a) is respectively the characteristic 86- of FIG.20 (b). 3 and 86-4. From the characteristics 86-3 and 86-4, charging power limit values Win3A and Win4A are obtained for the time tc for Win calculation, respectively. These charging power limit values have a relationship of Win3A> Win4A.

また、図21に、劣化度対電圧制限値テーブルが示す関係の例をグラフによって示す。図21の横軸は劣化度を示し縦軸は充電電圧制限値Vcを示す。図21の例では、劣化度が所定の閾値Ht未満のときは、劣化度の変化に対し充電電圧制限値Vcを一定とする。一方、劣化度が所定の閾値Ht以上のときは、劣化度が増加すると共に充電電圧制限値Vcを減少させる。   FIG. 21 is a graph showing an example of the relationship indicated by the deterioration degree vs. voltage limit value table. The horizontal axis in FIG. 21 indicates the degree of deterioration, and the vertical axis indicates the charging voltage limit value Vc. In the example of FIG. 21, when the degree of deterioration is less than a predetermined threshold value Ht, the charging voltage limit value Vc is fixed with respect to the change in the degree of deterioration. On the other hand, when the degree of deterioration is equal to or greater than the predetermined threshold Ht, the degree of deterioration increases and the charge voltage limit value Vc is decreased.

劣化度H3およびH4にそれぞれ対応する充電電圧制限値Vc3およびVc4の関係は、Vc3>Vc4となる。充電電圧制限値の時間波形は、それぞれ、図22(a)の時間波形88−3および88−4のようになる。そして、図22(a)の時間波形88−3および88−4に対応して、第2充電可能電力予測部36において求められる充電可能電力特性は、それぞれ、図22(b)の特性90−3および90−4のようになる。特性90−3および90−4からは、Win演算用時間tcに対して、それぞれ、充電電力制限値Win3BおよびWin4Bが求められる。これらの充電電力制限値には、Win3B>Win4Bの関係がある。   The relationship between the charging voltage limit values Vc3 and Vc4 corresponding to the deterioration levels H3 and H4 is Vc3> Vc4. The time waveforms of the charging voltage limit value are as shown by time waveforms 88-3 and 88-4 in FIG. Then, corresponding to the time waveforms 88-3 and 88-4 in FIG. 22A, the chargeable power characteristics obtained in the second chargeable power prediction unit 36 are characteristics 90- in FIG. 22B, respectively. 3 and 90-4. From the characteristics 90-3 and 90-4, the charging power limit values Win3B and Win4B are obtained for the Win calculation time tc, respectively. These charging power limit values have a relationship of Win3B> Win4B.

一つの充電可能電力特性が求められる途中で選択部32における選択状態が切り換わった場合における、電池電流測定値Ib、電池電圧測定値Vbおよび充電可能電力の各時間波形の例は、図14(a)、(b)および(c)と同様になるため、ここでは図14を援用する。図14(c)における時刻t1より前の特性70−1および70−2は、図20(b)における特性86−3および86−4に相当する。図14(c)における時刻t1以降の特性72−1および72−2は、図22(b)における特性90−3および90−4に相当する。   Examples of time waveforms of the battery current measurement value Ib, the battery voltage measurement value Vb, and the chargeable power when the selection state in the selection unit 32 is switched while one chargeable power characteristic is obtained are shown in FIG. Since it becomes the same as a), (b), and (c), FIG. 14 is used here. Characteristics 70-1 and 70-2 before time t1 in FIG. 14C correspond to characteristics 86-3 and 86-4 in FIG. The characteristics 72-1 and 72-2 after the time t1 in FIG. 14C correspond to the characteristics 90-3 and 90-4 in FIG.

このように、本実施例では、充電許容電流設定部30および充電許容電圧設定部82は、劣化度が所定の閾値以上となったときには、劣化度が大きい程値が小さくなるよう、充電電流制限値Icおよび充電電圧制限値Vcが求められる。これによって、劣化度が所定の閾値以上となったときには、劣化度が大きい程充電電力制限値Winを小さくすることができる。   Thus, in the present embodiment, the charge allowable current setting unit 30 and the charge allowable voltage setting unit 82 limit the charging current so that the larger the deterioration level, the smaller the value when the deterioration level exceeds a predetermined threshold. A value Ic and a charging voltage limit value Vc are obtained. As a result, when the degree of deterioration exceeds a predetermined threshold, the charging power limit value Win can be reduced as the degree of deterioration increases.

電池は、劣化度が大きくなったときには迅速な充電を行わず、できるだけ寿命を延ばすことが好ましい。本実施例によれば、劣化度が所定の閾値以上であるときには充電電力を小さくし、電池10の寿命を長くすることができる。   It is preferable to extend the life of the battery as much as possible without performing quick charging when the degree of deterioration increases. According to the present embodiment, when the degree of deterioration is equal to or greater than a predetermined threshold, the charging power can be reduced and the life of the battery 10 can be extended.

なお、図16および図18にそれぞれ示す、第1および第2実施例に係る電池診断/電力制限値演算装置76については、図2に示す電力制限値演算装置24と同様、電力制限値設定部38を用いない構成としてもよい。   16 and FIG. 18, respectively, the battery diagnosis / power limit value calculation device 76 according to the first and second embodiments is similar to the power limit value calculation device 24 shown in FIG. It is good also as a structure which does not use 38.

10 電池、12 電力制御装置、14 モータジェネレータ、16 操作部、18 電流センサ、20 電圧センサ、22 温度センサ、24 電力制限値演算装置、26 電池状態量推定部、28 第1充電可能電力予測部、30 充電許容電流設定部、32 選択部、34 充電許容電圧設定部、36 第2充電可能電力予測部、38 電力制限値設定部、40 負極、42 正極、44 セパレータ、46,48 活物質、50 負極コレクタ、52 正極コレクタ、54 負極端子、56 正極端子、58 外部回路、60,82 充電許容電圧設定部、62−1,62−2,84−3,84−4 充電電流制限値時間波形、64−1,64−2,68−1,68−2,70−1,70−2,72−1,72−2,86−3,86−4,90−3,90−4 充電可能電力時間波形、66−1,66−2,88−3,88−4 充電電圧制限値時間波形、74 モード切り換えスイッチ、76 電池診断/電力制限値演算装置、78 電池特性決定部、80 劣化度推定部。   DESCRIPTION OF SYMBOLS 10 Battery, 12 Power control apparatus, 14 Motor generator, 16 Operation part, 18 Current sensor, 20 Voltage sensor, 22 Temperature sensor, 24 Power limit value calculating apparatus, 26 Battery state quantity estimation part, 28 1st chargeable electric power estimation part , 30 Charging allowable current setting unit, 32 selection unit, 34 charging allowable voltage setting unit, 36 second chargeable power prediction unit, 38 power limit value setting unit, 40 negative electrode, 42 positive electrode, 44 separator, 46, 48 active material, 50 negative electrode collector, 52 positive electrode collector, 54 negative electrode terminal, 56 positive electrode terminal, 58 external circuit, 60, 82 charge allowable voltage setting unit, 62-1, 62-2, 84-3, 84-4 charge current limit value time waveform 64-1, 64-2, 68-1, 68-2, 70-1, 70-2, 72-1, 72-2, 86-3, 86-4, 90-3, 9 0-4 Chargeable power time waveform, 66-1, 66-2, 88-3, 88-4 Charging voltage limit value time waveform, 74 mode changeover switch, 76 battery diagnosis / power limit value calculation device, 78 battery characteristic determination Part, 80 Degradation degree estimation part.

Claims (10)

車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置において、
前記電池の電力授受状態を検出する使用状態検出部と、
前記使用状態検出部の検出結果に基づいて、電池状態量を求める電池状態量推定部と、
充電電流制限値を取得し、充電電流制限値の電流で電池を充電したときの充電可能電力を、前記電池状態量に基づいて求める第1充電可能電力予測部と、
充電電圧制限値を取得し、充電電圧制限値の電圧で電池を充電したときの充電可能電力を、前記電池状態量に基づいて求める第2充電可能電力予測部と、
前記電池の出力電圧と前記充電電圧制限値とを比較し、比較結果に応じて前記第1充電可能電力予測部によって求められた充電可能電力または前記第2充電可能電力予測部によって求められた充電可能電力のいずれかを選択し、充電可能電力の時間変化を示す充電可能電力特性を選択結果に基づいて求める選択部と、
を備え、
前記充電可能電力特性に基づく充電電力制限値を出力することを特徴とする充電電力制限値演算装置。
In a charging power limit value calculating device for determining a charging power limit value for a vehicle driving power supply battery,
A use state detection unit for detecting a power transfer state of the battery;
Based on the detection result of the use state detection unit, a battery state amount estimation unit for obtaining a battery state amount;
A first chargeable power prediction unit that obtains a charge current limit value and obtains chargeable power when the battery is charged with the current of the charge current limit value based on the battery state quantity;
A second chargeable power prediction unit that obtains a charge voltage limit value, and obtains chargeable power when the battery is charged with the voltage of the charge voltage limit value based on the battery state quantity;
The output voltage of the battery and the charge voltage limit value are compared, and the chargeable power obtained by the first chargeable power prediction unit or the charge obtained by the second chargeable power prediction unit according to the comparison result A selection unit that selects any one of the possible powers and obtains a chargeable power characteristic indicating a change over time of the chargeable power based on the selection result;
With
A charging power limit value calculation device that outputs a charging power limit value based on the chargeable power characteristic.
請求項1に記載の充電電力制限値演算装置において、
前記充電可能電力特性に基づいて、基準時刻から所定の時間が経過した時における充電可能電力を充電電力制限値として求める電力制限値設定部を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 1,
A charging power limit value calculation device comprising: a power limit value setting unit that obtains chargeable power as a charging power limit value when a predetermined time has elapsed from a reference time based on the chargeable power characteristic.
請求項1または請求項2に記載の充電電力制限値演算装置において、
前記選択部は、
前記電池の出力電圧が前記充電電圧制限値未満であるときは、前記第1充電可能電力予測部によって求められた充電可能電力を選択することを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 1 or 2,
The selection unit includes:
When the output voltage of the battery is less than the charging voltage limit value, the charging power limit value calculating device is configured to select the chargeable power obtained by the first chargeable power prediction unit.
請求項1から請求項3のいずれか1項に記載の充電電力制限値演算装置において、
前記使用状態検出部の検出結果に基づいて、前記電池の充電能力の劣化度を求める劣化度推定部と、
前記劣化度推定部によって求められた劣化度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部と、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 3,
Based on the detection result of the use state detection unit, a deterioration degree estimation unit for obtaining a deterioration degree of the charging capacity of the battery,
An allowable current setting unit that determines a smaller charging current limit value as the degree of deterioration obtained by the deterioration degree estimating unit is larger, and gives the determined charging current limit value to the first chargeable power prediction unit;
A charging power limit value calculation device comprising:
請求項1から請求項3のいずれか1項に記載の充電電力制限値演算装置において、
前記使用状態検出部の検出結果に基づいて、前記電池の充電能力の劣化度を求める劣化度推定部と、
前記劣化度推定部によって求められた劣化度が大きい程小さい充電電圧制限値を定め、定められた充電電圧制限値を前記第2充電可能電力予測部に与える許容電圧設定部と、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 3,
Based on the detection result of the use state detection unit, a deterioration degree estimation unit for obtaining a deterioration degree of the charging capacity of the battery,
An allowable voltage setting unit that determines a smaller charging voltage limit value as the degree of deterioration obtained by the deterioration degree estimating unit is larger, and gives the determined charging voltage limit value to the second chargeable power prediction unit;
A charging power limit value calculation device comprising:
請求項5に記載の充電電力制限値演算装置において、
前記劣化度推定部によって求められた劣化度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 5,
An allowable current setting unit that determines a smaller charging current limit value as the degree of deterioration obtained by the deterioration degree estimating unit is larger, and gives the determined charging current limit value to the first chargeable power prediction unit;
A charging power limit value calculation device comprising:
請求項1から請求項3のいずれか1項に記載の充電電力制限値演算装置において、
前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 3,
The charge depth of the battery is determined based on the battery state quantity, the smaller the obtained charge depth, the smaller the charge current limit value is determined, and the predetermined charge current limit value is given to the first chargeable power predicting unit Current setting section,
A charging power limit value calculation device comprising:
請求項1から請求項3のいずれか1項に記載の充電電力制限値演算装置において、
前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電圧制限値を定め、定められた充電電圧制限値を前記第2充電可能電力予測部に与える許容電圧設定部、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 3,
The charging depth of the battery is determined based on the battery state quantity, the charging voltage limit value is set to be smaller as the determined charging depth is larger, and the predetermined charging voltage limit value is given to the second chargeable power prediction unit Voltage setting section,
A charging power limit value calculation device comprising:
請求項8に記載の充電電力制限値演算装置において、
前記電池状態量に基づいて前記電池の充電深度を求め、求められた充電深度が大きい程小さい充電電流制限値を定め、定められた充電電流制限値を前記第1充電可能電力予測部に与える許容電流設定部、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 8,
The charge depth of the battery is determined based on the battery state quantity, the smaller the obtained charge depth, the smaller the charge current limit value is determined, and the predetermined charge current limit value is given to the first chargeable power predicting unit Current setting section,
A charging power limit value calculation device comprising:
請求項1から請求項9のいずれか1項に記載の充電電力制限値演算装置において、
前記電池に流れる電流を変化させる電池電流制御部と、
前記電池電流制御部による電流変化に対する前記電池の出力電圧の変化に基づいて、前記電池の特性定数を求める電池特性決定部と、
を備え、
前記電池状態量推定部は、
前記電池特性決定部によって求められた特定定数に基づいて電池状態量を求め、
前記第1および第2充電可能電力予測部は、
前記電池決定部によって求められた特定定数に基づいて充電可能電力を求めることを特徴とする充電電力制限値演算装置。
The charging power limit value calculation device according to any one of claims 1 to 9,
A battery current controller for changing the current flowing through the battery;
A battery characteristic determination unit for obtaining a characteristic constant of the battery based on a change in the output voltage of the battery with respect to a current change by the battery current control unit;
With
The battery state quantity estimator is
Obtaining the battery state quantity based on the specific constant obtained by the battery characteristic determination unit,
The first and second chargeable power prediction units are
A charge power limit value calculation device characterized in that chargeable power is obtained based on a specific constant obtained by the battery determination unit.
JP2009189242A 2009-08-18 2009-08-18 Charge power limit value calculating device Pending JP2011041441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189242A JP2011041441A (en) 2009-08-18 2009-08-18 Charge power limit value calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189242A JP2011041441A (en) 2009-08-18 2009-08-18 Charge power limit value calculating device

Publications (1)

Publication Number Publication Date
JP2011041441A true JP2011041441A (en) 2011-02-24

Family

ID=43768601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189242A Pending JP2011041441A (en) 2009-08-18 2009-08-18 Charge power limit value calculating device

Country Status (1)

Country Link
JP (1) JP2011041441A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200075A (en) * 2011-03-22 2012-10-18 Toyota Motor Corp Control device for secondary battery
WO2013015244A1 (en) * 2011-07-27 2013-01-31 三菱電機株式会社 Secondary battery charging control device and charging control method
JP2014071100A (en) * 2012-10-02 2014-04-21 Gs Yuasa Corp Charge control device of power storage element, power storage device, and charge control method
WO2015041091A1 (en) * 2013-09-19 2015-03-26 株式会社 東芝 Secondary cell degradation diagnosis system, and degradation diagnosis method
JP2017219047A (en) * 2017-06-20 2017-12-14 三菱電機株式会社 Degradation diagnosis device
JP2018098900A (en) * 2016-12-13 2018-06-21 トヨタ自動車株式会社 Battery system
CN108973744A (en) * 2013-07-04 2018-12-11 锐思科股份有限公司 Storage battery exchanging system, computer program medium, management servomechanism and accumulator cell management method
WO2019007186A1 (en) * 2017-07-03 2019-01-10 Ningbo Geely Automobile Research & Development Co., Ltd. Method and electronic device for managing power limit
KR20190095755A (en) * 2018-02-07 2019-08-16 주식회사 엘지화학 Method and battery management system for smoothing power limit of a battery
WO2022014124A1 (en) * 2020-07-16 2022-01-20 株式会社日立製作所 Battery management device, battery management method, and electric power storage system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200075A (en) * 2011-03-22 2012-10-18 Toyota Motor Corp Control device for secondary battery
CN103620911B (en) * 2011-07-27 2016-01-27 三菱电机株式会社 The battery charge controller of secondary cell and charge control method
WO2013015244A1 (en) * 2011-07-27 2013-01-31 三菱電機株式会社 Secondary battery charging control device and charging control method
CN103620911A (en) * 2011-07-27 2014-03-05 三菱电机株式会社 Secondary battery charging control device and charging control method
JP5597310B2 (en) * 2011-07-27 2014-10-01 三菱電機株式会社 Charge control device and charge control method for secondary battery
JP2014071100A (en) * 2012-10-02 2014-04-21 Gs Yuasa Corp Charge control device of power storage element, power storage device, and charge control method
JP2019004693A (en) * 2013-07-04 2019-01-10 レスク株式会社 Battery replacement system for electric vehicle, and program
CN108973744A (en) * 2013-07-04 2018-12-11 锐思科股份有限公司 Storage battery exchanging system, computer program medium, management servomechanism and accumulator cell management method
CN108973744B (en) * 2013-07-04 2022-06-03 锐思科股份有限公司 Storage battery exchange system, management server, and storage battery management method
JP2015060761A (en) * 2013-09-19 2015-03-30 株式会社東芝 Deterioration diagnostic system and deterioration diagnostic method of secondary battery
WO2015041091A1 (en) * 2013-09-19 2015-03-26 株式会社 東芝 Secondary cell degradation diagnosis system, and degradation diagnosis method
JP2018098900A (en) * 2016-12-13 2018-06-21 トヨタ自動車株式会社 Battery system
JP2017219047A (en) * 2017-06-20 2017-12-14 三菱電機株式会社 Degradation diagnosis device
WO2019007186A1 (en) * 2017-07-03 2019-01-10 Ningbo Geely Automobile Research & Development Co., Ltd. Method and electronic device for managing power limit
US11579204B2 (en) 2017-07-03 2023-02-14 Ningbo Geely Automobile Research & Development Co. Method and electronic device for managing power limit
US11946977B2 (en) 2017-07-03 2024-04-02 Ningbo Geely Automobile Research & Dev. Co., Ltd. Method and electronic device for managing power limit
KR20190095755A (en) * 2018-02-07 2019-08-16 주식회사 엘지화학 Method and battery management system for smoothing power limit of a battery
KR102428699B1 (en) 2018-02-07 2022-08-02 주식회사 엘지에너지솔루션 Method and battery management system for smoothing power limit of a battery
WO2022014124A1 (en) * 2020-07-16 2022-01-20 株式会社日立製作所 Battery management device, battery management method, and electric power storage system

Similar Documents

Publication Publication Date Title
JP2011041441A (en) Charge power limit value calculating device
Monem et al. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process
Ashwin et al. Capacity fade modelling of lithium-ion battery under cyclic loading conditions
KR101897859B1 (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP5761378B2 (en) Secondary battery control device and control method
KR101619634B1 (en) System for estimating state of health using battery moedel parameter and method thereof
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
CN102239597B (en) Method for determining charge state of secondary intercalation cell of rechargeable battery
WO2019184843A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
US10353010B2 (en) Apparatus for estimating remaining power amount of battery employing a polarization voltage
WO2008016129A1 (en) Secondary battery charge/discharge control device and hybrid vehicle using the same
JP5623629B2 (en) Remaining life judgment method
JP5492493B2 (en) Charge power limit value calculation device
JP6437403B2 (en) Charge condition control device and battery pack
Michalczuk et al. Experimental parameter identification of battery-ultracapacitor energy storage system
JP2016502730A (en) Method using apparatus for storing electrical energy
JP2018189398A (en) Battery system
JP5362478B2 (en) Charge power limit value calculation device
JP5849537B2 (en) Estimation apparatus and estimation method
JP5324356B2 (en) Discharge power limit value calculation device
JP6409272B2 (en) Charge state estimation device
JP2019050094A (en) Charge/discharge control device for secondary battery
Aneiros et al. A proposed mathematical model for discharge curves of Li-Ion batteries
JP5655744B2 (en) Secondary battery degradation estimation apparatus and degradation estimation method
JP6747333B2 (en) Secondary battery system