JP5492493B2 - Charge power limit value calculation device - Google Patents

Charge power limit value calculation device Download PDF

Info

Publication number
JP5492493B2
JP5492493B2 JP2009189244A JP2009189244A JP5492493B2 JP 5492493 B2 JP5492493 B2 JP 5492493B2 JP 2009189244 A JP2009189244 A JP 2009189244A JP 2009189244 A JP2009189244 A JP 2009189244A JP 5492493 B2 JP5492493 B2 JP 5492493B2
Authority
JP
Japan
Prior art keywords
battery
limit value
charging
power
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009189244A
Other languages
Japanese (ja)
Other versions
JP2011040346A (en
Inventor
嘉昭 伊藤
修二 戸村
友和 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009189244A priority Critical patent/JP5492493B2/en
Publication of JP2011040346A publication Critical patent/JP2011040346A/en
Application granted granted Critical
Publication of JP5492493B2 publication Critical patent/JP5492493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置に関する。   The present invention relates to a charging power limit value calculation device that determines a charging power limit value for a battery for supplying vehicle driving power.

電気自動車、ハイブリッド自動車等の電動車両が広く用いられている。電動車両は、モータジェネレータを備え、モータジェネレータの駆動力によって加速し、モータジェネレータの回生発電制動によって減速する。モータジェネレータに電力を供給し、モータジェネレータによる発電電力を回収するため、電動車両には繰り返し充放電が可能な二次電池が搭載される。   Electric vehicles such as electric vehicles and hybrid vehicles are widely used. The electric vehicle includes a motor generator, and is accelerated by a driving force of the motor generator and decelerated by regenerative power generation braking of the motor generator. In order to supply electric power to the motor generator and collect electric power generated by the motor generator, a secondary battery that can be repeatedly charged and discharged is mounted on the electric vehicle.

下記の特許文献1および特許文献2には、本発明が解決しようとする課題に関連して、電池の充放電電力を制限する技術について記載されている。また、下記の非特許文献1および特許文献2には、本発明に係る充放電制御に用いられる、電池の電気化学的モデルについて記載されている。   The following Patent Document 1 and Patent Document 2 describe a technique for limiting the charge / discharge power of a battery in relation to the problem to be solved by the present invention. Non-Patent Document 1 and Patent Document 2 below describe an electrochemical model of a battery used for charge / discharge control according to the present invention.

特開2003−219510号公報JP 2003-219510 A 特開2008−42960号公報JP 2008-42960 A

グおよびワン(W.B.Gu and C.Y.Wang)著、「リチウムイオン電池の熱−電気化学結合モデリング(THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL)」、ECS Proceedings Vol.99-25 (1),2000、(米国)、電気化学学会(ECS)、2000年、pp 743-762WBGu and CYWang, “Thermal-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL”, ECS Proceedings Vol.99-25 (1), 2000 (USA), Electrochemical Society (ECS), 2000, pp 743-762

電池の充電性能は、充電電力、電池温度等の使用条件に応じて変化する。そのため、一定の電力で充電を行うよう充電制御を行うと、許容され得る最大限の電力を以て電池を充電することができない等の問題が生じる。一方、電池は、その時点での充電能力以上の過剰な電力で充電を行うと、充電容量が早期に低下する等、電池の寿命が短くなるという問題が生ずる。   The charging performance of the battery varies depending on usage conditions such as charging power and battery temperature. For this reason, when charge control is performed so that charging is performed with a constant power, there arises a problem that the battery cannot be charged with the maximum allowable power. On the other hand, if the battery is charged with excessive power exceeding the charging capacity at that time, there arises a problem that the life of the battery is shortened, for example, the charge capacity is quickly reduced.

本発明はこのような課題に対してなされたものである。すなわち、車両駆動電力供給用の電池について充電電力制限値を求める充電電力制限値演算装置において、電池の使用条件や電池の状態および電池の充電特性に応じて最適な充電電力制限値を求めることを目的とする。   The present invention has been made for such a problem. That is, in a charging power limit value calculation device that calculates a charging power limit value for a battery for supplying vehicle driving power, an optimum charging power limit value is determined according to the use condition of the battery, the state of the battery, and the charging characteristics of the battery. Objective.

本発明は、車両駆動電力供給用の電池に流れる電流、前記電池の出力電圧、および前記電池の温度測定するセンサと、前記センサ各測定結果に基づいて、前記電池についての電池モデル式から、前記電池の電池モデルパラメータを含む電池状態量を求める電池状態量推定部と、前記電池を一定電圧充電する場合における前記電池への充電電力を、前記電池モデル式に基づき、前記電池を充電する際の充電可能電力として求めるため、充電電圧制限値を設定する充電許容電圧生成部と、前記充電電圧制限値の電圧で前記電池を一定電圧充電する場合における前記電池への充電電力の時間変化を、前記電池モデル式に基づき、充電可能電力特性として求める充電可能電力予測部であって、前記充電電圧制限値と前記電池状態量とに基づいて、当該充電可能電力特性を求める充電可能電力予測部と、を備え、前記充電可能電力特性に基づいて、実際に前記電池を充電する際の充電電力制限値を求めることを特徴とする。 The present invention provides a sensor for measuring a current flowing in a battery for supplying vehicle driving power , an output voltage of the battery, and a temperature of the battery, and a battery model formula for the battery based on each measurement result of the sensor. A battery state quantity estimation unit for obtaining a battery state quantity including a battery model parameter of the battery, and charging power to the battery when the battery is charged at a constant voltage based on the battery model formula. A charging allowable voltage generator for setting a charging voltage limit value, and a time change in charging power to the battery when the battery is charged at a constant voltage with the voltage of the charging voltage limit value. , based on said battery model equation, a chargeable power prediction unit for obtaining a chargeable power characteristics, the based on the battery state quantity and the charging voltage limit value, Comprising a chargeable power prediction unit for obtaining the said charging electric power characteristics, and on the basis of the chargeable power characteristics, and wherein the Rukoto calculated charging power limit value in charging actually the battery.

本発明に係る充電電力制限値演算装置においては、前記充電可能電力特性は、充電可能電力が充電開始後に増加して最大となり、その後時間の経過と共に小さくなる特性であり、前記充電電力制限値演算装置は、前記充電可能電力特性に基づいて、前記電池モデル式による演算上の初期時刻にあたる基準時刻から所定の時間が経過した時における充電可能電力を、前記充電電力制限値として求める電力制限値設定部を備えることが好適である。 In the charging power limit value calculation device according to the present invention, the chargeable power characteristic is a characteristic that the chargeable power increases and becomes maximum after the start of charging and then decreases with time, and the charging power limit value calculation apparatus, based on said chargeable power characteristics, a rechargeable power observed when the predetermined time period from the reference time corresponding to the initial time of the operation by the battery model equation has elapsed, the power limit value setting determined as the limit charging power It is suitable to provide a part.

本発明に係る充電電力制限値演算装置においては、前記電池状態量推定部は、前記電池状態量に基づいて前記電池の充電深度を求め、前記充電電力制限値演算装置は、求められた充電深度が大きい程長い時間を前記所定の時間として定める時間調整部を備えることが好適である。 In the charging power limit value computing device according to the present invention, the battery state quantity estimating unit obtains a charging depth of the battery based on the battery state quantity, and the charging power limit value computing device obtains the obtained charging depth. it is preferable to obtain Bei between adjustment portion when the shall be determined as the predetermined time between time as has long large.

本発明に係る充電電力制限値演算装置においては、前記電池の充電能力の劣化度であって、満充電時放電可能電荷量の経時変化によって表される劣化度を求める劣化度推定部と、前記劣化度推定部によって求められた劣化度が大きい程長い時間を前記所定の時間として定める時間調整部と、を備えることが好適である。 In the charging power limit value calculation device according to the present invention, a deterioration degree estimation unit that obtains a deterioration degree of the charge capacity of the battery and is represented by a change with time of a charge amount that can be discharged at full charge , and and during adjustment portion when the amount of time as has long greater deterioration degree determined by the deterioration degree estimation portion shall be determined as the predetermined time, it is preferable to obtain Bei a.

本発明に係る充電電力制限値演算装置においては、前記充電許容電圧生成部は、前記劣化度推定部によって求められた劣化度が大きい程小さい値を前記充電電圧制限値として設定することが好適である。 In charge power limit value calculation device according to the present invention, the allowable charge voltage generator, preferably you to set a smaller value the larger the deterioration degree determined by said deterioration degree estimation portion as the charging voltage limit value It is.

本発明に係る充電電力制限値演算装置においては、記電池の充電能力の劣化度であって、満充電時放電可能電荷量の経時変化によって表される劣化度を求める劣化度推定部を備え前記充電許容電圧生成部は、前記劣化度推定部によって求められた劣化度が大きい程小さい値を前記充電電圧制限値として設定することが好適である。 In charge power limit value calculation device according to the present invention is a deterioration of the charging ability of the previous SL cell includes a deterioration degree estimation unit for obtaining a degradation degree represented by the aging of the fully charged during discharge charge quantity the chargeable voltage generator, that you set a smaller value the larger the deterioration degree determined by said deterioration degree estimation portion as the charging voltage limit value is preferable.

本発明に係る充電電力制限値演算装置においては、前記電池状態量推定部は、前記電池状態量に基づいて前記電池の充電深度を求め、前記充電許容電圧生成部は、記充電深度が大きい程小さい値を前記充電電圧制限値として設定することが好適である。 In charge power limit value calculation device according to the present invention, the battery state estimation unit obtains the charging depth of the battery based on the battery state quantity, the chargeable voltage generator, the previous KiTakashi electrostatic depth that you set a smaller value the larger as the charging voltage limit value is preferable.

本発明に係る充電電力制限値演算装置においては、前記電池に流れる電流を変化させる電池電流制御部と、前記電池電流制御部による電流変化に対する前記電池の出力電圧の変化に基づいて、前記電池について、交換電流密度および拡散係数を含む特性定数を求める電池特性決定部と、を備え、前記電池状態量推定部は、前記センサの各測定結果に加えて、前記電池特性決定部によって求められた特定数に基づいて前記電池状態量を求め、前記充電可能電力予測部は、前記充電電圧制限値および前記電池状態量に加えて、前記電池特性決定部によって求められた特定数に基づいて前記充電可能電力特性を求めることが好適である。
In charge power limit value calculation device according to the present invention, a battery current control unit for changing the current flowing through the battery, based on a change in the output voltage of the battery for the current change by the battery current controller, for said battery , JP and a battery characteristic determining unit for determining the characteristic constants including the exchange current density and the diffusion coefficient, the battery state estimation unit, in addition to the measurement result of the sensor, determined by the battery characteristic determining unit obtains the battery state quantity based on sex constant, the chargeable power prediction unit, in addition to the charging voltage limit value and the battery state quantity based on said characteristic constants obtained by said battery characteristic determining unit the chargeable power characteristic is preferably determined Mel possible.

本発明によれば、電池の使用条件に応じて最適な電池の充電電力制限値を求めることができる。   According to the present invention, it is possible to obtain an optimum charging power limit value for a battery according to the use condition of the battery.

第1の実施形態に係る車両用電力制御システムの構成を示す図である。It is a figure which shows the structure of the vehicle electric power control system which concerns on 1st Embodiment. 第1実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 1st Example. 電池セルの構成および電気化学的モデルを示す図である。It is a figure which shows the structure and electrochemical model of a battery cell. 電池モデルパラメータを示す図である。It is a figure which shows a battery model parameter. 充電電圧制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging voltage limiting value. 第2実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 2nd Example. 第3実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 3rd Example. 充電深度対電圧制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a charging depth versus voltage limiting value table shows. 充電電圧制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging voltage limiting value. 第4実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 4th Example. 充電深度対演算用時間テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which the charge time versus calculation time table shows. 充電可能電力特性を示す図である。It is a figure which shows the chargeable electric power characteristic. 第5実施例に係る電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the electric power limit value calculating apparatus which concerns on 5th Example. 第2の実施形態に係る車両用電力制御システムの構成を示す図である。It is a figure which shows the structure of the electric power control system for vehicles which concerns on 2nd Embodiment. 第1実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / electric power limit value calculating apparatus which concerns on 1st Example. 電流制御装置によって制御された電池電流の時間波形およびその電池電流に応じた電池電圧測定値の時間波形の例を示す図である。It is a figure which shows the example of the time waveform of the battery voltage measured value according to the time waveform of the battery current controlled by the current control apparatus, and the battery current. 第2実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / power limit value calculating apparatus which concerns on 2nd Example. 劣化度対電圧制限値テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which a deterioration degree versus voltage limiting value table shows. 充電電圧制限値の時間波形および充電可能電力特性を示す図である。It is a figure which shows the time waveform and chargeable electric power characteristic of a charging voltage limiting value. 第3実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / power limit value calculating apparatus which concerns on 3rd Example. 劣化度対演算用時間テーブルが示す関係の例を示す図である。It is a figure which shows the example of the relationship which the deterioration time versus time table for a calculation shows. 充電可能電力特性を示す図である。It is a figure which shows the chargeable electric power characteristic. 第4実施例に係る電池診断/電力制限値演算装置の構成を示す図である。It is a figure which shows the structure of the battery diagnosis / power limit value calculating apparatus which concerns on 4th Example. 第1の実施形態に係る電力制限値演算装置の第4実施例、および第2の実施形態に係る電池診断/電力制限値演算装置の第2実施例を組み合わせた構成を示す図である。It is a figure which shows the structure which combined the 4th Example of the power limit value calculating device which concerns on 1st Embodiment, and the 2nd Example of the battery diagnosis / power limit value calculating device which concerns on 2nd Embodiment. 第1の実施形態に係る電力制限値演算装置の第3実施例、および第2の実施形態に係る電池診断/電力制限値演算装置の第3実施例を組み合わせた構成を示す図である。It is a figure which shows the structure which combined the 3rd Example of the power limit value calculating device which concerns on 1st Embodiment, and the 3rd Example of the battery diagnosis / power limit value calculating device which concerns on 2nd Embodiment.

図1に本発明の第1の実施形態に係る車両用電力制御システムの構成を示す。車両用電力制御システムは、電池10の電力をモータジェネレータ14に供給して車両を駆動し、モータジェネレータ14の発電電力によって電池10を充電して車両を回生制動する。電池10には、繰り返し充放電が可能なリチウムイオン電池等を用いることができる。   FIG. 1 shows a configuration of a vehicle power control system according to a first embodiment of the present invention. The vehicle power control system supplies the electric power of the battery 10 to the motor generator 14 to drive the vehicle, charges the battery 10 with the electric power generated by the motor generator 14 and regeneratively brakes the vehicle. The battery 10 can be a lithium ion battery that can be repeatedly charged and discharged.

操作部16は、アクセルペダル、ブレーキペダル等を含み、ユーザの操作に応じた操作指令情報を電力制御装置12に出力する。   The operation unit 16 includes an accelerator pedal, a brake pedal, and the like, and outputs operation command information corresponding to a user operation to the power control device 12.

電力制御装置12は、モータジェネレータ14と電池10との間で、各印加電圧を調整しつつ交流直流変換を行う。電力制御装置12は、操作指令情報に応じてモータジェネレータ14に加速トルクを発生させるときは、電池10からモータジェネレータ14に電力が供給されるよう、電池10およびモータジェネレータ14に印加される電圧を調整する。また、電力制御装置12は、操作指令情報に基づきモータジェネレータ14に回生制動トルクを発生させるときは、モータジェネレータ14から電池10に電力が供給されるよう、電池10およびモータジェネレータ14に印加される電圧を調整する。   The power control device 12 performs AC / DC conversion between the motor generator 14 and the battery 10 while adjusting each applied voltage. When the electric power control device 12 causes the motor generator 14 to generate acceleration torque in accordance with the operation command information, the electric power control device 12 sets the voltage applied to the battery 10 and the motor generator 14 so that electric power is supplied from the battery 10 to the motor generator 14. adjust. Further, the power control device 12 is applied to the battery 10 and the motor generator 14 so that power is supplied from the motor generator 14 to the battery 10 when the motor generator 14 generates regenerative braking torque based on the operation command information. Adjust the voltage.

モータジェネレータ14から電池10に電力が供給されることによって、電池10は電荷を充電する。このとき、電力制御装置12は、電力制限値演算装置24が出力する充電電力制限値Winを超えないよう電池10に供給される充電電力を調整する。   When electric power is supplied from the motor generator 14 to the battery 10, the battery 10 is charged. At this time, the power control device 12 adjusts the charging power supplied to the battery 10 so as not to exceed the charging power limit value Win output by the power limit value calculation device 24.

車両用電力制御システムは、電力制限値演算装置24が充電電力制限値Winを求めるため、電池10に流れる電流を測定する電流センサ18、電池10の出力電圧を測定する電圧センサ20、および電池10の温度を測定する温度センサ22を備える。電流センサ18は測定結果を電池電流測定値Ibとして電力制限値演算装置24に出力し、電圧センサ20は測定結果を電池電圧測定値Vbとして電力制限値演算装置24に出力する。また、温度センサ22は測定結果を電池温度測定値Tbとして電力制限値演算装置24に出力する。   The vehicle power control system includes a current sensor 18 that measures the current flowing through the battery 10, a voltage sensor 20 that measures the output voltage of the battery 10, and the battery 10, in order for the power limit value calculation device 24 to obtain the charging power limit value Win. The temperature sensor 22 which measures the temperature of is provided. The current sensor 18 outputs the measurement result as the battery current measurement value Ib to the power limit value calculation device 24, and the voltage sensor 20 outputs the measurement result as the battery voltage measurement value Vb to the power limit value calculation device 24. Further, the temperature sensor 22 outputs the measurement result to the power limit value calculation device 24 as the battery temperature measurement value Tb.

電力制限値演算装置24は、電池電流測定値Ib、電池電圧測定値Vb、および電池温度測定値Tbに基づいて、充電電力制限値Winを求め電力制御装置12に出力する。   Based on the battery current measurement value Ib, the battery voltage measurement value Vb, and the battery temperature measurement value Tb, the power limit value calculation device 24 calculates the charge power limit value Win and outputs it to the power control device 12.

図2に第1実施例に係る電力制限値演算装置24の構成を示す。電池状態量推定部26が実行する処理を説明するため、ここでは、電池10の電気化学的モデルの例について特許文献2の内容に基づき説明する。   FIG. 2 shows the configuration of the power limit value calculation device 24 according to the first embodiment. In order to describe the process executed by the battery state quantity estimation unit 26, here, an example of an electrochemical model of the battery 10 will be described based on the content of Patent Document 2.

電池10は、複数の電池セルの直列接続によって構成することができる。図3に電池セルの構成を示す。電池セルは、負極34、セパレータ38、および正極36を備える。セパレータ38は、負極34と正極36との間に設けられた樹脂に電解液を浸透させることで構成される。   The battery 10 can be configured by connecting a plurality of battery cells in series. FIG. 3 shows the configuration of the battery cell. The battery cell includes a negative electrode 34, a separator 38, and a positive electrode 36. The separator 38 is configured by impregnating an electrolytic solution into a resin provided between the negative electrode 34 and the positive electrode 36.

負極34および正極36は、球状の活物質の集合体で構成される。負極34の活物質40の界面上では、リチウムイオンLi+および電子e-を放出または吸収する化学反応が行われる。一方、正極36の活物質42の界面上では、リチウムイオンLi+および電子e-を吸収または放出する化学反応が行われる。 The negative electrode 34 and the positive electrode 36 are composed of an aggregate of spherical active materials. A chemical reaction that releases or absorbs lithium ions Li + and electrons e is performed on the interface of the active material 40 of the negative electrode 34. On the other hand, a chemical reaction that absorbs or releases lithium ions Li + and electrons e is performed on the interface of the active material 42 of the positive electrode 36.

負極34には負極端子48との間で電子e-を導く負極コレクタ44が設けられ、正極36には正極端子50との間で電子e-を導く正極コレクタ46が設けられる。負極コレクタ44および正極コレクタ46に用いる金属材料は、イオン化傾向の大小関係に基づき決定される。一般的には、負極コレクタ44は銅で構成され、正極コレクタ46はアルミニウムで構成される。 The negative electrode 34 is provided with a negative electrode collector 44 that conducts electrons e to and from the negative electrode terminal 48, and the positive electrode 36 is provided with a positive electrode collector 46 that conducts electrons e to and from the positive electrode terminal 50. The metal material used for the negative electrode collector 44 and the positive electrode collector 46 is determined based on the magnitude relationship of the ionization tendency. Generally, the negative collector 44 is made of copper, and the positive collector 46 is made of aluminum.

セパレータ38を介して正極36と負極34との間でリチウムイオンLi+が授受されることで、電池セルには、正極端子50から流出し外部回路52を介して負極端子48に流入する充電電流、または、負極端子48から流出し外部回路52を介して正極端子50に流入する放電電流が流れる。 When the lithium ions Li + are exchanged between the positive electrode 36 and the negative electrode 34 via the separator 38, the charging current flows out of the positive electrode terminal 50 and flows into the negative electrode terminal 48 via the external circuit 52 to the battery cell. Alternatively, a discharge current that flows out from the negative terminal 48 and flows into the positive terminal 50 through the external circuit 52 flows.

電池セルの電気化学的モデルについて図3を参照して説明する。放電時には、負極34の活物質40からは電子e-が負極コレクタ44に放出され、負極34の活物質40内のリチウム原子LiはリチウムイオンLi+となる。これと共に負極34の活物質40からはリチウムイオンLi+がセパレータ38中の電解液に放出される。そして、正極36の活物質42は、電解液からリチウムイオンLi+を取込むと共に正極コレクタ46から電子e-を吸収し、正極36の活物質42の内部にリチウム原子Liを取込む。これによって、正極コレクタ46から流出し外部回路52を介して負極コレクタ44に流入する放電電流が流れる。 An electrochemical model of the battery cell will be described with reference to FIG. At the time of discharge, electrons e are emitted from the active material 40 of the negative electrode 34 to the negative electrode collector 44, and the lithium atoms Li in the active material 40 of the negative electrode 34 become lithium ions Li + . At the same time, lithium ions Li + are released from the active material 40 of the negative electrode 34 to the electrolytic solution in the separator 38. The active material 42 of the positive electrode 36 takes in lithium ions Li + from the electrolytic solution, absorbs electrons e from the positive electrode collector 46, and takes in lithium atoms Li inside the active material 42 of the positive electrode 36. As a result, a discharge current that flows out from the positive collector 46 and flows into the negative collector 44 through the external circuit 52 flows.

一方、充電時には、正極36の活物質42から電子e-が正極コレクタ46に放出されると共に、正極36の活物質42からリチウムイオンLi+がセパレータ38中の電解液に放出される。そして、負極34の活物質40は、電解液からリチウムイオンLi+を取込むと共に負極コレクタ44から電子e-を吸収し、負極34の活物質40の内部にリチウム原子Liを取込む。これによって、負極コレクタ44から流出し外部回路52を介して正極コレクタ46に流入する充電電流が流れる。 On the other hand, at the time of charging, electrons e are released from the active material 42 of the positive electrode 36 to the positive electrode collector 46, and lithium ions Li + are released from the active material 42 of the positive electrode 36 to the electrolytic solution in the separator 38. The active material 40 of the negative electrode 34 takes in lithium ions Li + from the electrolytic solution, absorbs electrons e from the negative electrode collector 44, and takes in lithium atoms Li inside the active material 40 of the negative electrode 34. As a result, a charging current that flows out of the negative electrode collector 44 and flows into the positive electrode collector 46 through the external circuit 52 flows.

電気化学的モデルの解析には、充放電時における活物質40および42の各表面での電極反応、活物質40および42の各内部でのリチウムイオンの径方向への拡散、電解液中のリチウムイオンの拡散、各部位での電位分布等についての電池モデル式を用いる。電池モデル式は、以下の(M1)式〜(M15)式によって表される。これらの式の詳細については非特許文献1に記載されている。   For the analysis of the electrochemical model, an electrode reaction on each surface of the active materials 40 and 42 during charging and discharging, diffusion of lithium ions in each active material 40 and 42 in the radial direction, and lithium in the electrolyte solution A battery model formula for ion diffusion, potential distribution at each site, and the like is used. The battery model formula is expressed by the following formulas (M1) to (M15). Details of these equations are described in Non-Patent Document 1.

図4に、(M1)式〜(M15)式で用いられる電池モデルパラメータを掲載する。   FIG. 4 shows battery model parameters used in equations (M1) to (M15).

Figure 0005492493
Figure 0005492493

(M1)式〜(M3)式は電極反応を示す式であり、バトラーボルマーの式と称される。(M1)式において交換電流密度i0は、活物質の界面におけるリチウムイオン濃度の関数で与えられる(詳細は非特許文献1参照)。また、αaは正極における電極反応の移動係数を示し、αcは負極における電極反応の移動係数を示す。(M2)式は(M1)式におけるηを与え、(M3)式は(M2)式におけるUを与える。 The formulas (M1) to (M3) are formulas indicating an electrode reaction, and are called Butler-Volmer formulas. In the equation (M1), the exchange current density i 0 is given as a function of the lithium ion concentration at the interface of the active material (refer to Non-Patent Document 1 for details). Α a represents the transfer coefficient of the electrode reaction at the positive electrode, and α c represents the transfer coefficient of the electrode reaction at the negative electrode. The expression (M2) gives η in the expression (M1), and the expression (M3) gives U in the expression (M2).

Figure 0005492493
Figure 0005492493

(M4)式〜(M6)式は電解液中でのリチウムイオン保存則を示す。(M5)式は電解液中での実効拡散係数の定義を示し、(M6)式は反応電流jLiが電極の単位体積あたりの活物質表面積asと(M1)式に示された輸送電流密度/inとの積で与えられることを示す。なお、反応電流jLiの電極全体での体積積分は、電池セルに流れる電流Iに対応する。 Equations (M4) to (M6) represent the law of conservation of lithium ions in the electrolyte. The equation (M5) shows the definition of the effective diffusion coefficient in the electrolyte, and the equation (M6) shows that the reaction current j Li is the active material surface area a s per unit volume of the electrode and the transport current shown in the equation (M1). It indicates that given by the product of the density / i n. The volume integral of the reaction current j Li over the entire electrode corresponds to the current I flowing through the battery cell.

Figure 0005492493
Figure 0005492493

(M7)式および(M8)式は、固層中でのリチウムイオン保存則を示す。(M7)式は球体の活物質中での拡散方程式を示し、(M8)式は、電極単位体積あたりの活物質表面積asを示す。 Equations (M7) and (M8) indicate the conservation law of lithium ions in the solid layer. (M7) equation represents the diffusion equation in an active material in the sphere shows (M8) expression per electrode unit volume active material surface area a s.

Figure 0005492493
Figure 0005492493

(M9)式〜(M11)式は、電解液中での電荷保存則に基づくものである。これらの式より電解液中での電位が示される。   Expressions (M9) to (M11) are based on the law of conservation of charge in the electrolyte. These equations show the potential in the electrolyte.

(M10)式は実効イオン伝導率κeffを示し、(M11)式は電解液中での拡散導電係数κD effを示す。 The equation (M10) represents the effective ionic conductivity κ eff and the equation (M11) represents the diffusion conductivity coefficient κ D eff in the electrolytic solution.

Figure 0005492493
Figure 0005492493

(M12)式および(M13)式は、活物質での電荷保存則に基づくものである。これらの式より固層中での電位が示される。   Equations (M12) and (M13) are based on the law of conservation of charge in the active material. These formulas show the potential in the solid layer.

Figure 0005492493
Figure 0005492493

(M14)式および(M15)式は熱エネルギ保存則に基づくものである。これらの式により、充放電現象による電池内部への局所的な温度変化を解析することが可能となる。   Equations (M14) and (M15) are based on the thermal energy conservation law. By these equations, it becomes possible to analyze a local temperature change inside the battery due to a charge / discharge phenomenon.

(M1)〜(M15)の電池モデル式は上記非特許文献1に基づくものであるので、各式の詳細な説明については、非特許文献1を援用する。   Since the battery model formulas (M1) to (M15) are based on Non-Patent Document 1, Non-Patent Document 1 is used for detailed description of each formula.

図4に示した電池モデルパラメータは、(M1)〜(M15)の電池モデル式を連立させることで求めることができる。すなわち、(M1)式〜(M15)式を、活物質、および電解液中の各点において境界条件が満たされるよう差分方程式を逐次解くことにより、図4に示した電池モデルパラメータのうち未知のものを逐次算出することができる。この際、図4に示した電池モデルパラメータのうちいずれを既知量とし、いずれを未知量とするかは、数値解析の理論において可能な限り任意とすることができる。なお、各活物質内でのリチウムイオン濃度は、活物質の半径rの関数とされ、その周方向ではリチウムイオン濃度は一様なものとして扱われる。   The battery model parameters shown in FIG. 4 can be obtained by combining battery model expressions (M1) to (M15). That is, the unknown equation among the battery model parameters shown in FIG. 4 is obtained by sequentially solving the equation (M1) to (M15) so that the boundary condition is satisfied at each point in the active material and the electrolytic solution. Things can be calculated sequentially. In this case, which of the battery model parameters shown in FIG. 4 is a known amount and which is an unknown amount can be arbitrarily determined in the theory of numerical analysis. The lithium ion concentration in each active material is a function of the radius r of the active material, and the lithium ion concentration is treated as uniform in the circumferential direction.

電池状態量推定部26は、電池電流測定値Ib、電池電圧測定値Vb、電池温度測定値Tb、および電池モデルパラメータに基づいて現時点における実際の電池の状態量を電池状態量BSとして求める。ここで、電池状態量BSは、電池モデルパラメータのうち、固層中の電位φs、電解液中の電位φe、活物質のリチウムイオン濃度cs、電解液のリチウムイオン濃度ce、および活物質界面でのリチウムイオン濃度cseの組からなる物理化学量である。 The battery state quantity estimation unit 26 obtains the actual battery state quantity as the battery state quantity BS based on the battery current measurement value Ib, the battery voltage measurement value Vb, the battery temperature measurement value Tb, and the battery model parameter. Here, the battery state quantity BS includes, among the battery model parameters, the potential φ s in the solid layer, the potential φ e in the electrolytic solution, the lithium ion concentration c s of the active material, the lithium ion concentration c e of the electrolytic solution, and It is a physical stoichiometry consisting of a set of lithium ion concentrations c se at the active material interface.

電池状態量推定部26は、(M1)〜(M15)の電池モデル式に基づき電池状態量BS(φs、φe、cs、ce、およびcse)を求め、その電池状態量BSを充電可能電力予測部28に出力する。 The battery state quantity estimation unit 26 obtains a battery state quantity BS (φ s , φ e , c s , c e , and c se ) based on the battery model equations (M1) to (M15), and the battery state quantity BS Is output to the chargeable power prediction unit 28.

一方、充電許容電圧生成部30は、一定電圧で充電する場合の充電電圧制限値Vcを決定し充電可能電力予測部28に出力する。ここで、充電電圧制限値とは、充電可能電力予測部28の演算用に設定する演算上の値をいう。   On the other hand, the charge allowable voltage generation unit 30 determines a charge voltage limit value Vc for charging at a constant voltage, and outputs it to the chargeable power prediction unit 28. Here, the charge voltage limit value refers to an arithmetic value set for calculation by the chargeable power prediction unit 28.

図5(a)に充電電圧制限値の波形の例を示す。図5(a)の横軸は時間を示し縦軸は電圧を示す。図5(a)に示す充電電圧制限値は、基準時刻t0に電池電圧測定値Vbから充電電圧制限値Vcに増加する。   FIG. 5A shows an example of the waveform of the charging voltage limit value. In FIG. 5A, the horizontal axis indicates time, and the vertical axis indicates voltage. The charging voltage limit value shown in FIG. 5A increases from the battery voltage measured value Vb to the charging voltage limit value Vc at the reference time t0.

充電可能電力予測部28は、電池状態量BS、および電池温度測定値Tbを初期値とし、充電電圧制限値Vcで定電圧充電した場合の電池10に流れる電流Iの時間変化を、上記(M1)式〜(M15)式に基づいて予測する。この際、充電電圧制限値、固層中の電位φs、反応電流jLi、および固層中電子伝導度σとの間に成立する周知の物理的関係が用いられる。また、電流Iは、反応電流jLiの電極全体での体積積分に基づいて求められる。充電可能電力予測部28は、求められた電流Iおよび充電電圧制限値に基づいて充電可能電力の時間変化を示す充電可能電力特性を求める。 The chargeable power prediction unit 28 sets the battery state quantity BS and the battery temperature measurement value Tb as initial values, and changes the current I flowing through the battery 10 over time when the constant voltage charging is performed with the charge voltage limit value Vc (M1). ) Formula to (M15) Formula is used for prediction. At this time, a well-known physical relationship established among the charge voltage limit value, the potential φ s in the solid layer, the reaction current j Li , and the electron conductivity σ in the solid layer is used. The current I is obtained based on the volume integration of the reaction current j Li over the entire electrode. The chargeable power prediction unit 28 obtains a chargeable power characteristic indicating a change over time of the chargeable power based on the obtained current I and the charge voltage limit value.

図5(a)に示される充電電圧制限値に基づいて、充電可能電力予測部28が求めた充電可能電力特性の例を図5(b)に示す。図5(b)の横軸は時間を示し縦軸は充電可能電力を示す。このように、一定電圧での充電を考えた場合には、充電可能電力は、充電可能開始直後に最大となり、時間の経過と共に小さくなる。充電可能電力予測部28は、充電可能電力特性によって与えられる値を充電電力制限値Winとして出力する。   FIG. 5B shows an example of the chargeable power characteristic obtained by the chargeable power prediction unit 28 based on the charge voltage limit value shown in FIG. In FIG. 5B, the horizontal axis indicates time, and the vertical axis indicates chargeable power. In this way, when charging at a constant voltage is considered, the chargeable power becomes maximum immediately after the start of charging and decreases with time. The chargeable power prediction unit 28 outputs a value given by the chargeable power characteristic as the charge power limit value Win.

電力制御装置12は、充電電力制限値Winを超えないよう電池10を充電する。これによって、電池10の電池状態量BSおよび電池温度測定値Tbに応じたできる限り大きい電力を以て電池10を充電することができる。   The power control device 12 charges the battery 10 so as not to exceed the charging power limit value Win. As a result, the battery 10 can be charged with as much power as possible according to the battery state quantity BS and the battery temperature measurement value Tb of the battery 10.

図2に示す構成では、充電電力制限値Winが、電池10を充電する回路の許容電力以上の値となる場合がある。そこで、図6に示す第2実施例のように、電力制限値設定部32を設けてもよい。図2に示す構成部と同一の構成部については同一の符号を付してその説明を省略する。   In the configuration illustrated in FIG. 2, the charge power limit value Win may be a value that is greater than or equal to the allowable power of the circuit that charges the battery 10. Therefore, a power limit value setting unit 32 may be provided as in the second embodiment shown in FIG. The same components as those shown in FIG. 2 are denoted by the same reference numerals and description thereof is omitted.

電力制限値設定部32は、充電可能電力予測部28から出力された充電可能電力特性データに基づいて充電電力制限値を求める。ここで、電力制限値設定部32は、充電電力制限値を求めるための所定のWin演算用時間tcを予め記憶しているものとする。電力制限値設定部32は、充電可能電力特性データを参照し、基準時刻t0からWin演算用時間tcが経過したときにおける充電可能電力を充電電力制限値Winとして求める。電力制限値設定部32は、充電電力制限値Winを電力制御装置12に出力する。図5(b)の例では、基準時刻t0からWin演算用時間tcが経過したときの縦軸の値が充電電力制限値Winとして求められる。このような処理によって、現時点での実際の電池状態量BSを初期値とし、一定電圧Vcで時間tcの間充電し続けることができる電力の予測値が充電電力制限値Winとして求められる。   The power limit value setting unit 32 obtains a charge power limit value based on the chargeable power characteristic data output from the chargeable power prediction unit 28. Here, it is assumed that the power limit value setting unit 32 stores in advance a predetermined Win calculation time tc for obtaining the charge power limit value. The power limit value setting unit 32 refers to the chargeable power characteristic data, and obtains the chargeable power when the Win calculation time tc has elapsed from the reference time t0 as the charge power limit value Win. The power limit value setting unit 32 outputs the charging power limit value Win to the power control device 12. In the example of FIG. 5B, the value on the vertical axis when the time tc for Win calculation elapses from the reference time t0 is obtained as the charging power limit value Win. As a result of such processing, an estimated value of power that can be continuously charged for a time tc at a constant voltage Vc with the current actual battery state quantity BS as an initial value is obtained as the charge power limit value Win.

電力制限値演算装置24は、充電電力制限値Winを求める処理を所定の時間tdごとに行い、充電電力制限値Winを時間間隔tdで電力制御装置12に出力する。電力制御装置12は、充電電力制限値Winを超えないよう電池10を充電する。   The power limit value calculation device 24 performs a process for obtaining the charge power limit value Win every predetermined time td, and outputs the charge power limit value Win to the power control device 12 at a time interval td. The power control device 12 charges the battery 10 so as not to exceed the charging power limit value Win.

充電可能電力特性が示す値は充電電圧制限値Vcを大きくする程大きくなり、求められる充電電力制限値Winは大きくなる。さらに、図5(b)に示されるように、充電可能電力特性が示す値はWin演算用時間tcを短くする程大きくなり、求められる充電電力制限値Winは大きくなる。電池を所定の充電深度まで充電するのに要する時間は、充電電力が大きい程短くなる。一方、所定値以上の充電容量を維持できる期間等で定義される電池の寿命は、充電電力が大きい程短くなる。したがって、充電電圧制限値VcおよびWin演算用時間tcは、電池10の寿命と充電時間の迅速性とを鑑みて実験等に基づいて決定することが好ましい   The value indicated by the chargeable power characteristic increases as the charge voltage limit value Vc increases, and the required charge power limit value Win increases. Further, as shown in FIG. 5B, the value indicated by the chargeable power characteristic increases as the Win calculation time tc is shortened, and the required charging power limit value Win increases. The time required to charge the battery to a predetermined charging depth is shorter as the charging power is larger. On the other hand, the life of the battery defined by a period or the like in which a charge capacity equal to or greater than a predetermined value can be maintained becomes shorter as the charging power is larger. Therefore, the charging voltage limit value Vc and the Win calculation time tc are preferably determined based on experiments in consideration of the life of the battery 10 and the quickness of the charging time.

図7に第3実施例に係る電力制限値演算装置24の構成を示す。この実施例では、充電許容電圧生成部54が、電池状態量BSに基づいて充電電圧制限値Vcを求める。そして求められた充電電圧制限値Vcを充電可能電力予測部28に出力する。図6に示した第2実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 7 shows the configuration of the power limit value calculation device 24 according to the third embodiment. In this embodiment, the charge allowable voltage generation unit 54 obtains the charge voltage limit value Vc based on the battery state quantity BS. Then, the obtained charging voltage limit value Vc is output to the chargeable power prediction unit 28. The same components as those of the second embodiment shown in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.

電池状態量推定部26は、電池状態量BSに基づいて電池10の充電深度を求める。そして、電池状態量BSおよび充電深度を充電可能電力予測部28および充電許容電圧生成部54に出力する。ここで、充電深度とは、満充電時の充電電荷量に対する現時点で充電されている電荷量の割合を示す量をいう。電気化学的モデルにおいては、充電深度は、負極34の活物質40内のリチウムイオン濃度cSにより求めることができる。 The battery state quantity estimation unit 26 obtains the charge depth of the battery 10 based on the battery state quantity BS. Then, the battery state quantity BS and the charging depth are output to the chargeable power prediction unit 28 and the charge allowable voltage generation unit 54. Here, the charge depth refers to an amount indicating the ratio of the charge amount currently charged to the charge amount at the time of full charge. In the electrochemical model, the charging depth can be obtained from the lithium ion concentration c S in the active material 40 of the negative electrode 34.

充電許容電圧生成部54は、充電深度と充電電圧制限値Vcとを対応付けた充電深度対電圧制限値テーブルを記憶している。充電許容電圧生成部54は、充電深度対電圧制限値テーブルを参照し、求められた充電深度に対応する充電電圧制限値Vcを求める。   The charge allowable voltage generation unit 54 stores a charge depth vs. voltage limit value table in which the charge depth and the charge voltage limit value Vc are associated with each other. The charge allowable voltage generation unit 54 refers to the charge depth vs. voltage limit value table and obtains the charge voltage limit value Vc corresponding to the obtained charge depth.

図8に、充電深度対電圧制限値テーブルが示す関係の例をグラフによって示す。図8の横軸は充電深度を示し縦軸は充電電圧制限値Vcを示す。図8の例では、充電深度が所定の閾値SOCt1未満のときは、充電深度の変化に対し充電電圧制限値Vcは一定とする。一方、充電深度が所定の閾値SOCt1以上のときは、充電深度が増加すると共に充電電圧制限値Vcを減少させる。   FIG. 8 is a graph showing an example of the relationship indicated by the charging depth versus voltage limit value table. The horizontal axis of FIG. 8 indicates the charging depth, and the vertical axis indicates the charging voltage limit value Vc. In the example of FIG. 8, when the charging depth is less than the predetermined threshold SOCt1, the charging voltage limit value Vc is constant with respect to the change in the charging depth. On the other hand, when the charging depth is equal to or greater than the predetermined threshold SOCt1, the charging depth is increased and the charging voltage limit value Vc is decreased.

充電深度SOC1、SOC2およびSOC3の間に、SOCt1<SOC1<SOC2<SOC3の関係があるとき、それぞれに対応する充電電圧制限値Vc1、Vc2、およびVc3の関係は、Vc1>Vc2>Vc3となる。これによって、充電許容電圧生成部54が出力する充電電圧制限値の時間波形は、それぞれ、図9(a)の時間波形56−1、56−2、および56−3のようになる。そして、図9(a)の時間波形56−1、56−2、および56−3に対応して、充電可能電力予測部28において求められる充電可能電力特性は、それぞれ、図9(b)の特性58−1、58−2、および58−3のようになる。特性58−1、58−2、および58−3からは、共通のWin演算用時間tcに対して、それぞれ、充電電力制限値Win1、Win2、およびWin3が求められる。これらの充電電力制限値には、Win1>Win2>Win3の関係がある。   When there is a relationship of SOCt1 <SOC1 <SOC2 <SOC3 between the charging depths SOC1, SOC2 and SOC3, the relationship of the charging voltage limit values Vc1, Vc2 and Vc3 corresponding to each is Vc1> Vc2> Vc3. As a result, the time waveforms of the charge voltage limit value output by the charge allowable voltage generation unit 54 are as shown by time waveforms 56-1, 56-2, and 56-3 in FIG. 9A, respectively. And the chargeable power characteristic calculated | required in the chargeable power prediction part 28 corresponding to the time waveforms 56-1, 56-2, and 56-3 of Fig.9 (a) is respectively shown in FIG.9 (b). Characteristics 58-1, 58-2, and 58-3 are obtained. From the characteristics 58-1, 58-2, and 58-3, charging power limit values Win1, Win2, and Win3 are obtained for the common Win calculation time tc, respectively. These charging power limit values have a relationship of Win1> Win2> Win3.

このように、本実施例では、充電許容電圧生成部54は、充電深度が所定の閾値以上となったときには、充電深度が大きい程その値が小さくなるよう充電電圧制限値Vcを決定する。これによって、充電深度が所定の閾値以上となったときには、充電深度が大きい程充電電力制限値Winを小さくすることができる。   Thus, in the present embodiment, when the charge depth becomes equal to or greater than the predetermined threshold, the charge allowable voltage generation unit 54 determines the charge voltage limit value Vc so that the value decreases as the charge depth increases. As a result, when the charging depth becomes equal to or greater than a predetermined threshold, the charging power limit value Win can be reduced as the charging depth increases.

一般に、電池は、充電深度が大きい場合には迅速な充電を要さない場合が多い。したがって、本実施例によれば、充電深度が所定の閾値以上であるときには充電電力を小さくし、電池10への電気的負担を小さくすることができる。   In general, batteries often do not require quick charging when the charging depth is large. Therefore, according to the present embodiment, when the charging depth is equal to or greater than the predetermined threshold value, the charging power can be reduced and the electrical burden on the battery 10 can be reduced.

なお、ここでは、充電深度を用いた処理について説明したが、電池状態量BSから求め得る電池10の充電状態を示すその他の量を用いても同様の処理を行うことができる。また、図2に示す第1実施例と同様、電力制限値設定部32を用いない構成としてもよい。   Here, the processing using the charging depth has been described, but the same processing can be performed using other amounts indicating the charging state of the battery 10 that can be obtained from the battery state amount BS. Moreover, it is good also as a structure which does not use the electric power limit value setting part 32 similarly to 1st Example shown in FIG.

図10に第4実施例に係る電力制限値演算装置24の構成を示す。この実施例では、演算用時間調整部60が電池状態量BSに基づいてWin演算用時間tcを求め電力制限値設定部32に出力する。図6に示した第2実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 10 shows the configuration of the power limit value calculation device 24 according to the fourth embodiment. In this embodiment, the calculation time adjustment unit 60 calculates the Win calculation time tc based on the battery state quantity BS and outputs it to the power limit value setting unit 32. The same components as those of the second embodiment shown in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.

電池状態量推定部26は、電池状態量BSおよび電池10の充電深度を充電可能電力予測部28および演算用時間調整部60に出力する。   The battery state quantity estimation unit 26 outputs the battery state quantity BS and the charging depth of the battery 10 to the chargeable power prediction unit 28 and the calculation time adjustment unit 60.

演算用時間調整部60は、充電深度とWin演算用時間tcとを対応付けた充電深度対演算用時間テーブルを記憶する。演算用時間調整部60は、充電深度対演算用時間テーブルを参照し、求められた充電深度に対応するWin演算用時間tcを求め、電力制限値設定部32に出力する。電力制限値設定部32は、演算用時間調整部60から出力されたWin演算用時間tcに対応した充電電力制限値Winを求める。   The calculation time adjustment unit 60 stores a charging depth versus calculation time table in which the charging depth and the Win calculation time tc are associated with each other. The calculation time adjustment unit 60 refers to the charging depth vs. calculation time table, obtains the Win calculation time tc corresponding to the obtained charging depth, and outputs it to the power limit value setting unit 32. The power limit value setting unit 32 obtains the charge power limit value Win corresponding to the Win calculation time tc output from the calculation time adjustment unit 60.

図11に、充電深度対演算用時間テーブルが示す関係の例をグラフによって示す。図11の横軸は充電深度を示し縦軸はWin演算用時間tcを示す。図11の例では、充電深度が所定の閾値SOCt2未満のときは、充電深度の変化に対しWin演算用時間tcは一定とする。一方、充電深度が所定の閾値SOCt2以上のときは、充電深度が増加すると共にWin演算用時間tcを長くする。   FIG. 11 is a graph showing an example of the relationship indicated by the charging depth versus calculation time table. In FIG. 11, the horizontal axis indicates the charging depth, and the vertical axis indicates the time tc for Win calculation. In the example of FIG. 11, when the charging depth is less than the predetermined threshold SOCt2, the Win calculation time tc is constant with respect to the change in the charging depth. On the other hand, when the charging depth is equal to or greater than the predetermined threshold SOCt2, the charging depth increases and the Win calculation time tc is lengthened.

充電深度SOC1、SOC2およびSOC3の間に、SOCt2<SOC1<SOC2<SOC3の関係があるとき、それぞれに対応するWin演算用時間tc1、tc2、およびtc3の関係は、tc1<tc2<tc3となる。これによって、演算用時間調整部60が出力するWin演算用時間に対応して求められる充電電力制限値は、図12に示すように、それぞれ、Win1、Win2およびWin3となる。これらの充電電力制限値には、Win1>Win2>Win3の関係がある。   When there is a relationship of SOCt2 <SOC1 <SOC2 <SOC3 between the charging depths SOC1, SOC2 and SOC3, the relationship of the Win calculation times tc1, tc2 and tc3 corresponding to each is tc1 <tc2 <tc3. As a result, the charging power limit values obtained corresponding to the Win calculation time output from the calculation time adjustment unit 60 are Win1, Win2, and Win3, respectively, as shown in FIG. These charging power limit values have a relationship of Win1> Win2> Win3.

このように、本実施例では、充電深度が所定の閾値以上となったときには、充電深度が大きい程それによって示される時間が長くなるようWin演算用時間tcが求められる。これによって、充電深度が所定の閾値以上となったときには、充電深度が大きい程充電電力制限値Winを小さくすることができる。したがって、上記の第3実施例と同様、充電深度が所定の閾値以上であるときには充電電力を小さくし、電池10への電気的負担を小さくすることができる。なお、ここでは、充電深度を用いた処理について説明したが、電池状態量BSから求め得る電池10の充電状態を示すその他の量を用いても同様の処理を行うことができる。   As described above, in this embodiment, when the charging depth is equal to or greater than the predetermined threshold, the time tc for calculating the Win is calculated so that the time indicated by the charging depth increases. As a result, when the charging depth becomes equal to or greater than a predetermined threshold, the charging power limit value Win can be reduced as the charging depth increases. Therefore, as in the third embodiment, when the charging depth is equal to or greater than a predetermined threshold, the charging power can be reduced and the electrical burden on the battery 10 can be reduced. Here, the processing using the charging depth has been described, but the same processing can be performed using other amounts indicating the charging state of the battery 10 that can be obtained from the battery state amount BS.

図13に第5実施例に係る電力制限値演算装置24の構成を示す。この実施例は、第3実施例における充電許容電圧生成部54と、第4実施例における演算用時間調整部60とを組み合わせたものである。図7に示した第3実施例の構成部および図10に示した第4実施例の構成部と同一の構成部については同一の符号を付して説明を省略する。   FIG. 13 shows the configuration of the power limit value calculation device 24 according to the fifth embodiment. This embodiment is a combination of the charge allowable voltage generation unit 54 in the third embodiment and the calculation time adjustment unit 60 in the fourth embodiment. The same components as those of the third embodiment shown in FIG. 7 and the components of the fourth embodiment shown in FIG.

本実施例では、充電深度が所定の閾値以上となったときには、充電深度が大きい程その値が小さくなるよう充電電圧制限値Vcを決定する。さらに、本実施例では、充電深度が所定の閾値以上となったときには、充電深度が大きい程それによって示される時間が長くなるよう、Win演算用時間tcを求める。これによって、充電深度が所定の閾値以上となったときには、充電深度が大きい程充電電力制限値Winを小さくすることができる。充電許容電圧生成部54および演算用時間調整部60の組み合わせにより、充電深度が所定の閾値以上であるときに電池10への電気的負担を小さくするという効果を大きくすることができる。   In the present embodiment, when the charging depth is equal to or greater than a predetermined threshold, the charging voltage limit value Vc is determined so that the value decreases as the charging depth increases. Furthermore, in the present embodiment, when the charging depth is equal to or greater than a predetermined threshold, the Win calculation time tc is determined so that the time indicated by the charging depth increases. As a result, when the charging depth becomes equal to or greater than a predetermined threshold, the charging power limit value Win can be reduced as the charging depth increases. The combination of the allowable charging voltage generation unit 54 and the calculation time adjustment unit 60 can increase the effect of reducing the electrical burden on the battery 10 when the charging depth is equal to or greater than a predetermined threshold.

図14に本発明の別の実施形態に係る車両用電力制御システムの構成を示す。図1の車両用電力制御システムの構成部と同一の構成部については同一の符号を付してその説明を省略する。電池診断/電力制限値演算装置62は電池診断モード時に電池10に流れる電流を変化させ、これに伴う電池10の出力電圧の変化に基づいて電池10の電池モデルパラメータ、電池10の劣化度等を求める。そして、求められた電池モデルパラメータ、劣化度等を用い(M1)式〜(M15)式より充電電力制限値Winを求める。   FIG. 14 shows a configuration of a vehicle power control system according to another embodiment of the present invention. The same components as those of the vehicle power control system of FIG. 1 are denoted by the same reference numerals and description thereof is omitted. The battery diagnosis / power limit value calculation device 62 changes the current flowing through the battery 10 in the battery diagnosis mode, and determines the battery model parameters of the battery 10, the degree of deterioration of the battery 10, etc. based on the change in the output voltage of the battery 10. Ask. Then, the charging power limit value Win is obtained from the equations (M1) to (M15) using the obtained battery model parameters, the degree of deterioration, and the like.

図15に第1実施例に係る電池診断/電力制限値演算装置62の構成を示す。図2に示す電力制限値演算装置24と同一の構成部については同一の符号を付してその説明を省略する。この実施例は、電池10の交換電流密度i0および拡散係数Dsを測定する電池特性決定部66を備える。 FIG. 15 shows the configuration of the battery diagnosis / power limit value calculation device 62 according to the first embodiment. The same components as those of the power limit value calculation device 24 shown in FIG. This embodiment includes a battery characteristic determination unit 66 that measures the exchange current density i 0 and the diffusion coefficient D s of the battery 10.

電池10の両端には、それぞれモード切り換えスイッチ64が接続される。モード切り換えスイッチ64は、通常走行モード時には、電池10を電力制御装置12に接続する。一方、電池診断モード時には、電池10を電池診断/電力制限値演算装置62に接続する。電池診断モード時に、電池診断/電力制限値演算装置62は、電池10に流れる電流の時間波形が、例えば、図16(a)に示す時間波形となるよう、電池10に流れる電流の制御を行う。図16(a)の横軸は時間を示し縦軸は電池10に流れる充電電流を示す。図16(a)の電流時間波形は、時刻t1で電池10の充電電流がある初期値I1から診断電流値I2となり、その後時刻t2まで診断電流値I2を維持した後、初期値I1に戻る。図16(b)に、このときの電池電圧測定値Vbpの時間波形の例を示す。横軸は時間を示し縦軸は電池電圧測定値Vbpを示す。   A mode changeover switch 64 is connected to each end of the battery 10. The mode switch 64 connects the battery 10 to the power control device 12 in the normal travel mode. On the other hand, in the battery diagnosis mode, the battery 10 is connected to the battery diagnosis / power limit value calculation device 62. In the battery diagnosis mode, the battery diagnosis / power limit value calculation device 62 controls the current flowing through the battery 10 so that the time waveform of the current flowing through the battery 10 becomes, for example, the time waveform shown in FIG. . In FIG. 16A, the horizontal axis indicates time, and the vertical axis indicates the charging current flowing through the battery 10. The current time waveform in FIG. 16A changes from the initial value I1 at which the charging current of the battery 10 is at the diagnostic value I2 at time t1, and then returns to the initial value I1 after maintaining the diagnostic current value I2 until time t2. FIG. 16B shows an example of a time waveform of the battery voltage measurement value Vbp at this time. The horizontal axis represents time, and the vertical axis represents the measured battery voltage value Vbp.

電池特性決定部66は、図16(a)のように電池10の電流が変化したときにおける電池電圧測定値Vbp、電池電流測定値Ibp、および電池温度測定値Tbpの各時間変化に基づいて、図4に掲げる電池モデルパラメータのうち交換電流密度i0および拡散係数Dsを求める。 The battery characteristic determination unit 66 is based on each time change of the battery voltage measurement value Vbp, the battery current measurement value Ibp, and the battery temperature measurement value Tbp when the current of the battery 10 changes as shown in FIG. Among the battery model parameters listed in FIG. 4, the exchange current density i 0 and the diffusion coefficient D s are obtained.

電池特性決定部66は、求められた交換電流密度i0および拡散係数Dsを、電池状態量推定部26および充電可能電力予測部28に出力する。 The battery characteristic determination unit 66 outputs the obtained exchange current density i 0 and the diffusion coefficient D s to the battery state quantity estimation unit 26 and the chargeable power prediction unit 28.

電池状態量推定部26は、先に用いていた交換電流密度i0および拡散係数Dsを、電池特性決定部66から新たに与えられた交換電流密度i0および拡散係数Dsに更新し、電池状態量BSを求める。充電可能電力予測部28は、先に用いていた交換電流密度i0および拡散係数Dsを、電池特性決定部66から新たに与えられた交換電流密度i0および拡散係数Dsに更新し、充電可能電力特性を求める。 The battery state quantity estimation unit 26 updates the exchange current density i 0 and the diffusion coefficient D s previously used to the exchange current density i 0 and the diffusion coefficient D s newly given from the battery characteristic determination unit 66, The battery state quantity BS is obtained. The chargeable power prediction unit 28 updates the exchange current density i 0 and the diffusion coefficient D s previously used to the exchange current density i 0 and the diffusion coefficient D s newly given from the battery characteristic determination unit 66, Obtain chargeable power characteristics.

本実施例によれば、経時変化等により電池10の交換電流密度i0および拡散係数Dsが変化した場合であっても、変化後の交換電流密度i0および拡散係数Dsを用いて適切な充電制御を行うことができる。 According to this embodiment, even when the exchange current density i 0 and the diffusion coefficient D s of the battery 10 changes due to aging or the like, suitably using an exchange current density i 0 and the diffusion coefficient D s after the change Charge control can be performed.

電池診断モードの処理は、イグニッションオン時等、車両用電力制御システムが動作可能な状態で車両が停止している時に行うことが好適である。   The processing in the battery diagnosis mode is preferably performed when the vehicle is stopped with the vehicle power control system operable, such as when the ignition is on.

図17に第2実施例に係る電池診断/電力制限値演算装置62の構成を示す。この実施例では、劣化度推定部68が、電池診断モード時の電池電流測定値Ibp、電池電圧測定値Vbp、および電池温度測定値Tbpに基づいて電池10の劣化度を求め、充電許容電圧生成部30に出力する。充電許容電圧生成部30は、劣化度推定部68によって求められた劣化度に基づいて充電電圧制限値Vcを決定する。図15に示した第1実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 17 shows the configuration of the battery diagnosis / power limit value calculation device 62 according to the second embodiment. In this embodiment, the deterioration degree estimation unit 68 obtains the deterioration degree of the battery 10 based on the battery current measurement value Ibp, the battery voltage measurement value Vbp, and the battery temperature measurement value Tbp in the battery diagnosis mode, and generates a chargeable voltage. To the unit 30. Charge allowable voltage generation unit 30 determines charge voltage limit value Vc based on the degree of deterioration obtained by deterioration degree estimation unit 68. The same components as those of the first embodiment shown in FIG. 15 are denoted by the same reference numerals, and the description thereof is omitted.

電池診断/電力制限値演算装置62は、電池診断モード時に、電池10に流れる電流の時間波形が、例えば、図16(a)に示す時間波形となるよう、電池10に流れる電流を制御する。劣化度推定部68は、図16(a)のように電池10の電流が変化したときにおける電池電圧測定値Vbp、電池電流測定値Ibp、および電池温度測定値Tbpの各時間変化に基づいて電池10の劣化度を求める。ここで、電池10の劣化度は、例えば、SOH(State Of Health)等によって評価することができる。SOHは、新品時における、電池を満充電状態にした場合に放電可能な電荷量(満充電時放電可能電荷量)に対する、現時点における満充電時放電可能電荷量の比として定義される。SOHは、電池モデルパラメータの値とSOHとの関係を実験等によって定めたテーブルを参照することで求めることができる。   The battery diagnosis / power limit value calculation device 62 controls the current flowing through the battery 10 so that the time waveform of the current flowing through the battery 10 becomes, for example, the time waveform shown in FIG. Degradation degree estimation unit 68 uses the battery voltage measurement value Vbp, battery current measurement value Ibp, and battery temperature measurement value Tbp when the current of battery 10 changes as shown in FIG. A degree of degradation of 10 is obtained. Here, the deterioration degree of the battery 10 can be evaluated by, for example, SOH (State Of Health). SOH is defined as the ratio of the current chargeable discharge amount at full charge to the chargeable charge amount (full chargeable charge amount) when the battery is fully charged when new. The SOH can be obtained by referring to a table in which the relationship between the value of the battery model parameter and the SOH is determined by experiments or the like.

充電許容電圧生成部30は、劣化度と充電電圧制限値Vcとを対応付けた劣化度対電圧制限値テーブルを記憶する。充電許容電圧生成部30は、劣化度対電圧制限値テーブルを参照し、求められた劣化度に対応する充電電圧制限値Vcを求める。   The allowable charge voltage generation unit 30 stores a deterioration degree versus voltage limit value table in which the deterioration degree and the charge voltage limit value Vc are associated with each other. The allowable charge voltage generation unit 30 refers to the deterioration level vs. voltage limit value table and determines the charge voltage limit value Vc corresponding to the determined deterioration level.

図18に、劣化度対電圧制限値テーブルが示す関係の例をグラフによって示す。図18の横軸は劣化度を示し縦軸は充電電圧制限値Vcを示す。図18の例では、劣化度が所定の閾値Ht1未満のときは、劣化度の変化に対し充電電圧制限値Vcは一定とする。一方、劣化度が所定の閾値Ht1以上のときは、劣化度が増加すると共に充電電圧制限値Vcを減少させる。   FIG. 18 is a graph showing an example of the relationship indicated by the deterioration degree vs. voltage limit value table. The horizontal axis in FIG. 18 indicates the degree of deterioration, and the vertical axis indicates the charging voltage limit value Vc. In the example of FIG. 18, when the deterioration level is less than the predetermined threshold value Ht1, the charging voltage limit value Vc is constant with respect to the change in the deterioration level. On the other hand, when the deterioration level is equal to or greater than the predetermined threshold value Ht1, the deterioration level increases and the charging voltage limit value Vc is decreased.

劣化度H4、H5およびH6の間に、Ht1<H4<H5<H6の関係があるとき、それぞれに対応する充電電圧制限値Vc4、Vc5、およびVc6の関係は、Vc4>Vc5>Vc6となる。これによって、充電許容電圧生成部30が出力する充電電圧制限値Vcの波形は、それぞれ、図19(a)の時間波形70−4、70−5、および70−6のようになる。そして、図19(a)の時間波形70−4、70−5、および70−6に対応して、充電可能電力予測部28において求められる充電可能電力特性は、それぞれ、図19(b)の特性72−4、72−5、および72−6のようになる。特性72−4、72−5、および72−6からは、共通のWin演算用時間tcに対して、それぞれ、充電電力制限値Win4、Win5、およびWin6が求められる。これらの充電電力制限値には、Win4>Win5>Win6の関係がある。   When there is a relationship of Ht1 <H4 <H5 <H6 between the degradation levels H4, H5, and H6, the relationship between the charge voltage limit values Vc4, Vc5, and Vc6 corresponding to each is Vc4> Vc5> Vc6. As a result, the waveforms of the charge voltage limit value Vc output by the charge allowable voltage generation unit 30 are as shown by time waveforms 70-4, 70-5, and 70-6 in FIG. 19A, respectively. And the chargeable power characteristic calculated | required in the chargeable power prediction part 28 corresponding to the time waveforms 70-4, 70-5, and 70-6 of Fig.19 (a) is respectively shown in FIG.19 (b). Characteristics 72-4, 72-5, and 72-6 are obtained. From the characteristics 72-4, 72-5, and 72-6, charging power limit values Win4, Win5, and Win6 are obtained for the common Win calculation time tc, respectively. These charging power limit values have a relationship of Win4> Win5> Win6.

このように、本実施例では、劣化度が所定の閾値以上となったときには、劣化度が大きい程その値が小さくなるよう充電電圧制限値Vcを決定する。これによって、劣化度が所定の閾値以上となったときには、劣化度が大きい程充電電力制限値Winを小さくすることができる。   As described above, in this embodiment, when the deterioration level is equal to or greater than the predetermined threshold value, the charging voltage limit value Vc is determined so that the larger the deterioration level, the smaller the value. As a result, when the degree of deterioration exceeds a predetermined threshold, the charging power limit value Win can be reduced as the degree of deterioration increases.

電池は、劣化度が大きくなったときには迅速な充電を行わず、できるだけ寿命を延ばすことが好ましい。本実施例によれば、劣化度が所定の閾値以上であるときには充電電力を小さくし、電池10の寿命を長くすることができる。   It is preferable to extend the life of the battery as much as possible without performing quick charging when the degree of deterioration increases. According to the present embodiment, when the degree of deterioration is equal to or greater than a predetermined threshold, the charging power can be reduced and the life of the battery 10 can be extended.

なお、図15および図17にそれぞれ示す、第1および第2実施例に係る電池診断/電力制限値演算装置62については、図2に示す電力制限値演算装置24と同様、電力制限値設定部32を用いない構成としてもよい。   15 and 17, the battery diagnosis / power limit value calculation device 62 according to the first and second embodiments is similar to the power limit value calculation device 24 shown in FIG. It is good also as a structure which does not use 32.

図20に第3実施例に係る電池診断/電力制限値演算装置62の構成を示す。この実施例では、劣化度推定/演算用時間調整部74が、電池診断モード時の電池電圧測定値Vbp、電池電流測定値Ibp、および電池温度測定値Tbpに基づいてWin演算用時間tcを求め、電力制限値設定部32に出力する。図15に示した第1実施例の構成部と同一の構成部については同一の符号を付してその説明を省略する。   FIG. 20 shows the configuration of the battery diagnosis / power limit value calculation device 62 according to the third embodiment. In this embodiment, the deterioration degree estimation / calculation time adjustment unit 74 obtains the Win calculation time tc based on the battery voltage measurement value Vbp, the battery current measurement value Ibp, and the battery temperature measurement value Tbp in the battery diagnosis mode. To the power limit value setting unit 32. The same components as those of the first embodiment shown in FIG. 15 are denoted by the same reference numerals, and the description thereof is omitted.

電池診断/電力制限値演算装置62は、電池診断モード時に電池10に流れる電流の時間波形が、例えば、図16(a)に示す時間波形となるよう、電池10に流れる電流を制御する。劣化度推定/演算用時間調整部74は、図16(a)のように電池10の電流が変化したときにおける電池電圧測定値Vbp、電池電流測定値Ibp、および電池温度測定値Tbpの各時間変化に基づいて、電池10の劣化度を求める。   The battery diagnosis / power limit value calculation device 62 controls the current flowing through the battery 10 so that the time waveform of the current flowing through the battery 10 in the battery diagnosis mode becomes, for example, the time waveform shown in FIG. Deterioration degree estimation / calculation time adjustment unit 74 performs each time of battery voltage measurement value Vbp, battery current measurement value Ibp, and battery temperature measurement value Tbp when the current of battery 10 changes as shown in FIG. Based on the change, the degree of deterioration of the battery 10 is obtained.

劣化度推定/演算用時間調整部74は、劣化度とWin演算用時間tcとを対応付けた劣化度対演算用時間テーブルを記憶する。劣化度推定/演算用時間調整部74は、劣化度対演算用時間テーブルを参照し、求められた劣化度に対応するWin演算用時間tcを求め、電力制限値設定部32に出力する。電力制限値設定部32は、演算用時間調整部60から出力されたWin演算用時間tcに対応した充電電力制限値Winを求める。   The degradation degree estimation / calculation time adjustment unit 74 stores a degradation degree versus computation time table in which the degradation degree and the Win computation time tc are associated with each other. The degradation level estimation / calculation time adjustment unit 74 refers to the degradation level vs. computation time table, obtains a Win computation time tc corresponding to the obtained degradation level, and outputs it to the power limit value setting unit 32. The power limit value setting unit 32 obtains the charge power limit value Win corresponding to the Win calculation time tc output from the calculation time adjustment unit 60.

図21に、劣化度対演算用時間テーブルが示す関係の例をグラフによって示す。図21の横軸は劣化度を示し縦軸はWin演算用時間tcを示す。図21の例では、劣化度が所定の閾値Ht2未満のときは、劣化度の変化に対しWin演算用時間は一定とする。一方、劣化度が所定の閾値Ht2以上のときは、劣化度が増加すると共にWin演算用時間を長くする。   FIG. 21 is a graph showing an example of the relationship indicated by the deterioration degree versus calculation time table. In FIG. 21, the horizontal axis represents the degree of deterioration, and the vertical axis represents the time tc for Win calculation. In the example of FIG. 21, when the deterioration level is less than the predetermined threshold value Ht2, the Win calculation time is constant with respect to the change in the deterioration level. On the other hand, when the degree of deterioration is equal to or greater than the predetermined threshold value Ht2, the degree of deterioration increases and the Win calculation time is lengthened.

劣化度H4、H5およびH6の間に、Ht2<H4<H5<H6の関係があるとき、それぞれに対応するWin演算用時間tc4、tc5、およびtc6の関係は、tc4<tc5<tc6となる。これによって、劣化度推定/演算用時間調整部74が出力するWin演算用時間tcに対応して求められる充電電力制限値は、図22に示すように、それぞれ、Win4、Win5およびWin6となる。これらの充電電力制限値には、Win4>Win5>Win6の関係がある。   When there is a relationship of Ht2 <H4 <H5 <H6 between the degradation levels H4, H5 and H6, the relationship of the Win calculation times tc4, tc5 and tc6 corresponding to each is tc4 <tc5 <tc6. As a result, the charging power limit values obtained corresponding to the Win calculation time tc output from the deterioration level estimation / calculation time adjustment unit 74 are Win4, Win5, and Win6, respectively, as shown in FIG. These charging power limit values have a relationship of Win4> Win5> Win6.

このように、本実施例では、劣化度が所定の閾値以上となったときには、劣化度が大きい程それが示す時間が長くなるようWin演算用時間tcが求められる。これによって、劣化度が所定の閾値以上となったときには、劣化度が大きい程充電電力制限値Winを小さくすることができる。これによって、上記の第2実施例と同様、劣化度が所定の閾値以上であるときには充電電力を小さくし、電池10の寿命を長くすることができる。   As described above, in this embodiment, when the deterioration level is equal to or greater than the predetermined threshold value, the Win calculation time tc is determined so that the time indicated by the deterioration level increases as the deterioration level increases. As a result, when the degree of deterioration exceeds a predetermined threshold, the charging power limit value Win can be reduced as the degree of deterioration increases. As a result, as in the second embodiment, when the degree of deterioration is greater than or equal to a predetermined threshold, the charging power can be reduced and the life of the battery 10 can be extended.

図23に第4実施例に係る電池診断/電力制限値演算装置62の構成を示す。この電力制限値演算装置は、第2実施例における劣化度推定部68と、第3実施例における劣化度推定/演算用時間調整部74とを組み合わせたものである。図17に示した第2実施例の構成部および図20に示した第3実施例の構成部と同一の構成部については同一の符号を付して説明を省略する。   FIG. 23 shows the configuration of the battery diagnosis / power limit value calculation device 62 according to the fourth embodiment. This power limit value calculation device is a combination of the deterioration level estimation unit 68 in the second embodiment and the deterioration level estimation / calculation time adjustment unit 74 in the third embodiment. The same components as those of the second embodiment shown in FIG. 17 and the components of the third embodiment shown in FIG.

本実施例では、劣化度が所定の閾値以上となったときには、劣化度が大きい程その値が小さくなるよう、充電電圧制限値が決定される。さらに、本実施例では、劣化度が所定の閾値以上となったときには、劣化度が大きい程それが示す時間が長くなるよう、Win演算用時間tcが求められる。これによって、劣化度が所定の閾値以上となったときには、劣化度が大きい程充電電力制限値Winを小さくすることができる。劣化度推定/電圧制限値設定部68と劣化度推定/演算用時間調整部74との組み合わせにより、電池10の寿命を長くするという効果を大きくすることができる。   In the present embodiment, when the deterioration level is equal to or greater than a predetermined threshold, the charging voltage limit value is determined such that the larger the deterioration level, the smaller the value. Furthermore, in the present embodiment, when the deterioration level is equal to or greater than a predetermined threshold, the Win calculation time tc is determined so that the time indicated by the deterioration level increases as the deterioration level increases. As a result, when the degree of deterioration exceeds a predetermined threshold, the charging power limit value Win can be reduced as the degree of deterioration increases. By combining the deterioration level estimation / voltage limit value setting unit 68 and the deterioration level estimation / calculation time adjustment unit 74, the effect of extending the life of the battery 10 can be increased.

第1の実施形態に係る電力制限値演算装置24の第4実施例、および第2の実施形態に係る電池診断/電力制限値演算装置62の第2実施例は、組み合わせることが可能である。この組み合わせによる電池診断/電力制限値演算装置62を図24に示す。図10および図17に示す構成部と同一の構成部については同一の符号を付してその説明を省略する。   The fourth example of the power limit value calculating device 24 according to the first embodiment and the second example of the battery diagnosis / power limit value calculating device 62 according to the second embodiment can be combined. A battery diagnosis / power limit value calculation device 62 based on this combination is shown in FIG. The same components as those shown in FIGS. 10 and 17 are denoted by the same reference numerals and description thereof is omitted.

この電池診断/電力制限値演算装置62は、充電電圧制限値Vcを劣化度推定部68および充電許容電圧生成部30により求め、Win演算用時間tcの調整を演算用時間調整部60により行うものである。   The battery diagnosis / power limit value calculation device 62 obtains the charge voltage limit value Vc by the deterioration degree estimation unit 68 and the charge allowable voltage generation unit 30, and adjusts the Win calculation time tc by the calculation time adjustment unit 60. It is.

また、第1の実施形態に係る電力制限値演算装置24の第3実施例、および第2の実施形態に係る電池診断/電力制限値演算装置62の第3実施例は、組み合わせることが可能である。この組み合わせによる電池診断/電力制限値演算装置62を図25に示す。図7および図20に示す構成部と同一の構成部については同一の符号を付してその説明を省略する。   Further, the third example of the power limit value calculating device 24 according to the first embodiment and the third example of the battery diagnosis / power limit value calculating device 62 according to the second embodiment can be combined. is there. A battery diagnosis / power limit value calculation device 62 based on this combination is shown in FIG. The same components as those shown in FIGS. 7 and 20 are denoted by the same reference numerals and description thereof is omitted.

この電池診断/電力制限値演算装置62は、充電電圧制限値を充電許容電圧生成部54により求め、Win演算用時間tcの調整を劣化度推定/演算用時間調整部74により行うものである。   The battery diagnosis / power limit value calculation device 62 obtains a charge voltage limit value by the charge allowable voltage generation unit 54 and adjusts the Win calculation time tc by the deterioration degree estimation / calculation time adjustment unit 74.

10 電池、12 電力制御装置、14 モータジェネレータ、16 操作部、18 電流センサ、20 電圧センサ、22 温度センサ、24 電力制限値演算装置、26 電池状態量推定部、28 充電可能電力予測部、30,54 充電許容電圧生成部、32 電力制限値設定部、34 負極、36 正極、38 セパレータ、40,42 活物質、44 負極コレクタ、46 正極コレクタ、48 負極端子、50 正極端子、52 外部回路、56−1〜56−3,70−4〜70−6 充電電圧制限値時間波形、58−1〜58−3,72−4〜72−6 充電可能電力特性、60 演算用時間調整部、62 電池診断/電力制限値演算装置、64 モード切り換えスイッチ、66 電池特性決定部、68 劣化度推定部、74 劣化度推定/演算用時間調整部。   DESCRIPTION OF SYMBOLS 10 Battery, 12 Power control apparatus, 14 Motor generator, 16 Operation part, 18 Current sensor, 20 Voltage sensor, 22 Temperature sensor, 24 Power limit value calculating apparatus, 26 Battery state quantity estimation part, 28 Chargeable power prediction part, 30 , 54 Charging allowable voltage generating unit, 32 Power limit value setting unit, 34 Negative electrode, 36 Positive electrode, 38 Separator, 40, 42 Active material, 44 Negative electrode collector, 46 Positive electrode collector, 48 Negative electrode terminal, 50 Positive electrode terminal, 52 External circuit, 56-1 to 56-3, 70-4 to 70-6 Charging voltage limit value time waveform, 58-1 to 58-3, 72-4 to 72-6 chargeable power characteristics, 60 arithmetic time adjustment unit, 62 Battery diagnosis / power limit value calculation device, 64 mode changeover switch, 66 battery characteristic determination unit, 68 degradation level estimation unit, 74 degradation level estimation / calculation Time adjustment unit.

Claims (8)

車両駆動電力供給用の電池に流れる電流、前記電池の出力電圧、および前記電池の温度測定するセンサと、
前記センサ各測定結果に基づいて、前記電池についての電池モデル式から、前記電池の電池モデルパラメータを含む電池状態量を求める電池状態量推定部と、
前記電池を一定電圧充電する場合における前記電池への充電電力を、前記電池モデル式に基づき、前記電池を充電する際の充電可能電力として求めるため、充電電圧制限値を設定する充電許容電圧生成部と、
前記充電電圧制限値の電圧で前記電池を一定電圧充電する場合における前記電池への充電電力の時間変化を、前記電池モデル式に基づき、充電可能電力特性として求める充電可能電力予測部であって、前記充電電圧制限値と前記電池状態量とに基づいて、当該充電可能電力特性を求める充電可能電力予測部と、
を備え、
前記充電可能電力特性に基づいて、実際に前記電池を充電する際の充電電力制限値を求めることを特徴とする充電電力制限値演算装置。
A sensor for measuring a current flowing through a battery for supplying vehicle driving power , an output voltage of the battery, and a temperature of the battery ;
A battery state quantity estimation unit for obtaining a battery state quantity including a battery model parameter of the battery from a battery model formula for the battery based on each measurement result of the sensor ;
A charge allowable voltage generation unit that sets a charging voltage limit value in order to obtain charging power to the battery when charging the battery at a constant voltage as chargeable power when charging the battery based on the battery model formula When,
A chargeable power prediction unit for obtaining a change in charging power to the battery over time when charging the battery at a constant voltage with a voltage of the charging voltage limit value as a chargeable power characteristic based on the battery model formula, Based on the charge voltage limit value and the battery state quantity , a chargeable power prediction unit for obtaining the chargeable power characteristic ,
With
The chargeable based on power characteristics, actually the battery charge power limit value calculation device according to claim Rukoto calculated charging power limit value in charging the.
請求項1に記載の充電電力制限値演算装置において、
前記充電可能電力特性は、充電可能電力が充電開始後に増加して最大となり、その後時間の経過と共に小さくなる特性であり、
前記充電電力制限値演算装置は、前記充電可能電力特性に基づいて、前記電池モデル式による演算上の初期時刻にあたる基準時刻から所定の時間が経過した時における充電可能電力を、前記充電電力制限値として求める電力制限値設定部を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 1,
The chargeable power characteristic is a characteristic that the chargeable power increases and becomes maximum after the start of charging, and then decreases with time.
The charging power limit value calculation unit, on the basis of the chargeable power characteristics, a rechargeable power observed when a predetermined time has elapsed from the reference time corresponding to the initial time on calculation by the battery model equation, the limit charging power A charging power limit value calculation device comprising a power limit value setting unit obtained as follows.
請求項2に記載の充電電力制限値演算装置において、
前記電池状態量推定部は、前記電池状態量に基づいて前記電池の充電深度を求め、
前記充電電力制限値演算装置は、求められた充電深度が大きい程長い時間を前記所定の時間として定める時間調整部を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 2,
The battery state quantity estimation unit obtains a charging depth of the battery based on the battery state quantity,
The charging power limit value calculation unit, charging power limit value calculation apparatus characterized by obtaining Bei between adjuster when as stipulated how long have long as the obtained state of charge is larger as the predetermined time.
請求項2に記載の充電電力制限値演算装置において、
前記電池の充電能力の劣化度であって、満充電時放電可能電荷量の経時変化によって表される劣化度を求める劣化度推定部と、
前記劣化度推定部によって求められた劣化度が大きい程長い時間を前記所定の時間として定める時間調整部と、
を備えることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 2,
A deterioration degree estimation unit for obtaining a deterioration degree of the chargeability of the battery, and obtaining a deterioration degree represented by a change with time of a charge amount that can be discharged at full charge ;
And during adjustment portion when the amount of time as has long large deterioration degree determined by said deterioration degree estimation portion shall be determined as the predetermined time,
Charge power limit value calculation apparatus characterized by obtaining Bei a.
請求項4に記載の充電電力制限値演算装置において、
前記充電許容電圧生成部は、
前記劣化度推定部によって求められた劣化度が大きい程小さい値を前記充電電圧制限値として設定することを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to claim 4,
The charge allowable voltage generator is
Charge power limit value calculation unit, characterized in that you set a smaller value the larger the deterioration degree determined by said deterioration degree estimation portion as the charging voltage limit value.
請求項1から請求項3のいずれか1項に記載の充電電力制限値演算装置において、
記電池の充電能力の劣化度であって、満充電時放電可能電荷量の経時変化によって表される劣化度を求める劣化度推定部を備え
前記充電許容電圧生成部は、
前記劣化度推定部によって求められた劣化度が大きい程小さい値を前記充電電圧制限値として設定することを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 3,
A deterioration degree of the charge capacity of the previous SL cell includes a deterioration degree estimation unit for obtaining a degradation degree represented by the aging of the fully charged during discharge charge quantity,
The charge allowable voltage generator is
Charge power limit value calculation unit, characterized in that you set a smaller value the larger the deterioration degree determined by said deterioration degree estimation portion as the charging voltage limit value.
請求項1から請求項4のいずれか1項に記載の充電電力制限値演算装置において、
前記電池状態量推定部は、前記電池状態量に基づいて前記電池の充電深度を求め、
前記充電許容電圧生成部は、記充電深度が大きい程小さい値を前記充電電圧制限値として設定することを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 4,
The battery state quantity estimation unit obtains a charging depth of the battery based on the battery state quantity,
The chargeable voltage generator, before charging power limit value calculation unit, characterized in that you set the smaller value as KiTakashi electrostatic depth is greater as the charge voltage limit.
請求項1から請求項7のいずれか1項に記載の充電電力制限値演算装置において、
前記電池に流れる電流を変化させる電池電流制御部と、
前記電池電流制御部による電流変化に対する前記電池の出力電圧の変化に基づいて、前記電池について、交換電流密度および拡散係数を含む特性定数を求める電池特性決定部と、
備え
前記電池状態量推定部は、
前記センサの各測定結果に加えて、前記電池特性決定部によって求められた特定数に基づいて前記電池状態量を求め、
前記充電可能電力予測部は、
前記充電電圧制限値および前記電池状態量に加えて、前記電池特性決定部によって求められた特定数に基づいて前記充電可能電力特性を求めることを特徴とする充電電力制限値演算装置。
In the charging power limit value calculation device according to any one of claims 1 to 7,
A battery current controller for changing the current flowing through the battery;
A battery characteristic determination unit that obtains a characteristic constant including an exchange current density and a diffusion coefficient for the battery based on a change in the output voltage of the battery with respect to a current change by the battery current control unit;
Equipped with a,
The battery state quantity estimator is
In addition to the measurement result of the sensor, it obtains the battery state quantity based on the characteristic constants obtained by said battery characteristic determining unit,
The rechargeable power prediction unit
Wherein in addition to the charging voltage limit value and the battery state quantity, the battery characteristic determining unit charging power limit value calculation unit, wherein the mel determined the chargeable power characteristics based on characteristics constant determined by.
JP2009189244A 2009-08-18 2009-08-18 Charge power limit value calculation device Expired - Fee Related JP5492493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189244A JP5492493B2 (en) 2009-08-18 2009-08-18 Charge power limit value calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189244A JP5492493B2 (en) 2009-08-18 2009-08-18 Charge power limit value calculation device

Publications (2)

Publication Number Publication Date
JP2011040346A JP2011040346A (en) 2011-02-24
JP5492493B2 true JP5492493B2 (en) 2014-05-14

Family

ID=43767894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189244A Expired - Fee Related JP5492493B2 (en) 2009-08-18 2009-08-18 Charge power limit value calculation device

Country Status (1)

Country Link
JP (1) JP5492493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156385A1 (en) * 2018-02-07 2019-08-15 주식회사 엘지화학 Method for flattening power limit of battery, and battery management system
US10797501B2 (en) 2017-12-19 2020-10-06 Samsung Electronics Co., Ltd. Method and apparatus with battery charging

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408295B2 (en) * 2014-08-13 2018-10-17 株式会社マキタ Battery device
KR102259967B1 (en) * 2017-12-18 2021-06-02 주식회사 엘지에너지솔루션 Apparatus and method for managing charging of battery
JP2020182262A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Computation device
CN114643892A (en) * 2022-04-11 2022-06-21 广州万城万充新能源科技有限公司 Electric vehicle charging power prediction system based on multi-mode data perception

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106027A (en) * 2007-10-22 2009-05-14 Toyota Motor Corp Battery controller and control method, program to achieve the method in computer, and recording medium recording the program
JP5154578B2 (en) * 2007-12-28 2013-02-27 住友重機械工業株式会社 Hybrid construction machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797501B2 (en) 2017-12-19 2020-10-06 Samsung Electronics Co., Ltd. Method and apparatus with battery charging
US11368034B2 (en) 2017-12-19 2022-06-21 Samsung Electronics Co., Ltd. Method and apparatus with battery charging
WO2019156385A1 (en) * 2018-02-07 2019-08-15 주식회사 엘지화학 Method for flattening power limit of battery, and battery management system
CN110770593A (en) * 2018-02-07 2020-02-07 株式会社Lg化学 Method for smoothing power limit of battery and battery management system
JP2020524969A (en) * 2018-02-07 2020-08-20 エルジー・ケム・リミテッド Method of flattening battery power limit and battery management system
US11121571B2 (en) 2018-02-07 2021-09-14 Lg Chem, Ltd. Method and battery management system for smoothing power limit of battery
CN110770593B (en) * 2018-02-07 2022-01-07 株式会社Lg化学 Method for smoothing power limit of battery and battery management system

Also Published As

Publication number Publication date
JP2011040346A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP2011041441A (en) Charge power limit value calculating device
CN110168389B (en) Apparatus and method for obtaining degradation information of lithium ion battery cell
JP5761378B2 (en) Secondary battery control device and control method
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
JP5492493B2 (en) Charge power limit value calculation device
Kang et al. Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency
JP5716828B2 (en) Secondary battery degradation state estimation device and degradation state estimation method
KR101619634B1 (en) System for estimating state of health using battery moedel parameter and method thereof
JP6094598B2 (en) Battery system
CN102239597B (en) Method for determining charge state of secondary intercalation cell of rechargeable battery
US10353010B2 (en) Apparatus for estimating remaining power amount of battery employing a polarization voltage
WO2008016129A1 (en) Secondary battery charge/discharge control device and hybrid vehicle using the same
JP5770563B2 (en) Vehicle power supply system
JP6500789B2 (en) Control system of secondary battery
KR101282687B1 (en) Method for estimating battery SOC of vehicle
JP7395540B2 (en) Battery deterioration determination method, battery deterioration determination device, battery management system, battery equipped equipment, and battery deterioration determination program
JP2016502730A (en) Method using apparatus for storing electrical energy
JP2013160538A (en) Estimation device, estimation method, and control method
Rahmoun et al. SOC estimation for Li-Ion batteries based on equivalent circuit diagrams and the application of a Kalman filter
JP5362478B2 (en) Charge power limit value calculation device
JP5324356B2 (en) Discharge power limit value calculation device
JP5849537B2 (en) Estimation apparatus and estimation method
Aneiros et al. A proposed mathematical model for discharge curves of Li-Ion batteries
JP2016207287A (en) Deterioration estimation method for secondary battery
JP6747333B2 (en) Secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees