JP2011037678A - Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer - Google Patents

Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer Download PDF

Info

Publication number
JP2011037678A
JP2011037678A JP2009187739A JP2009187739A JP2011037678A JP 2011037678 A JP2011037678 A JP 2011037678A JP 2009187739 A JP2009187739 A JP 2009187739A JP 2009187739 A JP2009187739 A JP 2009187739A JP 2011037678 A JP2011037678 A JP 2011037678A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
silicon single
wafer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187739A
Other languages
Japanese (ja)
Other versions
JP5287594B2 (en
Inventor
Keiichiro Hiraki
敬一郎 平木
Hironori Murakami
浩紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009187739A priority Critical patent/JP5287594B2/en
Publication of JP2011037678A publication Critical patent/JP2011037678A/en
Application granted granted Critical
Publication of JP5287594B2 publication Critical patent/JP5287594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing, in a method for growing a silicon single crystal from a silicon melt containing added carbon, a silicon single crystal, whereby a decrease in a carbon concentration around the outer periphery of the silicon single crystal can be suppressed and to provide methods for producing a silicon wafer and an epitaxial wafer which has a uniform plane bulk micro defect density (BMD density) and which have high gettering capability. <P>SOLUTION: What are provided are a method for producing a silicon single crystal 16 comprising preparing a silicon melt 13 containing added carbon in a crucible 12, and pulling up under rotation at a rotation speed of 0.52-0.84 rad/s a silicon seed crystal 17 kept in contact with the silicon melt 13 while applying a magnetic field of a magnetic flux density of 0.2-0.4 T to the silicon melt 13 in the crucible 12 to grow the silicon single crystal 16 on the silicon seed crystal 17 and a method for producing a silicon wafer and an epitaxial wafer by using an ingot of the silicon single crystal 16 produced by the method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、シリコン単結晶の製造方法、並びに、シリコンウェーハの製造方法およびエピタキシャルウェーハの製造方法に関し、特には、撮像素子(CIS)用基板の製造に好適に使用し得るシリコン単結晶の製造方法、並びに、撮像素子の製造に好適に使用し得るシリコンウェーハおよびエピタキシャルウェーハの製造方法に関するものである。   The present invention relates to a method for manufacturing a silicon single crystal, a method for manufacturing a silicon wafer, and a method for manufacturing an epitaxial wafer, and in particular, a method for manufacturing a silicon single crystal that can be suitably used for manufacturing a substrate for an image sensor (CIS). In addition, the present invention relates to a method for manufacturing a silicon wafer and an epitaxial wafer that can be suitably used for manufacturing an imaging device.

従来、撮像素子などの半導体デバイスを製造するのに用いられる半導体基板としては、チョクラルスキー法(CZ法)により育成したシリコン単結晶のインゴットから切り出したシリコンウェーハや、該シリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルウェーハが使用されている。そして、このようなシリコンウェーハやエピタキシャルウェーハ(以下、単に「ウェーハ」と称することがある)としては、近年の半導体デバイスの微細化に伴い、重金属による結晶欠陥(例えば撮像素子の白傷欠陥など)が発生し難い、ゲッタリング能力の高いものが特に求められている。   Conventionally, as a semiconductor substrate used to manufacture a semiconductor device such as an image sensor, a silicon wafer cut out from a silicon single crystal ingot grown by the Czochralski method (CZ method), or epitaxially formed on the surface of the silicon wafer is used. A layered epitaxial wafer is used. As such silicon wafers and epitaxial wafers (hereinafter sometimes simply referred to as “wafers”), with the recent miniaturization of semiconductor devices, crystal defects caused by heavy metals (for example, white defects in imaging elements). In particular, there is a demand for a material having a high gettering ability that is difficult to generate.

ここで、一般に、ウェーハのゲッタリング能力に影響を与える因子としては、半導体デバイスの製造過程等で行われる熱処理により、ウェーハ内に存在する酸素析出核に対して格子間酸素(格子の間に入り込んだ酸素原子)が結合することで形成される酸素析出物(BMD:Bulk Micro Defects)が知られている。そして、このBMDは、ウェーハの内部に存在する場合には、重金属に対するゲッタリング作用を示し、ゲッタリングサイトとなるので(IG効果:Internal Gettering)、ゲッタリング能力の高いウェーハを得るためには、BMDの形成を促進することが効果的であるとされている。   Here, in general, as a factor that affects the gettering ability of a wafer, interstitial oxygen (enters between the lattices) into the oxygen precipitation nuclei existing in the wafer by a heat treatment performed in a semiconductor device manufacturing process or the like. There are known oxygen precipitates (BMD: Bulk Micro Defects) formed by bonding oxygen atoms). When this BMD is present inside the wafer, it exhibits a gettering action for heavy metals and becomes a gettering site (IG effect: Internal Gettering). In order to obtain a wafer with high gettering ability, It is considered effective to promote the formation of BMD.

そこで、BMDの形成を促進してBMD密度を増加し、ウェーハのゲッタリング能力を高めることができる方法の検討がなされており、このような方法として、ウェーハ内に炭素を添加することで熱処理時の酸素析出物(BMD)の形成を促進し、BMD密度を増加させる方法が提案されている。具体的には、ウェーハ内に炭素を添加する方法として、イオン注入設備を用いてウェーハに炭素イオンを注入する方法や、引き上げ中の単結晶の外周面をカーボンヒーターで加熱することによりシリコン単結晶の外周部に炭素を添加し、該シリコン単結晶のインゴットを用いてウェーハを製造する方法等が提案されている(例えば、特許文献1参照)。   Therefore, studies have been made on a method capable of promoting the formation of BMD to increase the BMD density and enhancing the gettering ability of the wafer. As such a method, carbon is added to the wafer during the heat treatment. A method for promoting the formation of oxygen precipitates (BMD) and increasing the BMD density has been proposed. Specifically, as a method of adding carbon into the wafer, a method of implanting carbon ions into the wafer using an ion implantation facility, or a silicon single crystal by heating the outer peripheral surface of the single crystal being pulled up with a carbon heater. A method has been proposed in which carbon is added to the outer peripheral portion of the wafer and a wafer is manufactured using the silicon single crystal ingot (see, for example, Patent Document 1).

しかし、イオン注入設備を用いてウェーハに炭素イオンを注入する方法には、イオン注入設備の導入が必要であると共に、長い処理時間が必要であるため、生産コストが高くなるという問題があった。また、カーボンヒーターを用いる方法には、カーボンヒーター内や装置内に存在する重金属により重金属汚染が起こる恐れがあるという問題があった。   However, the method of implanting carbon ions into a wafer using an ion implantation facility requires the introduction of the ion implantation facility and requires a long processing time, which causes a problem that the production cost increases. Further, the method using a carbon heater has a problem that heavy metal contamination may occur due to heavy metals existing in the carbon heater or in the apparatus.

これに対し、低コストで、カーボンヒーターを用いることなくウェーハに簡便に炭素を添加できる方法として、炭素添加したシリコン融液を使ってシリコン単結晶を育成し、該シリコン単結晶のインゴットからウェーハを切り出す方法が提案されている。   In contrast, as a method for adding carbon to a wafer at low cost without using a carbon heater, a silicon single crystal is grown using a silicon-added silicon melt, and the wafer is removed from the silicon single crystal ingot. A method of cutting out has been proposed.

しかしながら、この炭素添加したシリコン融液を用いる方法では、育成したシリコン単結晶の外周部における炭素濃度および酸素濃度が中心部と比較して低くなり、その結果、シリコン単結晶の外周部で炭素添加によるBMD形成の促進効果が低下するので、該シリコン単結晶のインゴットを用いて製造したウェーハの外周部のBMD密度が低くなる(即ち、ウェーハの面内にBMD密度差が生じる)という問題があった。   However, in this method using carbon-added silicon melt, the carbon concentration and oxygen concentration in the outer peripheral portion of the grown silicon single crystal are lower than in the central portion, and as a result, carbon is added in the outer peripheral portion of the silicon single crystal. As a result, the BMD density at the outer periphery of the wafer manufactured using the silicon single crystal ingot is lowered (that is, a difference in BMD density occurs in the surface of the wafer). It was.

特許第3055458号公報Japanese Patent No. 3055458

そのため、炭素添加したシリコン融液を用いてシリコン単結晶を育成する方法において、シリコン単結晶の外周部における炭素濃度の低下を抑制することができる(即ち、該シリコン単結晶のインゴットを用いて製造したウェーハの外周部におけるBMD密度の低下を抑制して、面内BMD密度を均一化することができる)シリコン単結晶の製造方法を開発することが求められていた。また、面内BMD密度を均一化した、高いゲッタリング能力を有するウェーハ、特にはエピタキシャルウェーハの製造方法を開発することが求められていた。   Therefore, in the method of growing a silicon single crystal using carbon-added silicon melt, it is possible to suppress a decrease in carbon concentration in the outer peripheral portion of the silicon single crystal (ie, manufacturing using the silicon single crystal ingot). It has been demanded to develop a method for producing a silicon single crystal that can suppress the decrease in the BMD density at the outer peripheral portion of the wafer and make the in-plane BMD density uniform. Further, it has been demanded to develop a method for producing a wafer having a high gettering ability, particularly an epitaxial wafer, in which the in-plane BMD density is made uniform.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明のシリコン単結晶の製造方法は、炭素を添加したシリコン融液をるつぼ中に準備し、前記るつぼ中のシリコン融液に対して磁束密度0.2〜0.4Tの磁場を印加しつつ、当該シリコン融液に接触させたシリコン種結晶を、0.52〜0.84rad/sの回転速度で回転させながら引き上げて、シリコン種結晶上にシリコン単結晶を育成することを含むことを特徴とする。このように、磁束密度0.2〜0.4T(2000〜4000ガウス)の磁場を印加しつつ、シリコン種結晶を、0.52〜0.84rad/s(5〜8rpm)の回転速度で回転させながら引き上げれば、シリコン単結晶の外周部における炭素濃度の低下を抑制することができる。
更に、上記のようにすれば、シリコン単結晶の外周面から中心に向かって50mm以内の外周部分の炭素濃度がシリコン単結晶の中心位置の炭素濃度より高くなり、また、シリコン単結晶の外周面から中心に向かって10mmの位置の炭素濃度がシリコン単結晶の中心位置の炭素濃度の1.2倍以上となるので、育成したシリコン単結晶の外周部における酸素濃度が中心部と比較して低くなったとしても、該シリコン単結晶のインゴットを用いて製造したウェーハの外周部におけるBMD密度の低下を抑制することができる。
ここで、本発明において、「炭素濃度」とは、FT−IR法で測定した濃度を指し、「シリコン単結晶の外周部分の炭素濃度」とは、FT−IR法で測定した外周部分の平均炭素濃度を指す。また、「シリコン単結晶の中心位置の炭素濃度」とは、FT−IR法で測定したシリコン単結晶の横断面の中心位置の炭素濃度を指す。
An object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a silicon single crystal according to the present invention comprises preparing a silicon melt added with carbon in a crucible, and silicon in the crucible. While applying a magnetic field having a magnetic flux density of 0.2 to 0.4 T to the melt, rotating the silicon seed crystal in contact with the silicon melt at a rotational speed of 0.52 to 0.84 rad / s. And pulling up and growing a silicon single crystal on the silicon seed crystal. Thus, the silicon seed crystal is rotated at a rotational speed of 0.52 to 0.84 rad / s (5 to 8 rpm) while applying a magnetic field having a magnetic flux density of 0.2 to 0.4 T (2000 to 4000 gauss). If the pulling is performed while lowering the carbon concentration, it is possible to suppress a decrease in carbon concentration in the outer peripheral portion of the silicon single crystal.
Further, according to the above, the carbon concentration in the outer peripheral portion within 50 mm from the outer peripheral surface of the silicon single crystal toward the center becomes higher than the carbon concentration at the center position of the silicon single crystal, and the outer peripheral surface of the silicon single crystal Since the carbon concentration at a position of 10 mm from the center to the center is 1.2 times or more the carbon concentration at the center position of the silicon single crystal, the oxygen concentration at the outer peripheral portion of the grown silicon single crystal is lower than that at the center portion. Even if it becomes, the fall of the BMD density in the outer peripheral part of the wafer manufactured using this silicon single crystal ingot can be suppressed.
Here, in the present invention, “carbon concentration” refers to the concentration measured by the FT-IR method, and “carbon concentration in the outer peripheral portion of the silicon single crystal” refers to the average of the outer peripheral portion measured by the FT-IR method. Refers to carbon concentration. The “carbon concentration at the center position of the silicon single crystal” refers to the carbon concentration at the center position of the cross section of the silicon single crystal measured by the FT-IR method.

ここで、本発明のシリコン単結晶の製造方法は、前記シリコン単結晶中の酸素濃度が13×1017〜17×1017atoms/cmであることが好ましい。このようにすれば、炭素添加によるBMD形成促進効果により、外周部の酸素濃度が落ち込んでいてもBMDの面内分布を均一にできるからである。ここで、本発明において、「シリコン単結晶中の酸素濃度」とは、FT−IR法で測定した平均酸素濃度を指す。 Here, in the method for producing a silicon single crystal of the present invention, it is preferable that the oxygen concentration in the silicon single crystal is 13 × 10 17 to 17 × 10 17 atoms / cm 3 . This is because the in-plane distribution of BMD can be made uniform even if the oxygen concentration in the outer peripheral portion is lowered due to the effect of promoting the formation of BMD by adding carbon. Here, in the present invention, “oxygen concentration in silicon single crystal” refers to an average oxygen concentration measured by the FT-IR method.

また、本発明のシリコン単結晶の製造方法は、前記シリコン融液に、引き上げたシリコン単結晶内の炭素濃度が1×1015〜1.317atoms/cmとなるように炭素を添加することが好ましい。このようにすれば、炭素添加によるBMD形成促進効果が充分に得られるからである。 In the method for producing a silicon single crystal of the present invention, carbon is added to the silicon melt so that the carbon concentration in the pulled silicon single crystal is 1 × 10 15 to 1.3 17 atoms / cm 3. It is preferable. This is because the effect of promoting the formation of BMD by adding carbon can be sufficiently obtained.

更に、本発明のシリコンウェーハの製造方法は、上述した製造方法で製造したシリコン単結晶のインゴットからシリコンウェーハを切り出すことを含むことを特徴とする。   Furthermore, the method for producing a silicon wafer according to the present invention includes cutting out a silicon wafer from a silicon single crystal ingot produced by the production method described above.

そして、本発明のエピタキシャルウェーハの製造方法は、上述した製造方法で製造したシリコン単結晶のインゴットからシリコンウェーハを切り出し、前記シリコンウェーハの表面にエピタキシャル層を形成することを含むことを特徴とする。このように、上記方法で製造することにより外周部における炭素濃度の低下を抑制したシリコン単結晶のインゴットを用いてエピタキシャルウェーハを製造すれば、面内BMD密度を均一化した、高いゲッタリング能力を有するエピタキシャルウェーハを得ることができる。   And the manufacturing method of the epitaxial wafer of this invention includes cutting out a silicon wafer from the ingot of the silicon single crystal manufactured with the manufacturing method mentioned above, and forming an epitaxial layer on the surface of the silicon wafer. In this way, if an epitaxial wafer is manufactured using a silicon single crystal ingot that suppresses a decrease in carbon concentration in the outer peripheral portion by manufacturing by the above method, the in-plane BMD density is made uniform and high gettering ability is obtained. An epitaxial wafer having the same can be obtained.

本発明によれば、炭素添加したシリコン融液を用いてシリコン単結晶を製造する際に、シリコン単結晶の外周部における炭素濃度の低下を抑制することが可能なシリコン単結晶の製造方法を提供することができる。また、面内BMD密度を均一化した、高いゲッタリング能力を有するウェーハ、特にはエピタキシャルウェーハの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when manufacturing a silicon single crystal using the silicon melt which added carbon, the manufacturing method of the silicon single crystal which can suppress the fall of the carbon concentration in the outer peripheral part of a silicon single crystal is provided. can do. Further, it is possible to provide a method for producing a wafer having a high gettering ability, particularly an epitaxial wafer, in which the in-plane BMD density is uniform.

本発明のシリコン単結晶の製造方法に使用するのに適した単結晶製造装置の一例を示す説明図である。It is explanatory drawing which shows an example of the single crystal manufacturing apparatus suitable for using for the manufacturing method of the silicon single crystal of this invention. 本発明のシリコン単結晶の製造方法の一例を用いて製造したシリコン単結晶の横断面を示す断面図である。It is sectional drawing which shows the cross section of the silicon single crystal manufactured using an example of the manufacturing method of the silicon single crystal of this invention.

以下、図面を参照しつつ本発明の実施の形態を詳細に説明する。ここに、本発明のシリコン単結晶の製造方法の一例は、例えば図1に示すような単結晶製造装置10を用いて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, an example of the method for producing a silicon single crystal of the present invention can be carried out using a single crystal production apparatus 10 as shown in FIG.

この単結晶製造装置10は、磁場印加式チョクラルスキー法でシリコン単結晶を製造するための装置であり、チャンバ11内に、シリコン単結晶の原料物質となる多結晶シリコンおよび炭素を収容するためのるつぼ12と、該るつぼ12内の原料物質を加熱して融液13とするためのヒーター14と、るつぼ12の下部に設けられてるつぼ12を円周方向(図1では装置上方から見て時計回り)に回転させるるつぼ回転機構15と、シリコン単結晶16を育成するためのシリコン種結晶17を保持する種結晶保持器(シードチャック)18が先端に取り付けられているワイヤーロープ19と、該ワイヤーロープ19をるつぼ12の回転方向とは反対の方向(図1では装置上方から見て反時計回り)に回転させながら巻き取ってシリコン単結晶16、シリコン種結晶17および種結晶保持器18を回転させつつ引き上げる巻取り機構20とを有している。   This single crystal manufacturing apparatus 10 is an apparatus for manufacturing a silicon single crystal by a magnetic field application type Czochralski method, and accommodates polycrystalline silicon and carbon, which are raw material materials of the silicon single crystal, in a chamber 11. The crucible 12, the heater 14 for heating the raw material in the crucible 12 to form a melt 13, and the crucible 12 provided at the lower part of the crucible 12 are circumferentially (see from above the apparatus in FIG. 1). A crucible rotating mechanism 15 that rotates clockwise), a wire rope 19 to which a seed crystal holder (seed chuck) 18 for holding a silicon seed crystal 17 for growing a silicon single crystal 16 is attached to the tip; A silicon single crystal is wound up while rotating the wire rope 19 in a direction opposite to the rotation direction of the crucible 12 (counterclockwise in FIG. 1 when viewed from above the apparatus). 6, and a take-up mechanism 20 to raise while rotating the silicon seed crystal 17 and the seed crystal holder 18.

また、単結晶製造装置10には、るつぼ12中の融液13に0.2〜0.4Tの磁束密度の磁場を印加するための磁場印加器21が、チャンバ11の下部外側にチャンバ11を取り囲むように配置されている。   The single crystal manufacturing apparatus 10 includes a magnetic field applicator 21 for applying a magnetic field having a magnetic flux density of 0.2 to 0.4 T to the melt 13 in the crucible 12. It is arranged so as to surround it.

そして、単結晶製造装置10では、本発明に係るシリコン単結晶製造方法を用いて、例えば以下のようにしてシリコン単結晶が製造される。   And in the single crystal manufacturing apparatus 10, a silicon single crystal is manufactured as follows, for example, using the silicon single crystal manufacturing method according to the present invention.

まず、るつぼ12中に、引き上げたシリコン単結晶内の炭素濃度が例えば1×1015〜1.317atoms/cmとなるように多結晶シリコンおよび炭素を収容し、ヒーター14で加熱して融液13とすると共に、磁場印加器21で、融液13に対し0.2T〜0.4Tの磁束密度の磁場を印加する。なお、炭素としては、特に限定されるものではなく、純炭素、黒鉛等を用いることができる。 First, polycrystalline silicon and carbon are accommodated in the crucible 12 so that the carbon concentration in the pulled silicon single crystal is, for example, 1 × 10 15 to 1.3 17 atoms / cm 3, and heated by the heater 14. A magnetic field having a magnetic flux density of 0.2 T to 0.4 T is applied to the melt 13 by the magnetic field applicator 21 while using the melt 13. Carbon is not particularly limited, and pure carbon, graphite, and the like can be used.

次に、融液13に対して磁場を印加した状態で、ワイヤーロープ19の先端に取り付けた種結晶保持器18に保持されたシリコン種結晶17を融液13に接触させる。そして、融液13に磁場を印加しつつ、るつぼ回転機構15を用いてるつぼ12を例えば0.01〜0.31rad/sの回転速度で回転させると共に、ワイヤーロープ19をるつぼ12の回転方向とは反対の方向に0.52〜0.84rad/sの回転速度で回転させながら巻き取り機構20で巻き取って、シリコン種結晶17および該シリコン種結晶17上に成長させたシリコン単結晶16を回転させながら引き上げる。なお、シリコン種結晶17およびシリコン単結晶16は、ワイヤーロープ19と一体となって回転するので、引き上げ時のシリコン種結晶17およびシリコン単結晶16の回転速度は、ワイヤーロープ19の回転速度と等しい。   Next, with the magnetic field applied to the melt 13, the silicon seed crystal 17 held in the seed crystal holder 18 attached to the tip of the wire rope 19 is brought into contact with the melt 13. Then, while applying a magnetic field to the melt 13, the crucible 12 using the crucible rotating mechanism 15 is rotated at a rotational speed of 0.01 to 0.31 rad / s, for example, and the wire rope 19 is rotated in the rotational direction of the crucible 12. Is wound by the winding mechanism 20 while rotating in the opposite direction at a rotational speed of 0.52 to 0.84 rad / s, and the silicon seed crystal 17 and the silicon single crystal 16 grown on the silicon seed crystal 17 are obtained. Pull up while rotating. Since the silicon seed crystal 17 and the silicon single crystal 16 rotate integrally with the wire rope 19, the rotation speed of the silicon seed crystal 17 and the silicon single crystal 16 at the time of pulling is equal to the rotation speed of the wire rope 19. .

ここで、上述のようにして引き上げたシリコン単結晶16は、シリコン単結晶中の炭素濃度が外周部でも低下しない。従って、育成したシリコン単結晶の外周部における酸素濃度が中心部と比較して低くなったとしても、該シリコン単結晶のインゴットを用いて製造したウェーハの外周部におけるBMD密度の低下を抑制することができる。なお、炭素添加によるBMD形成促進効果を充分に得るという観点からは、引き上げたシリコン単結晶16の酸素濃度は13×1017〜17×1017atoms/cmであることが好ましい。因みに、シリコン単結晶の酸素濃度は既知の方法により制御することができる。 Here, in the silicon single crystal 16 pulled up as described above, the carbon concentration in the silicon single crystal does not decrease even at the outer periphery. Therefore, even if the oxygen concentration in the outer peripheral portion of the grown silicon single crystal is lower than that in the central portion, the decrease in BMD density in the outer peripheral portion of the wafer manufactured using the silicon single crystal ingot is suppressed. Can do. From the viewpoint of sufficiently obtaining the effect of promoting BMD formation by adding carbon, the oxygen concentration of the pulled silicon single crystal 16 is preferably 13 × 10 17 to 17 × 10 17 atoms / cm 3 . Incidentally, the oxygen concentration of the silicon single crystal can be controlled by a known method.

なお、上述のようにして単結晶製造装置10で製造したシリコン単結晶16は、製造されたシリコン単結晶16のインゴットの横断面(半径R)を図2に示すように、シリコン単結晶16の外周面Oから中心Cに向かって50mm以内の外周部分O(図2に斜線で示す部分)の平均炭素濃度が、シリコン単結晶16の中心Cにおける炭素濃度より高くなる。また、シリコン単結晶16の外周面から中心Cに向かって10mmの位置の炭素濃度がシリコン単結晶の中心位置の炭素濃度の1.2倍以上となる。 The silicon single crystal 16 manufactured by the single crystal manufacturing apparatus 10 as described above has a cross section (radius R) of the ingot of the manufactured silicon single crystal 16 as shown in FIG. average carbon concentration in the outer peripheral surface O S peripheral portion within 50mm toward the center C of O (portion indicated by hatching in FIG. 2) is higher than the carbon concentration in the center C of the silicon single crystal 16. Further, the carbon concentration at a position of 10 mm from the outer peripheral surface of the silicon single crystal 16 toward the center C becomes 1.2 times or more the carbon concentration at the center position of the silicon single crystal.

そして、上述のようにして製造したシリコン単結晶のインゴットからワイヤーソー等を用いて切り出したシリコンウェーハは、そのまま、或いは、表面に既知の方法でエピタキシャル層を形成してエピタキシャルウェーハとしてから、例えば撮像素子(CIS)用の半導体基板として使用することができる。   Then, the silicon wafer cut out from the silicon single crystal ingot manufactured as described above using a wire saw or the like is used as it is or after forming an epitaxial layer on the surface by a known method to form an epitaxial wafer, for example, imaging It can be used as a semiconductor substrate for an element (CIS).

以下、本発明を実施例により更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to the following Example.

(比較例1)
引き上げたシリコン単結晶中の炭素濃度が1×1016atoms/cm以上となるように炭素を添加したシリコン融液を用いて、図1に示す単結晶製造装置で、磁束密度0.15Tの磁場を印加し、シリコン種結晶を0.52〜1.04rad/sの範囲内で回転速度を変化させながら回転させて引き上げ、結晶の長手方向の酸素濃度を12×1017〜17×1017atoms/cmの範囲で変化させたシリコン単結晶のインゴットを製造した。
そして、製造したシリコン単結晶のインゴットからワイヤーソーでサンプルウェーハを切り出し、それぞれ酸素濃度が異なる(単結晶の長手方向の位置が異なる)サンプルウェーハ1〜5の中心の酸素濃度、並びに、ウェーハ面内の酸素濃度分布および炭素濃度分布を下記の方法で評価した。結果を表1に示す。
また、サンプルウェーハ1〜5に対して、ドライ酸化雰囲気下、温度800℃で3時間の熱処理を行った後、更に温度1000℃で16時間の熱処理を行った。その後、各ウェーハの表面に形成された酸化膜をフッ酸水溶液で除去した後、ウェーハを壁開し、ライト溶液を用いて断面を選択エッチングし、その断面のBMD密度を以下の方法で測定した。結果を表1に示す。
(Comparative Example 1)
A single crystal manufacturing apparatus shown in FIG. 1 using a silicon melt to which carbon is added so that the carbon concentration in the pulled silicon single crystal is 1 × 10 16 atoms / cm 3 or more. A magnetic field is applied and the silicon seed crystal is rotated and pulled up while changing the rotation speed within a range of 0.52 to 1.04 rad / s, and the oxygen concentration in the longitudinal direction of the crystal is 12 × 10 17 to 17 × 10 17. A silicon single crystal ingot was produced in the range of atoms / cm 3 .
Then, a sample wafer is cut out with a wire saw from the manufactured silicon single crystal ingot, and the oxygen concentration at the center of each of the sample wafers 1 to 5 having different oxygen concentrations (different positions in the longitudinal direction of the single crystal), and in the wafer plane The oxygen concentration distribution and carbon concentration distribution were evaluated by the following methods. The results are shown in Table 1.
Further, the sample wafers 1 to 5 were subjected to a heat treatment at a temperature of 800 ° C. for 3 hours in a dry oxidation atmosphere, and then further subjected to a heat treatment at a temperature of 1000 ° C. for 16 hours. Then, after removing the oxide film formed on the surface of each wafer with a hydrofluoric acid aqueous solution, the wafer was opened, the cross section was selectively etched using a light solution, and the BMD density of the cross section was measured by the following method. . The results are shown in Table 1.

(比較例2)
印加する磁場の磁束密度を0.18Tに変更した以外は、比較例1と同様にしてシリコン単結晶のインゴットを製造した。
そして、比較例1と同様にしてサンプルウェーハを切り出し、それぞれ酸素濃度が異なるサンプルウェーハ6〜10の中心の酸素濃度、並びに、ウェーハ面内の酸素濃度分布および炭素濃度分布を下記の方法で評価した。
また、サンプルウェーハ6〜10に対し、比較例1と同様の熱処理等を行い、BMD密度を測定した。これらの結果を表1に示す。
(Comparative Example 2)
A silicon single crystal ingot was manufactured in the same manner as in Comparative Example 1 except that the magnetic flux density of the applied magnetic field was changed to 0.18T.
Then, the sample wafer was cut out in the same manner as in Comparative Example 1, and the oxygen concentration at the center of the sample wafers 6 to 10 having different oxygen concentrations, and the oxygen concentration distribution and the carbon concentration distribution in the wafer surface were evaluated by the following methods. .
Moreover, the heat processing etc. similar to the comparative example 1 were performed with respect to the sample wafers 6-10, and BMD density was measured. These results are shown in Table 1.

(実施例1)
印加する磁場の磁束密度を0.2〜0.3Tの範囲で変化させ、引き上げ時のシリコン種結晶の回転速度を0.52〜0.84rad/sの範囲で変化させた以外は、比較例1と同様にしてシリコン単結晶のインゴットを製造した。
そして、比較例1と同様にしてサンプルウェーハを切り出し、それぞれ酸素濃度が異なるサンプルウェーハ12〜15の中心の酸素濃度、並びに、ウェーハ面内の酸素濃度分布および炭素濃度分布を下記の方法で評価した。
また、サンプルウェーハ12〜15に対し、比較例1と同様の熱処理等を行い、
BMD密度を測定した。これらの結果を表1に示す。
Example 1
Comparative example except that the magnetic flux density of the magnetic field to be applied was changed in the range of 0.2 to 0.3 T, and the rotational speed of the silicon seed crystal at the time of pulling was changed in the range of 0.52 to 0.84 rad / s. In the same manner as in Example 1, a silicon single crystal ingot was produced.
Then, the sample wafer was cut out in the same manner as in Comparative Example 1, and the oxygen concentration at the center of the sample wafers 12 to 15 having different oxygen concentrations, and the oxygen concentration distribution and the carbon concentration distribution in the wafer surface were evaluated by the following methods. .
Further, the sample wafers 12 to 15 are subjected to the same heat treatment as in Comparative Example 1,
BMD density was measured. These results are shown in Table 1.

(実施例2)
印加する磁場の磁束密度を0.3〜0.4Tの範囲で変化させ、引き上げ時のシリコン種結晶の回転速度を0.52〜0.84rad/sの範囲で変化させた以外は、比較例1と同様にしてシリコン単結晶のインゴットを製造した。
そして、比較例1と同様にしてサンプルウェーハを切り出し、それぞれ酸素濃度が異なるサンプルウェーハ16〜20の中心の酸素濃度、並びに、ウェーハ面内の酸素濃度分布および炭素濃度分布を下記の方法で評価した。
また、サンプルウェーハ16〜20に対し、比較例1と同様の熱処理等を行い、
BMD密度を測定した。これらの結果を表1に示す。
(Example 2)
Comparative example except that the magnetic flux density of the magnetic field to be applied was changed in the range of 0.3 to 0.4 T, and the rotation speed of the silicon seed crystal at the time of pulling was changed in the range of 0.52 to 0.84 rad / s. In the same manner as in Example 1, a silicon single crystal ingot was produced.
Then, the sample wafer was cut out in the same manner as in Comparative Example 1, and the oxygen concentration at the center of each of the sample wafers 16 to 20 having different oxygen concentrations, and the oxygen concentration distribution and the carbon concentration distribution in the wafer surface were evaluated by the following methods. .
Further, the sample wafers 16 to 20 are subjected to the same heat treatment as in Comparative Example 1,
BMD density was measured. These results are shown in Table 1.

(酸素濃度の測定)
FT−IR装置(バイオラッド社製)を用いて、FT−IR(フーリエ変換型赤外吸収)法によりウェーハ中心の酸素濃度を測定した。
(面内酸素濃度分布の評価)
FT−IR装置(バイオラッド社製)を用いて、FT−IR(フーリエ変換型赤外吸収)法によりウェーハ中心から外周方向へ5mmピッチで酸素濃度を計測した。そして、中心部(0mm)の酸素濃度に対する外周から10mm(140mm)の位置での酸素濃度の比(酸素濃度面内比)を求めた。
(面内炭素濃度分布の評価)
FT−IR装置(バイオラッド社製)を用いて、FT−IR(フーリエ変換型赤外吸収)法によりウェーハ中心から外周方向へ5mmピッチで炭素濃度を計測した。そして、中心部(0mm)の炭素濃度に対する外周から10mm(140mm)の位置での炭素濃度の比(炭素濃度面内比)を求めた。
(BMD密度の測定)
光学顕微鏡を用いて、ウェーハ中心から外周方向へ5mmピッチでBMD密度を計測した。そして、中心部(0mm)のBMD密度に対する外周から10mm(140mm)の位置でのBDM密度の比(BMD密度面内比)を求めた。
(Measurement of oxygen concentration)
The oxygen concentration at the center of the wafer was measured by an FT-IR (Fourier transform infrared absorption) method using an FT-IR apparatus (manufactured by Bio-Rad).
(Evaluation of in-plane oxygen concentration distribution)
Using an FT-IR apparatus (manufactured by Bio-Rad), the oxygen concentration was measured at a pitch of 5 mm from the center of the wafer to the outer periphery by the FT-IR (Fourier transform infrared absorption) method. And the ratio (oxygen concentration in-plane ratio) of the oxygen concentration in the position of 10 mm (140 mm) from the outer periphery with respect to the oxygen concentration of the central part (0 mm) was obtained.
(Evaluation of in-plane carbon concentration distribution)
Using an FT-IR apparatus (manufactured by Bio-Rad), the carbon concentration was measured at a pitch of 5 mm from the center of the wafer to the outer periphery by the FT-IR (Fourier transform infrared absorption) method. And the ratio (carbon concentration in-plane ratio) of the carbon concentration in the position of 10 mm (140 mm) from the outer periphery with respect to the carbon concentration of the central part (0 mm) was obtained.
(Measurement of BMD density)
Using an optical microscope, the BMD density was measured at a pitch of 5 mm from the wafer center to the outer peripheral direction. And the ratio (BMD density in-plane ratio) of the BDM density in the position of 10 mm (140 mm) from the outer periphery with respect to the BMD density of a center part (0 mm) was calculated | required.

Figure 2011037678
Figure 2011037678

表1の比較例1〜2および実施例1〜2より、本発明のシリコン単結晶の製造方法に従い製造したシリコン単結晶のインゴットを用いれば、BMDの面内分布が均一なシリコンウェーハを得ることができることが分かる。   From Comparative Examples 1 and 2 and Examples 1 and 2 in Table 1, using a silicon single crystal ingot manufactured according to the method for manufacturing a silicon single crystal of the present invention, a silicon wafer having a uniform in-plane distribution of BMD is obtained. You can see that

本発明によれば、炭素添加したシリコン融液を用いてシリコン単結晶を製造する際に、シリコン単結晶の外周部における炭素濃度の低下を抑制することが可能なシリコン単結晶の製造方法を提供することができる。また、面内BMD密度を均一化した、高いゲッタリング能力を有するウェーハ、特にはエピタキシャルウェーハの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when manufacturing a silicon single crystal using the silicon melt which added carbon, the manufacturing method of the silicon single crystal which can suppress the fall of the carbon concentration in the outer peripheral part of a silicon single crystal is provided. can do. Further, it is possible to provide a method for producing a wafer having a high gettering ability, particularly an epitaxial wafer, in which the in-plane BMD density is uniform.

10 単結晶製造装置
11 チャンバ
12 るつぼ
13 融液
14 ヒーター
15 るつぼ回転機構
16 シリコン単結晶
17 シリコン種結晶
18 種結晶保持器
19 ワイヤーロープ
20 巻き取り機構
21 磁場印加器
DESCRIPTION OF SYMBOLS 10 Single crystal manufacturing apparatus 11 Chamber 12 Crucible 13 Melt 14 Heater 15 Crucible rotating mechanism 16 Silicon single crystal 17 Silicon seed crystal 18 Seed crystal holder 19 Wire rope 20 Winding mechanism 21 Magnetic field applicator

Claims (5)

炭素を添加したシリコン融液をるつぼ中に準備し、前記るつぼ中のシリコン融液に対して磁束密度0.2〜0.4Tの磁場を印加しつつ、当該シリコン融液に接触させたシリコン種結晶を、0.52〜0.84rad/sの回転速度で回転させながら引き上げて、シリコン種結晶上にシリコン単結晶を育成することを含む、シリコン単結晶の製造方法。   Silicon seed added with carbon is prepared in a crucible, and a silicon species in contact with the silicon melt while applying a magnetic field with a magnetic flux density of 0.2 to 0.4 T to the silicon melt in the crucible. A method for producing a silicon single crystal, comprising raising the crystal while rotating the crystal at a rotational speed of 0.52 to 0.84 rad / s, and growing the silicon single crystal on the silicon seed crystal. 前記シリコン単結晶中の酸素濃度が13×1017〜17×1017atoms/cmであることを特徴とする、請求項1に記載のシリコン単結晶の製造方法。 2. The method for producing a silicon single crystal according to claim 1, wherein an oxygen concentration in the silicon single crystal is 13 × 10 17 to 17 × 10 17 atoms / cm 3 . 前記シリコン融液に、引き上げたシリコン単結晶内の炭素濃度が1×1015〜1.317atoms/cmとなるように炭素を添加することを特徴とする、請求項1または2に記載のシリコン単結晶の製造方法。 The carbon is added to the silicon melt so that the carbon concentration in the pulled silicon single crystal is 1 × 10 15 to 1.3 17 atoms / cm 3. A method for producing a silicon single crystal. 請求項1〜3の何れかに記載の製造方法で製造したシリコン単結晶のインゴットからシリコンウェーハを切り出すことを含む、シリコンウェーハの製造方法。   The manufacturing method of a silicon wafer including cutting out a silicon wafer from the ingot of the silicon single crystal manufactured with the manufacturing method in any one of Claims 1-3. 請求項1〜3の何れかに記載の製造方法で製造したシリコン単結晶のインゴットからシリコンウェーハを切り出し、前記シリコンウェーハの表面にエピタキシャル層を形成することを含む、エピタキシャルウェーハの製造方法。   A method for producing an epitaxial wafer, comprising cutting a silicon wafer from a silicon single crystal ingot produced by the production method according to claim 1, and forming an epitaxial layer on the surface of the silicon wafer.
JP2009187739A 2009-08-13 2009-08-13 Silicon single crystal manufacturing method, silicon wafer manufacturing method, and epitaxial wafer manufacturing method Active JP5287594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187739A JP5287594B2 (en) 2009-08-13 2009-08-13 Silicon single crystal manufacturing method, silicon wafer manufacturing method, and epitaxial wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187739A JP5287594B2 (en) 2009-08-13 2009-08-13 Silicon single crystal manufacturing method, silicon wafer manufacturing method, and epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2011037678A true JP2011037678A (en) 2011-02-24
JP5287594B2 JP5287594B2 (en) 2013-09-11

Family

ID=43765881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187739A Active JP5287594B2 (en) 2009-08-13 2009-08-13 Silicon single crystal manufacturing method, silicon wafer manufacturing method, and epitaxial wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP5287594B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082571A (en) * 2011-10-07 2013-05-09 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, epitaxial wafer and manufacturing method thereof
JP2014148448A (en) * 2013-02-01 2014-08-21 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, evaluation method thereof and method for manufacturing silicon single crystal rod
CN111642192A (en) * 2020-06-19 2020-09-11 广州睿喑科技有限公司 Sowing assembly for agricultural science and technology popularization and application thereof
WO2021044855A1 (en) * 2019-09-06 2021-03-11 株式会社Sumco Silicon single crystal growing method and silicon single crystal pulling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140716A (en) * 1983-12-27 1985-07-25 Nec Corp Silicon wafer
JPH09227291A (en) * 1996-02-27 1997-09-02 Sumitomo Sitix Corp Silicon single crystal wafer and its manufacture
JP2005060151A (en) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd Silicon single crystal production method and silicon single crystal wafer
JP2006332689A (en) * 2006-07-10 2006-12-07 Sumco Corp Method of manufacturing silicon epitaxial wafer
JP2008189523A (en) * 2007-02-06 2008-08-21 Covalent Materials Corp Method for manufacturing single crystal
JP2009274888A (en) * 2008-05-13 2009-11-26 Shin Etsu Handotai Co Ltd Production method of silicon single crystal, and silicon single crystal wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140716A (en) * 1983-12-27 1985-07-25 Nec Corp Silicon wafer
JPH09227291A (en) * 1996-02-27 1997-09-02 Sumitomo Sitix Corp Silicon single crystal wafer and its manufacture
JP2005060151A (en) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd Silicon single crystal production method and silicon single crystal wafer
JP2006332689A (en) * 2006-07-10 2006-12-07 Sumco Corp Method of manufacturing silicon epitaxial wafer
JP2008189523A (en) * 2007-02-06 2008-08-21 Covalent Materials Corp Method for manufacturing single crystal
JP2009274888A (en) * 2008-05-13 2009-11-26 Shin Etsu Handotai Co Ltd Production method of silicon single crystal, and silicon single crystal wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082571A (en) * 2011-10-07 2013-05-09 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, epitaxial wafer and manufacturing method thereof
JP2014148448A (en) * 2013-02-01 2014-08-21 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, evaluation method thereof and method for manufacturing silicon single crystal rod
WO2021044855A1 (en) * 2019-09-06 2021-03-11 株式会社Sumco Silicon single crystal growing method and silicon single crystal pulling device
JP2021042086A (en) * 2019-09-06 2021-03-18 株式会社Sumco Rearing method of silicon single crystal, and pulling up device of silicon single crystal
JP7216340B2 (en) 2019-09-06 2023-02-01 株式会社Sumco Method for growing silicon single crystal and apparatus for pulling silicon single crystal
CN111642192A (en) * 2020-06-19 2020-09-11 广州睿喑科技有限公司 Sowing assembly for agricultural science and technology popularization and application thereof

Also Published As

Publication number Publication date
JP5287594B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
TW507024B (en) Method for producing silicon single crystal wafer and silicon single crystal wafer
TWI639736B (en) Silicon wafer with homogeneous radial oxygen variation
WO2010119614A1 (en) Anneal wafer, method for manufacturing anneal wafer, and method for manufacturing device
JP5993550B2 (en) Manufacturing method of silicon single crystal wafer
JP2010040587A (en) Method of manufacturing silicon wafer
JP5439305B2 (en) Silicon substrate manufacturing method and silicon substrate
WO2001027362A1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
JP2007176732A (en) Annealed wafer and method of manufacturing annealed wafer
JP5287594B2 (en) Silicon single crystal manufacturing method, silicon wafer manufacturing method, and epitaxial wafer manufacturing method
JP5542383B2 (en) Heat treatment method for silicon wafer
TW201729313A (en) A method of quality evaluating for silicon wafers, a method of manufacturing silicon wafers, and silicon wafers
JP2003327493A (en) Silicon single crystal wafer, epitaxial wafer, and method for manufacturing silicon single crystal
JP4615161B2 (en) Epitaxial wafer manufacturing method
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP2005015296A (en) Method for manufacturing single crystal, and single crystal
JP2008100906A (en) Process for producing p-doped and epitaxially coated semiconductor wafers from silicon
JP2007070131A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
JP2004149374A (en) Method for manufacturing silicon wafer
JP2004153083A (en) Method of evaluating silicon wafer and method of manufacturing soi wafer
JP2010040588A (en) Silicon wafer
WO2014057741A1 (en) Method for producing silicon epitaxial wafer and solid-state image-pickup element using same
KR20130109044A (en) Silicon wafer
JP4463950B2 (en) Method for manufacturing silicon wafer
JP6645408B2 (en) Silicon single crystal manufacturing method and silicon single crystal wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250