JPH09227291A - Silicon single crystal wafer and its manufacture - Google Patents

Silicon single crystal wafer and its manufacture

Info

Publication number
JPH09227291A
JPH09227291A JP6714096A JP6714096A JPH09227291A JP H09227291 A JPH09227291 A JP H09227291A JP 6714096 A JP6714096 A JP 6714096A JP 6714096 A JP6714096 A JP 6714096A JP H09227291 A JPH09227291 A JP H09227291A
Authority
JP
Japan
Prior art keywords
single crystal
outer peripheral
carbon
wafer
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6714096A
Other languages
Japanese (ja)
Other versions
JP3055458B2 (en
Inventor
Naoki Ikeda
直紀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP8067140A priority Critical patent/JP3055458B2/en
Publication of JPH09227291A publication Critical patent/JPH09227291A/en
Application granted granted Critical
Publication of JP3055458B2 publication Critical patent/JP3055458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of slip phenomenon at the time of heat treatment of a single crystal wafer by partially injecting carbon on an outer peripheral surface layer part of single crystal during or after pulling up thereof, at the time of growing the single crystal by CZ method. SOLUTION: Silicon melt is stored in a quartz crucible arranged within a chamber and a seed crystal is dipped in the melt and the silicon single crystal is pulled up at carbon concentration of <= lower limit of detection (1×10<15> atoms/ cm<3> ) according to an infrared absorption method by CZ method. A prescribed quantity of carbon is partially injected into the outer peripheral surface layer part of single crystal during or after pulling up and wafers are collected from thus obtained silicon single crystal. Thereby, the silicon single crystal wafers, wherein parts excluding the outer peripheral part have the concentration of <=the lower limit of detection (1×10<15> atoms/cm<3> ) according to an infrared absorption method and the carbon concentration at a part under the outer peripheral part within 5mm depth from an outer periphery surface has >=2×10<15> atoms/cm<3> , are obtained. Thereby, lowering of a mechanical strength due to lowering of oxygen concentration at the outer peripheral part of the wafers can be compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はCZ法によって製造
されたシリコン単結晶を素材とするウェーハ及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer made of a silicon single crystal manufactured by the CZ method and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体ディバイスに使用されるシリコン
ウェーハの素材、すなわちシリコン単結晶ロッド(本明
細書ではこれを単にシリコン単結晶という)は、CZ法
によって製造されることが多い。CZ法によるシリコン
単結晶の製造では、図1に示すように、石英坩堝A内の
シリコンの融液Bから単結晶CがワイヤDにより回転し
ながら引上げられる。このとき、石英坩堝Aの内面から
融液B中に酸素が溶け出す。溶け出た酸素は、融液Bの
表面からのSiOの蒸発に伴って大部分が排除される
が、一部は固液界面を通して結晶中に格子間不純物とし
て取り込まれる。
2. Description of the Related Art A material for a silicon wafer used for a semiconductor device, that is, a silicon single crystal rod (this is simply referred to as a silicon single crystal in this specification) is often manufactured by a CZ method. In the production of a silicon single crystal by the CZ method, as shown in FIG. 1, a single crystal C is pulled from a melt B of silicon in a quartz crucible A while rotating with a wire D. At this time, oxygen is dissolved into the melt B from the inner surface of the quartz crucible A. Most of the melted oxygen is removed along with the evaporation of SiO 2 from the surface of the melt B, but part of the dissolved oxygen is taken into the crystal as an interstitial impurity through the solid-liquid interface.

【0003】成長単結晶中に取り込まれる酸素は、固液
界面における結晶成長条件の周期的な変動により、引上
げ軸方向において濃度分布の不均一を生じる。又、これ
とは別に、単結晶の半径方向において外周部の酸素濃度
が他の部分より低濃度となる現象を生じる。後者の酸素
濃度の不均一は、単結晶表面からの酸素の放出、融液表
面からのSiOの蒸発によって融液表層部に形成された
低酸素層が融液の対流により固液界面の外周部に供給さ
れることなどが原因である。
Oxygen taken into the grown single crystal causes nonuniform concentration distribution in the pulling axis direction due to periodic fluctuations of crystal growth conditions at the solid-liquid interface. In addition to this, a phenomenon occurs in which the oxygen concentration in the outer peripheral portion in the radial direction of the single crystal becomes lower than that in other portions. The latter non-uniformity of oxygen concentration means that the low oxygen layer formed on the surface layer of the melt by the release of oxygen from the surface of the single crystal and the evaporation of SiO from the surface of the melt causes the outer peripheral part of the solid-liquid interface due to the convection of the melt. It is because it is supplied to.

【0004】[0004]

【発明が解決しようとする課題】従来、引上げ軸方向に
おける酸素濃度の不均一については、単結晶から採取さ
れたウェーハ間に酸素濃度のバラツキを発生させる原因
となるため、種々の対策が提案されている(特開平6−
316483号公報、同7−187899号公報等)。
しかし、単結晶外周部の酸素濃度低下については、単結
晶の真円化や外周面の凹凸除去のためにその外周面が切
削されること、ウェーハからディバイスを採取する際
に、ウェーハの外周部が不可避的にロスとなることなど
から放置されている。そのため、ウェーハの半径方向に
おける酸素濃度分布は、図2に実線で示すように、外周
部が他の部分に比べて極端に濃度の低いものになってい
た。
Conventionally, since the uneven oxygen concentration in the pulling axis direction causes variation in the oxygen concentration between wafers taken from a single crystal, various measures have been proposed. (Japanese Patent Laid-Open No. 6-
316483, 7-187899, etc.).
However, regarding the decrease in the oxygen concentration in the outer peripheral portion of the single crystal, the outer peripheral surface is cut to round the single crystal or remove the unevenness of the outer peripheral surface, and when the device is sampled from the wafer, the outer peripheral portion of the wafer is cut. However, it is inevitable because it will be a loss. Therefore, the oxygen concentration distribution in the radial direction of the wafer was extremely low in concentration in the outer peripheral portion as compared with other portions, as shown by the solid line in FIG.

【0005】ウェーハにおける外周部の酸素濃度低下
は、その外周部が不可避的なロスとなることから、品質
に直接大きな悪影響を及ぼすことはない。しかし、この
部分の機械的強度が劣ることから、熱処理の段階でスリ
ップと呼ばれる半径方向の亀裂がウェーハ外周部から発
生し、歩留りの低下を招いている。また、熱処理でスリ
ップを発生させないために、熱処理炉への投入速度、熱
処理炉からの取り出し速度を遅くする、ウェーハをボー
トに1枚おきに収容するなど、能率を無視した作業も行
われている。これらのため、ウェーハの製造コストが高
くなっているのが現状である。
The decrease in oxygen concentration in the outer peripheral portion of the wafer does not directly affect the quality because the outer peripheral portion causes an unavoidable loss. However, since the mechanical strength of this portion is inferior, radial cracks called slips are generated from the outer peripheral portion of the wafer during the heat treatment, resulting in a decrease in yield. Further, in order to prevent slippage from occurring in the heat treatment, work such as slowing down the loading speed into the heat treatment furnace and the removal speed from the heat treatment furnace, accommodating every other wafer in the boat, and ignoring the efficiency are also performed. . For these reasons, the manufacturing cost of wafers is currently high.

【0006】なお、直接的な影響ではないが、結晶中の
酸素は重金属に対してゲッタリング作用を示すため、外
周部の酸素濃度が極端に低い単結晶乃至はウェーハは、
その外周部に重金属によって結晶欠陥が発生するおそれ
がある。
Although not a direct influence, oxygen in the crystal has a gettering action on heavy metals, so that a single crystal or a wafer having an extremely low oxygen concentration in the outer periphery is
Heavy metal may cause crystal defects on the outer periphery thereof.

【0007】本発明の目的は、熱処理でのスリップ発生
を効果的に抑制できると共に、外周部においても中心部
と同等のゲッタリング能力を期待できるシリコン単結晶
ウェーハおよびその製造方法を提供することにある。
An object of the present invention is to provide a silicon single crystal wafer which can effectively suppress the occurrence of slip during heat treatment and can be expected to have gettering ability equivalent to that of the central portion even in the outer peripheral portion, and a manufacturing method thereof. is there.

【0008】[0008]

【課題を解決するための手段】本発明のシリコン単結晶
ウェーハは、CZ法によって石英坩堝内のシリコン融液
から引上げたシリコン単結晶から採取したウェーハであ
って、外周部を除く部分の炭素濃度が赤外吸収法による
検出下限(1×1015atoms/cm3 )以下であり、ウェー
ハの外周から5mmまでの外周縁部における炭素濃度が
2×1015atoms/cm3 以上であることを特徴とする。
A silicon single crystal wafer of the present invention is a wafer extracted from a silicon single crystal pulled from a silicon melt in a quartz crucible by a CZ method, and has a carbon concentration of a portion excluding an outer peripheral portion. Is less than the lower limit of detection by the infrared absorption method (1 × 10 15 atoms / cm 3 ), and the carbon concentration in the outer peripheral portion up to 5 mm from the outer periphery of the wafer is 2 × 10 15 atoms / cm 3 or more. And

【0009】本発明のウェーハ製造方法は、CZ法によ
って石英坩堝内のシリコン融液から炭素濃度が赤外吸収
法による検出下限(1×1015atoms/cm3 )以下の単結
晶を引上げ、単結晶から切出したウェーハの外周から5
mmまでの外周縁部における炭素濃度が2×1015atom
s/cm3 以上となるように、引上げ中または引上げ後の単
結晶の外周面表層部分に炭素を部分的に注入することを
特徴とする。
In the wafer manufacturing method of the present invention, a single crystal having a carbon concentration lower than the detection limit (1 × 10 15 atoms / cm 3 ) by the infrared absorption method is pulled from a silicon melt in a quartz crucible by the CZ method, 5 from the outer circumference of the wafer cut from the crystal
The carbon concentration in the outer peripheral part up to mm is 2 × 10 15 atom
It is characterized in that carbon is partially injected into the surface layer portion of the outer peripheral surface of the single crystal during or after the pulling so as to be s / cm 3 or more.

【0010】シリコン単結晶中に存在する炭素は、格子
間の酸素の析出を促進し、酸素析出による結晶欠陥を発
生させる原因となるので、一般には不純物として扱わ
れ、特別な場合を除きその濃度は赤外吸収法による検出
下限(1×1015atoms/cm3 )以下に管理される。しか
し、その炭素は一方で転位を固着し、ウェーハの機械的
強度を増すことができる。また、酸素析出核となるた
め、酸素析出を促進し、重金属のゲッタリング能力を高
めることができる。
Carbon existing in a silicon single crystal promotes precipitation of interstitial oxygen and causes crystal defects due to oxygen precipitation. Therefore, it is generally treated as an impurity and its concentration is excluded except in special cases. Is controlled below the lower limit of detection by the infrared absorption method (1 × 10 15 atoms / cm 3 ). However, the carbon can, on the one hand, fix dislocations and increase the mechanical strength of the wafer. Further, since it becomes an oxygen precipitation nucleus, it is possible to promote oxygen precipitation and enhance the gettering ability of heavy metals.

【0011】本発明のシリコン単結晶ウェーハにおいて
は、図2に破線で示されるように、外周縁部における炭
素濃度が2×1015atoms/cm3 以上であることにより、
外周部が強化され、この部分の酸素濃度低下による強度
低下が補われるので、熱処理でのスリップの発生を抑制
することができる。また、その炭素がウェーハ外周部の
酸素析出を促進するために、この部分のゲッタリング能
力が向上する。外周縁部における炭素濃度が2×1015
atoms/cm3 未満ではこれらの効果が十分に得られない。
In the silicon single crystal wafer of the present invention, as shown by the broken line in FIG. 2, the carbon concentration in the outer peripheral edge portion is 2 × 10 15 atoms / cm 3 or more,
Since the outer peripheral portion is reinforced and the strength reduction due to the lower oxygen concentration in this portion is compensated for, the occurrence of slip during heat treatment can be suppressed. Further, the carbon promotes the precipitation of oxygen in the outer peripheral portion of the wafer, so that the gettering ability of this portion is improved. Carbon concentration at the outer peripheral edge is 2 × 10 15
If the amount is less than atoms / cm 3 , these effects cannot be sufficiently obtained.

【0012】外周部の炭素濃度を高めることにより、こ
の部分では酸素析出による結晶欠陥の発生が問題になる
が、ウェーハの外周部はディバイスとならない領域であ
るので、この部分での結晶欠陥の発生は現実には問題と
ならない。
By increasing the carbon concentration in the outer peripheral portion, the generation of crystal defects due to oxygen precipitation becomes a problem in this portion, but since the outer peripheral portion of the wafer is a region that does not become a device, the generation of crystal defects in this portion occurs. Does not really matter.

【0013】外周縁部における炭素濃度の上限について
は、この部分の炭素濃度を極端に高くすると、高濃度領
域がウェーハ内側に及び、ディバイスの活性層(ウェー
ハ表面層)にも酸素析出物が発生し、ディバイスの特性
不良となるので、1×1016atoms/cm3 以下が望まし
い。
Regarding the upper limit of the carbon concentration at the outer peripheral edge, when the carbon concentration at this portion is extremely increased, the high concentration region extends inside the wafer and oxygen precipitates are generated in the active layer (wafer surface layer) of the device. However, the characteristic of the device becomes poor, so 1 × 10 16 atoms / cm 3 or less is desirable.

【0014】本発明のウェーハ製造方法において、単結
晶の外周面表層部分に炭素を部分的に注入する操作は、
単結晶の引上げ中に行ってもよいし、単結晶の引上げ後
に行ってもよい。引上げ中に行う操作としては、引上げ
中の単結晶を外面側からカーボンヒータにより加熱する
ものなどがある。引上げ後に行う操作としては、炭素雰
囲気中での単結晶の加熱、単結晶の外周面に炭素を付着
させて加熱するものなどがある。引上げ中に行う操作の
方が工数面からは有利である。
In the wafer manufacturing method of the present invention, the operation of partially injecting carbon into the outer surface of the single crystal is
It may be performed during the pulling of the single crystal or after pulling the single crystal. An operation performed during pulling includes heating the single crystal being pulled from the outer surface side with a carbon heater. Examples of the operation performed after the pulling include heating the single crystal in a carbon atmosphere and heating by attaching carbon to the outer peripheral surface of the single crystal. The operation performed during pulling is more advantageous in terms of man-hours.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図3は本発明を実施するのに適し
た単結晶製造装置の1例を示す縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a vertical cross-sectional view showing an example of a single crystal manufacturing apparatus suitable for carrying out the present invention.

【0016】本装置は、チャンバー内でCZ法によりシ
リコン融液10から単結晶11を引上げるものであり、
チャンバーとしてメインチャンバー1およびプルチャン
バー2を具備する。メインチャンバー1内には坩堝3が
配置されている。坩堝3は内側の石英坩堝3aと外側の
支持坩堝3bとからなり、回転支持軸4の上に取付けら
れている。坩堝3の外側にはヒータ5が配置され、その
更に外側には断熱材6が配置されている。
This apparatus pulls a single crystal 11 from a silicon melt 10 by a CZ method in a chamber,
A main chamber 1 and a pull chamber 2 are provided as chambers. A crucible 3 is arranged in the main chamber 1. The crucible 3 comprises an inner quartz crucible 3 a and an outer support crucible 3 b, and is mounted on the rotary support shaft 4. A heater 5 is arranged outside the crucible 3, and a heat insulating material 6 is arranged further outside the heater 5.

【0017】坩堝3内には融液10の表面上に位置して
炭素注入用のカーボンヒータ7が配置されている。カー
ボンヒータ7は環状であって、その内側を通過する単結
晶11の外周面の近くに位置している。カーボンヒータ
7の出力については、大きすぎるとシリコン融液中に炭
素が混入してしまい、単結晶の外周部のみならず中心部
の炭素濃度も高くなることを考慮する。単結晶11の外
周面からカーボンヒータ7までの距離は、大きすぎると
炭素を効率的に付着できないので10mm〜30mmが
適当である。カーボンヒータ7の配置レベルについて
は、単結晶11の直径測定の邪魔にならないようなこと
を考慮する。
In the crucible 3, a carbon heater 7 for carbon injection is arranged on the surface of the melt 10. The carbon heater 7 has an annular shape and is located near the outer peripheral surface of the single crystal 11 passing through the inside thereof. Regarding the output of the carbon heater 7, it is considered that carbon is mixed in the silicon melt if it is too large, and the carbon concentration in the central portion as well as the outer peripheral portion of the single crystal becomes high. If the distance from the outer peripheral surface of the single crystal 11 to the carbon heater 7 is too large, carbon cannot be efficiently adhered, so 10 mm to 30 mm is appropriate. Regarding the arrangement level of the carbon heater 7, it is taken into consideration that it does not interfere with the diameter measurement of the single crystal 11.

【0018】単結晶10の引上げにおいては、チャンバ
ー内を真空排気し、ヒータ5を制御して、坩堝3内にシ
リコン融液10を生成する。プルチャンバー2を通って
メインチャンバー内に垂下したワイヤ8の下端の種結晶
を融液10に浸け、この状態からワイヤ8を回転させな
がら上昇させることにより、融液10から単結晶11を
引上げる。このとき、プルチャンバー2内からメインチ
ャンバー1内に掃気のために不活性ガスが導入される。
In pulling the single crystal 10, the chamber is evacuated and the heater 5 is controlled to generate the silicon melt 10 in the crucible 3. The seed crystal at the lower end of the wire 8 hanging down into the main chamber through the pull chamber 2 is immersed in the melt 10, and the wire 8 is raised from this state while rotating to raise the single crystal 11 from the melt 10. . At this time, an inert gas is introduced from the pull chamber 2 into the main chamber 1 for scavenging.

【0019】融液10から引上げられる単結晶11は、
炭素濃度が赤外吸収法による検出下限(1×1015atom
s/cm3 )以下である。その単結晶11はカーボンヒータ
7の内側を通り、その徐々に冷却されながらプルチャン
バー2内に引込まれる。カーボンヒータ7を作動させる
ことにより、引上げ中の単結晶11は、ヒータ内側を通
過する過程で外周面表層部分に炭素を注入される。注入
量はヒータの出力、単結晶11の外周面からヒータまで
の距離により変更することができる。
The single crystal 11 pulled from the melt 10 is
Detection limit of carbon concentration by infrared absorption method (1 × 10 15 atom
s / cm 3 ) or less. The single crystal 11 passes through the inside of the carbon heater 7 and is drawn into the pull chamber 2 while being gradually cooled. By operating the carbon heater 7, the single crystal 11 that is being pulled is injected with carbon in the outer peripheral surface layer portion while passing through the inside of the heater. The implantation amount can be changed by the output of the heater and the distance from the outer peripheral surface of the single crystal 11 to the heater.

【0020】引上げを終えた単結晶11は、真円化、外
面平滑化ために外面が切削され、所定の外径に仕上げら
れる。そして、その単結晶11からウェーハを切出す。
切出されたウェーハは、外周部の炭素濃度のみが高いも
のとなる。引上げ段階での炭素注入量は、ウェーハの直
径をDとしてその外周から5mmまでの領域における炭
素濃度が2×1015atoms/cm3 以上となるようにコント
ロールされる。外周部以外の部分における炭素濃度は赤
外吸収法による検出下限(1×1015atoms/cm3 )以下
である。
The single crystal 11 that has been pulled is finished to have a predetermined outer diameter by cutting the outer surface for rounding and smoothing the outer surface. Then, the wafer is cut out from the single crystal 11.
The cut-out wafer has only a high carbon concentration in the outer peripheral portion. The carbon implantation amount in the pulling stage is controlled so that the diameter of the wafer is D and the carbon concentration in the region from the outer periphery to 5 mm is 2 × 10 15 atoms / cm 3 or more. The carbon concentration in the portion other than the outer peripheral portion is below the detection limit (1 × 10 15 atoms / cm 3 ) by the infrared absorption method.

【0021】炭素濃度が2×1015atoms/cm3 以上とな
る領域をウェーハ外周から5mmまでの領域としたの
は、この部分の炭素濃度がスリップの発生に特に大きく
影響するからである。
The region where the carbon concentration is 2 × 10 15 atoms / cm 3 or more is set to the region from the outer periphery of the wafer to 5 mm, because the carbon concentration in this region has a great influence on the occurrence of slip.

【0022】引上げ中だけでなく、引上げ後の単結晶に
対して炭素を注入する操作が可能なことは前述した通り
である。
As described above, the operation of injecting carbon into the single crystal after pulling can be performed not only during pulling.

【0023】[0023]

【実施例】外面切削を終えた外径12インチ、炭素濃度
が赤外吸収法による検出下限(1×1015atoms/cm3
以下の引上げ後のシリコン単結晶に対し、カーボンヒー
タを用いて真空中で熱処理を行うことにより、外周面表
層部分に炭素を注入した。
[Example] Outer diameter after finishing cutting 12 inches, lower limit of carbon concentration detection by infrared absorption method (1 x 10 15 atoms / cm 3 )
The following pulled silicon single crystal was heat-treated in a vacuum using a carbon heater to inject carbon into the surface layer portion of the outer peripheral surface.

【0024】炭素注入後の単結晶から切出したウェーハ
に熱酸化を目的として表1に示す2つの条件A,Bで熱
処理を施した。Aはウェーハの外周部におけるスリップ
の発生を考慮した従来の処理条件であり、Bは能率を優
先した処理条件である。各熱処理におけるウェーハのス
リップ発生率、及びウェーハ外周から5mmまでの領域
における炭素濃度を赤外吸収法により調査した結果を表
2に示す。
The wafer cut out from the single crystal after carbon implantation was subjected to heat treatment under the two conditions A and B shown in Table 1 for the purpose of thermal oxidation. A is a conventional processing condition in which the occurrence of slip in the outer peripheral portion of the wafer is taken into consideration, and B is a processing condition in which efficiency is prioritized. Table 2 shows the results of investigating the slip occurrence rate of the wafer in each heat treatment and the carbon concentration in the region from the wafer outer periphery to 5 mm by the infrared absorption method.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】外周縁部の炭素濃度が2×1015atoms/cm
3 以上であるウェーハは、A法でスリップの発生が抑え
られたばかりか、高能率なB法でもスリップの発生が抑
えられたので、B法による高能率熱処理が可能になる。
これに対し、外周縁部の炭素濃度が検出限界以下の従来
ウェーハは、A法でもスリップの発生が十分に抑制され
なかった上に、B法では大半がスリップを生じ不良品と
なった。
The carbon concentration in the outer peripheral portion is 2 × 10 15 atoms / cm
For a wafer having a size of 3 or more, not only the occurrence of slips was suppressed by the method A, but also the occurrence of slips was suppressed by the method B, which has a high efficiency, so that the high efficiency heat treatment by the method B is possible.
On the other hand, in the conventional wafers whose carbon concentration in the outer peripheral edge portion was less than the detection limit, the occurrence of slip was not sufficiently suppressed even in the method A, and most of the conventional wafers were slipped in the method B, and were defective.

【0028】[0028]

【発明の効果】以上に説明した通り、本発明のシリコン
単結晶ウェーハは、外周部の炭素濃度を部分的に高め、
その部分の酸素濃度低下による機械的強度の低下を補う
ので、能率を優先したラフな熱処理でもスリップを生じ
難く、歩留り向上と能率向上の両面から製造コストの大
幅引下げを可能とする。また、その炭素により外周部の
ゲッタリング能力の向上を期待できる。
As described above, the silicon single crystal wafer of the present invention partially increases the carbon concentration in the outer peripheral portion,
Since the decrease in mechanical strength due to the decrease in oxygen concentration in that portion is compensated for, slip is less likely to occur even in rough heat treatment that prioritizes efficiency, and it is possible to significantly reduce manufacturing costs from both aspects of yield improvement and efficiency improvement. Further, the carbon can be expected to improve the gettering ability of the outer peripheral portion.

【0029】本発明のウェーハ製造方法は、外部からの
炭素注入により外周部の炭素濃度を高めるので、上記し
た低価格の本発明ウェーハを引上げ条件の複雑な操作等
に依存することなく簡単に製造することができ、ウェー
ハの製造コスト引下げに大きな効果を発揮する。
In the wafer manufacturing method of the present invention, since the carbon concentration in the outer peripheral portion is increased by the carbon injection from the outside, the above-mentioned low-priced wafer of the present invention can be easily manufactured without depending on the complicated operation of pulling conditions. It is possible to reduce the manufacturing cost of the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】CZ法による単結晶の引上げを示す模式図であ
る。
FIG. 1 is a schematic view showing pulling of a single crystal by a CZ method.

【図2】ウェーハの半径方向における酸素濃度分布およ
び炭素濃度分布を示すグラフである。
FIG. 2 is a graph showing an oxygen concentration distribution and a carbon concentration distribution in a radial direction of a wafer.

【図3】本発明を実施するのに適した単結晶製造装置の
1例についてその構造を示す縦断面図である。
FIG. 3 is a vertical sectional view showing the structure of an example of a single crystal manufacturing apparatus suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 メインチャンバー 2 プルチャンバー 3 坩堝 3a 石英坩堝 5 ヒータ 7 炭素注入用のカーボンヒータ 1 Main Chamber 2 Pull Chamber 3 Crucible 3a Quartz Crucible 5 Heater 7 Carbon heater for carbon injection

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CZ法によって石英坩堝内のシリコン融
液から引上げたシリコン単結晶から採取したウェーハで
あって、外周部を除く部分の炭素濃度が赤外吸収法によ
る検出下限(1×1015atoms/cm3 )以下であり、ウェ
ーハの外周から5mmまでの外周縁部における炭素濃度
が2×1015atoms/cm3 以上であることを特徴とするシ
リコン単結晶ウェーハ。
1. A wafer sampled from a silicon single crystal pulled from a silicon melt in a quartz crucible by the CZ method, wherein the carbon concentration of the portion excluding the outer peripheral portion is the lower limit of detection by the infrared absorption method (1 × 10 15 A silicon single crystal wafer having a concentration of atoms / cm 3 ) or less and a carbon concentration of 2 × 10 15 atoms / cm 3 or more in an outer peripheral edge portion up to 5 mm from the outer periphery of the wafer.
【請求項2】 CZ法によって石英坩堝内のシリコン融
液から炭素濃度が赤外吸収法による検出下限(1×10
15atoms/cm3 )以下の単結晶を引上げ、単結晶から切出
したウェーハの外周から5mmまでの外周縁部における
炭素濃度が2×1015atoms/cm3 以上となるように、引
上げ中または引上げ後の単結晶の外周面表層部分に炭素
を部分的に注入することを特徴とするシリコン単結晶ウ
ェーハの製造方法。
2. The lower limit of detection of carbon concentration from the silicon melt in the quartz crucible by the CZ method (1 × 10 6) by the infrared absorption method.
A single crystal of 15 atoms / cm 3 ) or less is pulled up, and is being pulled up or pulled up so that the carbon concentration in the outer peripheral portion up to 5 mm from the outer periphery of the wafer cut from the single crystal is 2 × 10 15 atoms / cm 3 or more. A method for producing a silicon single crystal wafer, which comprises partially injecting carbon into the outer peripheral surface layer portion of a single crystal thereafter.
JP8067140A 1996-02-27 1996-02-27 Silicon single crystal wafer and method for manufacturing the same Expired - Fee Related JP3055458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8067140A JP3055458B2 (en) 1996-02-27 1996-02-27 Silicon single crystal wafer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067140A JP3055458B2 (en) 1996-02-27 1996-02-27 Silicon single crystal wafer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09227291A true JPH09227291A (en) 1997-09-02
JP3055458B2 JP3055458B2 (en) 2000-06-26

Family

ID=13336312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067140A Expired - Fee Related JP3055458B2 (en) 1996-02-27 1996-02-27 Silicon single crystal wafer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3055458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037678A (en) * 2009-08-13 2011-02-24 Sumco Corp Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037678A (en) * 2009-08-13 2011-02-24 Sumco Corp Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer

Also Published As

Publication number Publication date
JP3055458B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6261361B1 (en) Silicon single crystal wafer having few defects wherein nitrogen is doped and a method for producing it
US6517632B2 (en) Method of fabricating a single crystal ingot and method of fabricating a silicon wafer
KR100844260B1 (en) Silicon wafer, process for producing the same and method of growing silicon single crystal
KR100939299B1 (en) Silicon wafer and method for producing same
CN100342503C (en) Annealed wafer and annealed wafer manufacturing method
US6197109B1 (en) Method for producing low defect silicon single crystal doped with nitrogen
CN1637175A (en) Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same
JPH1160379A (en) Production of non-dislocation silicon single crystal
JPH11322490A (en) Production of silicon single crystal wafer and silicon single crystal wafer
US20060191468A1 (en) Process for producing single crystal
JP3353681B2 (en) Silicon wafer and crystal growing method
JP2001199794A (en) Silicon single crystal ingot, method for producing the same and method for producing silicon wafer
JP2010040588A (en) Silicon wafer
JP3055458B2 (en) Silicon single crystal wafer and method for manufacturing the same
JP4688984B2 (en) Silicon wafer and crystal growth method
JP5136278B2 (en) Method for producing silicon single crystal
CN114929951A (en) Single crystal manufacturing apparatus
JP3900816B2 (en) Silicon wafer manufacturing method
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2009274903A (en) Methods for producing silicon single crystal and silicon wafer and silicon wafer produced by the method
JP3052831B2 (en) Silicon single crystal manufacturing method
JP2004269335A (en) Production method for single crystal
JP4453756B2 (en) Crystal growth method
US11873575B2 (en) Ingot puller apparatus having heat shields with voids therein

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees