JPS60140716A - Silicon wafer - Google Patents

Silicon wafer

Info

Publication number
JPS60140716A
JPS60140716A JP25013383A JP25013383A JPS60140716A JP S60140716 A JPS60140716 A JP S60140716A JP 25013383 A JP25013383 A JP 25013383A JP 25013383 A JP25013383 A JP 25013383A JP S60140716 A JPS60140716 A JP S60140716A
Authority
JP
Japan
Prior art keywords
concentration
magnetic field
wafer
solid solution
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25013383A
Other languages
Japanese (ja)
Inventor
Katsu Kanamori
金森 克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP25013383A priority Critical patent/JPS60140716A/en
Publication of JPS60140716A publication Critical patent/JPS60140716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain an Si wafer of high quality by setting O concentration between lattices and solid solution C concentration in the prescribed ranges when pulling up a single Si crystal by a CZ process in a magnetic field. CONSTITUTION:When a single Si crystal is pulled up by a CZ process in a magnetic field, solid solution O concentration is lowly controlled to suppress a defect, but a heat treatment of long time is required to provide direct gettering effect. O concentration between lattices is set to 6-11X10<17>cm<-3>, C is added to shorten the time, and solid solution C concentration is selected to 2-8X10<16>cm<-3>. Its magnetic field is selected to several thousands gauss as a DC magnetic field, the effects are the same in any direction with respect to pulling direction, and C is directly added in a melt of SiC. According to this constitution, the obtained single Si crystal wafer provides sufficient and ready true gettering effect, suppresses thermal doner, reduces irregular dopant, and suppresses a warpage, thereby obtaining the wafer of high quality.

Description

【発明の詳細な説明】 本発明は半導体集積回路基板として用いられるシリコン
ウェーハに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon wafer used as a semiconductor integrated circuit board.

従来、このためのウェーッ1としては、いわゆるチョク
ラルスキ法(以後C2法と略称する。)によるシリコン
単結晶から切シ出され、使用されているが、固溶酸素濃
度は一般的にかなシ高く、石英ルツボを使用する限りは
、これを抑制する事はできず、溶液の対流によるドーパ
ントのムラも存在した。酸素濃度がかなり高い点は、製
造プロセス中での欠陥が発生し易く、またサーマルドナ
による抵抗率変動といり問題点も存在した。典型的な酸
素線度は赤外吸収法により係数4.81に用いた場合に
13〜20 X 10”twr−”であシ、製造プロセ
スでの酸素固溶限に比べ著るしく高く、これが欠陥発生
の原因である。従って欠陥抑制のためには酸素濃度全像
くする対策が有効であろうと考えられるが、極端な場合
としてフローティング・シー法によるシリコン結晶の場
合には、酸素濃度は106n 以下と考えられているが
、この場合には逆に熱によるソリの発生1歩留り低下現
象が発生する。従って最適の酸素濃度が存在する事にな
るが、この値は必ずしも明確では無かった。一方、ドー
パントむらの抑制は対流を押さえる事によって著るしく
減少する点が、磁場中でのC2法による結晶成長で確認
されている。本発明者は対流抑制を特徴とする磁場中で
のCZ法シリコン結晶の内部欠陥の発生、及びそれを利
用したイントリンシックゲッタリング効果(以下IG効
果と略称する)について調べた結果、最適のウェーハ仕
様をめるに到ったものである。
Conventionally, the wafer 1 for this purpose has been cut from a silicon single crystal by the so-called Czochralski method (hereinafter abbreviated as the C2 method) and used, but the solid solution oxygen concentration is generally quite high. As long as a quartz crucible was used, this could not be suppressed, and there was also unevenness in the dopant due to convection of the solution. The relatively high oxygen concentration tends to cause defects during the manufacturing process, and there are also problems with resistivity fluctuations due to the thermal donor. Typical oxygen linearity is 13-20 x 10"twr-" when using infrared absorption method with a coefficient of 4.81, which is significantly higher than the oxygen solid solubility limit in the manufacturing process. This is the cause of defects. Therefore, in order to suppress defects, it may be effective to take measures to improve the overall oxygen concentration, but in the extreme case of silicon crystal produced by the floating sea method, the oxygen concentration is thought to be less than 106n. In this case, conversely, warpage due to heat occurs, resulting in a decrease in yield. Therefore, an optimal oxygen concentration exists, but this value has not always been clear. On the other hand, it has been confirmed in crystal growth using the C2 method in a magnetic field that dopant unevenness can be significantly reduced by suppressing convection. The present inventor investigated the occurrence of internal defects in CZ silicon crystals in a magnetic field characterized by convection suppression, and the intrinsic gettering effect (hereinafter abbreviated as the IG effect) utilizing it, and found that the optimum wafer We have now finalized the specifications.

本発明は、磁場中でのCZ法によるシリコン単結晶にお
いて、充分にかつ容易にIG効果を発生させ、一方サー
マルドナの抑制、ドーパントむらの減少、ソリ抑制をな
す事を目的とする。本発明は磁場中におかれたルツボか
ら結晶引上げを行なったチョクラルスキ法シリコン単結
晶において格子間酸素濃産金6〜llXl0 cm 、
固溶炭素濃度を2〜8 X 10”m−3とし、これか
ら作成された事を特徴とするシリコンウェーハを与える
。磁場中CZ法は酸素濃度を抑制する事が可能であるが
、この場合にはIG効果の発生には極めて長時間の熱処
理を要する事が明らかになシ、この時間短縮のため、炭
素の添加が必要となった。固溶炭素濃度は2〜8X10
 cm が適しており、これ以上の場合には表面無欠陥
層が形成しにくく、これ以下の場合には効果が無い事が
明らかになった。磁場は引上方向に対してどのような方
向であっても効果は同じであり、数千ガウス程度までの
直流磁場が必要となる。炭素の添加はメルトに対して炭
素そのものが8iCO形で直接加える方法による。以下
、本発明を実施例によシ具体的に説明する。
An object of the present invention is to sufficiently and easily generate an IG effect in a silicon single crystal produced by the CZ method in a magnetic field, while suppressing thermal donors, reducing dopant unevenness, and suppressing warpage. In the present invention, interstitial oxygen-enriched gold of 6 to 11X10 cm,
The solid solution carbon concentration is set to 2 to 8 x 10"m-3, and a silicon wafer characterized in that it is produced from this is given.The CZ method in a magnetic field can suppress the oxygen concentration, but in this case, It is clear that an extremely long heat treatment is required for the IG effect to occur, and in order to shorten this time, it is necessary to add carbon.The solid solution carbon concentration is 2 to 8 x 10
cm 2 is suitable; if it is more than this, it is difficult to form a surface defect-free layer, and if it is less than this, it has become clear that there is no effect. The magnetic field has the same effect no matter what direction it is in with respect to the pulling direction, and a DC magnetic field of up to several thousand Gauss is required. Carbon is added directly to the melt in the form of 8iCO. Hereinafter, the present invention will be specifically explained using examples.

実施例 3000ガウスの直流磁場中CZ法によって引き上げら
れたシリコン単結晶を通常の方法で切りだしたシリコン
ウェーハ2種類、共に[Oi:] = 7 xlo c
m であるが、一方は[C〕(10”cm−” +一方
は〔C〕=4×10crn のウェーハに対して、11
00℃、16時間→500℃、16時間→600℃。
Example 3 Two types of silicon wafers were obtained by cutting silicon single crystals pulled by the CZ method in a direct current magnetic field of 000 Gauss using the usual method, both of which were [Oi:] = 7 xlo c
m, but one is [C] (10"cm-" + one is [C] = 4 x 10crn for a wafer, 11
00℃, 16 hours → 500℃, 16 hours → 600℃.

16時間→700℃、16時間→1000℃、4時間の
熱処理全行ない、内部欠陥及び、表面無欠陥層の状況を
調べた。[C](10m のウェーハでは内部欠陥密度
は10’m−”以下であったが、[C:]=4X10 
cm のウェーハでは10m 程度の内部欠陥及び幅5
0μmの異面欠陥層が形成されており1、IG効果が、
充分期待できる状態であった。
After performing the heat treatment for 16 hours at 700° C. and 16 hours at 1000° C. for 4 hours, internal defects and the condition of the surface defect-free layer were examined. [C] (In the 10m wafer, the internal defect density was less than 10'm-'', but [C:] = 4X10
cm wafer has an internal defect of about 10 m and a width of 5
A 0 μm different surface defect layer is formed, and the IG effect is
The situation was quite promising.

以上の実施例に示されるように、本発明によるウェーハ
はIG効果を充分に示し、かつドーパントムラの抑制、
ソリの抑制、サーマルドナ抑制を可能にするものである
。ソリ、サーマルドナはいずれも酸素量が少い事による
効果である事は明らかである。
As shown in the above examples, the wafer according to the present invention sufficiently exhibits the IG effect, and suppresses dopant unevenness.
This makes it possible to suppress warping and thermal damage. It is clear that both sledding and thermal donna are effects due to the low amount of oxygen.

Claims (1)

【特許請求の範囲】[Claims] 磁場中におかれたルツボから結晶引上げを行ったチョク
ラルスキ法シリコン単結晶から切り出されたシリコンウ
ェーハにおいて、格子間酸素濃度が6〜llXl0 t
m 、固溶炭素濃度が2〜8 X 1016crn−3
であることを特徴とするシリコンウェーッ・。
In a silicon wafer cut from a Czochralski method silicon single crystal that was pulled from a crucible placed in a magnetic field, the interstitial oxygen concentration was 6 to 11X10 t.
m, solid solution carbon concentration is 2 to 8 x 1016 crn-3
A silicone material characterized by:
JP25013383A 1983-12-27 1983-12-27 Silicon wafer Pending JPS60140716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25013383A JPS60140716A (en) 1983-12-27 1983-12-27 Silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25013383A JPS60140716A (en) 1983-12-27 1983-12-27 Silicon wafer

Publications (1)

Publication Number Publication Date
JPS60140716A true JPS60140716A (en) 1985-07-25

Family

ID=17203316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25013383A Pending JPS60140716A (en) 1983-12-27 1983-12-27 Silicon wafer

Country Status (1)

Country Link
JP (1) JPS60140716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529326A (en) * 1991-07-22 1993-02-05 Mitsubishi Materials Corp Manufacture of silicon wafer
JP2011037678A (en) * 2009-08-13 2011-02-24 Sumco Corp Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529326A (en) * 1991-07-22 1993-02-05 Mitsubishi Materials Corp Manufacture of silicon wafer
JP2011037678A (en) * 2009-08-13 2011-02-24 Sumco Corp Method for producing silicon single crystal, method for producing silicon wafer, and method for producing epitaxial wafer

Similar Documents

Publication Publication Date Title
TW546422B (en) Method of producing silicon wafer and silicon wafer
JPS6124240A (en) Semiconductor substrate
JPH0453840B2 (en)
WO2001027362A1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
US4410395A (en) Method of removing bulk impurities from semiconductor wafers
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
US6056931A (en) Silicon wafer for hydrogen heat treatment and method for manufacturing the same
JPH10150048A (en) Semiconductor substrate
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
US6709957B2 (en) Method of producing epitaxial wafers
JP2011054821A (en) Method of producing epitaxial wafer and epitaxial wafer
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
JP4244411B2 (en) Manufacturing method of silicon epitaxial wafer
JPS60140716A (en) Silicon wafer
JPS6230692B2 (en)
JPH1192283A (en) Silicon wafer and its production
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JP2004165489A (en) Epitaxial silicon wafer, its manufacturing method and semiconductor device
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP3760889B2 (en) Epitaxial wafer manufacturing method
JP2003068744A (en) Silicon wafer manufacturing method, silicon wafer, and soi wafer
JPS6097619A (en) Manufacture of semiconductor
JP2639470B2 (en) Method of manufacturing GaAs single crystal wafer
JPS6344720B2 (en)