JP2011037032A - Device and method for sealing resin - Google Patents

Device and method for sealing resin Download PDF

Info

Publication number
JP2011037032A
JP2011037032A JP2009183810A JP2009183810A JP2011037032A JP 2011037032 A JP2011037032 A JP 2011037032A JP 2009183810 A JP2009183810 A JP 2009183810A JP 2009183810 A JP2009183810 A JP 2009183810A JP 2011037032 A JP2011037032 A JP 2011037032A
Authority
JP
Japan
Prior art keywords
resin
release film
granular
temperature
granular resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009183810A
Other languages
Japanese (ja)
Other versions
JP5550864B2 (en
Inventor
Hidesuke Matsuzaki
英祐 松嵜
Toshiyasu Mitsunari
俊泰 光成
Takashi Akutsu
隆史 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009183810A priority Critical patent/JP5550864B2/en
Publication of JP2011037032A publication Critical patent/JP2011037032A/en
Application granted granted Critical
Publication of JP5550864B2 publication Critical patent/JP5550864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the speed-up of resin sealing work in a resin sealing device while maintaining resin sealing quality. <P>SOLUTION: A resin sealing device 100 executes resin sealing of an article to be molded by a die 160 while using a powder resin 102. The device includes: a release film 116 loaded with the powder resin 102; a suction mechanism 132 for holding the release film 116; a transfer hand 130 that transfers the suction mechanism 132 together with the release film to arrange the release film 116 in the die 160; and an infrared heater 134 that is provided in the transfer hand 130 to apply heat to the powder resin 102 (the preliminarily-fused resin 106) loaded on the release film 116, being transferred, on a transfer path of the transfer hand 130. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被成形品を樹脂封止する樹脂封止装置及びその樹脂封止方法の技術分野に関する。   The present invention relates to a technical field of a resin sealing device and a resin sealing method for sealing a product to be molded with resin.

被成形品である半導体チップ等を配置した基板を金型に配置して樹脂封止する樹脂封止装置において、樹脂封止の材料として、例えば特許文献1では粉粒体状樹脂(顆粒樹脂)を用いている。   In a resin sealing device for placing a substrate on which a semiconductor chip or the like, which is a molded product, is placed in a mold and sealing with resin, as a resin sealing material, for example, in Patent Document 1, a granular resin (granular resin) Is used.

特開2006−120880号公報JP 2006-120880 A

しかしながら、特許文献1で用いられる粉粒体状樹脂は、室温状態に置かれた粒子形状の樹脂である。このため、金型のキャビティに投入された直後は粉粒体状樹脂、即ち樹脂が粒子の形状を保ったままであり、樹脂粒子の間に空気の層(以降、空気の層が孔形状を有さなくても空孔と称する)が多く存在するので温度上昇をすばやく行うことできず、樹脂封止作業の時間短縮が十分に図れないという問題点を有していた。これに対して、キャビティ自体の温度を高くするといったことが考えられる。しかし、その場合には樹脂封止作業の全体の温度管理に影響を与えるため、温度管理が複雑になると共に、粉粒体状樹脂の溶融した部分だけが温度が上がりすぎるおそれもある。このため、結果的に樹脂封止の品質を落とし、歩留りの低下を招くおそれが出てくる。   However, the granular resin used in Patent Document 1 is a particle-shaped resin placed at room temperature. Therefore, immediately after being put into the mold cavity, the granular resin, that is, the resin maintains the shape of the particles, and an air layer (hereinafter, the air layer has a hole shape) between the resin particles. Otherwise, there are many voids), so that the temperature cannot be increased quickly, and the time required for the resin sealing operation cannot be sufficiently shortened. On the other hand, it is conceivable to increase the temperature of the cavity itself. However, in this case, since the temperature management of the entire resin sealing operation is affected, the temperature management becomes complicated, and there is a possibility that the temperature of only the melted part of the granular resin is too high. For this reason, the quality of resin sealing may be lowered as a result, resulting in a decrease in yield.

本発明は、前記問題点を解決すべくなされたもので、樹脂封止品質を保ちつつ樹脂封止装置における樹脂封止作業の高速化が可能な樹脂封止装置及びその樹脂封止方法を提供することをその目的としている。   The present invention has been made to solve the above-described problems, and provides a resin sealing device and a resin sealing method capable of speeding up a resin sealing operation in the resin sealing device while maintaining the resin sealing quality. Its purpose is to do.

本発明は、粉粒体状樹脂を用いて金型で被成形品の樹脂封止をする樹脂封止装置であって、前記粉粒体状樹脂が搭載される離型フィルムと、該離型フィルムを保持する保持手段と、該保持手段を該離型フィルムと一緒に搬送して前記金型に該離型フィルムを配置させる搬送手段と、該搬送手段に設けられると共に、該搬送手段の搬送経路において搬送中の離型フィルムに搭載された前記粉粒体状樹脂に対して熱を付与可能な第1加熱手段と、を備えることで、上記課題を解決するものである。   The present invention is a resin sealing device for resin-molding a molded product with a mold using a granular resin, a release film on which the granular resin is mounted, and the mold release A holding means for holding the film; a conveying means for conveying the holding means together with the release film to dispose the release film on the mold; and a conveying means provided on the conveying means and conveyed by the conveying means The above-mentioned problem is solved by providing a first heating means capable of imparting heat to the granular resin mounted on the release film being conveyed in the path.

本発明では、樹脂封止作業の高速化という目的のもと、離型フィルム上に粉粒体状樹脂が搭載されたときから該離型フィルムを金型に配置するまでの時間を有効に活用して、粉粒体状樹脂を予め加熱しておく。即ち、本発明は、粉粒体状樹脂の搬送手段に離型フィルムの保持手段と第1加熱手段とを設けて、その搬送手段で搬送経路において搬送中に粉粒体状樹脂の加熱を行う。このため、金型に離型フィルムを配置した時点で、粉粒体状樹脂の温度は与えた熱の分だけ温度が上昇している。或いは、後述するように、もし、搬送前から熱を与え始めている場合には、その状態を維持(温度が下がらないように)することができる。いずれの場合でも、粉粒体状樹脂を室温状態で投入した場合と比べて、樹脂封止のための成形温度に粉粒体状樹脂を加熱する時間を短縮することができる。   In the present invention, for the purpose of speeding up the resin sealing operation, the time from when the granular resin is mounted on the release film until the release film is placed in the mold is effectively utilized. Then, the granular resin is heated in advance. That is, according to the present invention, the release means for holding the release film and the first heating means are provided in the conveying means for the granular resin, and the granular resin is heated during conveyance in the conveying path by the conveying means. . For this reason, at the time of disposing the release film on the mold, the temperature of the granular resin is increased by the amount of heat applied. Alternatively, as will be described later, if heat is applied before the conveyance, the state can be maintained (so that the temperature does not decrease). In any case, the time for heating the granular resin to the molding temperature for resin sealing can be shortened as compared with the case where the granular resin is charged at room temperature.

更に、この第1加熱手段による加熱は、粉粒体状樹脂が樹脂粒子の状態であれば、粉粒体状樹脂を構成する樹脂粒子の少なくとも一部を軟化状態とすることもできる。このため、例えばその軟化状態の樹脂粒子が融着した状態の樹脂(予備的融着樹脂)となり、断熱層となる樹脂粒子間の空孔数と空孔サイズを減少させて熱伝導性を向上させることも可能となる。又、熱伝導性の向上により、樹脂封止工程における成形温度に達するまでの昇温時間が短縮されるため、粉粒体状樹脂を室温状態で金型に投入した場合と比べて、樹脂封止工程にかかる時間を一層短くすることができ、成形品の生産性を向上させることができる。即ち、第1加熱手段は移動しながら加熱できるため、スループットの向上が図れる。   Further, the heating by the first heating means can also soften at least a part of the resin particles constituting the granular resin, as long as the granular resin is in the state of resin particles. For this reason, for example, the softened resin particles become a fused resin (preliminary fused resin), and the thermal conductivity is improved by reducing the number of pores and the size of the pores between the resin particles serving as the heat insulating layer. It is also possible to make it. In addition, because of the improvement in thermal conductivity, the temperature rise time until the molding temperature is reached in the resin sealing process is shortened. Therefore, compared with the case where the granular resin is charged into the mold at room temperature, the resin sealing is performed. The time required for the stopping process can be further shortened, and the productivity of the molded product can be improved. That is, since the first heating means can be heated while moving, the throughput can be improved.

又、離型フィルムは粉粒体状樹脂の搭載から樹脂封止の際まで使用されることとなるので、途中で剥離工程などもなく、高価な離型フィルムを効率よく使用することができる。このため、樹脂封止作業の高速化とランニングコストの低減化とを促進することができる。   Further, since the release film is used from the loading of the granular resin to the sealing of the resin, there is no peeling step in the middle, and an expensive release film can be used efficiently. For this reason, it is possible to promote the speeding up of the resin sealing operation and the reduction of the running cost.

又、更に、前記離型フィルムに搭載された前記粉粒体状樹脂であって前記搬送手段による搬送前の粉粒体状樹脂に対して熱を付与可能な第2加熱手段を備える場合には、前記搬送手段による搬送前に、粉粒体状樹脂を予備的融着樹脂に仮成形することができる。このため、第2加熱手段によって予備的融着樹脂が既に軟化状態にある場合にはその保温を目的として第1加熱手段による加熱を行うことが可能である。この場合には、第1加熱手段で消費される電力を少なくすることができる。或いは、第1加熱手段の加熱で予備的融着樹脂の軟化状態を促進させて更に樹脂粒子同士を融着させることもでき、その場合には、断熱層となる樹脂粒子間の空孔数と空孔サイズを元々の予備的融着樹脂から更に減少させて熱伝導性を向上させることが可能となる。いずれの場合でも、予備的融着樹脂の熱伝導性は、樹脂粒子からなる粉粒体状樹脂に比べて高いので、樹脂封止工程にかかる時間を一層短くすることができ、成形品の生産性をより向上させることができる。又、第2加熱手段の加熱補助として、第2加熱手段と共に第1加熱手段で搬送前の粉粒体状樹脂を加熱することもでき、その場合は第1加熱手段による加熱時間を短縮することができる。   Further, in the case where it is provided with a second heating unit that is the granular resin mounted on the release film and can apply heat to the granular resin before being conveyed by the conveying unit. The granular resin can be temporarily formed into a preliminary fusion resin before being conveyed by the conveying means. For this reason, when the preliminary fusion resin is already in the softened state by the second heating means, it is possible to perform heating by the first heating means for the purpose of keeping the temperature. In this case, the power consumed by the first heating means can be reduced. Alternatively, by heating the first heating means, the softened state of the preliminary fusion resin can be promoted to further fuse the resin particles, and in that case, the number of pores between the resin particles to be the heat insulating layer and It is possible to further reduce the pore size from the original preliminary fusing resin to improve the thermal conductivity. In any case, since the thermal conductivity of the preliminary fusion resin is higher than that of the granular resin made of resin particles, the time required for the resin sealing process can be further shortened, and the production of the molded product can be shortened. The sex can be further improved. In addition, as a heating aid of the second heating means, the granular resin before conveyance can be heated by the first heating means together with the second heating means, in which case the heating time by the first heating means is shortened. Can do.

更に、第2加熱手段のみで離型フィルムの下面より加熱する場合は、搭載された粉粒体状樹脂の上面と下面との間に大きな温度差が生じるが、第1加熱手段との連携によってその温度差を小さくすることができる。粉粒体状樹脂を離型フィルムに搭載する際に完全に均一な高さとすることは困難であるが、第1加熱手段を用いることで、搭載された粉粒体状樹脂の下面から離れている粉粒体状樹脂の樹脂粒子を効果的に加熱することができる。即ち、第1加熱手段との連携によって、第2加熱手段のみの加熱で生じうる、搭載された粉粒体状樹脂の下面から離れた上面にある樹脂粒子温度が低いままとなってサイクルタイムを十分に短縮できないといった状態を回避することができる。   Furthermore, when heating from the lower surface of the release film only by the second heating means, a large temperature difference occurs between the upper surface and the lower surface of the loaded granular resin, but by cooperation with the first heating means The temperature difference can be reduced. It is difficult to achieve a completely uniform height when mounting the granular resin on the release film, but by using the first heating means, it is separated from the lower surface of the mounted granular resin. The resin particles of the granular resin can be effectively heated. That is, in cooperation with the first heating means, the resin particle temperature on the upper surface away from the lower surface of the loaded granular resin, which can be generated by heating only the second heating means, remains low and the cycle time is reduced. It is possible to avoid a situation where the time cannot be shortened sufficiently.

又、更に、前記離型フィルムに搭載された前記粉粒体状樹脂であって前記搬送手段による搬送前の粉粒体状樹脂に対して熱を付与して軟化状態として、且つ所定の形状に成形する第3加熱手段と、該第3加熱手段で成形された該粉粒体状樹脂を冷却する冷却手段と、を備える場合には、前記搬送手段による搬送前に、粉粒体状樹脂を、加熱成形工程と冷却工程を経て所定の形状に成形された樹脂(予備成形樹脂と称する)とすることができる。このため、空孔数と空孔サイズとは予備的融着樹脂に比べて、更に減少させることができて熱伝導性を高くすることができる。そして、第1加熱手段で軟化状態とするように加熱するので、金型に離型フィルムを配置した時点で、既に予備成形樹脂の温度は加熱した分だけ温度が上昇している。このため、樹脂封止工程にかかる時間を更に一層短くすることができ、成形品の生産性を向上させることができる。   Further, the powdery resin mounted on the release film is softened by applying heat to the powdery resin before being transported by the transport means, and into a predetermined shape. In the case of comprising a third heating means for molding and a cooling means for cooling the granular resin molded by the third heating means, the granular resin is transferred before being conveyed by the conveying means. Then, a resin (referred to as a pre-molded resin) molded into a predetermined shape through a heat molding step and a cooling step can be used. Therefore, the number of holes and the hole size can be further reduced as compared with the preliminary fusion resin, and the thermal conductivity can be increased. And since it heats so that it may be in a softened state with a 1st heating means, when the release film is arrange | positioned to a metal mold | die, the temperature of the preforming resin has already risen by the part which heated. For this reason, the time required for the resin sealing step can be further shortened, and the productivity of the molded product can be improved.

又、更に、前記搬送手段は、前記保持手段で前記離型フィルムを保持した際に、該離型フィルム上の該粉粒体状樹脂を密封可能な構造とされている場合には、第1加熱手段が空気を介して間接的に加熱することを可能とし、且つ、その温度を均一に効率的に行うことができる。密封とすることで、搬送時に熱せられた空気が逃げない(冷たい空気が入ってこない)ため、保温効果が高い。更に、密封容器自体が高温であれば、内部の空気が冷えることを防ぐことができる。又、密封状態であることから、搬送途中に不純物の付着・混入を防ぐことができる。   Furthermore, when the conveying means has a structure capable of sealing the granular resin on the release film when the release film is held by the holding means, The heating means can be indirectly heated via air, and the temperature can be uniformly and efficiently performed. By making it sealed, the air heated during transportation does not escape (cold air does not enter), so the heat retention effect is high. Furthermore, if the sealed container itself is at a high temperature, the internal air can be prevented from cooling. In addition, since it is in a sealed state, it is possible to prevent impurities from adhering and mixing during the conveyance.

又、更に、前記搬送手段は、前記搬送中の粉粒体状樹脂の温度を測定する温度センサを備える場合には、搬送途中の粉粒体状樹脂の温度を監視することができる。即ち、第1加熱手段による加熱状況を制御できると共に、粉粒体状樹脂の品質を保つことが可能となる。   Furthermore, when the said conveyance means is equipped with the temperature sensor which measures the temperature of the said granular resin during conveyance, it can monitor the temperature of the granular resin during conveyance. That is, it is possible to control the heating state by the first heating means and to maintain the quality of the granular resin.

なお、本発明は、粉粒体状樹脂を用いて金型で被成形品の樹脂封止をする樹脂封止方法であって、前記粉粒体状樹脂を離型フィルム上に搭載する搭載工程と、該離型フィルムを保持する保持工程と、該離型フィルムを搬送して前記金型に配置させる搬送工程と、該搬送工程の際に、前記離型フィルムに搭載された前記粉粒体状樹脂に熱を付与する工程と、を含むことを特徴とする樹脂封止方法とも捉えることができる。   The present invention is a resin sealing method for resin-sealing a molded product with a mold using a granular resin, and the mounting step of mounting the granular resin on a release film A holding step for holding the release film, a transfer step for transferring the release film and placing the release film on the mold, and the granules mounted on the release film during the transfer step And a step of applying heat to the resin-like resin.

本発明を適用することにより、離型フィルムに搭載された粉粒体状樹脂の少なくとも一部を融着させると共に、金型への投入までに樹脂温度を上昇させておくので、樹脂封止品質を保ちつつ樹脂封止装置における樹脂封止作業の高速化が可能となる。   By applying the present invention, at least a part of the granular resin mounted on the release film is fused, and the resin temperature is raised before being put into the mold. It is possible to speed up the resin sealing operation in the resin sealing device while maintaining the above.

本発明の第1実施形態に係わる樹脂封止装置の一例を示す模式図The schematic diagram which shows an example of the resin sealing apparatus concerning 1st Embodiment of this invention. 同じく搬送ハンドを示す斜視図The perspective view which shows a conveyance hand similarly 同じく搬送ハンドの一部断面を示す模式図Similarly, a schematic diagram showing a partial cross-section of the transport hand 同じく樹脂封止に使われる樹脂の硬化度と時間との関係を示すグラフSimilarly, a graph showing the relationship between the degree of cure of resin used for resin sealing and time 同じく予備的融着樹脂の仮成形工程と保持工程とを示す模式図Similarly, a schematic diagram showing a preliminary molding process and a holding process of a preliminary fusion resin 同じく時間短縮の効果を示すグラフA graph showing the effect of time reduction 本発明の第2実施形態に係わる搬送ハンドを示す斜視図The perspective view which shows the conveyance hand concerning 2nd Embodiment of this invention. 本発明の第3実施形態に係わる樹脂封止装置の一例を示す模式図The schematic diagram which shows an example of the resin sealing apparatus concerning 3rd Embodiment of this invention.

以下、添付図面を参照しつつ、本発明の実施形態の一例について詳細に説明する。なお、以下で、粉粒体状樹脂が加熱により形態が変化して、粉粒体の形態をとどめていない状態の樹脂であっても、粉粒体状樹脂とも称することとする。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description, even if the powdery resin is in a state where the form is changed by heating and does not remain in the form of the powdery particle, it is also referred to as a powdery resin.

最初に、本発明の第1実施形態に係わる樹脂封止装置の構成について図1を用いて以下に説明する。   Initially, the structure of the resin sealing apparatus concerning 1st Embodiment of this invention is demonstrated below using FIG.

樹脂封止装置100は、原料となる粉粒体状樹脂102を平板形状の予備的融着樹脂106に仮成形する予備的融着部112と、予備的融着樹脂106を用いて金型160で被成形品の樹脂封止をする圧縮成形部114と、を有する。予備的融着部112と圧縮成形部114とは、離型フィルム116を兼用している。離型フィルム116は、個片とされた状態(短冊形状)で使用され、搬送手段である搬送ハンド130で、予備的融着部112から圧縮成形部114に搬送される。以下、詳細に説明する。   The resin sealing device 100 includes a preliminary fusion part 112 for temporarily forming the granular resin 102 as a raw material into a flat preliminary fusion resin 106 and a mold 160 using the preliminary fusion resin 106. And a compression molding portion 114 for sealing the molded product with resin. The preliminary fused part 112 and the compression molding part 114 also serve as the release film 116. The release film 116 is used in a state of being a piece (strip shape), and is transported from the preliminary fusion unit 112 to the compression molding unit 114 by a transport hand 130 serving as transport means. This will be described in detail below.

予備的融着部112には、原料供給機126と第2加熱手段であるホットプレート128とが配置されている。なお、第2加熱手段は、ホットプレートに限られるものではなく、赤外線ヒータやマイクロ波、熱風等を用いてもよい。   In the preliminary fusion part 112, a raw material supplier 126 and a hot plate 128 as a second heating means are arranged. The second heating means is not limited to a hot plate, and an infrared heater, microwave, hot air, or the like may be used.

原料供給機126は、離型フィルム116の通過する予備的融着部112の所定の位置で、離型フィルム116上の所定の面積に粉粒体状樹脂102を投下(搭載)する。原料供給機126は、図5(A)に示す如く、原料供給機126の供給口126Aから投下される粉粒体状樹脂102を所定の面積に制限するための筒形状の枠126Bを備えている。枠126B内には、図示せぬフレーム形状の構造体が配置されており、投下された粉粒体状樹脂102を該所定の面積内で均一に分散させる。なお、枠126Bの最下端には、粉粒体状樹脂102を加熱した際に枠126Bに融着しないような幅と高さの凹部126BBが設けられている。   The raw material feeder 126 drops (loads) the granular resin 102 onto a predetermined area on the release film 116 at a predetermined position of the preliminary fusion part 112 through which the release film 116 passes. As shown in FIG. 5A, the raw material supplier 126 includes a cylindrical frame 126B for limiting the granular resin 102 dropped from the supply port 126A of the raw material supplier 126 to a predetermined area. Yes. A frame-shaped structure (not shown) is arranged in the frame 126B, and the dropped granular resin 102 is uniformly dispersed within the predetermined area. A recess 126BB having a width and a height that does not fuse with the frame 126B when the granular resin 102 is heated is provided at the lowermost end of the frame 126B.

ホットプレート128は、離型フィルム116に搭載された粉粒体状樹脂102であって搬送ハンド130による搬送前の粉粒体状樹脂102に対して熱を付与する(加熱する)ために、予備的融着部112において、原料供給機126に対向して離型フィルム116の下側に配置される。即ち、ホットプレート128は、搬送ハンド130とは別に(搬送ハンド130の外部に)設けられて、搬送ハンド130に搬送されずに固定配置される。ホットプレート128は、図示せぬ制御部により制御され、離型フィルム116上の粉粒体状樹脂102の樹脂粒子を軟化状態とするように、離型フィルム116の下から加熱(約100度)を行う。このため、粉粒体状樹脂102は、加熱により軟化状態となった樹脂粒子の少なくとも一部が互いに融着することで、平板状に成形された形態の樹脂(予備的融着樹脂106)となる。予備的融着樹脂106の離型フィルム側の面は、離型フィルム116の面に倣い大きな凸凹のない平坦な面に形成される。同時に、粉粒体状樹脂102の樹脂粒子の多くが互いに融着するので、樹脂粒子間に存在する空孔数と空孔サイズは少なくなる。一方、予備的融着樹脂106の反離型フィルム側の表面は、離型フィルム側よりも伝わる熱が少なく且つ有体物で押圧しないので、粉粒体状樹脂102の樹脂粒子の形状に倣う状態で凸凹が残る。同時に、予備的融着樹脂106の反離型フィルム側の面では、空孔数と空孔サイズは離型フィルム側の面と比較して、多く且つ大きく残ることとなる。   The hot plate 128 is a granular resin 102 mounted on the release film 116 and is used as a spare for applying heat (heating) to the granular resin 102 before being conveyed by the conveying hand 130. In the automatic fusion part 112, the material is disposed below the release film 116 so as to face the raw material supplier 126. That is, the hot plate 128 is provided separately from the transport hand 130 (outside the transport hand 130), and is fixedly disposed without being transported to the transport hand 130. The hot plate 128 is controlled by a control unit (not shown) and heated from below the release film 116 (about 100 degrees) so that the resin particles of the granular resin 102 on the release film 116 are softened. I do. For this reason, the powdery resin 102 is formed of a resin (preliminary fusion resin 106) in a form formed into a flat plate shape by fusing at least some of the resin particles softened by heating to each other. Become. The surface of the preliminary fusion resin 106 on the side of the release film is formed as a flat surface without large irregularities following the surface of the release film 116. At the same time, since many of the resin particles of the granular resin 102 are fused to each other, the number of holes and the hole size existing between the resin particles are reduced. On the other hand, the surface of the preliminary release resin 106 on the side of the reverse release film has less heat transferred than the release film side and is not pressed by a tangible object, so that it follows the shape of the resin particles of the granular resin 102 Unevenness remains. At the same time, the number of holes and the size of the holes on the surface of the preliminary fusion resin 106 on the side of the release film are larger and larger than those on the surface of the release film.

なお、ホットプレート128に対峙して、予備的融着樹脂106の反離型フィルム側の表面から圧縮空気を吹き付けて軟化状態の粉粒体状樹脂に非接触で加圧・収縮させるような非接触収縮手段を、予備的融着部112に設けておいてもよい。その場合には、確実に軟化した樹脂粒子を融着できるので、安定して熱伝導性の高い予備的融着樹脂を仮成形することができる。   It should be noted that a non-contacting and non-contacting pressurization and contraction is applied to the soft granular material resin by blowing compressed air from the surface of the releasable film side of the preliminary fusion resin 106 against the hot plate 128. Contact shrinkage means may be provided in the preliminary fused portion 112. In that case, since the softened resin particles can be reliably fused, a preliminary fusion resin having a stable and high thermal conductivity can be temporarily formed.

搬送ハンド130には、図2に示す如く、保持手段である吸着機構132と第1加熱手段である赤外線ヒータ134と支持板138と温度センサ140と3軸移動機構142とが設けられている。   As shown in FIG. 2, the conveyance hand 130 is provided with an adsorption mechanism 132 that is a holding unit, an infrared heater 134 that is a first heating unit, a support plate 138, a temperature sensor 140, and a triaxial moving mechanism 142.

吸着機構132は、図示せぬ真空機構に繋がれており、その端面132Aに図示せぬ吸着口が複数設けられている。真空機構が動作することで端面132Aに離型フィルム116を吸着・保持することができる。なお、図2では、吸着機構132は、離型フィルム116の対向する2辺のみを吸着・保持する態様であるが、離型フィルム116の4辺全てを吸着・保持するように吸着機構を構成してもよい。本実施形態では、保持手段として吸着機構132を用いたが、離型フィルムの2辺以上を上下方向から把持するような把持機構を保持手段として用いてもよい。   The suction mechanism 132 is connected to a vacuum mechanism (not shown), and a plurality of suction ports (not shown) are provided on the end surface 132A. By operating the vacuum mechanism, the release film 116 can be sucked and held on the end face 132A. In FIG. 2, the suction mechanism 132 is in a mode of sucking and holding only two opposite sides of the release film 116, but the suction mechanism is configured to suck and hold all four sides of the release film 116. May be. In this embodiment, the suction mechanism 132 is used as the holding unit. However, a holding mechanism that holds two or more sides of the release film from the vertical direction may be used as the holding unit.

吸着機構132は、支持板138に支持されている。又、赤外線ヒータ134は、吸着機構132の間であって、図3に示す如く、断熱部材136を介して支持板138に支持されている。赤外線ヒータ134は離型フィルム116に対峙して配置されている。赤外線ヒータ134は、熱の輻射を利用するので空隙を介して、直接予備的融着樹脂106を効率よく加熱する(熱を付与する)ことができる。このため、赤外線ヒータ134と加熱対象である予備的融着樹脂106を密封しておくことを必要としないので、搬送ハンド130の構成を簡易的にすることができる。なお、断熱部材136の凹部136Aに赤外線ヒータ134が配置されているので、予備的融着樹脂106以外の加熱を防止することができる。断熱部材136として赤外線反射板を用いた場合には、効率的に予備的融着樹脂106を加熱して軟化状態を維持することができる。本実施形態では、第1加熱手段として赤外線ヒータを用いているが、マイクロ波を用いた加熱機構や熱風などであってもよく、その場合も直接予備的融着樹脂106を加熱することができ、密封を要しない。   The suction mechanism 132 is supported by the support plate 138. The infrared heater 134 is supported by the support plate 138 through the heat insulating member 136 as shown in FIG. The infrared heater 134 is disposed to face the release film 116. Since the infrared heater 134 utilizes heat radiation, the preliminary fusion resin 106 can be efficiently heated (applied with heat) directly through the air gap. For this reason, since it is not necessary to seal the infrared heater 134 and the preliminary fusion resin 106 to be heated, the configuration of the transport hand 130 can be simplified. Since the infrared heater 134 is disposed in the recess 136A of the heat insulating member 136, heating other than the preliminary fusion resin 106 can be prevented. When an infrared reflector is used as the heat insulating member 136, the preliminary fusion resin 106 can be efficiently heated to maintain the softened state. In the present embodiment, an infrared heater is used as the first heating means. However, a heating mechanism using microwaves or hot air may be used, and in this case, the preliminary fusion resin 106 can be directly heated. Does not require sealing.

支持板138は、又、温度センサ140を支持している。温度センサ140は、非接触温度計であり、非接触で正確に予備的融着樹脂106の温度を計測することができる。計測に際しての配置は、温度センサ140の計測窓と予備的融着樹脂106との間に遮蔽物のない状態が必要となる。具体的には、温度センサ140で使用される波長を遮らないように支持板138に貫通開口を設けてそこに温度センサ140の計測窓が来るように配置する、若しくは透明板、若しくは半透明板を設けてそこに温度センサ140の計測窓が来るように配置する。このため、赤外線ヒータ134は、温度センサ140で計測された値を元にして図示せぬ制御部からの制御信号で、赤外線ヒータ134の通電状況を自動的に制御される。赤外線ヒータ134への通電制御は単純なオン・オフでもよいし、アナログ的に連続的に変化させてもよい。   The support plate 138 also supports the temperature sensor 140. The temperature sensor 140 is a non-contact thermometer and can accurately measure the temperature of the preliminary fusion resin 106 in a non-contact manner. The arrangement for measurement requires a state in which there is no shielding object between the measurement window of the temperature sensor 140 and the preliminary fusion resin 106. Specifically, a support plate 138 is provided with a through-opening so as not to block the wavelength used by the temperature sensor 140, and is arranged so that the measurement window of the temperature sensor 140 comes there, or a transparent plate or a translucent plate Is arranged so that the measurement window of the temperature sensor 140 comes there. For this reason, the infrared heater 134 automatically controls the energization state of the infrared heater 134 by a control signal from a control unit (not shown) based on the value measured by the temperature sensor 140. The energization control to the infrared heater 134 may be simple on / off, or may be continuously changed in an analog manner.

支持板138は3軸移動機構142に固定されている。このため、吸着機構132と赤外線ヒータ134と共に温度センサ140も、3軸移動機構142で離型フィルム116と一緒に搬送される。即ち、離型フィルム116上の予備的融着樹脂106が搬送中でも、加熱が継続可能であり、且つその温度を測定して温度管理も可能である。   The support plate 138 is fixed to the triaxial moving mechanism 142. Therefore, the temperature sensor 140 as well as the suction mechanism 132 and the infrared heater 134 are also transported together with the release film 116 by the triaxial moving mechanism 142. That is, heating can be continued even while the preliminary fusion resin 106 on the release film 116 is being transported, and the temperature can be controlled by measuring the temperature.

なお、赤外線ヒータ134の加熱によって予備的融着樹脂106の温度がなるべく樹脂封止における成形温度に近づくことが樹脂封止作業の高速化には望ましいが、搬送ハンド130による搬送時の樹脂温度は搬送時間と許容される反応硬化率(単に硬化率若しくは硬化度と称する)によって決定される。即ち、硬化率は予備的融着樹脂106の熱履歴により決まる。ここで、αを硬化度、dα/dtを反応速度、A、Aを定数、E、Eを活性化エネルギー、Rを気体定数、Tを温度とすると、エポキシ樹脂(熱硬化性樹脂)の反応硬化度を以下に示すKamalのモデル式により算出できる。 Although it is desirable for the speed of the resin sealing operation to make the temperature of the preliminary fusion resin 106 as close as possible to the molding temperature in the resin sealing by heating the infrared heater 134, the resin temperature during the transport by the transport hand 130 is as follows. It is determined by the transport time and the allowable reaction curing rate (simply referred to as the curing rate or degree of curing). That is, the curing rate is determined by the thermal history of the preliminary fusion resin 106. Here, when α is the degree of cure, dα / dt is the reaction rate, A 1 and A 2 are constants, E 1 and E 2 are activation energies, R is a gas constant, and T is temperature, an epoxy resin (thermosetting The reaction curing degree of the resin can be calculated by the Kamal model formula shown below.

dα/dt=(k+kα)(1−α) (1)
=Aexp(−E/R*T) (2)
=Aexp(−E/R*T) (3)
dα / dt = (k 1 + k 2 α m ) (1−α) n (1)
k 1 = A 1 exp (−E 1 / R * T) (2)
k 2 = A 2 exp (-E 2 / R * T) (3)

式(1)に基づいた樹脂硬化特性と樹脂温度との関係を図4に示す。図4において、例えば、予備的融着樹脂106の融着時の硬化率を2.5%、許容される硬化率を5%とすると、樹脂温度100℃では60秒間の保温が可能となる。逆に言えば搬送時間が60秒かかるならば、樹脂温度は100℃以下で無ければならないことを意味している。搬送時間が30秒なら樹脂温度110℃、搬送時間が15秒なら樹脂温度120℃といったように搬送時間の長短によって樹脂温度を決定することができる(この硬化率は使用する樹脂毎に異なる)。本実施形態では、搬送ハンド130で搬送中に予備的融着樹脂106の軟化状態を維持する(保温)ように、赤外線ヒータ134により加熱がされる。なお、樹脂封止品質の維持のために、この熱履歴を記録して硬化率を積算することで、規格内の硬化度と比較して、規格外となった場合にはその樹脂を廃棄することもできる(例として、樹脂封止作業が何らかの原因で短時間停止した、樹脂温度が異常に上昇したなどの場合)。   FIG. 4 shows the relationship between the resin curing characteristics based on the formula (1) and the resin temperature. In FIG. 4, for example, if the curing rate at the time of fusion of the preliminary fusion resin 106 is 2.5% and the allowable curing rate is 5%, it is possible to keep the temperature for 60 seconds at a resin temperature of 100 ° C. In other words, if the conveyance time takes 60 seconds, it means that the resin temperature must be 100 ° C. or less. The resin temperature can be determined depending on the length of the conveyance time, such as a resin temperature of 110 ° C. when the conveyance time is 30 seconds and a resin temperature of 120 ° C. when the conveyance time is 15 seconds (this curing rate varies depending on the resin used). In the present embodiment, heating is performed by the infrared heater 134 so that the preliminarily fused resin 106 is maintained in a softened state (warming) while being transported by the transport hand 130. In addition, in order to maintain the resin sealing quality, this thermal history is recorded and the curing rate is integrated, so that the resin is discarded if it falls outside the standard compared to the degree of curing within the standard. It is also possible (for example, when the resin sealing operation is stopped for a short time for some reason, or when the resin temperature rises abnormally).

圧縮成形部114は、図1に示す如く、圧縮成形機150を有する。なお、圧縮成形機150は、図1では1つであるが、複数備えられてもよい。圧縮成形機150は、本体152と、本体152に立設される複数の支柱であるタイバ154に支えられる固定プラテン156と、を有する。固定プラテン156の下面には上型162が取り付けられている。本体152は、固定プラテン156に対して、接近・離反できるように移動可能な可動プラテン158を備えている。可動プラテン158の上面には下型164が取り付けられている。下型164には、図示せぬ吸着機構が設けられており、離型フィルム116を吸着・固定することができる。下型164は、可動プラテン158の移動に伴い、固定プラテン156に取り付けられた上型162に対して接近・離反する。即ち、可動プラテン158の移動により、上型162と下型164とで構成される金型160の型締め・型開きを行うことができる。   The compression molding unit 114 has a compression molding machine 150 as shown in FIG. The number of compression molding machines 150 is one in FIG. 1, but a plurality of compression molding machines 150 may be provided. The compression molding machine 150 includes a main body 152 and a fixed platen 156 supported by tie bars 154 that are a plurality of support columns erected on the main body 152. An upper mold 162 is attached to the lower surface of the fixed platen 156. The main body 152 includes a movable platen 158 that can move toward and away from the fixed platen 156. A lower mold 164 is attached to the upper surface of the movable platen 158. The lower mold 164 is provided with a suction mechanism (not shown) so that the release film 116 can be sucked and fixed. The lower mold 164 approaches and separates from the upper mold 162 attached to the fixed platen 156 as the movable platen 158 moves. That is, by moving the movable platen 158, the mold 160 composed of the upper mold 162 and the lower mold 164 can be clamped and opened.

金型160にはキャビティが形成されており、予備的融着樹脂106を載せた離型フィルム116を下型164に吸着・固定することで、予備的融着樹脂106の金型160への投入を完了する。   A cavity is formed in the mold 160, and the release film 116 on which the preliminary fusion resin 106 is placed is adsorbed and fixed to the lower mold 164, whereby the preliminary fusion resin 106 is put into the mold 160. To complete.

次に、樹脂封止装置100の動作(予備的融着部112における予備的融着樹脂106の仮成形工程と圧縮成形部114における樹脂封止工程、樹脂封止作業とも称する)について図1、図5を用いて説明する。   Next, FIG. 1 illustrates the operation of the resin sealing device 100 (also referred to as a temporary molding step of the preliminary fusion resin 106 in the preliminary fusion portion 112, a resin sealing step in the compression molding portion 114, and a resin sealing operation). This will be described with reference to FIG.

まず、原料供給機126をホットプレート128上の離型フィルム116に接近させる。そして、供給口126Aから粉粒体状樹脂102を投下させて、ホットプレート128上の離型フィルム116に載せる(搭載工程、図5(A))。このとき、枠126Bは、その上端の位置Uで供給口126A下端の位置Bを覆い、且つ枠126Bの下端の位置Dで離型フィルム116の極近傍に配置される長さを有するので、粉粒体状樹脂102の枠126B外部への飛散を防止できる。同時に、離型フィルム116の枠126Bで定められた所定の面積に正確に粉粒体状樹脂102を投下することができる。このとき、供給口126Aと離型フィルム116との間の図示せぬフレーム形状の構造体により、該所定の面積に均等の厚みで粉粒体状樹脂102を撒くことができる。このため、粉粒体状樹脂102の加熱の均一性と加熱時間の短縮とを確保し、樹脂封止工程時の樹脂流動を少なくすることができる。   First, the raw material supplier 126 is brought close to the release film 116 on the hot plate 128. Then, the granular resin 102 is dropped from the supply port 126A and placed on the release film 116 on the hot plate 128 (mounting process, FIG. 5A). At this time, the frame 126B has a length that covers the position B at the lower end of the supply port 126A at the position U at the upper end and is disposed in the very vicinity of the release film 116 at the position D at the lower end of the frame 126B. The scattering of the granular resin 102 to the outside of the frame 126B can be prevented. At the same time, the granular resin 102 can be accurately dropped onto a predetermined area defined by the frame 126B of the release film 116. At this time, the granular resin 102 can be spread over the predetermined area with a uniform thickness by a frame-shaped structure (not shown) between the supply port 126A and the release film 116. For this reason, the uniformity of heating of the granular resin 102 and shortening of the heating time can be ensured, and the resin flow during the resin sealing step can be reduced.

ホットプレート128の温度を、粉粒体状樹脂102の樹脂粒子を軟化状態とする程度の温度(100度程度)に上昇させておき、離型フィルム116を介して原料供給機126から投下された粉粒体状樹脂102を加熱する(熱を付与する)。原料供給機126に対向する位置において、ホットプレート128は、投下された粉粒体状樹脂102を軟化して互いに融着可能な状態とする。すると、粉粒体状樹脂102の樹脂粒子は加熱により軟化することで変形して、互いの接触面積が増大する。このため、樹脂粒子間の空孔サイズが小さくなると共に粉粒体状樹脂102の厚みは粉粒体状樹脂102の投下直後の厚みよりも少なくなる。同時に、軟化した樹脂粒子は温度による粘度の変化と相まって互いに拘束力が増大して、特にホットプレート128に近い離型フィルム側における樹脂粒子は一部で融着状態となる。このため、元々粒子形状の集合体の形態であった粉粒体状樹脂102は、空孔数と空孔サイズが減少して、厚み方向に収縮させられた形態の予備的融着樹脂106に仮成形される(図5(B))。このとき、ホットプレート128は、離型フィルム116の下側に配置されて、下から粉粒体状樹脂102を加熱している。このため、予備的融着樹脂106の離型フィルム側の面(下面)では、反離型フィルム側の表面に比べて、より多くの樹脂粒子の融着がなされて、予備的融着樹脂106の間に存在する空孔数が少なく且つ空孔サイズが小さくなる。   The temperature of the hot plate 128 was raised to a temperature (about 100 degrees) to the extent that the resin particles of the granular resin 102 were softened, and dropped from the raw material feeder 126 through the release film 116. The granular resin 102 is heated (heat is applied). At a position facing the raw material feeder 126, the hot plate 128 softens the dropped granular resin 102 so that it can be fused together. Then, the resin particles of the granular resin 102 are deformed by being softened by heating, and the mutual contact area is increased. For this reason, the void | hole size between resin particles becomes small, and the thickness of the granular resin 102 becomes smaller than the thickness immediately after dropping of the granular resin 102. At the same time, the softened resin particles are coupled with a change in viscosity due to temperature, and the binding force increases. In particular, the resin particles on the side of the release film near the hot plate 128 are partially fused. For this reason, the granular resin 102 originally in the form of a particle-shaped aggregate is reduced in the number of pores and the size of the pores and is reduced to the preliminary fusion resin 106 in a form contracted in the thickness direction. Temporary molding is performed (FIG. 5B). At this time, the hot plate 128 is disposed below the release film 116 and heats the granular resin 102 from below. For this reason, more resin particles are fused on the surface (lower surface) on the release film side of the preliminary fusion resin 106 than on the surface on the opposite release film side. The number of holes existing between the two is small and the hole size is small.

次に、原料供給機126を枠126Bと共に、離型フィルム116から離反させる。枠126Bには凹部126BBが設けられている。このため、枠126B側面に樹脂粒子が融着した状態とならないので、投下された当初の粉粒体状樹脂102の量を変化させることなく、容易に枠126Bを離反させることができる。   Next, the raw material supplier 126 is separated from the release film 116 together with the frame 126B. The frame 126B is provided with a recess 126BB. For this reason, since the resin particles are not fused to the side surface of the frame 126B, the frame 126B can be easily separated without changing the amount of the initially dropped granular resin 102.

次に、搬送ハンド130をホットプレート128上の離型フィルム116に当接させて、予備的融着樹脂106の搭載された離型フィルム116の外側の部分を搬送ハンド130の吸着機構132で吸着・保持する(保持工程、図5(C))。   Next, the conveyance hand 130 is brought into contact with the release film 116 on the hot plate 128, and the portion outside the release film 116 on which the preliminary fusion resin 106 is mounted is adsorbed by the adsorption mechanism 132 of the conveyance hand 130. -Hold (holding step, FIG. 5C).

次に、搬送ハンド130は、3軸移動機構142で、予備的融着樹脂106を離型フィルム116に貼り付けた状態のままで、吸着機構132で吸着・上昇させて(図5(D))、圧縮成形部114の金型160に移動・配置させる(搬送工程)。この搬送工程の際(搬送経路における搬送中)に、図4に示された関係に従い、予備的融着樹脂106に対して赤外線ヒータ134による加熱(熱の付与)を開始する(加熱工程)。本実施形態では、予備的融着樹脂106の保温を目的として軟化状態を維持して、搬送時間において許容硬化率(本実施例では5%)以下となるように、温度センサ140により赤外線ヒータ134の通電状況が制御される。即ち、予備的融着樹脂106は仮成形時の温度とほぼ同じ100度に保持される。このため、赤外線ヒータ134で消費される電力を最小限とすることができる。   Next, the transport hand 130 is sucked and raised by the suction mechanism 132 while the preliminary fusion resin 106 is stuck on the release film 116 by the triaxial moving mechanism 142 (FIG. 5D). ), Moved and arranged in the mold 160 of the compression molding unit 114 (conveying step). During this transport process (during transport on the transport path), heating (applying heat) to the preliminary fusion resin 106 by the infrared heater 134 is started according to the relationship shown in FIG. 4 (heating process). In the present embodiment, the temperature sensor 140 uses the infrared heater 134 so that the softened state is maintained for the purpose of keeping the temperature of the preliminary fusion resin 106 and the allowable curing rate (5% in this embodiment) is not more than the transport time. Is controlled. That is, the preliminary fusion resin 106 is maintained at 100 degrees which is substantially the same as the temperature at the time of temporary molding. For this reason, the electric power consumed by the infrared heater 134 can be minimized.

次に、金型160の下型164の吸着機構で、予備的融着樹脂106の貼り付いた離型フィルム116を、そのままの状態で吸着・固定する。そして、予備的融着樹脂106を樹脂封止に適した成形温度まで加熱する。   Next, the release film 116 to which the preliminary fusion resin 106 is adhered is adsorbed and fixed as it is by the adsorption mechanism of the lower mold 164 of the mold 160. Then, the preliminary fusion resin 106 is heated to a molding temperature suitable for resin sealing.

そして、被成形品を取り付けた上型162に対して下型164を接近させる。又、キャビティ内の減圧動作も開始させる。そして、所定のタイミングで型締めして、被成形品を圧縮成形して樹脂封止を行う。   Then, the lower mold 164 is brought closer to the upper mold 162 to which the product to be molded is attached. Also, the pressure reducing operation in the cavity is started. Then, the mold is clamped at a predetermined timing, and the molded product is compression-molded to perform resin sealing.

本実施形態では、離型フィルム116に搭載された粉粒体状樹脂102を軟化状態とするように加熱するホットプレート128を備えているので、粉粒体状樹脂102が、平板形状の予備的融着樹脂106に仮成形されている。そして、予備的融着樹脂106が仮成形時の温度に保温されているので、赤外線ヒータ134で消費される電力を少なくすることができる。そして、その予備的融着樹脂106が樹脂封止の際に金型160に投入されるので、金型160への搬送時に樹脂粒子が飛散するといったことによる金型160のへの樹脂投入量の変化を防止することができる。   In the present embodiment, since the granular resin 102 mounted on the release film 116 is provided with a hot plate 128 for heating so as to be in a softened state, the granular resin 102 has a flat plate-like preliminary shape. Temporarily molded into the fusion resin 106. Since the preliminary fusion resin 106 is kept at the temperature at the time of temporary molding, the power consumed by the infrared heater 134 can be reduced. Then, since the preliminary fusion resin 106 is charged into the mold 160 at the time of resin sealing, the amount of resin charged into the mold 160 due to the scattering of the resin particles when transported to the mold 160 is achieved. Changes can be prevented.

又、本実施形態では、ホットプレート128が離型フィルム116の下側に配置されているので、離型フィルム側の粉粒体状樹脂102の樹脂粒子の軟化の程度が大きくなり、予備的融着樹脂106の離型フィルム側の空孔数と空孔サイズを反離型フィルム側に比べて少なくできる。即ち、予備的融着樹脂106の表面側(反離型フィルム側)に空孔が多く残ることとなる。このため、樹脂封止工程の際には、金型160のキャビティ空間への予備的融着樹脂106の空孔の排出(空孔数と空孔サイズの減少)が容易であり、樹脂封止された成形品にボイド等が発生することを効率よく防止することができる(歩止りと樹脂封止品質の向上)。   In this embodiment, since the hot plate 128 is disposed below the release film 116, the degree of softening of the resin particles of the granular resin 102 on the release film side is increased, and preliminary melting is performed. The number of holes and the hole size on the release film side of the resin 106 can be reduced as compared with the anti-release film side. That is, many pores remain on the surface side (reverse release film side) of the preliminary fusion resin 106. For this reason, in the resin sealing step, it is easy to discharge the holes of the preliminary fusion resin 106 into the cavity space of the mold 160 (reduction in the number of holes and the hole size). It is possible to efficiently prevent the occurrence of voids and the like in the formed molded product (improvement in yield and resin sealing quality).

又、本実施形態では、離型フィルム116が個片とされた状態で用いられている。このため、ロールで供給される離型フィルムの場合に比べて、予備的融着部112と圧縮成形部114の配置は、大きな自由度を取ることができる。又、予備的融着部112と圧縮成形部114とのいずれかを複数とすることも容易である。更には、離型フィルム116がロールで供給される場合に比べて粉粒体状樹脂102が載せられていない面積を削減することも可能なので、離型フィルム116を無駄なく使用することもできる。同時に、樹脂封止装置100が大掛かりになることを防止することもできる。   Moreover, in this embodiment, the release film 116 is used in the state made into the piece. For this reason, compared with the case of the release film supplied with a roll, arrangement | positioning of the preliminary fusion bonding part 112 and the compression molding part 114 can take a big freedom degree. In addition, it is easy to use a plurality of the preliminary fusion bonding portions 112 and the compression molding portions 114. Furthermore, since it is possible to reduce the area on which the particulate resin 102 is not placed as compared with the case where the release film 116 is supplied by a roll, the release film 116 can be used without waste. At the same time, it is possible to prevent the resin sealing device 100 from becoming large.

又、本実施形態は、搬送ハンド130に離型フィルム116の吸着機構132と赤外線ヒータ134とを設けて、搬送ハンド130で搬送中に予備的融着樹脂106の加熱を行う。このため、金型160に離型フィルム116を配置した時点で、予備的融着樹脂106の温度は付与した熱の分だけ温度が上昇している(本実施形態では、予備的融着樹脂106の仮成形時の温度を保った状態の温度となっている)。即ち、予備的融着樹脂106を室温状態で投入した場合と比べて、樹脂封止のための成形温度に予備的融着樹脂106を加熱する時間を短縮することができる。図6を用いて説明すると、例えば、赤外線ヒータを使わない場合には、予備的融着樹脂106が仮成形されて搬送中に室温まで下がってしまう(破線のグラフ)おそれがある。しかし、赤外線ヒータ134で加熱しておくことで、実線のグラフの如く、成形温度に達するまでの時間を短縮することができる。逆に言えば、投入される予備的融着樹脂106の温度がある程度の温度(予熱温度)となっているので、予備的融着樹脂106が投入された際の金型160の温度の低下を緩和することもできる。このため、予備的融着樹脂106を室温状態で金型に投入した場合と比べて、樹脂封止工程にかかる時間を一層短くすることができ、サイクルタイムを短縮できるので、成形品の生産性を向上させることができる(スループットの向上)。   In the present embodiment, the conveyance hand 130 is provided with a suction mechanism 132 for the release film 116 and an infrared heater 134, and the preliminary fusing resin 106 is heated during conveyance by the conveyance hand 130. For this reason, when the release film 116 is disposed on the mold 160, the temperature of the preliminary fusion resin 106 is increased by the amount of applied heat (in this embodiment, the preliminary fusion resin 106). The temperature is the same as the temperature at the time of temporary molding.) That is, the time for heating the preliminary fusion resin 106 to the molding temperature for resin sealing can be shortened as compared with the case where the preliminary fusion resin 106 is charged at room temperature. Referring to FIG. 6, for example, when the infrared heater is not used, the preliminary fusion resin 106 may be temporarily formed and may be lowered to room temperature during transportation (broken line graph). However, by heating with the infrared heater 134, the time to reach the molding temperature can be shortened as shown by the solid line graph. In other words, since the temperature of the preliminarily fused resin 106 to be charged is a certain temperature (preheating temperature), the temperature of the mold 160 is lowered when the preliminarily fused resin 106 is charged. It can be relaxed. For this reason, the time required for the resin sealing process can be further shortened and the cycle time can be shortened as compared with the case where the preliminary fusion resin 106 is put into the mold at room temperature. Can be improved (throughput improvement).

又、本実施形態では、樹脂封止のための成形温度に達するまでの昇温時間が短縮されることにより、予備的融着樹脂106の硬化反応を抑制できるので、樹脂封止品質を向上させて、歩留りを向上させることができる。このため、成形温度を通常より高くした場合でも、樹脂封止品質を損なうことなく硬化時間を短縮することができ、生産性を更に向上させることができる。   Further, in this embodiment, since the temperature rise time until reaching the molding temperature for resin sealing is shortened, the curing reaction of the preliminary fusion resin 106 can be suppressed, so that the resin sealing quality is improved. Yield can be improved. For this reason, even when the molding temperature is higher than usual, the curing time can be shortened without impairing the resin sealing quality, and the productivity can be further improved.

又、本実施形態では、赤外線ヒータ134が、予備的融着樹脂106を搬送時に反離型フィルム側の表面から加熱しているので、予備的融着樹脂106の反離型フィルム側の面の成形温度に達する時間を、赤外線ヒータ134で加熱しない場合に比べて、短くすることができる。このため、樹脂封止工程で離型フィルム側の樹脂の硬化反応が反離型フィルム側の樹脂より先に進むことで生じる不具合(例えば、離型フィルム側の樹脂の粘度の上昇により被成形品内を接続するボンディングワイヤを変形・ショートさせるといった問題)を低減・回避することが可能となる。   In this embodiment, since the infrared heater 134 heats the preliminary fusion resin 106 from the surface on the side of the releasable film during conveyance, the surface of the surface of the preliminary fusion resin 106 on the side of the releasable film is also heated. The time to reach the molding temperature can be shortened compared to the case where the molding temperature is not heated by the infrared heater 134. For this reason, in the resin sealing step, a problem that occurs when the curing reaction of the resin on the release film side proceeds ahead of the resin on the anti-release film side (for example, the molded product due to the increase in the viscosity of the resin on the release film side) It is possible to reduce / avoid problems such as deformation / short-circuiting of bonding wires connecting the inside.

又、離型フィルム116は粉粒体状樹脂102の搭載から樹脂封止の際まで使用されることとなるので、予備的融着樹脂106を離型フィルム116から剥がす必要がない。このため、予備的融着樹脂106が薄くても剥がすことによる樹脂の割れや欠けを防止できる。つまり、被成形品の封止厚みが薄くなるような場合であっても容易に対応することができ、予備的融着部112と圧縮成形部114とで樹脂の計量誤差を最小限にすることが可能である。同時に、冷却工程もなく、使用装置と工数を少なくできる。それと共に、高価な離型フィルム116を効率よく使用することができる。このため、赤外線ヒータ134を備えた搬送ハンド130を用いる構成でありながら、樹脂封止作業の高速化とランニングコストの低減化とを促進することができる。   Further, since the release film 116 is used from the loading of the granular resin 102 to the sealing of the resin, it is not necessary to peel off the preliminary fusion resin 106 from the release film 116. For this reason, even if the preliminary fusion resin 106 is thin, it is possible to prevent the resin from being cracked or chipped. In other words, even when the molding thickness of the molded product is reduced, it can be easily handled, and the measurement error of the resin can be minimized by the preliminary fused portion 112 and the compression molded portion 114. Is possible. At the same time, there is no cooling process, and the equipment and man-hours can be reduced. At the same time, the expensive release film 116 can be used efficiently. For this reason, although it is the structure using the conveyance hand 130 provided with the infrared heater 134, the increase in the speed of resin sealing work and reduction in running cost can be promoted.

又、搬送ハンド130は、予備的融着樹脂106の温度を測定する温度センサ140を備えているので、搬送ハンド130で搬送途中の予備的融着樹脂106の温度を監視することができる。即ち、赤外線ヒータ134による加熱状況を制御できると共に、予備的融着樹脂106の品質を保つことが可能となる。   Further, since the transport hand 130 includes the temperature sensor 140 that measures the temperature of the preliminary fusion resin 106, the temperature of the preliminary fusion resin 106 during the transport can be monitored by the transport hand 130. That is, it is possible to control the heating status by the infrared heater 134 and to maintain the quality of the preliminary fusion resin 106.

即ち、本実施形態によれば、粉粒体状樹脂102の少なくとも一部を融着させると共に、金型160への投入までに樹脂温度を上昇させておくので、樹脂封止品質を保ちつつ樹脂封止装置100における樹脂封止作業の高速化、言い換えれば樹脂封止された成形品の製造のスループット・サイクルタイムを改善・向上させることが可能となる。   That is, according to the present embodiment, at least a part of the granular resin 102 is fused, and the resin temperature is raised before being charged into the mold 160, so that the resin sealing quality is maintained. It is possible to increase the speed of the resin sealing operation in the sealing device 100, in other words, to improve / improve the throughput and cycle time of manufacturing a resin-sealed molded product.

なお、本実施形態では、予備的融着樹脂106を仮成形した際の温度を保つような保温(予備的融着樹脂106の軟化状態の維持)を目的として、赤外線ヒータ134で加熱したが、本発明はこれに限定されず、予備的融着樹脂の融着を促すように加熱してもよい。即ち、赤外線ヒータで予備的融着樹脂の軟化状態を維持する以上の加熱を行ってもよい。その場合には、予備的融着樹脂の反離型フィルム側の表面が離型フィルム側の面に比べてより加熱されるので、反離型フィルム側の融着状態が促進されて、断熱層となる樹脂粒子間の空孔数と空孔サイズを元々の予備的融着樹脂から更に減少させて熱伝導性を向上させることができる。このため、更に樹脂封止工程にかかる時間を短縮でき、成形品の生産性を向上させることができる。なお、その際に、金型への投入後の予備的融着樹脂の離型フィルム側の面の昇温特性に合わせて、予備的融着樹脂の反離型フィルム側の表面を予め赤外線ヒータで昇温させておいてもよい。   In the present embodiment, the heating is performed by the infrared heater 134 for the purpose of keeping the temperature at the time of pre-molding the preliminary fusion resin 106 (maintaining the softened state of the preliminary fusion resin 106). The present invention is not limited to this, and heating may be performed so as to promote fusion of the preliminary fusion resin. In other words, heating that maintains the softened state of the preliminary fusion resin with an infrared heater may be performed. In that case, the surface on the side of the releasable film of the preliminary fusion resin is heated more than the surface on the side of the releasable film, so that the fusion state on the side of the releasable film is promoted and the heat insulating layer Thus, the number of pores between the resin particles and the pore size can be further reduced from the original preliminary fusion resin to improve the thermal conductivity. For this reason, the time required for the resin sealing step can be further shortened, and the productivity of the molded product can be improved. At that time, in accordance with the temperature rise characteristics of the surface of the release film side of the preliminary fusion resin after being put into the mold, the surface of the release film side of the preliminary fusion resin is preliminarily infrared-heated. The temperature may be raised at.

又、本実施形態では、予備的融着樹脂106を仮成形した後に、赤外線ヒータ134の通電を開始していたが、本発明はこれに限定されず、ホットプレートによる加熱と同時に、反離型フィルム側に配置された赤外線ヒータの通電を行ってもよい。その場合には、ホットプレートと赤外線ヒータとで粉粒体状樹脂を挟み込むようにして加熱を行うこととなるので、予備的融着樹脂の仮成形の時間を更に短縮できる。このため、樹脂封止工程にかかる時間を更に短縮でき、成形品の生産性を向上させることができる。   In this embodiment, energization of the infrared heater 134 is started after the preliminary fusing resin 106 is temporarily formed. However, the present invention is not limited to this, and simultaneously with the heating by the hot plate, You may energize the infrared heater arrange | positioned at the film side. In that case, since the heating is performed by sandwiching the granular resin between the hot plate and the infrared heater, the time for preliminary molding of the preliminary fusion resin can be further shortened. For this reason, the time taken for the resin sealing step can be further shortened, and the productivity of the molded product can be improved.

又、本実施形態では、ホットプレート128、赤外線ヒータ134いずれも樹脂を軟化状態とするように加熱していたが、本発明はこれに限定されず、いずれも樹脂を軟化状態までせずに単に熱を付与するだけでもよい。   In this embodiment, both the hot plate 128 and the infrared heater 134 are heated so that the resin is in a softened state, but the present invention is not limited to this. You may just apply heat.

次に、本発明の第2実施形態について、図7を用いて説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

本実施形態は、第1実施形態とは、第1加熱手段として電熱線式ヒータ234を用いて予備的融着樹脂206を密封したことで異なり、それ以外は同一であるので、符号下2桁を同一として、説明を省略する。   This embodiment is different from the first embodiment in that the preliminary fusion resin 206 is sealed using a heating wire heater 234 as the first heating means, and the other parts are the same. Are the same, and the description is omitted.

本実施形態では、吸着機構232は、支持板238の全ての辺に設けられて、離型フィルム216の4辺を吸着・保持する形態をとっている。このため、吸着機構232で、離型フィルム216を吸着・保持した際には、離型フィルム216上の予備的融着樹脂206を密封することができる。なお、支持板238には、空気弁238Aが設けられている。空気弁238Aは、離型フィルム216を吸着・保持後に電熱線式ヒータ234の加熱で内部の空気を加熱した際に当該空気が膨張して、離型フィルム216を撓ませて予備的融着樹脂206を変形・破損させることを防止するためである。電熱線式ヒータ234は、第1実施形態の赤外線ヒータ134と同様に離型フィルム216上の予備的融着樹脂206に対峙して配置されている。電熱線式ヒータ234は、内部の空気を加熱することで、間接的に予備的融着樹脂206を加熱する。なお、熱電対などの温度センサで電熱線式ヒータ234の温度を測定しておくことで、電熱線式ヒータ234の温度を計測・制御することができ、間接的に予備的融着樹脂206の温度調整を行うことができる。   In the present embodiment, the suction mechanism 232 is provided on all sides of the support plate 238 and takes a form of sucking and holding the four sides of the release film 216. For this reason, when the release film 216 is sucked and held by the suction mechanism 232, the preliminary fusion resin 206 on the release film 216 can be sealed. The support plate 238 is provided with an air valve 238A. The air valve 238A adsorbs and holds the release film 216, and when the internal air is heated by heating of the heating wire heater 234, the air expands to bend the release film 216 to preliminarily fuse the resin. This is to prevent the 206 from being deformed or damaged. The heating wire heater 234 is disposed opposite to the preliminary fusion resin 206 on the release film 216 in the same manner as the infrared heater 134 of the first embodiment. The heating wire heater 234 indirectly heats the preliminary fusion resin 206 by heating the air inside. Note that the temperature of the heating wire heater 234 can be measured and controlled by measuring the temperature of the heating wire heater 234 with a temperature sensor such as a thermocouple. Temperature adjustment can be performed.

本実施形態では、温度センサは非接触温度ではなく、小型で低コストの熱電対を用いるので、搬送ハンド230を低コスト・小型にすることができる。また、搬送時に予備的融着樹脂206が密封されるので、加熱は均一に効率的に行うことができ、搬送途中に不純物の付着・混入を防ぐことができる。更に、密封されているので、搬送時に熱せられた空気が逃げないし冷たい空気が入ってこないため、保温効果が高い。このような構成は、予備的融着樹脂206の保温と再融着の促進と両方で適用することができる。   In this embodiment, since the temperature sensor uses a small and low-cost thermocouple instead of the non-contact temperature, the transport hand 230 can be reduced in cost and size. In addition, since the preliminary fusion resin 206 is sealed at the time of transportation, heating can be performed uniformly and efficiently, and impurities can be prevented from adhering / mixing during transportation. Furthermore, since it is sealed, air that is heated during transportation does not escape or cold air does not enter, so that the heat retaining effect is high. Such a configuration can be applied to both keeping the preliminary fusion resin 206 warm and promoting re-fusion.

なお、上記実施形態では、温度センサを用いていたが、本発明はこれに限定されず、予め第1加熱手段(赤外線ヒータ、電熱線式ヒータ)への投入電力と予備的融着樹脂の温度との相関を把握しておき、温度センサを使わずにその相関に基づいて第1加熱手段への通電状況を制御するようにしてもよい。その場合には、温度センサを使用しない分、上記実施形態に比べて、樹脂封止装置の低コスト化を実現することができる。   In the above embodiment, the temperature sensor is used. However, the present invention is not limited to this, and the input power to the first heating means (infrared heater, heating wire heater) and the temperature of the preliminary fusion resin are preliminarily set. And the energization state to the first heating means may be controlled based on the correlation without using the temperature sensor. In that case, since the temperature sensor is not used, the cost of the resin sealing device can be reduced compared to the above embodiment.

次に、本発明の第3実施形態について、図8を用いて説明する。   Next, a third embodiment of the present invention will be described with reference to FIG.

本実施形態は、第1実施形態とは予備的融着部の代わりに予備成形部312が配置されて、そこに主に第3加熱手段である加熱成形機構321Aと冷却手段である冷却機構321Bとを備えることで異なり、それ以外は同一であるので、符号下2桁を同一として、説明を省略する。   The present embodiment is different from the first embodiment in that a preforming portion 312 is arranged instead of a preliminary fusion portion, and a heating forming mechanism 321A that is mainly a third heating means and a cooling mechanism 321B that is a cooling means. Since the other parts are the same, the last two digits are the same and the description is omitted.

予備成形部312は、離型フィルム供給機構318と加熱成形機構321Aと冷却機構321Bと移動機構322とトレイ323と原料供給機326とを備える。   The preforming unit 312 includes a release film supply mechanism 318, a thermoforming mechanism 321 </ b> A, a cooling mechanism 321 </ b> B, a moving mechanism 322, a tray 323, and a raw material supplier 326.

離型フィルム供給機構318は、供給ロール318Aと回収ロール318Bと複数のローラ318Cとを備える。離型フィルム供給機構318は、予備成形部312の加熱成形機構321Aと冷却機構321Bの所定の位置に連続した上離型フィルム317を供給する。上離型フィルム317は、離型フィルム316と同一の素材であり、耐熱性に優れ、熱伝導が良好で、伸縮性に富み、形状の復元が容易な材料で適切な厚みに成形されている。加熱成形機構321Aは、離型フィルム316に搭載された粉粒体状樹脂であって搬送ハンド330による搬送前の粉粒体状樹脂に対して熱を付与して軟化状態とし、且つ所定の形状に成形する。粉粒体状樹脂の成形は、上離型フィルム317を介して粉粒体状樹脂を加圧することでなされる。冷却機構321Bは、加熱成形機構321Aで成形された粉粒体状樹脂に、冷却された板を上離型フィルム317上から当接させて、冷却を行う。移動機構322は、トレイ323を原料供給機326と加熱成形機構321Aと冷却機構321Bの所定の位置に移動させる機構である。トレイ323は、加熱と冷却を急激に受けて、高い温度状態と低い温度状態にすばやく移行する必要があり、熱伝導率がよく比熱が小さい材質であることが望ましい。なお、原料供給機326は、第一実施形態と同一なので説明を省略する。   The release film supply mechanism 318 includes a supply roll 318A, a collection roll 318B, and a plurality of rollers 318C. The release film supply mechanism 318 supplies the continuous upper release film 317 to predetermined positions of the heat forming mechanism 321A and the cooling mechanism 321B of the preforming unit 312. The upper release film 317 is the same material as the release film 316 and is formed to an appropriate thickness with a material that has excellent heat resistance, good thermal conductivity, excellent stretchability, and easy shape recovery. . The thermoforming mechanism 321A is a granular resin mounted on the release film 316, which heats the granular resin before being transported by the transport hand 330 to a softened state, and has a predetermined shape. To form. Molding of the granular resin is performed by pressurizing the granular resin through the upper release film 317. The cooling mechanism 321B performs cooling by bringing the cooled plate into contact with the granular resin formed by the heat forming mechanism 321A from above the upper release film 317. The moving mechanism 322 is a mechanism that moves the tray 323 to predetermined positions of the raw material supply unit 326, the heat forming mechanism 321A, and the cooling mechanism 321B. The tray 323 needs to be rapidly heated and cooled to quickly shift to a high temperature state and a low temperature state, and is preferably made of a material having a high thermal conductivity and a small specific heat. In addition, since the raw material supply machine 326 is the same as 1st embodiment, description is abbreviate | omitted.

次に、予備成形部312における動作を説明する。   Next, the operation in the preforming unit 312 will be described.

まず、個片にされた離型フィルム316をトレイ323上に配置させて、移動機構322により原料供給機326の直下の位置X1に移動させる。   First, the separated release film 316 is placed on the tray 323 and moved to the position X1 directly below the raw material supply machine 326 by the moving mechanism 322.

次に、原料供給機326から粉粒体状樹脂を離型フィルム316に搭載後、トレイ323を加熱成形機構321Aの直下の位置X2に移動させる。そこで、加熱成形機構321Aは、上離型フィルム317を粉粒体状樹脂の表面に当接させて、離型フィルム316上の粉粒体状樹脂302を加熱・軟化させて樹脂粒子同士を融着可能な状態とする。そして、加熱成形機構321Aは、トレイ323との間で軟化状態の粉粒体状樹脂に圧力をかけて平板形状に加圧成形する(加熱成形工程)。   Next, after loading the granular resin from the raw material supplier 326 onto the release film 316, the tray 323 is moved to a position X2 directly below the thermoforming mechanism 321A. Therefore, the thermoforming mechanism 321A causes the upper release film 317 to contact the surface of the granular resin, and heats and softens the granular resin 302 on the release film 316 to melt the resin particles. Make it ready to wear. Then, the thermoforming mechanism 321 </ b> A applies pressure to the softened powdery resin between the tray 323 and press-molds it into a flat plate shape (thermal molding step).

次に、上離型フィルム317が貼り付いた状態のままの加圧成形された粉粒体状樹脂(予備成形樹脂306)をトレイ323で冷却機構321Bの位置X3に移動させる。そこで、上離型フィルム317を介して予備成形樹脂306が冷却される(冷却工程)。   Next, the pressure-molded granular resin (preliminarily molded resin 306) with the upper release film 317 adhered is moved to the position X3 of the cooling mechanism 321B by the tray 323. Therefore, the preformed resin 306 is cooled via the upper release film 317 (cooling step).

次に、上離型フィルム317を予備成形樹脂306から剥がして(剥離工程)、位置X4にトレイ323で予備成形樹脂306を移動させる。そこで、搬送ハンド330によって、予備成形樹脂306を離型フィルム316に貼り付けた状態のままで、離型フィルム316を吸着・保持して予備成形樹脂306を圧縮成形部の金型に移動・配置させる。この動作時に、赤外線ヒータ334を通電して予備成形樹脂306の温度を上昇させる。   Next, the upper release film 317 is peeled off from the preformed resin 306 (peeling step), and the preformed resin 306 is moved by the tray 323 to the position X4. Accordingly, the preforming resin 306 is adhered to the release film 316 by the transport hand 330, and the release film 316 is sucked and held to move / place the preforming resin 306 to the mold of the compression molding unit. Let During this operation, the infrared heater 334 is energized to raise the temperature of the preformed resin 306.

本実施形態においても、離型フィルム316が予備成形部312と圧縮成形部とで兼用に使用されるので、高価な離型フィルム316を効率よく使用することができる。同時に、離型フィルム316の剥離工程は必要ではないため、離型フィルム316の剥離工程を必要とする場合に比べて、冷却工程と剥離工程を短時間で行うことができる。このため、樹脂封止作業の高速化とランニングコストの低減化とを促進することができる。   Also in this embodiment, since the release film 316 is used for both the preforming part 312 and the compression molding part, the expensive release film 316 can be used efficiently. At the same time, since the release process of the release film 316 is not necessary, the cooling process and the release process can be performed in a shorter time than when the release process of the release film 316 is required. For this reason, it is possible to promote the speeding up of the resin sealing operation and the reduction of the running cost.

又、本実施形態では、粉粒体状樹脂302が、加熱成形工程と冷却工程を経て所定の形状に成形された予備成形樹脂となる。このため、空孔数と空孔サイズとは予備的融着樹脂に比べて、更に減少させることができて熱伝導性を高くすることができるい。そして、赤外線ヒータ334で軟化状態とするように加熱するので、金型に離型フィルムを配置した時点で、既に予備成形樹脂306の温度は加熱した分だけ温度が上昇している。このため、樹脂封止工程にかかる時間を更に一層短くすることができ、成形品の生産性をより向上させることができる。   In the present embodiment, the granular resin 302 is a preformed resin that has been molded into a predetermined shape through a heat molding step and a cooling step. For this reason, the number of holes and the hole size can be further reduced as compared with the preliminary fusion resin, and the thermal conductivity cannot be increased. And since it heats so that it may become a softened state with the infrared heater 334, when the release film is arrange | positioned to a metal mold | die, the temperature of the preforming resin 306 has already risen by the part which heated. For this reason, the time required for the resin sealing step can be further shortened, and the productivity of the molded product can be further improved.

なお、本実施形態では、トレイ323は離型フィルム316を移動・支持するために用いられているが、トレイに加熱機能や冷却機能を設けてもよい。その場合には、更に予備成形樹脂を短時間で成形でき、結果的に、更に樹脂封止作業の高速化を促進することができる。   In this embodiment, the tray 323 is used to move and support the release film 316, but the tray may be provided with a heating function or a cooling function. In that case, the preformed resin can be further molded in a short time, and as a result, the speeding up of the resin sealing operation can be further promoted.

本発明について上記実施形態を挙げて説明したが、本発明は上記実施形態に限定されるものではない。即ち本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでも無い。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment. That is, it goes without saying that improvements and design changes can be made without departing from the scope of the present invention.

例えば、上記実施形態では、搬送ハンドで離型フィルムが吸着・保持される際には、粉粒体状樹脂は、予備的融着樹脂若しくは予備成形樹脂とされていたが、本発明はこれに限定されずに、粉粒体状樹脂のままであってもよい。即ち、原料供給機で粉粒体状樹脂が離型フィルムに投下された段階で、直ちに搬送ハンドで離型フィルムを保持してもよい。その場合には、赤外線ヒータなどの第1加熱手段で、離型フィルム上の粉粒体状樹脂を構成する樹脂粒子の少なくとも一部が軟化状態とされる。このため、その軟化状態の樹脂粒子が融着した状態の樹脂(予備的融着樹脂)となり、断熱層となる樹脂粒子間の空孔数と空孔サイズが減少して熱伝導性を向上させる。即ち、搬送時間内に、粉粒体状樹脂は予備的融着樹脂の状態に仮成形されることとなる。このため、上記実施形態よりも更に簡素な形態とすることができ、この場合においても本発明の相応の作用効果を生ずることとなる。   For example, in the above embodiment, when the release film is adsorbed and held by the transport hand, the granular resin is a preliminary fusion resin or a preformed resin. Without being limited, it may be a granular resin. That is, the release film may be held by the transport hand immediately after the granular resin is dropped onto the release film by the raw material feeder. In that case, at least a part of the resin particles constituting the granular resin on the release film is softened by the first heating means such as an infrared heater. For this reason, the softened resin particles become a fused resin (preliminary fused resin), and the number of pores and the size of the pores between the resin particles serving as the heat insulating layer are reduced to improve the thermal conductivity. . That is, within the transport time, the granular resin is temporarily molded into a preliminary fusion resin state. For this reason, it can be set as a simpler form than the said embodiment, and the effect of this invention corresponding also in this case will be produced.

又、上記実施形態においては、粉粒体状樹脂として特に説明をしなかったが、当該樹脂は粉状や、粒状であってもよいし、小径のタブレットでもよい。若しくはそれらの混合物であってもよい。   Moreover, in the said embodiment, although it did not demonstrate in particular as a granular resin, the said resin may be a powder form, a granular form, and a small diameter tablet may be sufficient as it. Alternatively, a mixture thereof may be used.

100…樹脂封止装置
102、202…粉粒体状樹脂
106、206…予備的融着樹脂
112…予備的融着部
114…圧縮成形部
116、216、316…離型フィルム
126、326…原料供給機
128、228…ホットプレート
130、230、330…搬送ハンド
132、232、332…吸着機構
134、334…赤外線ヒータ
136…断熱部材
138、238…支持板
140…温度センサ
142…3軸移動機構
150…圧縮成形機
160…金型
162…上型
164…下型
234…電熱線式ヒータ
306…予備成形樹脂
312…予備成形部
317…上離型フィルム
318…離型フィルム供給機構
321A…加熱成形機構
321B…冷却機構
322…移動機構
323…トレイ
DESCRIPTION OF SYMBOLS 100 ... Resin sealing apparatus 102, 202 ... Granular resin 106, 206 ... Preliminary fusion resin 112 ... Preliminary fusion part 114 ... Compression molding part 116, 216, 316 ... Release film 126, 326 ... Raw material Feeder 128, 228 ... Hot plate 130, 230, 330 ... Transport hand 132, 232, 332 ... Adsorption mechanism 134, 334 ... Infrared heater 136 ... Thermal insulation member 138, 238 ... Support plate 140 ... Temperature sensor 142 ... Three-axis movement mechanism DESCRIPTION OF SYMBOLS 150 ... Compression molding machine 160 ... Mold 162 ... Upper mold 164 ... Lower mold 234 ... Heating wire type heater 306 ... Pre-molding resin 312 ... Pre-molding part 317 ... Upper release film 318 ... Release mold film supply mechanism 321A ... Heat molding Mechanism 321B ... Cooling mechanism 322 ... Moving mechanism 323 ... Tray

Claims (6)

粉粒体状樹脂を用いて金型で被成形品の樹脂封止をする樹脂封止装置であって、
前記粉粒体状樹脂が搭載される離型フィルムと、
該離型フィルムを保持する保持手段と、
該保持手段を該離型フィルムと一緒に搬送して前記金型に該離型フィルムを配置させる搬送手段と、
該搬送手段に設けられると共に、該搬送手段の搬送経路において搬送中の離型フィルムに搭載された前記粉粒体状樹脂に対して熱を付与可能な第1加熱手段と、
を備えることを特徴とする樹脂封止装置。
A resin sealing device for sealing a molded product with a mold using a granular resin,
A release film on which the granular resin is mounted;
Holding means for holding the release film;
Conveying means for conveying the holding means together with the release film and disposing the release film on the mold;
A first heating unit that is provided in the transport unit and is capable of applying heat to the granular resin mounted on the release film being transported in the transport path of the transport unit;
A resin sealing device comprising:
請求項1において、更に、
前記離型フィルムに搭載された前記粉粒体状樹脂であって前記搬送手段による搬送前の粉粒体状樹脂に対して熱を付与可能な第2加熱手段を備える
ことを特徴とする樹脂封止装置。
In claim 1, further comprising:
Resin sealing, comprising: a second heating unit that is the granular resin mounted on the release film and that can apply heat to the granular resin before transporting by the transporting unit. Stop device.
請求項1において、更に、
前記離型フィルムに搭載された前記粉粒体状樹脂であって前記搬送手段による搬送前の粉粒体状樹脂に対して熱を付与して軟化状態とし、且つ所定の形状に成形する第3加熱手段と、
該第3加熱手段で成形された該粉粒体状樹脂を冷却する冷却手段と、
を備えることを特徴とする樹脂封止装置。
In claim 1, further comprising:
Third, the granular resin mounted on the release film is softened by applying heat to the granular resin before being conveyed by the conveying means, and is molded into a predetermined shape. Heating means;
Cooling means for cooling the granular resin formed by the third heating means;
A resin sealing device comprising:
請求項1乃至3のいずれかにおいて、更に、
前記搬送手段は、前記保持手段で前記離型フィルムを保持した際に、該離型フィルム上の該粉粒体状樹脂を密封可能な構造とされている
ことを特徴とする樹脂封止装置。
In any one of Claims 1 thru | or 3, Furthermore,
The transporting means has a structure capable of sealing the granular resin on the release film when the release film is held by the holding means.
請求項1乃至4のいずれかにおいて、更に、
前記搬送手段は、前記搬送中の粉粒体状樹脂の温度を測定する温度センサを備える
ことを特徴とする樹脂封止装置。
In any one of Claims 1 thru | or 4, Furthermore,
The transporting device includes a temperature sensor that measures the temperature of the granular resin during transport.
粉粒体状樹脂を用いて金型で被成形品の樹脂封止をする樹脂封止方法であって、
前記粉粒体状樹脂を離型フィルム上に搭載する搭載工程と、
該離型フィルムを保持する保持工程と、
該離型フィルムを搬送して前記金型に配置させる搬送工程と、
該搬送工程の際に、前記離型フィルムに搭載された前記粉粒体状樹脂に熱を付与する加熱工程と、
を含むことを特徴とする樹脂封止方法。
A resin sealing method for sealing a molded product with a mold using a granular resin,
A mounting step of mounting the granular resin on a release film;
Holding step for holding the release film;
A transporting process for transporting the release film and placing it on the mold;
A heating step of applying heat to the granular resin mounted on the release film during the transporting step;
A resin sealing method comprising:
JP2009183810A 2009-08-06 2009-08-06 Resin sealing device and resin sealing method Active JP5550864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183810A JP5550864B2 (en) 2009-08-06 2009-08-06 Resin sealing device and resin sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183810A JP5550864B2 (en) 2009-08-06 2009-08-06 Resin sealing device and resin sealing method

Publications (2)

Publication Number Publication Date
JP2011037032A true JP2011037032A (en) 2011-02-24
JP5550864B2 JP5550864B2 (en) 2014-07-16

Family

ID=43765340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183810A Active JP5550864B2 (en) 2009-08-06 2009-08-06 Resin sealing device and resin sealing method

Country Status (1)

Country Link
JP (1) JP5550864B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037031A (en) * 2009-08-06 2011-02-24 Sumitomo Heavy Ind Ltd Resin sealing device and resin sealing method
JP2014188840A (en) * 2013-03-27 2014-10-06 Nec Corp Welding apparatus and welding method
JP2015066848A (en) * 2013-09-30 2015-04-13 日本電気株式会社 Welding device and welding method
KR101751080B1 (en) * 2011-09-19 2017-06-26 비스테온 글로벌 테크놀로지스, 인크. System for the manufacture of duplicate-molded pieces
JP2017196752A (en) * 2016-04-25 2017-11-02 Towa株式会社 Resin molding device, resin molding method, method for manufacturing resin molding, and method for manufacturing product
EP3473399A1 (en) * 2016-06-17 2019-04-24 Aisin Seiki Kabushiki Kaisha Production method and production device for thermoplastic resin composite material
WO2019112043A1 (en) * 2017-12-08 2019-06-13 本田技研工業株式会社 Apparatus for manufacturing thermoplastic resin material
JP2019166720A (en) * 2018-03-23 2019-10-03 アピックヤマダ株式会社 Resin molding apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211166558U (en) 2019-11-14 2020-08-04 明门(中国)幼童用品有限公司 Roof adjusting structure and child safety seat with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165631A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Preheating method for sealing resin
JP2004148621A (en) * 2002-10-30 2004-05-27 Apic Yamada Corp Resin molding method, resin molding apparatus, and supporting tool used in the apparatus
JP2008254266A (en) * 2007-04-03 2008-10-23 Towa Corp Method and apparatus for compression-molding electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165631A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Preheating method for sealing resin
JP2004148621A (en) * 2002-10-30 2004-05-27 Apic Yamada Corp Resin molding method, resin molding apparatus, and supporting tool used in the apparatus
JP2008254266A (en) * 2007-04-03 2008-10-23 Towa Corp Method and apparatus for compression-molding electronic component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037031A (en) * 2009-08-06 2011-02-24 Sumitomo Heavy Ind Ltd Resin sealing device and resin sealing method
KR101751080B1 (en) * 2011-09-19 2017-06-26 비스테온 글로벌 테크놀로지스, 인크. System for the manufacture of duplicate-molded pieces
JP2014188840A (en) * 2013-03-27 2014-10-06 Nec Corp Welding apparatus and welding method
JP2015066848A (en) * 2013-09-30 2015-04-13 日本電気株式会社 Welding device and welding method
JP2017196752A (en) * 2016-04-25 2017-11-02 Towa株式会社 Resin molding device, resin molding method, method for manufacturing resin molding, and method for manufacturing product
EP3473399A1 (en) * 2016-06-17 2019-04-24 Aisin Seiki Kabushiki Kaisha Production method and production device for thermoplastic resin composite material
EP3473399A4 (en) * 2016-06-17 2020-02-19 Aisin Seiki Kabushiki Kaisha Production method and production device for thermoplastic resin composite material
EP3473399B1 (en) 2016-06-17 2021-06-30 Aisin Seiki Kabushiki Kaisha Production method and production device for thermoplastic resin composite material
US11203136B2 (en) 2016-06-17 2021-12-21 Honda Motor Co., Ltd. Production method for the thermoplastic resin composite material
WO2019112043A1 (en) * 2017-12-08 2019-06-13 本田技研工業株式会社 Apparatus for manufacturing thermoplastic resin material
US11780124B2 (en) 2017-12-08 2023-10-10 Honda Motor Co., Ltd. Apparatus for manufacturing thermoplastic resin material
JP2019166720A (en) * 2018-03-23 2019-10-03 アピックヤマダ株式会社 Resin molding apparatus

Also Published As

Publication number Publication date
JP5550864B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5550864B2 (en) Resin sealing device and resin sealing method
KR102203781B1 (en) Resin molding device and resin molding method
JP7084349B2 (en) Resin molding equipment and manufacturing method of resin molded products
CN109382967B (en) Conveying mechanism, resin molding apparatus, method for transferring molding object to mold, and method for manufacturing resin molded article
TWI543276B (en) Resin-encapsulation apparatus and manufacturing method of resin-encapsulated electronic component
TWI706908B (en) Conveying device, resin molding device, and manufacturing method of resin molded product
TWI688055B (en) Resin molding device and method for manufacturing resin molded product
TWI795615B (en) Resin molding device and method for manufacturing resin molded product
TWI688056B (en) Resin molding device and method for manufacturing resin molded product
KR102266607B1 (en) Resin molding apparatus and method for manufacturing resin molded article
JP2014231185A (en) Resin molding apparatus and resin molding method
JP5248453B2 (en) Resin sealing device and resin sealing method
JP2010162710A (en) Resin sealing device and resin sealing method
JP7084348B2 (en) Resin molding equipment and manufacturing method of resin molded products
TW201731777A (en) Glass forming furnace
KR101667864B1 (en) Resin sealing device and resin sealing method
JP5336974B2 (en) Resin sealing device and resin sealing method
JP5388810B2 (en) Resin sealing device and resin sealing method
JP5197398B2 (en) Preliminary fusion resin used for resin sealing
JP6499941B2 (en) Resin molding method and resin molding apparatus
JP2023058834A (en) Compression molding apparatus
JP5856007B2 (en) Resin sealing method and resin sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5550864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250