JP2011036834A - Catalyst for cleaning exhaust, and method of producing the same - Google Patents

Catalyst for cleaning exhaust, and method of producing the same Download PDF

Info

Publication number
JP2011036834A
JP2011036834A JP2009189185A JP2009189185A JP2011036834A JP 2011036834 A JP2011036834 A JP 2011036834A JP 2009189185 A JP2009189185 A JP 2009189185A JP 2009189185 A JP2009189185 A JP 2009189185A JP 2011036834 A JP2011036834 A JP 2011036834A
Authority
JP
Japan
Prior art keywords
composite oxide
powder
catalyst
specific
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009189185A
Other languages
Japanese (ja)
Other versions
JP5589321B2 (en
Inventor
Masaaki Akamine
真明 赤峰
Hideji Iwakuni
秀治 岩国
Hisaya Kawabata
久也 川端
Yasuhiro Ochi
康博 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009189185A priority Critical patent/JP5589321B2/en
Publication of JP2011036834A publication Critical patent/JP2011036834A/en
Application granted granted Critical
Publication of JP5589321B2 publication Critical patent/JP5589321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To utilize a Ce-containing complex oxide whereon catalytic metal is supported, in a catalyst for cleaning exhaust. <P>SOLUTION: Specific Ce-containing complex oxide powder 4 constituted of secondary particles formed of a plurality of primary particles of a mean diameter of not smaller than 5 nm and not greater than 10 nm agglomerating together whereon catalytic metal is dispersed and supported, with the secondary particles having a particle diameter at 10 mass% of the cumulative distribution thereof of not smaller than 90 nm, a particle diameter at 50 mass% of the cumulative distribution thereof of not smaller than 150 nm and not greater than 210 nm, and a particle diameter at 90 mass% of the cumulative distribution thereof of not greater than 300 nm, is employed as Ce-containing complex oxide powder and is mixed with activated alumina powder 5 having a mean particle diameter greater than that of the secondary particles at 90 mass% of the cumulative distribution, keeping the mass ratio of the specific Ce-containing complex oxide powder 4 relative to the activated alumina powder 5 in a range of not lower than 1/100 and not higher than 50/100. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気ガス浄化用触媒およびその製造方法に関する。   The present invention relates to an exhaust gas purification catalyst and a method for producing the same.

排気ガス浄化用触媒では、触媒金属の凝集による性能の低下が従来より問題になっている。この触媒金属の凝集は、触媒が高温の排気ガスに晒されることによって生ずる。例えば、自動車エンジンの排気マニホールドに直結される排気ガス浄化用触媒では、触媒温度が1100℃程度の高温になることがある。触媒金属を活性アルミナのような大きな比表面積を有するサポート材に分散担持させても、その触媒金属が次第に凝集していくことは避けられない。従来の触媒では、触媒金属が凝集してもある程度の触媒性能が得られるように、触媒金属量が多めになっている。しかし、触媒金属として一般に採用されるPt、Pd、Rh等の貴金属は高価であり、しかも、近年はそのようなレアメタル資源の確保が求められている。   In exhaust gas purifying catalysts, performance degradation due to agglomeration of catalytic metals has been a problem. This agglomeration of the catalytic metal occurs when the catalyst is exposed to hot exhaust gas. For example, an exhaust gas purification catalyst directly connected to an exhaust manifold of an automobile engine may have a catalyst temperature as high as about 1100 ° C. Even when the catalyst metal is dispersed and supported on a support material having a large specific surface area such as activated alumina, it is inevitable that the catalyst metal gradually aggregates. In conventional catalysts, the amount of catalyst metal is large so that a certain degree of catalyst performance can be obtained even if the catalyst metal aggregates. However, noble metals such as Pt, Pd, and Rh that are generally employed as catalyst metals are expensive, and in recent years, it is required to secure such rare metal resources.

これに対して、触媒金属を活性アルミナ等の表面に担持するだけでなく、排気ガスの空燃比の変動に応じて酸素を吸蔵・放出する酸素吸蔵放出材として機能するCeZr系複合酸化物に触媒金属を固溶させることが行なわれている(特許文献1,2)。このCeZr系複合酸化物に触媒金属を固溶させると、その酸素吸蔵放出能が大幅に改善される。そのため、この触媒金属を固溶したCeZr系複合酸化物を三元触媒に使用し、理論空燃比を中心として排気ガスの空燃比をリーンとリッチとに繰り返し変化させると、少ない触媒金属量でも優れた排気ガス浄化性能が得られる。   On the other hand, the catalyst metal is not only supported on the surface of activated alumina or the like, but also catalyzed by a CeZr-based composite oxide that functions as an oxygen storage / release material that stores and releases oxygen in response to fluctuations in the air-fuel ratio of the exhaust gas. Metals are dissolved (Patent Documents 1 and 2). When a catalytic metal is dissolved in this CeZr-based composite oxide, its oxygen storage / release capability is greatly improved. For this reason, using a CeZr-based composite oxide in which this catalytic metal is dissolved in a three-way catalyst and repeatedly changing the air-fuel ratio of the exhaust gas to lean and rich centering on the theoretical air-fuel ratio is excellent even with a small amount of catalyst metal Exhaust gas purification performance can be obtained.

また、アルミナに微細な酸素吸蔵材粒子(Ce含有複合酸化物粒子)と触媒貴金属とを担持させることによって触媒性能を向上させるという提案も知られている。例えば特許文献3には、アルミナ粉末とセリウム酸化物ゾルを含むスラリーをコートし焼成し、そのコート層にジルコニウム化合物溶液を含浸させて焼成することにより、セリウム酸化物とジルコニウム酸化物とが互いに固溶した平均粒径5〜100nmの固溶体をアルミナ粒子上に形成し、さらに、当該コート層に触媒貴金属を担持すること、固溶体の平均粒径5〜100nmとすることにより、酸素吸蔵効果が充分に発揮され、しかもアルミナの細孔の閉塞が防止されることが記載されている。   There is also known a proposal that catalyst performance is improved by supporting fine oxygen storage material particles (Ce-containing composite oxide particles) and catalytic noble metal on alumina. For example, in Patent Document 3, a slurry containing alumina powder and a cerium oxide sol is coated and fired, and the coat layer is impregnated with a zirconium compound solution and fired, whereby the cerium oxide and the zirconium oxide are fixed to each other. A dissolved solid solution having an average particle diameter of 5 to 100 nm is formed on the alumina particles, and further, the catalyst layer is loaded with the catalyst noble metal, and the average particle diameter of the solid solution is set to 5 to 100 nm. It is demonstrated that blockage of the pores of alumina is prevented.

また、特許文献4には、一次粒子径6nm、二次粒子径10μmのセリア粉末をジルコニア粉末又は硝酸ジルコニル水溶液と共に攪拌ミルに投入して粉砕することにより、セリアとジルコニアとが互いに固溶し且つ50質量%以上の粒子の粒径が100nm以下である触媒粉末を得ること、得られた触媒粉末を2.5重量倍のγアルミナと混合し、さらにPt及びRhを添加して排気ガス浄化用触媒とすること、粒径を上記のように設定することにより、粉末の比表面積が高くなり、酸素吸蔵効果が高くなることが記載されている。   Patent Document 4 discloses that ceria powder having a primary particle diameter of 6 nm and a secondary particle diameter of 10 μm is put into a stirring mill together with zirconia powder or an aqueous solution of zirconyl nitrate and pulverized, so that ceria and zirconia are dissolved in each other and Obtaining a catalyst powder having a particle size of 50% by mass or more and a particle size of 100 nm or less, mixing the obtained catalyst powder with 2.5 times by weight of γ-alumina, and further adding Pt and Rh for exhaust gas purification It is described that by using a catalyst and setting the particle size as described above, the specific surface area of the powder is increased and the oxygen storage effect is increased.

特開2005−161143号公報JP 2005-161143 A 特開2006−334490号公報JP 2006-334490 A 特開平8−155302号公報JP-A-8-155302 特開平8−333116号公報JP-A-8-333116

しかし、特許文献3,4は、Ce含有複合酸化物粉末の粒径を、酸素吸蔵効果の向上という観点から、アルミナの細孔を閉塞することにならない限度において、できるだけ小さくすることを開示するが、そこには、Ce含有複合酸化物粉末の凝集防止の観点が欠けている。すなわち、過度に微細なCe含有複合酸化物粉末を触媒に使用すると、触媒が高温になったときに、Ce含有複合酸化物粉末が、微細であるがために、アルミナ粒子上で凝集し、早期の性能低下を招き易くなる。   However, Patent Documents 3 and 4 disclose that the particle diameter of the Ce-containing composite oxide powder is made as small as possible without limiting the pores of alumina from the viewpoint of improving the oxygen storage effect. There is a lack of aggregation prevention of the Ce-containing composite oxide powder. That is, when an excessively fine Ce-containing composite oxide powder is used as a catalyst, when the catalyst becomes high temperature, the Ce-containing composite oxide powder is agglomerated on the alumina particles because it is fine, It becomes easy to invite the performance fall.

また、特許文献4には、一次粒子径6nm、二次粒子径10μmのセリア粉末を粉砕して50質量%以上の粒子の粒径が100nm以下になるように微細化することが記載されているが、その場合、一次粒子も破壊されるため、一次粒子間の細孔も極めて微細なものになり、二次粒子の表面に存する一次粒子は優れた酸素吸蔵効果を発揮するとしても、内部に埋もれている一次粒子には排気ガスが接触し難くなるため、仮に個々の一次粒子に触媒金属が担持されていても、高い酸素吸蔵放出能ないしは触媒活性は望めない。さらに、本特許文献4は、粉砕エネルギーによってセリアと、ジルコニウム又はセリウムを除く希土類元素とを固溶させるものであるため、10時間乃至50時間という長い処理時間が必要で、効率的とは言えない。   Patent Document 4 describes that a ceria powder having a primary particle diameter of 6 nm and a secondary particle diameter of 10 μm is pulverized and refined so that the particle diameter of 50% by mass or more becomes 100 nm or less. However, in this case, since the primary particles are also destroyed, the pores between the primary particles become very fine, and even though the primary particles existing on the surface of the secondary particles exhibit an excellent oxygen storage effect, Since the exhaust gas is difficult to come into contact with the buried primary particles, a high oxygen storage / release capacity or catalytic activity cannot be expected even if a catalyst metal is supported on each primary particle. Furthermore, since this patent document 4 dissolves ceria and rare earth elements excluding zirconium or cerium by pulverization energy, a long treatment time of 10 to 50 hours is required, which is not efficient. .

かかる点に鑑み、本発明では、酸素吸蔵放出能を有するCe含有複合酸化物(Ceイオンと他の金属イオンとを含む酸化物)粉末の一次粒子径及び二次粒子径を、触媒の分野においては月並みな単なる微細化という観点ではなく、内部に埋もれている一次粒子の有効利用の観点、Ce含有複合酸化物粉末の凝集防止の観点から見直している。すなわち、本発明者が、Ce含有複合酸化物粉末の一次粒子径及び二次粒子径を上記観点から検討したところ、それら粒径の制御及び活性アルミナ粉末の粒径の制御により、排気ガス浄化性能の向上に驚く効果が得られたものである。以下、具体的に説明する。   In view of this point, in the present invention, in the present invention, the primary particle size and the secondary particle size of Ce-containing complex oxide (oxide containing Ce ions and other metal ions) powder having oxygen storage / release ability are determined. Is reviewed from the viewpoint of effective utilization of primary particles buried inside, and the prevention of agglomeration of Ce-containing composite oxide powders, not from the viewpoint of mere miniaturization as usual. That is, the present inventor examined the primary particle size and the secondary particle size of the Ce-containing composite oxide powder from the above viewpoint. By controlling the particle size and the particle size of the activated alumina powder, the exhaust gas purification performance A surprising effect was obtained in the improvement. This will be specifically described below.

本発明は、触媒金属を担持したCe含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する触媒層が担体上に設けられている排気ガス浄化用触媒であって、
上記触媒金属を担持したCe含有複合酸化物粉末は、上記触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末であり、
上記活性アルミナ粉末の平均粒径は、上記特定Ce含有複合酸化物粉末の上記累積分布90質量%粒径よりも大きく、
上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上50/100以下であることを特徴とする。
The present invention is an exhaust gas purification catalyst in which a catalyst layer containing a Ce-containing composite oxide powder supporting a catalytic metal and an activated alumina powder in a mixed state is provided on a carrier,
The Ce-containing composite oxide powder supporting the catalyst metal is composed of secondary particles formed by aggregation of a large number of primary particles having an average particle diameter of 5 nm to 10 nm on which the catalyst metal is dispersed and supported. A specific Ce-containing composite oxide powder having a cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of from 150 nm to 210 nm, and a cumulative distribution of 90% by mass of particle size of 300 nm or less.
The average particle size of the activated alumina powder is larger than the cumulative distribution 90 mass% particle size of the specific Ce-containing composite oxide powder,
The mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is 1/100 or more and 50/100 or less.

ここに、触媒層において特定Ce含有複合酸化物粉末と活性アルミナ粉末とが混合状態にあれば、特定Ce含有複合酸化物粉末の少なくとも一部の粒子は活性アルミナ粉末の粒子に接触した状態になる。その場合、上述の如く、活性アルミナ粉末の粒径が特定Ce含有複合酸化物粉末の上記累積分布90質量%粒径よりも大きいから、特定Ce含有複合酸化物粒子が活性アルミナ粒子に分散して担持された状態になる。   Here, if the specific Ce-containing composite oxide powder and the active alumina powder are in a mixed state in the catalyst layer, at least some of the particles of the specific Ce-containing composite oxide powder are in contact with the particles of the active alumina powder. . In that case, as described above, since the particle size of the activated alumina powder is larger than the 90 mass% particle size of the specific Ce-containing composite oxide powder, the specific Ce-containing composite oxide particles are dispersed in the activated alumina particles. It becomes a supported state.

そうして、特定Ce含有複合酸化物粉末は、二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下であるから、触媒が高温になったときの粒子の凝集が抑制される一方で、比較的高い酸素吸蔵放出能が得られる。すなわち、累積分布10質量%粒径が90nm以上であることにより、触媒が高温になったときの粒子の凝集防止に有利になり、累積分布90質量%粒径が300nm以下であることにより、比較的高い酸素吸蔵放出能が得られる。特に活性アルミナ粒子上に担持されている特定Ce含有複合酸化物粒子の分散安定化が図れ、触媒性能の維持に有利になる。   Thus, the specific Ce-containing composite oxide powder has a secondary particle cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of 150 nm or more and 210 nm or less, and a cumulative distribution of 90% by mass particle size of 300 nm. Since it is the following, the aggregation of particles when the temperature of the catalyst becomes high is suppressed, while a relatively high oxygen storage / release capability can be obtained. That is, when the cumulative distribution 10 mass% particle size is 90 nm or more, it is advantageous for preventing aggregation of the particles when the catalyst becomes high temperature, and the cumulative distribution 90 mass% particle size is 300 nm or less, High oxygen storage / release capability can be obtained. In particular, it is possible to stabilize the dispersion of the specific Ce-containing composite oxide particles supported on the activated alumina particles, which is advantageous for maintaining the catalyst performance.

しかも、特定Ce含有複合酸化物粉末の一次粒子の平均粒径が5nm以上10nm以下であるということは、該Ce含有複合酸化物粉末の各粒子(二次粒子)においては、一次粒子間に、排気ガスが比較的円滑に流入する細孔が形成されているということである。従って、一次粒子に分散担持されている触媒金属が、排気ガスとの接触により、当該Ce含有複合酸化物の酸素吸蔵放出能の助長及び排気ガスの浄化に有効に働く。   In addition, the average particle size of the primary particles of the specific Ce-containing composite oxide powder is 5 nm or more and 10 nm or less, and in each particle (secondary particle) of the Ce-containing composite oxide powder, That is, the pores into which the exhaust gas flows relatively smoothly are formed. Therefore, the catalyst metal dispersedly supported on the primary particles effectively works to promote the oxygen storage / release capability of the Ce-containing composite oxide and to purify the exhaust gas through contact with the exhaust gas.

さらに、上記活性アルミナ粉末に対する特定Ce含有複合酸化物粉末の質量比が1/100以上50/100以下であるから、Ce含有複合酸化物粉末の酸素吸蔵放出能による排気ガス浄化性能の向上に有利になる。すなわち、その質量比が1/100未満であれば、Ce含有複合酸化物粉末が有する酸素吸蔵放出能の排気ガス浄化への利用が充分に図れず、50/100を超える質量比になると、特定Ce含有複合酸化物粉末の凝集が進み易くなるだけで、排気ガス浄化性能の向上にはかえって不利になる。   Furthermore, since the mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is 1/100 or more and 50/100 or less, it is advantageous for improving the exhaust gas purification performance due to the oxygen storage / release ability of the Ce-containing composite oxide powder. become. That is, if the mass ratio is less than 1/100, the oxygen storage / release ability of the Ce-containing composite oxide powder cannot be sufficiently utilized for exhaust gas purification, and if the mass ratio exceeds 50/100, Only the aggregation of the Ce-containing composite oxide powder is facilitated, which is disadvantageous for improving the exhaust gas purification performance.

上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上30/100以下であることが好ましい。   The mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is preferably 1/100 or more and 30/100 or less.

好ましい実施形態では、活性アルミナ粉末の平均粒径は5μm以上30μm以下である。   In a preferred embodiment, the average particle size of the activated alumina powder is 5 μm or more and 30 μm or less.

特定Ce含有複合酸化物粉末として好ましいのは、CeOとZrOとの質量比が同じか、ZrOがリッチ(ZrO含有量がCeO含有量よりも多い)である複合酸化物(Ce及びZrの各イオンを含む酸化物)粉末であり、また、他の金属成分として好ましいのはNdである。Ndを添加した特定Ce含有複合酸化物(Ce、Zr及びNdの各イオンを含む酸化物)の場合、好ましい組成(質量比)は、CeO:ZrO:Nd=(5〜45):(45〜85):(5〜20)である。触媒金属の担持量は0.01質量%以上20質量%以下であることが好ましい。Nd以外の他の金属成分としては、例えばPr、Y、La、Hf、Ba、Sr、Ca、K、Mgがあげられる。触媒金属としては、Pd、Pt、Rh、In、Au、Agがあげられる。 Preferred as certain Ce-containing composite oxide powder, or the mass ratio of CeO 2 and ZrO 2 are the same, the composite oxide ZrO 2 is rich (ZrO 2 content is more than CeO 2 content) (Ce And oxides containing each ion of Zr) and Nd is preferred as the other metal component. In the case of a specific Ce-containing composite oxide to which Nd is added (an oxide containing Ce, Zr and Nd ions), the preferred composition (mass ratio) is CeO 2 : ZrO 2 : Nd 2 O 3 = (5-45 ): (45-85): (5-20). The amount of catalyst metal supported is preferably 0.01% by mass or more and 20% by mass or less. Examples of other metal components other than Nd include Pr, Y, La, Hf, Ba, Sr, Ca, K, and Mg. Examples of the catalyst metal include Pd, Pt, Rh, In, Au, and Ag.

好ましい実施形態では、上記担体上に複数の触媒層が積層され、該複数の触媒層のうちの一つが、上記触媒金属を担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する。   In a preferred embodiment, a plurality of catalyst layers are laminated on the support, and one of the plurality of catalyst layers is a mixture of the specific Ce-containing composite oxide powder supporting the catalyst metal and the activated alumina powder. contains.

また、好ましい実施形態では、上記複数の触媒層のうち表面が排気ガスに晒される上側触媒層よりも下側の触媒層が、上記触媒金属を担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有し、該特定Ce含有複合酸化物粉末が上記触媒金属としてPdを担持している。すなわち、Pdは、PtやRhと比較して劣化し易く、イオウ被毒やリン被毒を生じ易い。そこで、特定Ce含有複合酸化物粉末が触媒金属としてPdを担持する場合は、これを下側触媒層に配置すると、上側触媒層によってPdが保護され、上記熱劣化及び被毒の問題が軽減される。   Further, in a preferred embodiment, a specific Ce-containing composite oxide powder and an activated alumina powder in which the catalyst layer below the upper catalyst layer whose surface is exposed to exhaust gas among the plurality of catalyst layers carries the catalyst metal. In a mixed state, and the specific Ce-containing composite oxide powder carries Pd as the catalyst metal. That is, Pd is more likely to be deteriorated than Pt and Rh, and sulfur poisoning and phosphorus poisoning are likely to occur. Therefore, when the specific Ce-containing composite oxide powder carries Pd as a catalyst metal, if this is placed in the lower catalyst layer, the upper catalyst layer protects Pd, and the above problems of thermal degradation and poisoning are reduced. The

下側触媒層が特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する場合は、上記活性アルミナ粉末に触媒金属としてPdを担持することが好ましい。   When the lower catalyst layer contains the specific Ce-containing composite oxide powder and the activated alumina powder in a mixed state, it is preferable to support Pd as a catalyst metal on the activated alumina powder.

下側触媒層が特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する場合は、さらに一次粒子及び二次粒子の平均粒径が上記特定Ce含有複合酸化物粉末よりも大きな別のCe含有複合酸化物粉末を含め、該下側触媒層において、特定Ce含有複合酸化物粉末と活性アルミナ粉末と上記別のCe含有複合酸化物とが混合された状態にすることが好ましい。これにより、上記触媒金属を担持した特定Ce含有複合酸化物粉末の粒子を活性アルミナ粉末の粒子及び上記粒径が大きな別のCe含有複合酸化物粉末の粒子に担持させることができ、該触媒金属を担持した特定Ce含有複合酸化物粉末の分散安定性が図れ、排気ガス浄化性能の向上に有利になる。   When the lower catalyst layer contains the specific Ce-containing composite oxide powder and the activated alumina powder in a mixed state, the average particle diameter of the primary particles and the secondary particles is larger than that of the specific Ce-containing composite oxide powder. In the lower catalyst layer, including the Ce-containing composite oxide powder, it is preferable that the specific Ce-containing composite oxide powder, the activated alumina powder, and the other Ce-containing composite oxide are mixed. As a result, the particles of the specific Ce-containing composite oxide powder supporting the catalyst metal can be supported on the particles of the activated alumina powder and the particles of another Ce-containing composite oxide powder having a large particle size. Dispersion stability of the specific Ce-containing composite oxide powder supporting bismuth can be achieved, which is advantageous in improving exhaust gas purification performance.

担体上に複数の触媒層を積層するケースにおいて、上記特定Ce含有複合酸化物粉末に触媒金属としてRhを担持する場合は、複数の触媒層のうち表面が排気ガスに晒される上側触媒層に、当該Rhを担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で設けることが好ましい。これにより、特定Ce含有複合酸化物粉末の酸素吸蔵放出能によって排気ガスの空燃比変動を吸収し、RhによってHC、CO及びNOxを効率良く浄化する上で有利になる。   In the case of laminating a plurality of catalyst layers on a support, when the specific Ce-containing composite oxide powder supports Rh as a catalyst metal, the upper catalyst layer whose surface is exposed to exhaust gas among the plurality of catalyst layers, It is preferable to provide the specific Ce-containing composite oxide powder supporting Rh and the activated alumina powder in a mixed state. Thereby, the oxygen storage capacity of the specific Ce-containing composite oxide powder absorbs the air-fuel ratio fluctuation of the exhaust gas, which is advantageous for efficiently purifying HC, CO and NOx by Rh.

上側触媒層にRhを担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で設けるケースにおいて、該活性アルミナ粉末の一部には、ZrとLaとを含むZrLa複合酸化物と、上記特定Ce含有複合酸化物粉末の粒子とが共存担持されていることが好ましい。すなわち、Rhは酸化状態にあるときにHCやCOを効率良く酸化浄化し、同時にNOxの還元浄化が進むところ、上記共存担持形態にすると、雰囲気(排気ガスの空燃比)がリーンからリッチに変わってもZrLa複合酸化物がRhを酸化状態に保つように働く。これは、上記共存担持により、ZrLa複合酸化物とRhとの間にLa−O−Rhの結合が形成され易くなり、Laの働きによってRhが酸化状態をとり易くなっていると考えられる。   In the case where the specific Ce-containing composite oxide powder supporting Rh on the upper catalyst layer and the active alumina powder are provided in a mixed state, a part of the active alumina powder includes a ZrLa composite oxide containing Zr and La, It is preferable that particles of the specific Ce-containing composite oxide powder are coexistingly supported. In other words, Rh efficiently oxidizes and purifies HC and CO when in an oxidized state, and at the same time the reduction and purification of NOx proceeds, the atmosphere (exhaust gas air-fuel ratio) changes from lean to rich when the above-mentioned coexistence support mode is adopted. Even so, the ZrLa composite oxide works to keep Rh in an oxidized state. It is considered that this coexistence loading facilitates formation of a La—O—Rh bond between the ZrLa composite oxide and Rh, and Rh easily takes an oxidized state by the action of La.

また、上述の如くRhは、酸化状態になり易いから、HCやCOとの反応によって酸素がとれると、周囲から新たな酸素原子を取り込むように働く。その結果、特定Ce含有複合酸化物から酸素が盛んに放出されるようになる。つまり、該特定Ce含有複合酸化物粉末の酸素吸蔵放出能も高まる。   Further, as described above, Rh tends to be in an oxidized state, so that when oxygen is removed by reaction with HC or CO, it functions to take in new oxygen atoms from the surroundings. As a result, oxygen is actively released from the specific Ce-containing composite oxide. That is, the oxygen storage / release capability of the specific Ce-containing composite oxide powder is also increased.

好ましいのは、上記活性アルミナ粉末は、上記触媒金属を担持した特定Ce含有酸化物粉末をバインダとして上記担体に保持されていることである。   Preferably, the activated alumina powder is supported on the carrier using the specific Ce-containing oxide powder supporting the catalyst metal as a binder.

すなわち、上記特定Ce含有酸化物粉末は、酸素吸蔵放出材として働くだけでなく、それが、累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下の微細二次粒子によって構成されているから、活性アルミナ粉末、さらには必要に応じて添加される他の触媒粉末の粒子間に介在して、それらの粒子同士を結合するとともに、担体表面の多数の微小凹部ないし細孔に入り、触媒層が担体から剥離しないようにするバインダとしても機能することができる。そして、この特定Ce含有酸化物粉末をバインダとして利用することにより、専用のバインダ量を減らし、或いは零にすることが可能になり、触媒の軽量化、コスト低減に有利になる。   That is, the specific Ce-containing oxide powder not only functions as an oxygen storage / release material, but also has a cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of 150 nm to 210 nm, and a cumulative distribution. Since the 90 mass% particle size is composed of fine secondary particles of 300 nm or less, it is interposed between particles of activated alumina powder, and other catalyst powder added as necessary, and these particles are interlinked. In addition to being bonded, it can also function as a binder that enters a large number of minute recesses or pores on the surface of the carrier and prevents the catalyst layer from peeling off from the carrier. By using this specific Ce-containing oxide powder as a binder, the amount of the dedicated binder can be reduced or made zero, which is advantageous for reducing the weight and cost of the catalyst.

本発明の別の観点は、上述の如き排気ガス浄化用触媒の製造方法であって、
Ce含有複合酸化物粉末に触媒金属を担持させる工程と、
上記触媒金属を担持したCe含有複合酸化物粉末を粉砕することにより、該触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末にする工程と、
上記触媒金属を担持した特定Ce含有複合酸化物粉末と、該特定Ce含有複合酸化物粉末の上記累積分布90質量%粒径よりも平均粒径が大きい活性アルミナ粉末とを含むスラリーを調製する工程と、
上記スラリーを担体にコーティングして触媒層を形成する工程とを備え、
上記スラリー調製工程においては、上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上50/100以下となるようにすることを特徴とする。
Another aspect of the present invention is a method for producing an exhaust gas purification catalyst as described above,
A step of supporting a catalytic metal on Ce-containing composite oxide powder;
By pulverizing the Ce-containing composite oxide powder supporting the catalyst metal, secondary particles formed by aggregating a large number of primary particles having an average particle diameter of 5 nm to 10 nm on which the catalyst metal is dispersed and supported, A specific Ce-containing composite oxide powder having a cumulative distribution of 10% by mass of the secondary particles of 90 nm or more, a cumulative distribution of 50% by mass of 150 to 210 nm, and a cumulative distribution of 90% by mass of 300% or less is used. Process,
A step of preparing a slurry comprising the specific Ce-containing composite oxide powder supporting the catalyst metal, and an activated alumina powder having an average particle size larger than the cumulative distribution of 90% by mass of the specific Ce-containing composite oxide powder. When,
Coating the slurry on a carrier to form a catalyst layer,
In the slurry preparation step, a mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is 1/100 or more and 50/100 or less.

この製法の重要な特徴は、予め触媒金属を担持させておいたCe含有複合酸化物粉末を粉砕することによって特定Ce含有複合酸化物粉末を調製している点にある。すなわち、Ce含有複合酸化物粉末を例えば共沈法によって調製した場合、その一次粒子径は10nm以上20nm以下程度、二次粒子径は400nm以上2000nm以下程度になる。かかるCe含有複合酸化物を粒径(二次粒子径)が小さくなるように粉砕すると、その二次粒子を構成する一次粒子も同時に破壊されて複数の微細一次粒子に分割される。これに伴い、粉砕前の一次粒子に担持されていた触媒金属も、その一次粒子から生ずる複数の微細一次粒子に分かれ、さらに、各微細一次粒子の表面全体に分散した担持状態になるように該粒子上を移動する。   An important feature of this production method is that a specific Ce-containing composite oxide powder is prepared by pulverizing a Ce-containing composite oxide powder on which a catalyst metal is previously supported. That is, when the Ce-containing composite oxide powder is prepared by, for example, a coprecipitation method, the primary particle size is about 10 nm to 20 nm and the secondary particle size is about 400 nm to 2000 nm. When the Ce-containing composite oxide is pulverized so as to have a small particle size (secondary particle size), the primary particles constituting the secondary particles are simultaneously broken and divided into a plurality of fine primary particles. Along with this, the catalyst metal supported on the primary particles before pulverization is also divided into a plurality of fine primary particles generated from the primary particles, and further, the catalyst metal is dispersed in the entire surface of each fine primary particle. Move on the particles.

この場合、一次粒子が破壊されて複数の微細一次粒子に分割されるということは、一次粒子数が増え、全体として表面積が増大するということである。この表面積増大により、触媒金属は分散度合が大きくなるとともに、粉砕前の一次粒子に担持されているときよりも一次粒子に対する担持状態が安定になり、触媒金属がCe含有複合酸化物の酸素吸蔵放出能の助長及び排気ガスの浄化に有効に働くことになる。   In this case, the fact that the primary particles are broken and divided into a plurality of fine primary particles means that the number of primary particles increases and the surface area as a whole increases. By increasing the surface area, the degree of dispersion of the catalyst metal is increased and the supported state of the primary particles is more stable than when the catalyst metal is supported on the primary particles before pulverization, and the catalyst metal absorbs and releases oxygen from the Ce-containing composite oxide. It works effectively for the promotion of performance and purification of exhaust gas.

以上のように本発明に係る排気ガス浄化用触媒によれば、Ce含有複合酸化物粉末として、触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末を採用して、上記累積分布90質量%粒径よりも大きい粒径の活性アルミナ粉末と混合し、且つ活性アルミナ粉末に対する特定Ce含有複合酸化物粉末の質量比を1/100以上50/100以下としたから、特定Ce含有複合酸化物粉末の少なくとも一部の粒子が活性アルミナ粉末の粒子に接触して担持された状態になり、特定Ce含有複合酸化物粉末の凝集が抑制される一方で、比較的高い酸素吸蔵放出能が得られ、しかも、一次粒子に分散担持されている触媒金属が、排気ガスとの接触により、当該Ce含有複合酸化物の酸素吸蔵放出能の助長及び排気ガスの浄化に有効に働くことになり、優れた排気ガス浄化性能が得られる。   As described above, according to the exhaust gas purifying catalyst of the present invention, as the Ce-containing composite oxide powder, a large number of primary particles having an average particle diameter of 5 nm to 10 nm on which a catalytic metal is dispersed and supported are aggregated. Containing specific Ce containing secondary particles, wherein the secondary particles have a cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of from 150 nm to 210 nm, and a cumulative distribution of 90% by mass of particle size of 300 nm or less Adopting the composite oxide powder, mixing with the activated alumina powder having a particle size larger than the cumulative distribution of 90% by mass particle size, and the mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is 1/100 or more Since it is 50/100 or less, at least a part of the particles of the specific Ce-containing composite oxide powder is in contact with and supported by the particles of the activated alumina powder. While the aggregation of the composite oxide powder is suppressed, a relatively high oxygen storage / release capability is obtained, and the catalyst metal dispersedly supported on the primary particles is brought into contact with the exhaust gas, whereby the Ce-containing composite It effectively works to promote the oxygen storage and release ability of oxides and to purify exhaust gas, so that excellent exhaust gas purification performance can be obtained.

また、本発明に係る排気ガス浄化用触媒の製造方法によれば、触媒金属を担持したCe含有複合酸化物粉末を粉砕することにより、該触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末とし、該特定Ce含有複合酸化物粉末と、粒径が大きい活性アルミナとを質量比が1/100以上50/100以下で含むスラリーを調製し、該スラリーを担体にコーティングして触媒層を形成するようにしたから、触媒金属が微細一次粒子に対して安定に分散担持され、Ce含有複合酸化物の酸素吸蔵放出能の助長及び排気ガスの浄化に有効に働く排気ガス浄化用触媒が得られる。   Further, according to the method for producing an exhaust gas purifying catalyst according to the present invention, an average particle diameter of 5 nm to 10 nm in which the catalyst metal is dispersed and supported by pulverizing the Ce-containing composite oxide powder supporting the catalyst metal. Secondary particles formed by agglomeration of a large number of primary particles, and the secondary particles have a cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of 150 nm to 210 nm, and a cumulative distribution of 90% by mass. A slurry containing a specific Ce-containing composite oxide powder having a% particle size of 300 nm or less and a specific Ce-containing composite oxide powder and activated alumina having a large particle size in a mass ratio of 1/100 or more and 50/100 or less. Since the catalyst layer was formed by coating the slurry on the support, the catalyst metal was stably dispersed and supported on the fine primary particles, and the Ce-containing composite oxide Oxygen storage capacity of promoting and exhaust gas purification catalyst works effectively to purify the exhaust gas is obtained.

本発明に係る排気ガス浄化用触媒の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of an exhaust gas purifying catalyst according to the present invention. Ce含有複合酸化物粒子と活性アルミナ粒子との関係を示す模式図である。It is a schematic diagram which shows the relationship between Ce containing complex oxide particle | grains and activated alumina particle | grains. Ce含有複合酸化物粉末の粉砕前及び粉砕後の粒度分布を示すグラフ図である。It is a graph which shows the particle size distribution before the grinding | pulverization of a Ce containing complex oxide powder, and after a grinding | pulverization. Ce含有複合酸化物粉末の粉砕前の累積粒度分布を示すグラフ図である。It is a graph which shows the cumulative particle size distribution before the grinding | pulverization of Ce containing complex oxide powder. Ce含有複合酸化物粉末の粉砕後の累積粒度分布を示すグラフ図である。It is a graph which shows the cumulative particle size distribution after the grinding | pulverization of Ce containing complex oxide powder. 粉砕前のCe含有複合酸化物粒子の電子顕微鏡写真である。2 is an electron micrograph of Ce-containing composite oxide particles before pulverization. 粉砕後のCe含有複合酸化物粒子の電子顕微鏡写真である。It is an electron micrograph of Ce containing complex oxide particles after pulverization. Ce含有複合酸化物粉末を粉砕したときの、その一次粒子が分割され、触媒金属が移動する様子を模式的に示す図である。It is a figure which shows typically a mode that the primary particle is divided | segmented when a Ce containing complex oxide powder is grind | pulverized, and a catalyst metal moves.

以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1に示す排気ガス浄化用触媒において、1は担体であり、この担体1上に上触媒層2と下触媒層3とが積層されている。この排気ガス浄化用触媒1は自動車のガソリンエンジンが理論空燃比付近で運転されるときの排気ガスに含まれるHC(炭化水素)、CO及びNOx(窒素酸化物)を同時に浄化する三元触媒に適する。   In the exhaust gas purification catalyst shown in FIG. 1, reference numeral 1 denotes a carrier, and an upper catalyst layer 2 and a lower catalyst layer 3 are laminated on the carrier 1. The exhaust gas purification catalyst 1 is a three-way catalyst that simultaneously purifies HC (hydrocarbon), CO, and NOx (nitrogen oxides) contained in exhaust gas when an automobile gasoline engine is operated near the stoichiometric air-fuel ratio. Suitable.

担体1は例えばコージェライト製のハニカム担体とされる。上触媒層2及び下触媒層3各々は、触媒金属と酸素吸蔵放出材とを含有する。上触媒層2は、触媒金属が担持された粒径が小さな特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する。その特定Ce含有複合酸化物粉末は酸素吸蔵放出能を有する。この触媒金属が担持された粒径が小さな特定Ce含有複合酸化物粉末と活性アルミナ粉末とは、下触媒層3に設けることもでき、或いは上触媒層2及び下触媒層3の両層に設けることができる。   The carrier 1 is, for example, a cordierite honeycomb carrier. Each of the upper catalyst layer 2 and the lower catalyst layer 3 contains a catalyst metal and an oxygen storage / release material. The upper catalyst layer 2 contains a specific Ce-containing composite oxide powder having a small particle size on which a catalyst metal is supported and an activated alumina powder in a mixed state. The specific Ce-containing composite oxide powder has an oxygen storage / release capability. The specific Ce-containing composite oxide powder having a small particle size on which the catalyst metal is supported and the activated alumina powder can be provided in the lower catalyst layer 3 or in both the upper catalyst layer 2 and the lower catalyst layer 3. be able to.

図2は触媒金属6が担持された粒径が小さな特定Ce含有複合酸化物粒子4と該特定Ce含有複合酸化物粒子4よりも粒径が大きい活性アルミナ粒子5との関係を模式的に示す。すなわち、触媒層においては、特定Ce含有複合酸化物粉末と活性アルミナ粉末とが混合された状態にある。従って、少なくとも一部の特定Ce含有複合酸化物粒子4は活性アルミナ粒子5に接触した状態になる。その場合、上述の如く、活性アルミナ粒子5の粒径が特定Ce含有複合酸化物粒子4の粒径よりも大きいから、多数の特定Ce含有複合酸化物粒子4が活性アルミナ粒子5に分散して担持された状態になる。   FIG. 2 schematically shows the relationship between the specific Ce-containing composite oxide particles 4 on which the catalyst metal 6 is supported and the activated alumina particles 5 having a larger particle size than the specific Ce-containing composite oxide particles 4. . That is, in the catalyst layer, the specific Ce-containing composite oxide powder and the activated alumina powder are in a mixed state. Accordingly, at least some of the specific Ce-containing composite oxide particles 4 are in contact with the activated alumina particles 5. In that case, since the particle diameter of the activated alumina particles 5 is larger than the particle diameter of the specific Ce-containing composite oxide particles 4 as described above, a large number of the specific Ce-containing composite oxide particles 4 are dispersed in the activated alumina particles 5. It becomes a supported state.

また、触媒金属6を担持した小径の特定Ce含有複合酸化物粒子4は、触媒成分として機能する一方、活性アルミナ粒子5間に介在して該活性アルミナ粒子5同士を結合するとともに、担体表面の多数の微小凹部ないし細孔に入り、触媒層が担体から剥離しないようにするバインダとしても機能する。   The small-diameter specific Ce-containing composite oxide particles 4 carrying the catalyst metal 6 function as a catalyst component, and are interposed between the activated alumina particles 5 to bond the activated alumina particles 5 to each other. It also functions as a binder that enters a large number of minute recesses or pores and prevents the catalyst layer from peeling off from the carrier.

<触媒金属を担持したCe含有複合酸化物粉末について>
以下、触媒金属を担持した特定Ce含有複合酸化物粉末、並びに触媒金属を担持した通常Ce含有複合酸化物粉末及び触媒金属を担持した特定Ce含有複合酸化物について説明する。先に後者の調製法から説明する。
<About Ce-containing composite oxide powder supporting catalyst metal>
Hereinafter, the specific Ce-containing composite oxide powder supporting the catalyst metal, the normal Ce-containing composite oxide powder supporting the catalyst metal, and the specific Ce-containing composite oxide supporting the catalyst metal will be described. The latter preparation method will be described first.

−触媒金属を担持した通常Ce含有複合酸化物粉末の調製−
後述比較例1等に使用する粉末例で当該調製法を説明する。すなわち、硝酸セリウム6水和物(17.41g)とZrOに換算して25.13質量%のZrを含有するオキシ硝酸ジルコニル溶液(79.98g)と硝酸ネオジム6水和物(7.82g)とをイオン交換水(300mL)に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液(900mL)を混合して中和させることにより、共沈物を得る。この共沈物を遠心分離法で水洗した後、空気中において150℃の温度で一昼夜乾燥させ、粉砕した後、空気中において500℃の温度に2時間保持する焼成を行なうことにより、CeZrNd複合酸化物粉末(Ce含有複合酸化物粉末)を30g得ることができる。このCeZrNd複合酸化物粉末の組成は、CeO:ZrO:Nd=23:67:10(質量比)である。
-Preparation of normal Ce-containing composite oxide powder supporting catalyst metal-
The preparation method will be described using powder examples used in Comparative Example 1 and the like described later. That is, cerium nitrate hexahydrate (17.41 g), zirconyl oxynitrate solution (79.98 g) containing ZrO 2 in terms of ZrO 2 , and neodymium nitrate hexahydrate (7.82 g) ) Is dissolved in ion-exchanged water (300 mL). A coprecipitate is obtained by mixing and neutralizing this nitrate solution with an 8-fold diluted solution (900 mL) of 28% by mass ammonia water. The coprecipitate is washed with water by a centrifugal separation method, dried in air at a temperature of 150 ° C. for a whole day and night, pulverized, and then fired in air at a temperature of 500 ° C. for 2 hours, whereby CeZrNd composite oxidation is performed. 30 g of product powder (Ce-containing composite oxide powder) can be obtained. The composition of this CeZrNd composite oxide powder is CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio).

上記CeZrNd複合酸化物粉末(20g)にイオン交換水を混合してスラリーとし、さらにPd濃度4.33質量%の硝酸パラジウム溶液(13.2g)を混合する。これを蒸発乾固した後、乾固物を粉砕し、空気中において500℃の温度に2時間保持する焼成を行なうことにより、CeZrNd複合酸化物粉末にPdを担持させてなるPd濃度が2.78質量%の通常Pd/CeZrNd粉末を得ることができる。   Ion exchange water is mixed with the CeZrNd composite oxide powder (20 g) to make a slurry, and further a palladium nitrate solution (13.2 g) with a Pd concentration of 4.33 mass% is mixed. After evaporating this to dryness, the dried product is pulverized and calcined in air at a temperature of 500 ° C. for 2 hours, whereby the Pd concentration obtained by supporting Pd on the CeZrNd composite oxide powder is 2. 78% by mass of normal Pd / CeZrNd powder can be obtained.

−触媒金属を担持した特定Ce含有複合酸化物粉末の調製−
後述実施例1等に使用する粉末例で当該調製法を説明する。上記通常Pd/CeZrNd粉末にイオン交換水を添加してスラリー(固形分25質量%)とし、このスラリーをボールミルに投入して、0.5mmのジルコニアビーズによって粉砕する(約3時間)ことにより、粒径が小さくなった特定Pd/CeZrNd粉末(触媒金属を担持した特定Ce含有複合酸化物粉末)が分散したゾルを得ることができる。この特定Pd/CeZrNd粉末は、粒径が小さくなった特定CeZrNd複合酸化物粉末にPdが担持されたものであり、特定CeZrNd複合酸化物粉末の組成及びPd濃度は通常Pd/CeZrNd粉末と同じである。
-Preparation of specific Ce-containing composite oxide powder supporting catalyst metal-
The preparation method will be described using powder examples used in Example 1 and the like described later. By adding ion-exchanged water to the normal Pd / CeZrNd powder to make a slurry (solid content 25% by mass), this slurry is put into a ball mill and pulverized with 0.5 mm zirconia beads (about 3 hours). It is possible to obtain a sol in which the specific Pd / CeZrNd powder (specific Ce-containing composite oxide powder supporting a catalyst metal) having a reduced particle size is dispersed. The specific Pd / CeZrNd powder is obtained by supporting Pd on a specific CeZrNd composite oxide powder having a reduced particle size, and the composition and Pd concentration of the specific CeZrNd composite oxide powder are usually the same as those of the Pd / CeZrNd powder. is there.

−粒度分布−
図3は通常Pd/CeZrNd粉末及び特定Pd/CeZrNd粉末の粒度分布(頻度分布)を示す。図4は通常Pd/CeZrNd粉末の累積粒度分布を示し、図5は特定Pd/CeZrNd粉末の累積粒度分布を示す。これら粒度分布の測定には、株式会社島津製作所製レーザー回折式粒度分布測定装置を用いた。粉砕前の通常Pd/CeZrNd粉末の場合、累積分布10質量%粒径が591nm、累積分布50質量%粒径が854nm、累積分布90質量%粒径が1277nmである。すなわち、累積分布10質量%粒径は550nm以上、累積分布50質量%粒径は800nm以上900nm以下、累積分布90質量%粒径は1300nm以下である。これに対して、粉砕によって得られた特定Pd/CeZrNd粉末の場合、累積分布10質量%粒径が96nm、累積分布50質量%粒径が178nm、累積分布90質量%粒径が285nmである。すなわち、累積分布10質量%粒径は90nm以上、累積分布50質量%粒径は150nm以上210nm以下、累積分布90質量%粒径は300nm以下である。
-Particle size distribution-
FIG. 3 shows the particle size distribution (frequency distribution) of normal Pd / CeZrNd powder and specific Pd / CeZrNd powder. FIG. 4 shows the cumulative particle size distribution of normal Pd / CeZrNd powder, and FIG. 5 shows the cumulative particle size distribution of specific Pd / CeZrNd powder. For the measurement of these particle size distributions, a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation was used. In the case of normal Pd / CeZrNd powder before pulverization, the cumulative distribution 10 mass% particle size is 591 nm, the cumulative distribution 50 mass% particle size is 854 nm, and the cumulative distribution 90 mass% particle size is 1277 nm. That is, the cumulative distribution 10 mass% particle size is 550 nm or more, the cumulative distribution 50 mass% particle size is 800 nm to 900 nm, and the cumulative distribution 90 mass% particle size is 1300 nm or less. In contrast, in the case of the specific Pd / CeZrNd powder obtained by pulverization, the cumulative distribution 10% by mass particle size is 96 nm, the cumulative distribution 50% by mass particle size is 178 nm, and the cumulative distribution 90% by mass particle size is 285 nm. That is, the cumulative distribution 10 mass% particle size is 90 nm or more, the cumulative distribution 50 mass% particle size is 150 nm or more and 210 nm or less, and the cumulative distribution 90 mass% particle size is 300 nm or less.

−電子顕微鏡写真−
図6は通常Pd/CeZrNd粉末の粒子(二次粒子)の一部を示す電子顕微鏡写真であり、図7は特定Pd/CeZrNd粉末の粒子(二次粒子)の一部を示す電子顕微鏡写真である。電子顕微鏡写真での観察によれば、通常Pd/CeZrNd粉末では、一次粒子径の平均粒径は10nm以上20nm以下であると認められ、特定Pd/CeZrNd粉末では、一次粒子径の平均粒径は5nm以上10nm以下であると認められる。
-Electron micrograph-
FIG. 6 is an electron micrograph showing a part of particles (secondary particles) of a normal Pd / CeZrNd powder, and FIG. 7 is an electron micrograph showing a part of particles (secondary particles) of a specific Pd / CeZrNd powder. is there. According to the observation with an electron micrograph, the average primary particle diameter is usually 10 nm or more and 20 nm or less in the Pd / CeZrNd powder, and the average primary particle diameter in the specific Pd / CeZrNd powder is It is recognized that it is 5 nm or more and 10 nm or less.

特定Pd/CeZrNd粉末は、上記ボールミルでの粉砕により、二次粒子が粉砕されて小径になるとともに、この二次粒子を構成する一次粒子が破壊されて微細一次粒子に分割され、一次粒子径が小さくなったものである。   The specific Pd / CeZrNd powder is pulverized by the above ball mill so that the secondary particles are pulverized to have a small diameter, and the primary particles constituting the secondary particles are broken and divided into fine primary particles. It has become smaller.

−一次粒子の微細化−
図8は通常Pd/CeZrNd粉末の一次粒子7が上記粉砕によって破壊分割されて特定Pd/CeZrNd粉末の微細一次粒子8になる様子を模式的に示す。すなわち、一次粒子7には触媒金属としてのPd6が分散担持されている(図8の(A))。この一次粒子7が粉砕によって破壊されて複数(図例では4つ)の微細一次粒子8に分割される(図8の(B)。元の一次粒子7に担持されていたPd群は各微細一次粒子8に分かれて担持された状態になる。微細一次粒子8に粉砕時に加わる外部エネルギーにより、或いはその後の触媒層焼成時の熱エネルギーにより、微細一次粒子8に偏在して担持されていたPd6は該粒子8上を移動して、粒子表面全体にわたって略均一に分散担持された状態になる(図8の(C))。
-Refinement of primary particles-
FIG. 8 schematically shows a state in which the primary particles 7 of the normal Pd / CeZrNd powder are broken and divided by the pulverization to become fine primary particles 8 of the specific Pd / CeZrNd powder. That is, Pd6 as a catalyst metal is dispersedly supported on the primary particles 7 ((A) in FIG. 8). The primary particles 7 are broken by pulverization and divided into a plurality of (four in the illustrated example) fine primary particles 8 (FIG. 8B). The Pd group supported on the original primary particles 7 It is in a state of being supported by being divided into primary particles 8. Pd6 that is unevenly distributed and supported on the fine primary particles 8 by external energy applied to the fine primary particles 8 at the time of pulverization or by thermal energy at the time of subsequent firing of the catalyst layer. Moves on the particles 8 and is dispersed and supported substantially uniformly over the entire particle surface ((C) of FIG. 8).

この場合、一次粒子7が破壊されて複数の微細一次粒子8に分割されるということは、一次粒子数が増え、全体として表面積が増大するということである。この表面積増大により、Pd6は分散度合が大きくなるとともに、粉砕前の一次粒子7に担持されているときよりも微細一次粒子8に対する担持状態が安定になる。   In this case, the fact that the primary particles 7 are broken and divided into a plurality of fine primary particles 8 means that the number of primary particles increases and the surface area as a whole increases. Due to this increase in the surface area, the degree of dispersion of Pd6 is increased, and the supported state of the fine primary particles 8 is more stable than when supported on the primary particles 7 before pulverization.

<単一触媒層に係る実施例及び比較例>
[実施例1]
上記粒径が小さい特定Pd/CeZrNd粉末(Pd濃度2.78質量%)のゾルに活性アルミナ粉末(平均粒径13.8μm)を混合してなるスラリーを担体にコーティングすることにより単一触媒層を形成した。この場合、特定Pd/CeZrNd粉末がバインダとして働くため、バインダ専用材は使用していない。
<Examples and comparative examples relating to a single catalyst layer>
[Example 1]
A single catalyst layer is formed by coating a support with a slurry obtained by mixing an active alumina powder (average particle diameter: 13.8 μm) with a sol having a specific Pd / CeZrNd powder having a small particle diameter (Pd concentration: 2.78% by mass). Formed. In this case, since the specific Pd / CeZrNd powder works as a binder, a binder-specific material is not used.

担体1L当たりの担持量は、特定Pd/CeZrNd粉末が7.2g/L(Pdが0.2g/L、CeZrNd複合酸化物粉末が7g/L)、活性アルミナ粉末が35g/Lであり、活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は20/100である。担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製ハニカム担体(容量1L)を用いた。 The supported amount per liter of the carrier is 7.2 g / L for the specific Pd / CeZrNd powder (Pd is 0.2 g / L, CeZrNd composite oxide powder is 7 g / L), and the activated alumina powder is 35 g / L. The mass ratio of CeZrNd composite oxide powder to alumina powder is 20/100. As the carrier, a cordierite honeycomb carrier (capacity 1 L) having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) was used.

[実施例2]
活性アルミナ粉末担持量を70g/Lとする他は実施例1と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は10/100である。
[Example 2]
The same configuration as in Example 1 was adopted except that the active alumina powder loading was 70 g / L. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 10/100.

[実施例3]
上記特定Pd/CeZrNd粉末の調製において、CeZrNd複合酸化物粉末20gに対するPd濃度4.33質量%の硝酸パラジウム溶液の添加量を26.4gとすることにより、特定Pd/CeZrNd粉末のPd濃度を5.41質量%とし、該特定Pd/CeZrNd粉末担持量を3.7g/L(Pdが0.2g/L、CeZrNd複合酸化物粉末が3.5g/L)とする他は実施例1と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は10/100である。
[Example 3]
In the preparation of the specific Pd / CeZrNd powder, the addition amount of the palladium nitrate solution having a Pd concentration of 4.33 mass% with respect to 20 g of the CeZrNd composite oxide powder is 26.4 g, whereby the Pd concentration of the specific Pd / CeZrNd powder is 5 The same Pd / CeZrNd powder loading as 3.7 g / L (Pd is 0.2 g / L, CeZrNd composite oxide powder is 3.5 g / L). Made the configuration. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 10/100.

[実施例4]
活性アルミナ粉末担持量を70g/Lとする他は実施例3と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は5/100である。
[Example 4]
The configuration was the same as that of Example 3 except that the active alumina powder loading was 70 g / L. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 5/100.

[実施例5]
活性アルミナ粉末担持量を23g/Lとする他は実施例1と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は30/100である。
[Example 5]
The same configuration as in Example 1 was adopted except that the active alumina powder loading was 23 g / L. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 30/100.

[実施例6]
活性アルミナ粉末担持量を14g/Lとする他は実施例1と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は50/100である。
[Example 6]
The configuration was the same as that of Example 1 except that the active alumina powder loading was 14 g / L. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 50/100.

[比較例1]
上記特定Pd/CeZrNd粉末に代えて上記通常Pd/CeZrNd粉末(Pd濃度2.78質量%)を採用する他は実施例1と同じ構成にした。従って、通常Pd/CeZrNd粉末担持量は7.2g/L(Pdが0.2g/L、CeZrNd複合酸化物粉末が7g/L)、活性アルミナ粉末担持量は35g/Lであり、活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は20/100である。バインダとしては硝酸ジルコニルを用いた。
[Comparative Example 1]
The same configuration as in Example 1 was adopted except that the normal Pd / CeZrNd powder (Pd concentration: 2.78% by mass) was used instead of the specific Pd / CeZrNd powder. Therefore, the supported amount of Pd / CeZrNd powder is usually 7.2 g / L (Pd is 0.2 g / L, CeZrNd composite oxide powder is 7 g / L), and the active alumina powder is supported at 35 g / L. The mass ratio of CeZrNd composite oxide powder to is 20/100. Zirconyl nitrate was used as the binder.

[比較例2]
活性アルミナ粉末担持量を70g/Lとする他は比較例1と同じ構成にした。活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は10/100である。
[Comparative Example 2]
The configuration was the same as that of Comparative Example 1 except that the active alumina powder loading was 70 g / L. The mass ratio of the CeZrNd composite oxide powder to the activated alumina powder is 10/100.

[比較例3]
上記通常Pd/CeZrNd粉末の調製において、CeZrNd複合酸化物粉末20gに対するPd濃度4.33質量%の硝酸パラジウム溶液の添加量を2.64gとすることにより、Pd濃度が0.57質量%の通常Pd/CeZrNd粉末を調製し、これをスラリー化して担体にコーティングすることにより単一触媒層を形成した。バインダとしては硝酸ジルコニルを用いた。通常Pd/CeZrNd粉末担持量は35.2g/L(Pdが0.2g/L、CeZrNd複合酸化物粉末が35g/L)である。なお、活性アルミナ粉末担持量は零である。
[Comparative Example 3]
In the preparation of the normal Pd / CeZrNd powder, the amount of palladium nitrate solution having a Pd concentration of 4.33 mass% with respect to 20 g of the CeZrNd composite oxide powder is 2.64 g, so that the Pd concentration is 0.57 mass%. A single catalyst layer was formed by preparing Pd / CeZrNd powder, slurrying it, and coating the support. Zirconyl nitrate was used as the binder. Usually, the supported amount of Pd / CeZrNd powder is 35.2 g / L (Pd is 0.2 g / L, CeZrNd composite oxide powder is 35 g / L). Note that the amount of active alumina powder supported is zero.

−排気ガス浄化性能−
実施例1〜6及び比較例1〜3の各触媒にベンチエージング処理を施した。これは、各触媒をエンジン排気系に取り付け、(1)A/F=14の排気ガスを15秒間流す→(2)A/F=17の排気ガスを5秒間流す→(3)A/F=14.7の排気ガスを40秒間流す、というサイクルが合計50時間繰り返されるように、且つ触媒入口ガス温度が900℃となるように、エンジンを運転するというものである。
−Exhaust gas purification performance−
Each catalyst of Examples 1 to 6 and Comparative Examples 1 to 3 was subjected to bench aging treatment. This is because each catalyst is attached to the engine exhaust system, (1) A / F = 14 exhaust gas flows for 15 seconds → (2) A / F = 17 exhaust gas flows for 5 seconds → (3) A / F = 14.7 The exhaust gas flowing for 40 seconds is repeated for a total of 50 hours, and the engine is operated so that the catalyst inlet gas temperature is 900 ° C.

しかる後、各触媒から担体容量25mLのコアサンプルを切り出し、これをモデルガス流通反応装置に取り付け、HC、CO及びNOxの浄化に関するライトオフ温度T50(℃)及び排気ガス浄化率C400を測定した。T50(℃)は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。排気ガス浄化率C400は、触媒入口でのモデル排気ガス温度が400℃であるときのガスの各成分の浄化率である。モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表1に示し、ライトオフ温度T50及び排気ガス浄化率C400の測定結果を表2に示す。 Thereafter, a core sample having a carrier volume of 25 mL was cut out from each catalyst, and this was attached to a model gas flow reactor, and the light-off temperature T50 (° C.) and the exhaust gas purification rate C400 related to the purification of HC, CO, and NOx were measured. T50 (° C.) is the gas temperature at the catalyst inlet when the model gas temperature flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The exhaust gas purification rate C400 is the purification rate of each component of the gas when the model exhaust gas temperature at the catalyst inlet is 400 ° C. The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min. Table 1 shows the gas composition when A / F = 14.7, A / F = 13.8 and A / F = 15.6, and Table 2 shows the measurement results of the light-off temperature T50 and the exhaust gas purification rate C400. Shown in

表2において、「特定Pd/CeZrNd」は特定Pd/CeZrNd粉末を、「アルミナ」は活性アルミナ粉末を、「CeZrNd」はCeZrNd複合酸化物粉末を、「CeZrNd/アルミナ質量比」は活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比を、それぞれ意味する。また、Pd濃度は、CeZrNd複合酸化物粉末と、これに担持したPdとの合計質量に対する当該担持したPdの質量の比率である。   In Table 2, “specific Pd / CeZrNd” indicates specific Pd / CeZrNd powder, “alumina” indicates active alumina powder, “CeZrNd” indicates CeZrNd composite oxide powder, and “CeZrNd / alumina mass ratio” indicates active alumina powder. The mass ratio of CeZrNd composite oxide powder is meant respectively. The Pd concentration is a ratio of the mass of the supported Pd to the total mass of the CeZrNd composite oxide powder and the Pd supported thereon.

表2によれば、特定CeZrNd複合酸化物粉末のゾルを用いてなる実施例1〜6は、通常Pd/CeZrNd粉末を用いてなる比較例1〜3に比べて、ライトオフ温度T50が低くなり、排気ガス浄化率C400が高くなっている。具体的に比較すると、実施例1,2と比較例1,2とは、前者が特定CeZrNd複合酸化物粉末ゾルを用い、後者が通常Pd/CeZrNd粉末を用いた点で相違し、各成分の担持量、並びに活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比は同じである。この実施例1,2は、比較例1,2よりも、ライトオフ温度T50については、HCが30℃前後、COが50℃以上、NOxも20℃前後低くなっており、また、排気ガス浄化率C400については、HC及びCOが20%以上、NOxも10%近く高くなっており、驚くような排気ガス浄化性能の向上が認められる。なお、比較例3はPd濃度が低い0.57質量%の通常Pd/CeZrNd粉末を用い、その担持量を多くする(35.2g/Lとする)ことにより、Pd担持量を実施例1〜6と同じ0.2g/Lとしたものであるが、性能は比較例1,2よりも若干悪くなっている。   According to Table 2, Examples 1-6 using the sol of specific CeZrNd composite oxide powder have lower light-off temperature T50 than Comparative Examples 1-3, which normally use Pd / CeZrNd powder. The exhaust gas purification rate C400 is high. In specific comparison, Examples 1 and 2 differ from Comparative Examples 1 and 2 in that the former uses a specific CeZrNd composite oxide powder sol and the latter uses a normal Pd / CeZrNd powder. The supported amount and the mass ratio of the CeZrNd composite oxide powder to the activated alumina powder are the same. In Examples 1 and 2, the light-off temperature T50 is lower than that of Comparative Examples 1 and 2 by about 30 ° C for HC, 50 ° C for CO, and about 20 ° C for NOx. Regarding the rate C400, HC and CO are 20% or more and NOx is also nearly 10% higher, and a surprising improvement in exhaust gas purification performance is recognized. Comparative Example 3 uses a normal Pd / CeZrNd powder having a low Pd concentration of 0.57% by mass and increases the loading amount (set to 35.2 g / L). However, the performance is slightly worse than those of Comparative Examples 1 and 2.

実施例同士を比較するに、実施例1,2,5,6は、Pd担持量及びCeZrNd複合酸化物粉末担持量を互いに同じとし、活性アルミナ粉末担持量を変化させて活性アルミナ粉末に対するCeZrNd複合酸化物粉末の質量比を変えたものである。この実施例1,2,5,6の中では、上記質量比が20/100である実施例1の性能が最も良い。しかし、上記質量比が10/100である実施例2及び上記質量比が50/100である実施例6でも、比較的高い性能を示すことから、その質量比が1/100以上50/100以下である場合には、排気ガス浄化性能の向上に効果があることがわかる。   Comparing Examples, Examples 1, 2, 5 and 6 are the same in Pd loading and CeZrNd composite oxide powder loading, and the active alumina powder loading is changed to change the CeZrNd composite with respect to the activated alumina powder. The mass ratio of the oxide powder is changed. Among Examples 1, 2, 5, and 6, the performance of Example 1 in which the mass ratio is 20/100 is the best. However, even in Example 2 where the mass ratio is 10/100 and Example 6 where the mass ratio is 50/100, relatively high performance is exhibited, so the mass ratio is 1/100 or more and 50/100 or less. In this case, it can be seen that the exhaust gas purification performance is effective.

また、実施例3,4は、Pd濃度が高い5.41質量%の特定Pd/CeZrNd粉末を用いたものであるが、他の実施例と同様に高い排気ガス浄化性能を示しており、Pd濃度が高いケースでも良好な結果が得られることがわかる。   In Examples 3 and 4, the specific Pd / CeZrNd powder having a high Pd concentration of 5.41% by mass was used, and as in the other examples, high exhaust gas purification performance was exhibited. It can be seen that good results can be obtained even in high concentration cases.

<積層触媒層に係る実施例及び比較例>
[実施例7]
図1に示す二層構造の排気ガス浄化用触媒の上触媒層及び下触媒層を次の方法によって形成した。
<Examples and comparative examples relating to laminated catalyst layers>
[Example 7]
The upper catalyst layer and the lower catalyst layer of the exhaust gas purification catalyst having a two-layer structure shown in FIG. 1 were formed by the following method.

−通常Rh/CeZrNd粉末の調製−
先に説明した通常Pd/CeZrNd粉末の調製の場合と同じく、CeZrNd複合酸化物粉末(CeO:ZrO:Nd=23:67:10(質量比))20gにイオン交換水を混合してスラリーとし、さらにRh濃度8.15質量%の硝酸ロジウム溶液0.29gを混合する。これを蒸発乾固した後、乾固物を粉砕し、空気中において500℃の温度に2時間保持する焼成を行なうことにより、CeZrNd複合酸化物粉末にRhを担持させてなるRh濃度が0.12質量%の通常Rh/CeZrNd粉末を得ることができる。
-Preparation of normal Rh / CeZrNd powder-
As in the preparation of the normal Pd / CeZrNd powder described above, ion-exchanged water was mixed with 20 g of CeZrNd composite oxide powder (CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio)). The slurry is further mixed with 0.29 g of a rhodium nitrate solution having an Rh concentration of 8.15% by mass. After evaporating this to dryness, the dried product is pulverized and calcined in air at a temperature of 500 ° C. for 2 hours, whereby the Rh concentration obtained by supporting Rh on the CeZrNd composite oxide powder is 0.00. 12% by mass of normal Rh / CeZrNd powder can be obtained.

−特定Rh/CeZrNd粉末の調製−
先に説明した特定Pd/CeZrNd粉末の調製の場合と同じく、上記通常Rh/CeZrNd粉末にイオン交換水を添加してスラリー(固形分25質量%)とし、このスラリーをボールミルに投入して、0.5mmのジルコニアビーズによって粉砕する(約3時間)ことにより、粒径が小さくなった特定Rh/CeZrNd粉末(触媒金属を担持した特定Ce含有複合酸化物粉末)が分散したゾルを得ることができる。この特定Rh/CeZrNd粉末の組成及びPd濃度は通常Rh/CeZrNd粉末と同じである。
-Preparation of specific Rh / CeZrNd powder-
As in the case of the preparation of the specific Pd / CeZrNd powder described above, ion-exchanged water is added to the normal Rh / CeZrNd powder to form a slurry (solid content: 25% by mass). By pulverizing with .5 mm zirconia beads (about 3 hours), it is possible to obtain a sol in which the specific Rh / CeZrNd powder (specific Ce-containing composite oxide powder supporting a catalyst metal) with a reduced particle size is dispersed. . The composition and Pd concentration of this specific Rh / CeZrNd powder are usually the same as those of the Rh / CeZrNd powder.

また、上記通常Rh/CeZrNd粉末及び特定Rh/CeZrNd粉末各々の粒度分布は、先に説明した通常Pd/CeZrNd粉末及び特定Pd/CeZrNd粉末の粒度分布と略同じである。すなわち、粉砕前の通常Rh/CeZrNd粉末の場合、累積分布10質量%粒径は550nm以上、累積分布50質量%粒径は800nm以上900nm以下、累積分布90質量%粒径は1200nm以下である。粉砕によって得られた特定Rh/CeZrNd粉末の場合、累積分布10質量%粒径は90nm以上、累積分布50質量%粒径は150nm以上210nm以下、累積分布90質量%粒径は300nm以下である。また、電子顕微鏡写真での観察によれば、通常Rh/CeZrNd粉末では、一次粒子径の平均粒径は10nm以上20nm以下であり、特定Rh/CeZrNd粉末では、一次粒子径の平均粒径は5nm以上10nm以下であった。   The particle size distributions of the normal Rh / CeZrNd powder and the specific Rh / CeZrNd powder are substantially the same as the particle size distributions of the normal Pd / CeZrNd powder and the specific Pd / CeZrNd powder described above. That is, in the case of normal Rh / CeZrNd powder before pulverization, the cumulative distribution 10 mass% particle size is 550 nm or more, the cumulative distribution 50 mass% particle size is 800 nm to 900 nm, and the cumulative distribution 90 mass% particle size is 1200 nm or less. In the case of the specific Rh / CeZrNd powder obtained by pulverization, the cumulative distribution 10% by mass particle size is 90 nm or more, the cumulative distribution 50% by mass particle size is 150 nm to 210 nm, and the cumulative distribution 90% by mass particle size is 300 nm or less. In addition, according to observation with an electron micrograph, the average particle size of the primary particle size is usually 10 nm or more and 20 nm or less in the Rh / CeZrNd powder, and the average particle size of the primary particle size is 5 nm in the specific Rh / CeZrNd powder. It was 10 nm or less.

−下触媒層の形成−
CeZrNd複合酸化物(CeO:ZrO:Nd=23:67:10(質量比))粉末と、Laを4質量%含有する活性アルミナ粉末(平均粒径13.8μm)にPdを担持させたPd/La含有アルミナ粉末と、通常Pd/CeZrNd粉末と、硝酸ジルコニル(バインダ)とをイオン交換水と共に混合してスラリー化し、担体にウォッシュコートして下触媒層を形成した。担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製ハニカム担体(容量1L)を用いた。通常Pd/CeZrNd粉末については、先に説明した通常Pd/CeZrNd粉末の調製法において、CeZrNd複合酸化物粉末20gに対するPd濃度4.33質量%の硝酸パラジウム溶液の添加量を2.56gとすることにより、Pd濃度を0.55質量%とした。触媒成分等の配合量(担体1L当たりの質量)については表3に記載した。
-Formation of lower catalyst layer-
CeZrNd composite oxide (CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio)) powder and activated alumina powder containing 4% by mass of La 2 O 3 (average particle size 13.8 μm) Pd / La-containing alumina powder with Pd supported thereon, usually Pd / CeZrNd powder, and zirconyl nitrate (binder) were mixed together with ion-exchanged water to form a slurry, and the lower catalyst layer was formed by wash-coating the support. . As the carrier, a cordierite honeycomb carrier (capacity 1 L) having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) was used. For normal Pd / CeZrNd powder, in the preparation method of normal Pd / CeZrNd powder described above, the amount of palladium nitrate solution with a Pd concentration of 4.33 mass% to 20 g of CeZrNd composite oxide powder is 2.56 g. Thus, the Pd concentration was set to 0.55% by mass. The blending amounts of catalyst components and the like (mass per liter of carrier) are shown in Table 3.

−上触媒層の形成−
特定Rh/CeZrNd粉末ゾルと、通常Rh/CeZrNd粉末と、ZrLa複合酸化物を担持した活性アルミナ粉末(平均粒径33μm)にRhを担持させてなるRh/ZrLa含有アルミナ粉末と、Laを4質量%含有するLa含有活性アルミナ粉末(平均粒径19μm)とを、イオン交換水と共に混合してスラリー化し、下触媒層の上にウォッシュコートして上触媒層を形成した。この場合、上触媒層では、特定Rh/CeZrNd粉末の粒子は、通常Rh/CeZrNd粉末の粒子に担持された状態になるだけでなく、Rh/ZrLa含有アルミナ粉末の粒子にも担持された状態になる。従って、このRh/ZrLa含有アルミナ粉末の活性アルミナ粒子には、ZrLa複合酸化物と特定Rh/CeZrNd粉末の粒子とが共存担持された状態になる。
-Formation of upper catalyst layer-
Rh / ZrLa-containing alumina powder obtained by supporting Rh on specific Rh / CeZrNd powder sol, normal Rh / CeZrNd powder, activated alumina powder (average particle size 33 μm) supporting ZrLa composite oxide, La 2 O 3 Was mixed with ion-exchanged water to form a slurry, and wash coated on the lower catalyst layer to form an upper catalyst layer. In this case, in the upper catalyst layer, the particles of the specific Rh / CeZrNd powder are not only normally supported on the particles of Rh / CeZrNd powder, but also supported on the particles of the Rh / ZrLa-containing alumina powder. Become. Therefore, the activated alumina particles of the Rh / ZrLa-containing alumina powder are in a state where the ZrLa composite oxide and the particles of the specific Rh / CeZrNd powder are co-supported.

Rh/ZrLa含有アルミナ粉末は次のようにして調製した。すなわち、硝酸ジルコニウム及び硝酸ランタンの混合溶液に活性アルミナ粉末を分散させ、これにアンモニア水を加えて沈殿を生成した。得られた沈殿物を濾過、洗浄し、200℃で2時間保持する乾燥、並びに500℃に2時間保持する焼成を行なうことにより、表面がZrLa複酸化物で被覆された活性アルミナ粒子を得た。これに硝酸ロジウム水溶液を混合し、蒸発乾固を行なうことにより、Rh/ZrLa含有アルミナ粉末を得た。ZrLa含有アルミナの組成はZrO:La:Al=38:2:60(質量比)である。 The Rh / ZrLa-containing alumina powder was prepared as follows. That is, activated alumina powder was dispersed in a mixed solution of zirconium nitrate and lanthanum nitrate, and ammonia water was added thereto to form a precipitate. The obtained precipitate was filtered, washed, dried at 200 ° C. for 2 hours, and fired at 500 ° C. for 2 hours to obtain activated alumina particles whose surfaces were coated with ZrLa double oxide. . This was mixed with an aqueous rhodium nitrate solution and evaporated to dryness to obtain an Rh / ZrLa-containing alumina powder. The composition of the ZrLa-containing alumina is ZrO 2 : La 2 O 3 : Al 2 O 3 = 38: 2: 60 (mass ratio).

触媒成分等の配合量については表3に記載した。上触媒層では、特定Rh/CeZrNd粉末ゾルがバインダとして機能するため、専用のバインダ原料(硝酸ジルコニル)は配合していない。なお、表3の各成分の配合量は乾燥重量である。   The blending amounts of catalyst components and the like are shown in Table 3. In the upper catalyst layer, since the specific Rh / CeZrNd powder sol functions as a binder, a dedicated binder raw material (zirconyl nitrate) is not blended. In addition, the compounding quantity of each component of Table 3 is a dry weight.

[実施例8]
下触媒層については、実施例7の硝酸ジルコニル(バインダ)に代えて特定Pd/CeZrNd粉末(10.055g/L)を配合し、他は実施例7と同じ構成にした。特定Pd/CeZrNd粉末は、Pd濃度0.55質量%の通常Pd/CeZrNd粉末を先に説明した湿式粉砕したものであり、図3及び図5の「特定Pd/CeZrNd粉末」と同様の粒度分布を有し、また、その一次粒子は、平均粒径が5nm以上10nm以下の微細一次粒子になっている。
[Example 8]
About the lower catalyst layer, it replaced with the zirconyl nitrate (binder) of Example 7, the specific Pd / CeZrNd powder (10.55g / L) was mix | blended, and it was set as the same structure as Example 7. The specific Pd / CeZrNd powder is obtained by wet pulverization of the normal Pd / CeZrNd powder having a Pd concentration of 0.55% by mass, and the particle size distribution similar to that of the “specific Pd / CeZrNd powder” in FIGS. 3 and 5 In addition, the primary particles are fine primary particles having an average particle diameter of 5 nm to 10 nm.

この下触媒層においては、上記特定Pd/CeZrNd粉末の一部の粒子が、二次粒子径及び一次粒子径が大きな通常Pd/CeZrNd粉末の粒子(図3、図4及び図6参照)、並びに同じく二次粒子径が大きなPd/La含有アルミナ粉末の粒子に分散担持された状態になり、特定Pd/CeZrNd粉末の分散安定性が高い。   In this lower catalyst layer, some particles of the specific Pd / CeZrNd powder are particles of normal Pd / CeZrNd powder having a large secondary particle size and primary particle size (see FIGS. 3, 4 and 6), and Similarly, it is in a state of being dispersed and supported on particles of Pd / La-containing alumina powder having a large secondary particle size, and the dispersion stability of the specific Pd / CeZrNd powder is high.

上触媒層については、実施例7の特定Rh/CeZrNd粉末に代えて硝酸ジルコニル(バインダ)を10.000g/L配合し、また、Rh/RhドープCeZrNd粉末のRhドープCeZrNd粉末量を10.000g/Lだけ増やし(Rh含浸担持量は実施例7と同じく0.012g/L)、他は実施例7と同じ構成にした。   For the upper catalyst layer, in place of the specific Rh / CeZrNd powder of Example 7, 10.000 g / L of zirconyl nitrate (binder) was blended, and the amount of Rh-doped CeZrNd powder in the Rh / Rh-doped CeZrNd powder was 10.000 g. / L was increased (Rh impregnation loading was 0.012 g / L as in Example 7), and the other configuration was the same as in Example 7.

[比較例4]
下触媒層は実施例7と同じ構成とした。上触媒層は実施例8と同じ構成にした。
[Comparative Example 4]
The lower catalyst layer had the same configuration as in Example 7. The upper catalyst layer had the same configuration as in Example 8.

−排気ガス浄化性能−
実施例7,8及び比較例4の各触媒のライトオフ性能を先に説明した方法によって調べた。結果を表4に示す。
−Exhaust gas purification performance−
The light-off performance of each catalyst of Examples 7 and 8 and Comparative Example 4 was examined by the method described above. The results are shown in Table 4.

表4によれば、HC、CO及びNOxのいずれに関しても、実施例7,8は比較例4よりもライトオフ温度T50が低く、優れた排気ガス浄化性能を有することがわかる。すなわち、触媒層が二層構造であるケースにおいても、粉砕によって粒径を小さくした特定Rh/CeZrNd粉末を上触媒層に用いると、或いは粉砕によって粒径を小さくした特定Pd/CeZrNd粉末を下触媒層に用いると、排気ガスの浄化性能を効率良く高めることができる。   According to Table 4, for any of HC, CO, and NOx, Examples 7 and 8 have a light-off temperature T50 lower than that of Comparative Example 4 and have excellent exhaust gas purification performance. That is, even in the case where the catalyst layer has a two-layer structure, the specific Rh / CeZrNd powder having a particle size reduced by pulverization is used for the upper catalyst layer, or the specific Pd / CeZrNd powder having a particle size reduced by pulverization is used as the lower catalyst. When used in the layer, the exhaust gas purification performance can be improved efficiently.

1 担体
2 上触媒層
3 下触媒層
4 特定Ce含有複合酸化物粒子
5 活性アルミナ粒子
6 触媒金属
7 元の一次粒子
8 微細一次粒子
DESCRIPTION OF SYMBOLS 1 Support | carrier 2 Upper catalyst layer 3 Lower catalyst layer 4 Specific Ce containing complex oxide particle 5 Activated alumina particle 6 Catalyst metal 7 Original primary particle 8 Fine primary particle

Claims (10)

触媒金属を担持したCe含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有する触媒層が担体上に設けられている排気ガス浄化用触媒であって、
上記触媒金属を担持したCe含有複合酸化物粉末は、上記触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末であり、
上記活性アルミナ粉末の平均粒径は、上記特定Ce含有複合酸化物粉末の上記累積分布90質量%粒径よりも大きく、
上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上50/100以下であることを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst in which a catalyst layer containing a mixed metal powder containing Ce containing a catalytic metal and activated alumina powder in a mixed state is provided on a carrier,
The Ce-containing composite oxide powder supporting the catalyst metal is composed of secondary particles formed by aggregation of a large number of primary particles having an average particle diameter of 5 nm to 10 nm on which the catalyst metal is dispersed and supported. A specific Ce-containing composite oxide powder having a cumulative distribution of 10% by mass particle size of 90 nm or more, a cumulative distribution of 50% by mass particle size of from 150 nm to 210 nm, and a cumulative distribution of 90% by mass of particle size of 300 nm or less.
The average particle size of the activated alumina powder is larger than the cumulative distribution 90 mass% particle size of the specific Ce-containing composite oxide powder,
A catalyst for exhaust gas purification, wherein a mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is from 1/100 to 50/100.
請求項1において、
上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上30/100以下であることを特徴とする排気ガス浄化用触媒。
In claim 1,
An exhaust gas purifying catalyst, wherein a mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is from 1/100 to 30/100.
請求項1又は請求項2において、
上記担体上に複数の触媒層が積層され、該複数の触媒層のうちの一つが、上記触媒金属を担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有していることを特徴とする排気ガス浄化用触媒。
In claim 1 or claim 2,
A plurality of catalyst layers are laminated on the support, and one of the plurality of catalyst layers contains the specific Ce-containing composite oxide powder supporting the catalyst metal and the activated alumina powder in a mixed state. An exhaust gas purifying catalyst characterized by.
請求項3において、
上記複数の触媒層のうち表面が排気ガスに晒される上側触媒層よりも下側の触媒層が、上記触媒金属を担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有し、該特定Ce含有複合酸化物粉末が上記触媒金属としてPdを担持していることを特徴とする排気ガス浄化用触媒。
In claim 3,
The catalyst layer below the upper catalyst layer whose surface is exposed to the exhaust gas among the plurality of catalyst layers contains the specific Ce-containing composite oxide powder supporting the catalyst metal and the activated alumina powder in a mixed state. An exhaust gas purifying catalyst, wherein the specific Ce-containing composite oxide powder carries Pd as the catalyst metal.
請求項4において、
上記活性アルミナ粉末に触媒金属としてPdが担持されていることを特徴とする排気ガス浄化用触媒。
In claim 4,
An exhaust gas purifying catalyst, wherein Pd is supported as a catalytic metal on the activated alumina powder.
請求項4又は請求項5において、
上記下側の触媒層は、上記触媒金属を担持した特定Ce含有複合酸化物粉末と、上記活性アルミナ粉末と、一次粒子及び二次粒子の平均粒径が上記特定Ce含有複合酸化物粉末よりも大きな別のCe含有複合酸化物粉末とを混合状態で含有することを特徴とする排気ガス浄化用触媒。
In claim 4 or claim 5,
The lower catalyst layer has a specific Ce-containing composite oxide powder supporting the catalyst metal, the activated alumina powder, and the average particle size of primary particles and secondary particles is higher than that of the specific Ce-containing composite oxide powder. An exhaust gas purifying catalyst comprising a large amount of another Ce-containing composite oxide powder in a mixed state.
請求項3乃至請求項6いずれか一において、
上記複数の触媒層のうち表面が排気ガスに晒される上側触媒層が上記触媒金属を担持した特定Ce含有複合酸化物粉末と活性アルミナ粉末とを混合状態で含有し、該特定Ce含有複合酸化物粉末が上記触媒金属としてRhを担持していることを特徴とする排気ガス浄化用触媒。
In any one of Claims 3 thru | or 6,
The upper catalyst layer whose surface is exposed to the exhaust gas among the plurality of catalyst layers contains the specific Ce-containing composite oxide powder supporting the catalyst metal and the activated alumina powder in a mixed state, and the specific Ce-containing composite oxide An exhaust gas purifying catalyst, wherein the powder carries Rh as the catalyst metal.
請求項7において、
上記上側触媒層が含有する活性アルミナ粉末の一部には、ZrとLaとを含む複合酸化物と、上記特定Ce含有複合酸化物粉末の粒子とが共存担持されていることを特徴とする排気ガス浄化用触媒。
In claim 7,
Exhaust gas characterized in that a part of the activated alumina powder contained in the upper catalyst layer co-supports a composite oxide containing Zr and La and particles of the specific Ce-containing composite oxide powder. Gas purification catalyst.
請求項1乃至請求項8のいずれか一において、
上記活性アルミナ粉末は、上記触媒金属を担持した特定Ce含有酸化物粉末をバインダとして上記担体に保持されていることを特徴とする排気ガス浄化用触媒。
In any one of Claims 1 thru | or 8,
The catalyst for purifying exhaust gas, wherein the activated alumina powder is held on the carrier using a specific Ce-containing oxide powder carrying the catalyst metal as a binder.
Ce含有複合酸化物粉末に触媒金属を担持させる工程と、
上記触媒金属を担持したCe含有複合酸化物粉末を粉砕することにより、該触媒金属が分散担持された平均粒径5nm以上10nm以下の多数の一次粒子が凝集してなる二次粒子によって構成され、該二次粒子の累積分布10質量%粒径が90nm以上、累積分布50質量%粒径が150nm以上210nm以下、累積分布90質量%粒径が300nm以下である特定Ce含有複合酸化物粉末にする工程と、
上記触媒金属を担持した特定Ce含有複合酸化物粉末と、該特定Ce含有複合酸化物粉末の上記累積分布90質量%粒径よりも平均粒径が大きい活性アルミナ粉末とを含むスラリーを調製する工程と、
上記スラリーを担体にコーティングして触媒層を形成する工程とを備え、
上記スラリー調製工程においては、上記活性アルミナ粉末に対する上記特定Ce含有複合酸化物粉末の質量比が1/100以上50/100以下となるようにすることを特徴とする排気ガス浄化用触媒の製造方法。
A step of supporting a catalytic metal on Ce-containing composite oxide powder;
By pulverizing the Ce-containing composite oxide powder supporting the catalyst metal, secondary particles formed by aggregating a large number of primary particles having an average particle diameter of 5 nm to 10 nm on which the catalyst metal is dispersed and supported, A specific Ce-containing composite oxide powder having a cumulative distribution of 10% by mass of the secondary particles of 90 nm or more, a cumulative distribution of 50% by mass of 150 to 210 nm, and a cumulative distribution of 90% by mass of 300% or less is used. Process,
A step of preparing a slurry comprising the specific Ce-containing composite oxide powder supporting the catalyst metal, and an activated alumina powder having an average particle size larger than the cumulative distribution of 90% by mass of the specific Ce-containing composite oxide powder. When,
Coating the slurry on a carrier to form a catalyst layer,
In the slurry preparation step, a mass ratio of the specific Ce-containing composite oxide powder to the activated alumina powder is 1/100 or more and 50/100 or less, and a method for producing an exhaust gas purification catalyst .
JP2009189185A 2009-08-18 2009-08-18 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP5589321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189185A JP5589321B2 (en) 2009-08-18 2009-08-18 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189185A JP5589321B2 (en) 2009-08-18 2009-08-18 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011036834A true JP2011036834A (en) 2011-02-24
JP5589321B2 JP5589321B2 (en) 2014-09-17

Family

ID=43765174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189185A Expired - Fee Related JP5589321B2 (en) 2009-08-18 2009-08-18 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP5589321B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108250A1 (en) * 2010-03-02 2011-09-09 日本板硝子株式会社 Catalyst loaded with fine noble metal particles, method for producing same, and purification catalyst
JP2012217951A (en) * 2011-04-11 2012-11-12 Mazda Motor Corp Catalyst for cleaning exhaust gas and method for producing the same
JP2012217875A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Base metal exhaust gas purifying catalyst, method for producing carrier, method for producing catalyst, and exhaust emission control device
JP2012217950A (en) * 2011-04-11 2012-11-12 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2014117679A (en) * 2012-12-18 2014-06-30 Mazda Motor Corp Catalyst attached particulate filter
JP2014136175A (en) * 2013-01-15 2014-07-28 Mazda Motor Corp Particulate filter provided with catalyst and method for producing the same
CN111405941A (en) * 2017-12-28 2020-07-10 优美科触媒日本有限公司 Catalyst for hydrogen production and catalyst for exhaust gas purification using same
WO2021166382A1 (en) 2020-02-21 2021-08-26 株式会社キャタラー Exhaust gas purification catalyst
WO2021193774A1 (en) * 2020-03-27 2021-09-30 日本化薬株式会社 Heterometallic doped cerium oxide and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH08333116A (en) * 1995-04-13 1996-12-17 Toyota Central Res & Dev Lab Inc Powder
JPH09225266A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Waste gas purifying device
JP2008100202A (en) * 2006-10-20 2008-05-01 Cataler Corp Exhaust gas purifying catalyst
JP2011016085A (en) * 2009-07-09 2011-01-27 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas, method for manufacturing catalyst for cleaning exhaust gas, and honeycomb catalyst for cleaning exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH08333116A (en) * 1995-04-13 1996-12-17 Toyota Central Res & Dev Lab Inc Powder
JPH09225266A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Waste gas purifying device
JP2008100202A (en) * 2006-10-20 2008-05-01 Cataler Corp Exhaust gas purifying catalyst
JP2011016085A (en) * 2009-07-09 2011-01-27 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas, method for manufacturing catalyst for cleaning exhaust gas, and honeycomb catalyst for cleaning exhaust gas

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778129B2 (en) * 2010-03-02 2015-09-16 日本板硝子株式会社 Precious metal fine particle supported catalyst, method for producing the same, and purification catalyst
JPWO2011108250A1 (en) * 2010-03-02 2013-06-20 日本板硝子株式会社 Precious metal fine particle supported catalyst, method for producing the same, and purification catalyst
WO2011108250A1 (en) * 2010-03-02 2011-09-09 日本板硝子株式会社 Catalyst loaded with fine noble metal particles, method for producing same, and purification catalyst
US8951931B2 (en) 2010-03-02 2015-02-10 Nippon Sheet Glass Company, Limited Noble metal fine particle supported catalyst and method for producing the catalyst, and purifying catalyst
JP2012217875A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Base metal exhaust gas purifying catalyst, method for producing carrier, method for producing catalyst, and exhaust emission control device
JP2012217950A (en) * 2011-04-11 2012-11-12 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2012217951A (en) * 2011-04-11 2012-11-12 Mazda Motor Corp Catalyst for cleaning exhaust gas and method for producing the same
JP2014117679A (en) * 2012-12-18 2014-06-30 Mazda Motor Corp Catalyst attached particulate filter
JP2014136175A (en) * 2013-01-15 2014-07-28 Mazda Motor Corp Particulate filter provided with catalyst and method for producing the same
CN111405941A (en) * 2017-12-28 2020-07-10 优美科触媒日本有限公司 Catalyst for hydrogen production and catalyst for exhaust gas purification using same
CN111405941B (en) * 2017-12-28 2022-09-27 优美科触媒日本有限公司 Catalyst for hydrogen production and catalyst for exhaust gas purification using same
WO2021166382A1 (en) 2020-02-21 2021-08-26 株式会社キャタラー Exhaust gas purification catalyst
WO2021193774A1 (en) * 2020-03-27 2021-09-30 日本化薬株式会社 Heterometallic doped cerium oxide and production method therefor
JP6975874B1 (en) * 2020-03-27 2021-12-01 日本化薬株式会社 Dissimilar metal-doped cerium oxide and its manufacturing method
CN115515902A (en) * 2020-03-27 2022-12-23 日本化药株式会社 Cerium oxide doped with dissimilar metal and method for preparing the same
CN115515902B (en) * 2020-03-27 2024-01-26 日本化药株式会社 Cerium oxide doped with heterogeneous metal and method for producing same

Also Published As

Publication number Publication date
JP5589321B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
KR102536415B1 (en) Layered Automotive Catalyst Complex
JP5515936B2 (en) Exhaust gas purification catalyst
JP5515939B2 (en) Exhaust gas purification catalyst
JP5589321B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6449785B2 (en) Automotive catalyst composite with bimetallic layer
US8007750B2 (en) Multilayered catalyst compositions
JP5147687B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4853291B2 (en) Exhaust gas purification catalyst and method for producing the same
US9339793B2 (en) Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2011062129A1 (en) Exhaust gas purification catalyst and manufacturing method therefor
JP2012086199A (en) Exhaust purifying catalyst
JPWO2014002667A1 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
JP6482986B2 (en) Method for producing exhaust gas purifying catalyst
JP6748590B2 (en) Exhaust gas purification catalyst
US9415383B2 (en) Exhaust gas purification catalyst
JP6504096B2 (en) Exhaust gas purification catalyst
JP2011255270A (en) Catalyst for purifying exhaust gas
JP2022061979A (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst for automobile
JP6146436B2 (en) Exhaust gas purification catalyst
JP5488215B2 (en) Exhaust gas purification catalyst
JP5589320B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system
JP2004181430A (en) Exhaust gas purification catalyst and production method for the same
JP5831083B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007319795A (en) Catalyst for purifying exhaust gas and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees