JP5589320B2 - Exhaust gas purification catalyst and method for producing the same - Google Patents
Exhaust gas purification catalyst and method for producing the same Download PDFInfo
- Publication number
- JP5589320B2 JP5589320B2 JP2009188557A JP2009188557A JP5589320B2 JP 5589320 B2 JP5589320 B2 JP 5589320B2 JP 2009188557 A JP2009188557 A JP 2009188557A JP 2009188557 A JP2009188557 A JP 2009188557A JP 5589320 B2 JP5589320 B2 JP 5589320B2
- Authority
- JP
- Japan
- Prior art keywords
- cezr
- composite oxide
- based composite
- oxide powder
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 114
- 238000000746 purification Methods 0.000 title description 28
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000002131 composite material Substances 0.000 claims description 117
- 239000000843 powder Substances 0.000 claims description 93
- 239000002245 particle Substances 0.000 claims description 83
- 229910052783 alkali metal Inorganic materials 0.000 claims description 64
- 150000001340 alkali metals Chemical class 0.000 claims description 64
- 239000002184 metal Substances 0.000 claims description 49
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 229910052684 Cerium Inorganic materials 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- 238000011068 loading method Methods 0.000 claims description 13
- 230000003197 catalytic effect Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 9
- 238000000975 co-precipitation Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 60
- 239000007789 gas Substances 0.000 description 48
- 239000011734 sodium Substances 0.000 description 46
- 230000000052 comparative effect Effects 0.000 description 24
- 239000000243 solution Substances 0.000 description 14
- 239000006104 solid solution Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- 235000010344 sodium nitrate Nutrition 0.000 description 4
- 239000004317 sodium nitrate Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- GAJINTUZMJRZFR-UHFFFAOYSA-N O.O.O.O.[N+](=O)([O-])[O-].[Nd+3].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] Chemical compound O.O.O.O.[N+](=O)([O-])[O-].[Nd+3].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] GAJINTUZMJRZFR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、排気ガス浄化用触媒及びその製造方法に関する。 The present invention relates to an exhaust gas purification catalyst and a method for producing the same.
排気ガス浄化用触媒では、触媒金属の凝集による性能の低下が従来より問題になっている。この触媒金属の凝集は、触媒が高温の排気ガスに晒されることによって生ずる。例えば、自動車エンジンの排気マニホールドに直結される排気ガス浄化用触媒では、触媒温度が1100℃程度の高温になることがある。触媒金属を活性アルミナのような大きな比表面積を有するサポート材に分散担持させても、その触媒金属が次第に凝集していくことは避けられない。従来の触媒では、触媒金属が凝集してもある程度の触媒性能が得られるように、触媒金属量が多めになっている。しかし、触媒金属として一般に採用されるPt、Pd、Rh等の貴金属は高価であり、しかも、近年はそのようなレアメタル資源の確保が求められている。 In exhaust gas purifying catalysts, performance degradation due to agglomeration of catalytic metals has been a problem. This agglomeration of the catalytic metal occurs when the catalyst is exposed to hot exhaust gas. For example, an exhaust gas purification catalyst directly connected to an exhaust manifold of an automobile engine may have a catalyst temperature as high as about 1100 ° C. Even when the catalyst metal is dispersed and supported on a support material having a large specific surface area such as activated alumina, it is inevitable that the catalyst metal gradually aggregates. In conventional catalysts, the amount of catalyst metal is large so that a certain degree of catalyst performance can be obtained even if the catalyst metal aggregates. However, noble metals such as Pt, Pd, and Rh that are generally employed as catalyst metals are expensive, and in recent years, it is required to secure such rare metal resources.
これに対して、触媒金属を活性アルミナ等の表面に担持するだけでなく、排気ガスの空燃比の変動に応じて酸素を吸蔵・放出する酸素吸蔵放出材として機能するCeZr系複合酸化物に触媒金属を固溶させることが行なわれている(特許文献1,2)。このCeZr系複合酸化物に触媒金属を固溶させると、その酸素吸蔵放出能が大幅に改善される。そのため、この触媒金属を固溶したCeZr系複合酸化物を三元触媒に使用し、理論空燃比を中心として排気ガスの空燃比をリーンとリッチとに繰り返し変化させると、少ない触媒金属量でも優れた排気ガス浄化性能が得られる。 On the other hand, the catalyst metal is not only supported on the surface of activated alumina or the like, but also catalyzed by a CeZr-based composite oxide that functions as an oxygen storage / release material that stores and releases oxygen in accordance with fluctuations in the air-fuel ratio of exhaust gas Metals are dissolved (Patent Documents 1 and 2). When a catalytic metal is dissolved in this CeZr-based composite oxide, its oxygen storage / release capability is greatly improved. For this reason, using a CeZr-based composite oxide in which this catalytic metal is dissolved in a three-way catalyst and repeatedly changing the air-fuel ratio of the exhaust gas to lean and rich centering on the theoretical air-fuel ratio is excellent even with a small amount of catalyst metal. Exhaust gas purification performance can be obtained.
また、CeZr系複合酸化物にアルカリ金属を固溶させると、その塩基性が高まるなど、性質が変化することが知られている。 Further, it is known that when an alkali metal is dissolved in the CeZr-based composite oxide, its properties change, for example, its basicity increases.
例えば、特許文献3には、CeZr系複合酸化物に触媒金属と共にアルカリ金属を固溶させることにより、CeZr系複合酸化物に塩基性が高いサイトを形成し、該サイトに排気ガス中の硫黄を吸着させることにより、触媒金属の硫黄被毒を抑制することが記載されている。その調製法は、Ce、Zr、触媒金属及びアルカリ金属の各イオンを含む硝酸塩溶液にアンモニア水を添加して共沈を生じさせ、共沈物を乾燥・焼成する、というものであり、これにより、触媒金属及びアルカリ金属が固溶したCeZr系複合酸化物を得ている。 For example, Patent Document 3 discloses that a highly basic site is formed in a CeZr composite oxide by dissolving an alkali metal together with a catalyst metal in a CeZr composite oxide, and sulfur in exhaust gas is formed in the site. It is described that sulfur poisoning of catalytic metals is suppressed by adsorption. The preparation method is that ammonia water is added to a nitrate solution containing Ce, Zr, catalyst metal and alkali metal ions to cause coprecipitation, and the coprecipitate is dried and calcined. Thus, a CeZr-based composite oxide in which a catalytic metal and an alkali metal are dissolved is obtained.
また、特許文献4には、CeZr系複合酸化物にアルカリ金属を固溶させることにより、該複合酸化物の酸素吸蔵放出量を増大させること、かかるアルカリ金属を固溶したCeZr系複合酸化物と、Pdを担持した活性アルミナとを排気ガス浄化用触媒に用いることが記載されている。さらに、アルカリ金属を固溶したCeZr系複合酸化物は、共沈法や錯体重合法で調製することが記載されている。 Patent Document 4 discloses that an alkali metal is solid-dissolved in a CeZr-based composite oxide to increase the oxygen storage / release amount of the composite oxide, and a CeZr-based composite oxide in which the alkali metal is solid-solubilized. The use of activated alumina carrying Pd as an exhaust gas purifying catalyst is described. Furthermore, it is described that a CeZr-based composite oxide in which an alkali metal is dissolved is prepared by a coprecipitation method or a complex polymerization method.
しかし、上記アルカリ金属を固溶したCeZr系複合酸化物の場合、アルカリ金属はCeZr系複合酸化物の粒子内に固溶しているから、粒子表面に露出するアルカリ金属量は少なくなる。従って、アルカリ金属の固溶によるCeZr系複合酸化物粉末の粒子表面特性の向上、触媒金属との相互作用の向上には限界がある。これに対して、アルカリ金属溶液を触媒層に含浸させてCeZr系複合酸化物粉末の粒子表面にアルカリ金属を担持させることも考えられる。しかし、その場合は、アルカリ金属がCeZr系複合酸化物粉末だけでなく、バインダなど触媒層の他の成分にもアルカリ金属が担持され、無駄が多くなるとともに、アルカリアタックによる担体の強度低下を招き易くなる。 However, in the case of the CeZr-based composite oxide in which the alkali metal is dissolved, since the alkali metal is dissolved in the CeZr-based composite oxide particles, the amount of alkali metal exposed on the particle surface is reduced. Therefore, there is a limit in improving the particle surface characteristics of CeZr-based composite oxide powder by solid solution of alkali metal and improving the interaction with the catalyst metal. On the other hand, it is also conceivable that the alkali metal solution is impregnated in the catalyst layer and the alkali metal is supported on the particle surfaces of the CeZr-based composite oxide powder. However, in this case, the alkali metal is supported not only on the CeZr-based composite oxide powder, but also on other components of the catalyst layer such as a binder, resulting in increased waste and a decrease in the strength of the carrier due to alkali attack. It becomes easy.
すなわち、本発明は、触媒金属及びCeZr系複合酸化物粉末を含有する排気ガス浄化用触媒の向上にアルカリ金属を効果的に利用することを課題とする。 That is, this invention makes it a subject to use an alkali metal effectively for the improvement of the catalyst for exhaust gas purification containing a catalyst metal and CeZr type complex oxide powder.
本発明は、上記課題を解決するために、アルカリ金属をCeZr系複合酸化物(Ce及びZrの各イオンを含む酸化物)粉末の粒子表面に担持されるように該粒子に組み込み、且つ触媒金属とアルカリ金属とが該CeZr系複合酸化物粒子表面において互いに近接した状態になるようにした。以下、具体的に説明する。 In order to solve the above-mentioned problems, the present invention incorporates an alkali metal into the particle so as to be supported on the particle surface of a CeZr-based composite oxide (oxide containing each ion of Ce and Zr), and a catalytic metal. And an alkali metal were brought close to each other on the CeZr-based composite oxide particle surface. This will be specifically described below.
本発明は、担体上に、触媒金属と、Ce及びZrを含有するCeZr系複合酸化物粉末と、無機酸化物からなるバインダとを含む触媒層が設けられている排気ガス浄化用触媒であって、
上記触媒金属がPdであり、該Pdは上記CeZr系複合酸化物粉末の粒子に固溶し、その一部が該粒子表面に露出し、
上記触媒層において、上記CeZr系複合酸化物粉末の粒子表面に担持されるように該粒子に組み込まれて、上記CeZr系複合酸化物粉末上に偏在させたアルカリ金属を備え、
上記CeZr系複合酸化物粉末の粒子に固溶したアルカリ金属の一部が当該粒子の表面に露出し、
上記CeZr系複合酸化物粉末の粒子表面において、上記触媒金属としてのPdと上記アルカリ金属とが互いに近接した状態で存在していることを特徴とする。
The present invention is an exhaust gas purification catalyst in which a catalyst layer containing a catalyst metal, a CeZr-based composite oxide powder containing Ce and Zr, and a binder made of an inorganic oxide is provided on a support. ,
The catalyst metal is Pd, the Pd is solid-solved in the particles of the CeZr-based composite oxide powder, a part of which is exposed on the particle surface,
The catalyst layer includes an alkali metal incorporated in the particle so as to be supported on the particle surface of the CeZr-based composite oxide powder and unevenly distributed on the CeZr-based composite oxide powder,
A part of the alkali metal dissolved in the particles of the CeZr-based composite oxide powder is exposed on the surface of the particles,
Pd as the catalyst metal and the alkali metal are present in close proximity to each other on the particle surface of the CeZr-based composite oxide powder.
このような排気ガス浄化用触媒によれば、アルカリ金属がCeZr系複合酸化物粉末の粒子表面に担持され、該粒子表面において触媒金属Pdとアルカリ金属とが互いに近接した状態で存在するから、アルカリ金属が立体障害となって、CeZr系複合酸化物粉末の粒子表面における触媒金属Pdの凝集が抑制される。そして、アルカリ金属が有する電子供与性により、触媒金属PdとCeZr系複合酸化物とが酸素を介した結合状態をとり易くなり、触媒金属Pdは酸化物としての性質が強くなって、HC(炭化水素)やCOを酸化浄化する活性が高くなり、同時にNOxの還元浄化が図れる。また、上記電子供与性により、CeZr系複合酸化物に吸着される排気ガス成分の活性が高くなり、触媒金属Pdによって浄化され易くなる。しかも、アルカリ金属は、CeZr系複合酸化物粉末の粒子表面に担持されるように該粒子に組み込まれているから、つまり、アルカリ金属を触媒層においてCeZr系複合酸化物粉末上に偏在させているから、アルカリ金属がバインダ等に担持される無駄が防止されるとともに、担体に対するアルカリアタックが避けられ、触媒の耐久性向上に有利になる。 According to such an exhaust gas purifying catalyst, the alkali metal is supported on the particle surface of the CeZr-based composite oxide powder, and the catalyst metal Pd and the alkali metal are present in the state of being close to each other on the particle surface. The metal becomes a steric hindrance, and aggregation of the catalytic metal Pd on the particle surface of the CeZr-based composite oxide powder is suppressed. The electron donating property of the alkali metal makes it easy for the catalyst metal Pd and the CeZr-based composite oxide to take a bonded state via oxygen, and the catalyst metal Pd has a strong oxide property, and HC (carbonized). Hydrogen) and CO are oxidized and purified, and NOx can be reduced and purified at the same time. In addition, due to the electron donating property, the activity of the exhaust gas component adsorbed on the CeZr-based composite oxide is increased, and is easily purified by the catalyst metal Pd . Moreover, the alkali metal is incorporated in the particles so as to be supported on the particle surface of the CeZr-based composite oxide powder, that is, the alkali metal is unevenly distributed on the CeZr-based composite oxide powder in the catalyst layer. Thus, waste of alkali metal supported on the binder or the like is prevented, and an alkali attack on the carrier is avoided, which is advantageous for improving the durability of the catalyst.
また、上記触媒金属Pdが上記CeZr系複合酸化物粉末の粒子に固溶し、その一部が該粒子表面に露出していることにより、CeZr系複合酸化物の酸素吸蔵放出能が高くなるとともに、触媒金属Pdの凝集抑制に有利になる。 Moreover, the catalyst metal Pd are dissolved in the particles of the CeZr-based mixed oxide powder, a portion of more and this exposed on the surface of the particles, high oxygen storage capacity of the CeZr-based mixed oxide At the same time, it is advantageous for suppressing aggregation of the catalyst metal Pd .
上記CeZr系複合酸化物に対する上記アルカリ金属の好ましい担持比率は、酸化物に換算して11モル%以下であり、さらに好ましいのは0.2モル%以上5モル%以下である。 A preferable supporting ratio of the alkali metal with respect to the CeZr-based composite oxide is 11 mol% or less in terms of oxide, and more preferably 0.2 mol% or more and 5 mol% or less.
上記CeZr系複合酸化物粉末として好ましいのは、CeO2とZrO2との質量比が同じか、ZrO2がリッチである複合酸化物粉末である。CeZr系複合酸化物には、Ce及びZrの他にNdを配合することが好ましい。その場合の好ましい組成(質量比)は、CeO2:ZrO2:Nd2O3=(5〜45):(45〜85):(5〜20)である。さらに第四金属成分として、例えばPr、Y、La、Hf、Ba、Sr、Ca、Mgを0.1質量%以上10質量%以下の範囲で配合することもできる。 The CeZr-based composite oxide powder is preferably a composite oxide powder having the same mass ratio of CeO 2 and ZrO 2 or rich in ZrO 2 . In addition to Ce and Zr, Nd is preferably added to the CeZr-based composite oxide. A preferable composition (mass ratio) in that case is CeO 2 : ZrO 2 : Nd 2 O 3 = (5-45) :( 45-85) :( 5-20). Furthermore, as a 4th metal component, Pr, Y, La, Hf, Ba, Sr, Ca, Mg can also be mix | blended in 0.1 mass% or more and 10 mass% or less, for example.
上記アルカリ金属としては、Li、Na、Kが好ましい。 As the alkali metal, Li, Na, and K are preferable.
上記CeZr系複合酸化物粉末に対する触媒金属Pdの担持比率は0.01質量%以上15質量%以下とすることが好ましい。 The supporting ratio of the catalyst metal Pd to the CeZr-based composite oxide powder is preferably 0.01% by mass or more and 15% by mass or less.
本発明の別の観点は、上述の如き排気ガス浄化用触媒を製造することに適した方法であり、Ce及びZrの各イオンを含む溶液から得たCe及びZrを含むゲル形態の共沈物にアルカリ金属溶液を混合し、該混合物を焼成することによって、一部のアルカリ金属がCeZr系複合酸化物粒子に固溶し且つこの固溶したアルカリ金属の一部が粒子表面に露出したCeZr系複合酸化物粉末を得る工程と、
上記CeZr系複合酸化物粉末をバインダと共に担体にウォッシュコートして、該担体上に触媒層を形成する工程とを備え、
上記CeZr系複合酸化物粉末を得る工程において、上記溶液に触媒金属としてのPdのイオンを添加して上記Ce及びZrと共にPdを共沈させることにより、該Pdを上記CeZr系複合酸化物の粒子に固溶させるとともに、その一部のPdを該粒子表面に露出させることを特徴とする。
Another aspect of the present invention is a method suitable for producing an exhaust gas purification catalyst as described above, and a coprecipitate in the form of a gel containing Ce and Zr obtained from a solution containing Ce and Zr ions. A CeZr system in which a part of the alkali metal is solid-dissolved in the CeZr-based composite oxide particles and a part of the solid-solution alkali metal is exposed on the particle surface by mixing the alkali metal solution and firing the mixture. Obtaining a composite oxide powder;
And a step of wash-coating the CeZr-based composite oxide powder together with a binder on a carrier to form a catalyst layer on the carrier,
In the step of obtaining the CeZr-based mixed oxide powder, by co-precipitation of Pd with the Ce and Zr were added ions Pd as the catalytic metal in the solution, the Pd in the CeZr-based mixed oxide particles And a part of Pd is exposed on the particle surface.
この製造方法の場合、Ce及びZrを含むゲル形態の共沈物にアルカリ金属溶液を混合し、該混合物を焼成するから、アルカリ金属溶液はゲルを構成する粒子表面に付着し、その後の焼成により、アルカリ金属が酸化物としてCeZr系複合酸化物の粒子表面に担持された状態になる。CeZr系複合酸化物粉末の粒子に固溶したアルカリ金属の一部は当該粒子の表面に露出する。これにより、アルカリ金属を触媒層においてCeZr系複合酸化物粉末上に偏在させることができる。そして、CeZr系複合酸化物粉末を得る工程において、触媒金属PdをCe及びZrと共に共沈させるから、該Pdは当該CeZr系複合酸化物粒子に固溶するとともに、その一部のPdが該粒子表面に露出した状態になり、その結果、該粒子表面ではアルカリ金属とPdとが互いに近接した状態になる。 In the case of this production method, an alkali metal solution is mixed with a co-precipitate in the form of a gel containing Ce and Zr, and the mixture is fired. Therefore, the alkali metal solution adheres to the particle surface constituting the gel, and then fired. Then, the alkali metal is supported on the particle surface of the CeZr-based composite oxide as an oxide. Part of the alkali metal dissolved in the particles of the CeZr-based composite oxide powder is exposed on the surface of the particles. Thereby, an alkali metal can be unevenly distributed on the CeZr-based composite oxide powder in the catalyst layer. Then, in the step of obtaining a CeZr-based composite oxide powder, a catalytic metal Pd from coprecipitating with Ce and Zr, with the Pd is dissolved in the CeZr-based mixed oxide particles, of a part of Pd is particles As a result, the alkali metal and Pd are close to each other on the particle surface.
以上のように本発明に係る排気ガス浄化用触媒によれば、アルカリ金属はCeZr系複合酸化物粉末の粒子表面に担持されるように該粒子に組み込まれて該CeZr系複合酸化物粉末上に偏在し、CeZr系複合酸化物粉末の粒子に固溶したアルカリ金属の一部が当該粒子の表面に露出し、CeZr系複合酸化物粉末の粒子に固溶したPdの一部が該粒子表面に露出し、該アルカリ金属と触媒金属PdとがCeZr系複合酸化物粉末の粒子表面において互いに近接した状態で存在しているから、アルカリ金属が立体障害となって、CeZr系複合酸化物粉末の粒子表面におけるPdの凝集が抑制され、また、アルカリ金属が有する電子供与性により、PdはHCやCOを酸化浄化する活性が高くなり、或いは、CeZr系複合酸化物に吸着される排気ガス成分の活性が高くなり、優れた排気ガス浄化性能が得られるとともに、担体に対するアルカリアタックが避けられ、触媒の耐久性向上に有利になる。 As described above, according to the exhaust gas purifying catalyst of the present invention, the alkali metal is incorporated into the CeZr-based composite oxide powder so as to be supported on the particle surface of the CeZr-based composite oxide powder. A portion of the alkali metal that is unevenly distributed and dissolved in the particles of the CeZr-based composite oxide powder is exposed on the surface of the particles, and a part of Pd that is dissolved in the particles of the CeZr-based composite oxide powder is on the surface of the particles. Since the exposed alkali metal and catalyst metal Pd are present in the state of being close to each other on the particle surface of the CeZr-based composite oxide powder, the alkali metal becomes a steric hindrance, and the particles of the CeZr-based composite oxide powder aggregation of Pd is suppressed in the surface, and by electron-donating with an alkali metal, Pd is high activity to oxidize purify HC and CO, or adsorbed on CeZr-based mixed oxide Activity of the exhaust gas component becomes high that, together with the excellent exhaust gas purifying performance can be obtained, the alkali attack is avoided to the carrier, which is advantageous in improving durability of the catalyst.
本発明に係る排気ガス浄化用触媒の製造方法によれば、Ce及びZrを含むゲル形態の共沈物にアルカリ金属溶液を混合し、該混合物を焼成することによって、一部のアルカリ金属がCeZr系複合酸化物粒子に固溶し且つこの固溶したアルカリ金属の一部が粒子表面に露出したCeZr系複合酸化物粉末を得る工程と、該CeZr系複合酸化物粉末をバインダと共に担体にウォッシュコートして触媒層を形成する工程とを備え、上記CeZr系複合酸化物粉末を得る工程において、上記Ce及びZrと共にPdを共沈させることにより、該Pdを上記CeZr系複合酸化物粒子に固溶させるとともに、その一部のPdを該粒子表面に露出させるようにしたから、アルカリ金属がCeZr系複合酸化物の粒子表面に担持されてCeZr系複合酸化物粉末上に偏在し、且つアルカリ金属と触媒金属PdとはCeZr系複合酸化物粉末の粒子表面において互いに近接した状態になる。 According to the method for producing an exhaust gas purifying catalyst of the present invention, an alkali metal solution is mixed with a gel-form coprecipitate containing Ce and Zr, and the alkali metal solution is calcined, whereby a portion of the alkali metal is converted into CeZr. A step of obtaining a CeZr-based composite oxide powder that is solid-dissolved in the composite oxide particles and a part of the dissolved alkali metal is exposed on the surface of the particles , and wash-coating the CeZr-based composite oxide powder together with a binder on a carrier and a step of forming a catalyst layer, in the step of obtaining the CeZr-based mixed oxide powder, by co-precipitation of Pd with the Ce and Zr, solid solution of the Pd to the CeZr-based mixed oxide particles together is, since a part of the Pd was expose to the particle surface, CeZr-based mixed alkali metal is supported on the particle surfaces of CeZr-based mixed oxide Unevenly distributed on the product powder, and a state close to each other in the particle surfaces of the CeZr-based mixed oxide powder and the alkali metal and the catalyst metal Pd.
以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.
図1に示す排気ガス浄化用触媒において、1は担体であり、この担体1上に触媒層2が形成されている。この排気ガス浄化用触媒1は自動車のガソリンエンジンが理論空燃比付近で運転されるときの排気ガスに含まれるHC(炭化水素)、CO及びNOx(窒素酸化物)を同時に浄化する三元触媒に適する。 In the exhaust gas purifying catalyst shown in FIG. 1, 1 is a carrier, and a catalyst layer 2 is formed on the carrier 1. The exhaust gas purification catalyst 1 is a three-way catalyst that simultaneously purifies HC (hydrocarbon), CO, and NOx (nitrogen oxides) contained in exhaust gas when an automobile gasoline engine is operated near the stoichiometric air-fuel ratio. Suitable.
担体1は例えばコージェライト製のハニカム担体とされる。触媒層2は、触媒金属と、アルカリ金属と、酸素吸蔵放出材としてのCeZr系複合酸化物粉末と、無機酸化物からなるバインダとを含有する。触媒層2は、さらに、活性アルミナ粉末など他の触媒成分を含有することができる。CeZr系複合酸化物粉末上には、アルカリ金属と触媒金属とが共存している。すなわち、アルカリ金属は、触媒層2おいて上記CeZr系複合酸化物粉末上に偏在しており、さらに、CeZr系複合酸化物粉末の粒子表面において、アルカリ金属と触媒金属とが互いに近接して設けられている。 The carrier 1 is, for example, a cordierite honeycomb carrier. The catalyst layer 2 contains a catalyst metal, an alkali metal, a CeZr-based composite oxide powder as an oxygen storage / release material, and a binder made of an inorganic oxide. The catalyst layer 2 can further contain other catalyst components such as activated alumina powder. An alkali metal and a catalyst metal coexist on the CeZr-based composite oxide powder. That is, the alkali metal is unevenly distributed on the CeZr-based composite oxide powder in the catalyst layer 2, and the alkali metal and the catalyst metal are provided close to each other on the particle surface of the CeZr-based composite oxide powder. It has been.
<アルカリ金属・触媒金属共存型CeZr系複合酸化物粉末について>
上記アルカリ金属と触媒金属とが共存したCeZr系複合酸化物粉末について、アルカリ金属としてNaを採用し、触媒金属としてPdを採用したケースで説明する。
<Alkali metal / catalyst coexisting CeZr-based composite oxide powder>
The CeZr-based composite oxide powder in which the alkali metal and the catalyst metal coexist will be described by using Na as the alkali metal and Pd as the catalyst metal.
−実施例に係るNaドープ型CeZr系複合酸化物粉末の調製−
硝酸セリウム6水和物(17.15g)とZrO2に換算して25.13質量%のZrを含有したオキシ硝酸ジルコニル溶液(78.78g)と硝酸ネオジム4水和物(7.07g)と硝酸パラジウム(3.44g)をイオン交換水(300mL)に溶かして硝酸塩混合溶液を得る。この硝酸塩混合溶液に28質量%アンモニア水の8倍希釈液(900mL)を混合して中和させることにより、共沈物を得る。この共沈物を遠心分離法で水洗してゲルを得る。このゲル形態の共沈物に、アルカリ金属化合物としての硝酸ナトリウム(0.82g)を溶解させた水溶液を添加し、一昼夜攪拌混合する。得られた混合物を空気中において150℃の温度で乾燥させ、粉砕した後、空気中において500℃の温度に2時間保持する焼成を行なう。
-Preparation of Na-doped CeZr-based composite oxide powder according to Examples-
Cerium nitrate hexahydrate (17.15 g), a zirconyl oxynitrate solution (78.78 g) containing ZrO 2 in terms of ZrO 2 , neodymium nitrate tetrahydrate (7.07 g), Palladium nitrate (3.44 g) is dissolved in ion-exchanged water (300 mL) to obtain a nitrate mixed solution. A coprecipitate is obtained by mixing this nitrate mixed solution with an 8-fold diluted solution (900 mL) of 28% by mass aqueous ammonia to neutralize it. This coprecipitate is washed with water by centrifugation to obtain a gel. An aqueous solution in which sodium nitrate (0.82 g) as an alkali metal compound is dissolved is added to the coprecipitate in the gel form, and the mixture is stirred and mixed overnight. The obtained mixture is dried in air at a temperature of 150 ° C., pulverized, and then calcined in air at a temperature of 500 ° C. for 2 hours.
以上により、Pdが固溶し且つ粒子表面にNaが担持されたCeZr系複合酸化物粉末30gを得ることができる。一部のPdはCeZr系複合酸化物粉末の粒子表面に露出した状態になる。また、硝酸ナトリウム水溶液をCeZr系複合酸化物の前駆体であるゲル形態の共沈物に添加・混合(ドープ)するようにしているから、Naは、得られるCeZrNd複合酸化物粉末の粒子に組み込まれた状態になる。 Thus, 30 g of CeZr-based composite oxide powder in which Pd is dissolved and Na is supported on the particle surface can be obtained. Part of Pd is exposed on the particle surface of the CeZr-based composite oxide powder. In addition, since sodium nitrate aqueous solution is added and mixed (dope) with the gel-form coprecipitate which is a precursor of CeZr-based composite oxide, Na is incorporated into the obtained CeZrNd composite oxide powder particles. It will be in the state.
すなわち、上記ドープ後の焼成により、NaはCeZr系複合酸化物粉末の二次粒子表面に担持されるだけでなく、該二次粒子内部に埋もれている一次粒子の表面にも担持された状態になる。この場合、一部のNaがCeZr系複合酸化物粒子に固溶し、残部のNaが当該粒子表面に担持された状態になり、そして、粒子内に固溶したNaの一部はその粒子表面に露出し、この露出したNaに上記残部のNaが結合するから、NaのCeZr系複合酸化物粒子に対する結合強度が高くなっていると考えられる。その結果、このCeZr系複合酸化物粒子表面にはPdと強く結合したNaとが互いに近接した状態で存在し、そのNaがPdの凝集を抑制する立体障害の機能を果たすと考えられる。また、NaがCeZr系複合酸化物粒子(二次粒子)を構成する一次粒子間にあって、排気ガスを当該二次粒子内部に拡散させ易くしていると考えられる。 That is, by the baking after the doping, Na is not only supported on the secondary particle surface of the CeZr-based composite oxide powder, but also supported on the surface of the primary particle buried inside the secondary particle. Become. In this case, a part of Na is dissolved in CeZr-based composite oxide particles, the remaining Na is supported on the particle surface, and a part of the Na dissolved in the particles is the surface of the particles. Since the remaining Na binds to the exposed Na, it is considered that the bonding strength of Na to the CeZr-based composite oxide particles is high. As a result, it is considered that Na strongly bound to Pd is present in the CeZr-based composite oxide particle surface in a state of being close to each other, and that Na functions as a steric hindrance to suppress Pd aggregation. Further, it is considered that Na is present between the primary particles constituting the CeZr-based composite oxide particles (secondary particles), and makes it easy to diffuse the exhaust gas into the secondary particles.
得られたNaドープ(Pd固溶)型CeZr系複合酸化物粉末のPd及びNaを除く組成は、CeO2:ZrO2:Nd2O3=23:67:10(質量比)である。Naの担持比率はNa2Oに換算してCeZrNd複合酸化物粉末の1質量%であり、これは金属酸化物のモル数で換算すれば、2.3モル%に相当する。 The composition excluding Pd and Na of the obtained Na-doped (Pd solid solution) type CeZr-based composite oxide powder is CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio). The Na loading ratio is 1% by mass of the CeZrNd composite oxide powder in terms of Na 2 O, which corresponds to 2.3% by mol in terms of the number of moles of metal oxide.
−比較例に係るNa後担持型CeZr系複合酸化物粉末の調製−
上記Naドープ型CeZr系複合酸化物粉末の調製法とは違って、上記硝酸塩混合溶液の調製工程では硝酸パラジウムを添加せず、上記ゲル形態の共沈物に対して硝酸パラジウム水溶液を添加して攪拌混合するようにした。また、硝酸ナトリウム水溶液は、上記ゲル形態の共沈物には添加せずに、該ゲル形態の共沈物を乾燥焼成して得られたPd後担持CeZrNd複合酸化物粉末に含浸させるようにし、その後に焼成をした。その他は上記Naドープ型CeZr系複合酸化物粉末の調製法と同様にして、Na後担持(Pd後担持)型CeZr系複合酸化物粉末を得た。
-Preparation of Na-supported CeZr-based composite oxide powder according to comparative example-
Unlike the method for preparing the Na-doped CeZr-based composite oxide powder, palladium nitrate is not added in the preparation step of the nitrate mixed solution, but an aqueous solution of palladium nitrate is added to the coprecipitate in the gel form. Stir and mix. Further, the aqueous sodium nitrate solution is not added to the coprecipitate in the gel form, but is impregnated in the post-Pd-supported CeZrNd composite oxide powder obtained by drying and firing the coprecipitate in the gel form. Thereafter, firing was performed. Other than that, the Na-supported CeZr-based composite oxide powder was obtained in the same manner as the Na-doped CeZr-based composite oxide powder.
−電子顕微鏡写真観察−
上記Naドープ型CeZr系複合酸化物粉末及びNa後担持型CeZr系複合酸化物粉末各々に対して、大気雰囲気で1000℃の温度に24時間保持するエージングを行なった後に、それら粒子を電子顕微鏡で観察した。図2はNaドープ型CeZr系複合酸化物粒子の電子顕微鏡写真であり、図3はNa後担持型CeZr系複合酸化物粒子の電子顕微鏡写真である。実施例のNaドープ型CeZr系複合酸化物粒子では、該粒子に担持されているPd粒子の粒径が約79nmであるが、比較例のNa後担持型CeZr系複合酸化物粒子では、該粒子に担持されているPd粒子の粒径が約154nmであり、実施例の法がPd粒径は小さい。
-Observation of electron micrograph-
Each of the Na-doped CeZr-based composite oxide powder and the Na post-supported CeZr-based composite oxide powder was aged at a temperature of 1000 ° C. for 24 hours in an air atmosphere, and then the particles were observed with an electron microscope. Observed. FIG. 2 is an electron micrograph of Na-doped CeZr-based composite oxide particles, and FIG. 3 is an electron micrograph of Na-supported CeZr-based composite oxide particles. In the Na-doped CeZr-based composite oxide particles of the example, the particle size of the Pd particles supported on the particles is about 79 nm. However, in the Na post-supported CeZr-based composite oxide particles of the comparative example, the particles The particle size of the Pd particles carried on the slab is about 154 nm, and the Pd particle size is small in the method of the example.
−X線回折パターン−
図4は上記エージング後のNaドープ型CeZr系複合酸化物粉末及びNa後担持型CeZr系複合酸化物粉末各々のXRD(X線回折分析)によるX線回折パターンを示す。このX線回折パターンに基いて、次のシェラーの式からPdの結晶子径を求めたところ、実施例のNaドープ型CeZr系複合酸化物粉末では70.2nmとなり、比較例のNa後担持型CeZr系複合酸化物粉末では86.3nmになった。
結晶子径D(hkl)=0.9λ/(β1/2・cosθ)
但し、hklはミラー指数、λは特性X線の波長(Å)、β1/2は(hkl)面の半価幅(ラジアン)、θはX線反射角度である(X線条件;X線源:CuKα,管電圧:50KV,管電流:240mA)。
-X-ray diffraction pattern-
FIG. 4 shows X-ray diffraction patterns by XRD (X-ray diffraction analysis) of each of the Na-doped CeZr-based composite oxide powder and the Na-supported CeZr-based composite oxide powder after aging. Based on this X-ray diffraction pattern, the crystallite diameter of Pd was determined from the following Scherrer equation. In the Na-doped CeZr-based composite oxide powder of the example, it was 70.2 nm. With the CeZr-based composite oxide powder, it was 86.3 nm.
Crystallite diameter D (hkl) = 0.9λ / (β1 / 2 · cosθ)
Where hkl is the Miller index, λ is the characteristic X-ray wavelength (Å), β1 / 2 is the half width (radian) of the (hkl) plane, and θ is the X-ray reflection angle (X-ray condition; X-ray source) : CuKα, tube voltage: 50 KV, tube current: 240 mA).
また、実施例のNaドープ型CeZr系複合酸化物粉末の場合、X線回折パターンに単斜晶(monoclinic)ZrO2に由来するピークが認められたが、比較例のNa後担持型CeZr系複合酸化物粉末のX線回折パターンにはそのようなピークは見られない。実施例のNaドープ型CeZr系複合酸化物粉末に見られる単斜晶ZrO2由来のピークは、一部のNaが当該CeZr系複合酸化物に固溶していることを推察させる。 In the case of the Na-doped CeZr composite oxide powder of the example, a peak derived from monoclinic ZrO 2 was observed in the X-ray diffraction pattern, but the Na post-supported CeZr composite of the comparative example was observed. Such a peak is not seen in the X-ray diffraction pattern of the oxide powder. The peak derived from monoclinic ZrO 2 found in the Na-doped CeZr-based composite oxide powder of the example infers that a part of Na is dissolved in the CeZr-based composite oxide.
<実施例及び比較例に係る触媒の排気ガス浄化性能>
−実施例1〜6に係る触媒−
上記Naドープ型CeZr系複合酸化物粉末の調製法により、表1に示す仕込量にてNaのNa2Oに換算した担持比率が異なる実施例1〜5の各Naドープ(Pd固溶)型CeZr系複合酸化物粉末を調製した。Pd担持比率はいずれも0.5質量%である。実施例5では、硝酸Naの仕込み量が実施例4と同じく0.08gになっているが、Naドープ(Pd固溶)型CeZr系複合酸化物粉末の調製後に、該粉末をシュウ酸で処理してNa成分を溶出させ、Na2O担持比率を0.01質量%以下にしている。
<Exhaust Gas Purification Performance of Catalysts According to Examples and Comparative Examples>
-Catalysts according to Examples 1 to 6-
Each Na-doped (Pd solid solution) type of Examples 1 to 5 in which the loading ratio shown in Table 1 is converted into Na 2 O according to the preparation method of the Na-doped CeZr-based composite oxide powder. CeZr-based composite oxide powder was prepared. The Pd loading ratio is 0.5% by mass in all cases. In Example 5, the amount of Na nitrate charged was 0.08 g as in Example 4. After the preparation of the Na-doped (Pd solid solution) type CeZr-based composite oxide powder, the powder was treated with oxalic acid. Thus, the Na component is eluted to make the Na 2 O loading ratio 0.01% by mass or less.
また、実施例1〜5とは違って、上記硝酸塩混合溶液の調製工程では硝酸パラジウムを添加せずに、上記ゲル形態の共沈物に対して硝酸パラジウム水溶液を添加して攪拌混合するようにし、他は同様にして、Na2O担持比率が1質量%(2.3モル%)である実施例6のNaドープ(Pd後担持)型CeZr系複合酸化物粉末を調製した。 In addition, unlike Examples 1 to 5, in the preparation step of the nitrate mixed solution, palladium nitrate is not added, but an aqueous solution of palladium nitrate is added to the gel-form coprecipitate and stirred and mixed. In the same manner, a Na-doped (supported after Pd) type CeZr-based composite oxide powder of Example 6 having a Na 2 O loading ratio of 1 mass% (2.3 mol%) was prepared.
なお、表1のオキシ硝酸Zr溶液は、25.13質量%オキシ硝酸ジルコニル溶液のことである。 In addition, the oxynitric acid Zr solution of Table 1 is a 25.13 mass% zirconyl oxynitrate solution.
そうして、実施例1〜6については、各々のCeZr系複合酸化物粉末を硝酸ジルコニルバインダ及びイオン交換水と共に混合してスラリーとし、これをハニカム担体にコーティングして触媒層を形成した。担体1L当たりのCeZr系複合酸化物粉末担持量は100g/Lである。ハニカム担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm2)当たりのセル数600のコージェライト製のもの(容量1L)を用いた。 Thus, in Examples 1 to 6, each CeZr-based composite oxide powder was mixed with a zirconyl nitrate binder and ion-exchanged water to form a slurry, which was coated on a honeycomb carrier to form a catalyst layer. The amount of CeZr-based composite oxide powder supported per liter of support is 100 g / L. As the honeycomb carrier, a cordierite product (capacity: 1 L) having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) was used. .
−比較例1に係る触媒−
実施例6と同様に、上記硝酸塩混合溶液の調製工程では硝酸パラジウムを添加せずに、上記ゲル形態の共沈物に対して硝酸パラジウム水溶液を添加して攪拌混合するようにし、且つこのゲル形態の共沈物には硝酸ナトリウム水溶液は添加せずに、他は同様にして、Naを担持させていない比較例1に係るNa無担持(Pd後担持)型CeZr系複合酸化物粉末を調製した。そして、このCeZr系複合酸化物粉末を実施例と同様の方法で同様のハニカム担体にウォッシュコートし、比較例1に係る触媒を得た。
-Catalyst according to Comparative Example 1-
As in Example 6, in the step of preparing the nitrate mixed solution, palladium nitrate is not added, but the aqueous solution of palladium nitrate is added to the coprecipitate in the gel form, and the mixture is stirred and mixed. No sodium nitrate aqueous solution was added to the coprecipitate of No. 1 and the other was similarly prepared in the same manner as in Example 1 without Na supported (supported after Pd) type CeZr-based composite oxide powder not supporting Na. . Then, this CeZr-based composite oxide powder was wash-coated on the same honeycomb carrier in the same manner as in Example, and the catalyst according to Comparative Example 1 was obtained.
−比較例2に係る触媒−
先に説明した比較例に係るNa後担持型CeZr系複合酸化物粉末の調製法にて、Na2O担持比率が1質量%(2.3モル%)である比較例2に係るNa後担持(Pd後担持)型CeZr系複合酸化物粉末を調製した。そして、このCeZr系複合酸化物粉末を実施例と同様の方法で同様のハニカム担体にウォッシュコートし、比較例2に係る触媒を得た。
-Catalyst according to Comparative Example 2-
In the method for preparing the Na post-supported CeZr-based composite oxide powder according to the comparative example described above, the Na post-support according to Comparative Example 2 in which the Na 2 O support ratio is 1% by mass (2.3 mol%). (Supported after Pd) type CeZr composite oxide powder was prepared. Then, this CeZr-based composite oxide powder was wash-coated on the same honeycomb carrier in the same manner as in Example, and a catalyst according to Comparative Example 2 was obtained.
−排気ガス浄化性能の評価テスト−
実施例及び比較例の各触媒には、2%の酸素と10%の水を含んだ窒素雰囲気において、1000℃の温度に24時間保持するエージング処理を施した。
−Exhaust gas purification performance evaluation test−
Each catalyst of the examples and comparative examples was subjected to an aging treatment in which the catalyst was kept at a temperature of 1000 ° C. for 24 hours in a nitrogen atmosphere containing 2% oxygen and 10% water.
しかる後、各触媒から担体容量25mLのコアサンプルを切り出し、これをモデルガス流通反応装置に取り付け、HC、CO及びNOの浄化に関するライトオフ温度T50(℃)及び排気ガス浄化率C400を測定した。T50(℃)は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。排気ガス浄化率C400は、触媒入口でのモデル排気ガス温度が400℃であるときのガスの各成分の浄化率である。モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表2に示す。 Thereafter, a core sample with a carrier volume of 25 mL was cut out from each catalyst, and this was attached to a model gas flow reactor, and the light-off temperature T50 (° C.) and the exhaust gas purification rate C400 related to the purification of HC, CO, and NO were measured. T50 (° C.) is the gas temperature at the catalyst inlet when the model gas temperature flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The exhaust gas purification rate C400 is the purification rate of each component of the gas when the model exhaust gas temperature at the catalyst inlet is 400 ° C. The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min. Table 2 shows the gas composition when A / F = 14.7, A / F = 13.8 and A / F = 15.6.
実施例1〜6及び比較例1のライトオフ温度T50の測定結果を図5に示し、排気ガス浄化率C400の測定結果を図6に示す。 The measurement result of the light-off temperature T50 of Examples 1 to 6 and Comparative Example 1 is shown in FIG. 5, and the measurement result of the exhaust gas purification rate C400 is shown in FIG.
図5の実施例1〜5のNaドープ(Pd固溶)型触媒(黒塗り)をみると、Na2O担持比率が5質量%(10.7モル%)、1質量%(2.3モル%)及び0.1質量%(0.2モル%)である実施例2〜4は、Na2O担持比率が0.01質量%以下である(同図の「*」を付けた)実施例5よりも、HC、CO及びNOの浄化に関するライトオフ温度T50が低い。 When the Na-doped (Pd solid solution) type catalyst (black coating) of Examples 1 to 5 in FIG. 5 is seen, the Na 2 O loading ratio is 5 mass% (10.7 mol%), 1 mass% (2.3 In Examples 2 to 4, which are 0.1 mol%) and 0.1 mass% (0.2 mol%), the Na 2 O loading ratio is 0.01 mass% or less (marked with “*” in the figure). The light-off temperature T50 relating to the purification of HC, CO, and NO is lower than that in the fifth embodiment.
図6の実施例1〜5のNaドープ(Pd固溶)型触媒(黒塗り)をみると、ライトオフ温度T50と同じく、実施例2〜4は実施例5よりも排気ガス浄化率C400が高い。また、Na2O担持比率が1質量%(2.3モル%)であるときに(実施例3)、ライトオフ温度T50が最も低くなり、排気ガス浄化率C400が最も高くなっている。 Looking at the Na-doped (Pd solid solution) type catalyst (black coating) of Examples 1 to 5 in FIG. 6, similarly to the light-off temperature T50, Examples 2 to 4 have an exhaust gas purification rate C400 higher than that of Example 5. high. When the Na 2 O loading ratio is 1% by mass (2.3 mol%) (Example 3), the light-off temperature T50 is the lowest and the exhaust gas purification rate C400 is the highest.
図5,6の両グラフから、Na2O担持比率を11モル%以下にすると、Naを担持させない場合よりも、触媒の排気ガス浄化性能の向上を見込めること、また、Na2O担持比率を0.2モル%以上5モル%以下にすると、高い排気ガス浄化性能を見込めることがわかる。 5 and 6, it can be expected that when the Na 2 O loading ratio is 11 mol% or less, the exhaust gas purification performance of the catalyst can be improved as compared with the case where Na is not loaded, and the Na 2 O loading ratio is It can be seen that high exhaust gas purification performance can be expected when the content is 0.2 mol% or more and 5 mol% or less.
実施例6のNaドープ(Pd後担持)型触媒及び比較例1のNa無担持(Pd後担持)型触媒(図5,6の「白抜き」)では、対応する実施例4,5のNaドープ(Pd固溶)型触媒よりも、ライトオフ温度T50が高くなり、排気ガス浄化率C400が低くなっている。従って、PdはCeZr系複合酸化物粉末の粒子に固溶させ、その一部のPdを該粒子表面に露出させることが好ましいということができる。 In the Na-doped (supported after Pd) type catalyst of Example 6 and the Na-unsupported (supported after Pd) -type catalyst of Comparative Example 1 (“open” in FIGS. 5 and 6), the corresponding Na of Examples 4 and 5 were used. The light-off temperature T50 is higher and the exhaust gas purification rate C400 is lower than that of the dope (Pd solid solution) type catalyst. Therefore, it can be said that Pd is preferably dissolved in the particles of the CeZr-based composite oxide powder, and a part of Pd is exposed on the particle surface.
図7は実施例6のNaドープ(Pd後担持)型触媒、比較例2のNa後担持(Pd後担持)型触媒、並びに比較例1のNa無担持(Pd後担持)型触媒各々のライトオフ温度T50を比較したグラフであり、図8はそれら3種の触媒各々の排気ガス浄化率C500(触媒入口でのモデル排気ガス温度が500℃であるときのガスの各成分の浄化率)を比較したグラフである。実施例6及び比較例2のNa2O担持比率はいずれも1質量%(2.3モル%)である。また、Pd担持比率はいずれの触媒も0.5質量%である。 FIG. 7 shows the light of each of the Na-doped (Pd post-supported) type catalyst of Example 6, the Na post-supported (Pd post-supported) type catalyst of Comparative Example 2, and the Na non-supported (Pd post-supported) type catalyst of Comparative Example 1. FIG. 8 is a graph comparing the off temperature T50, and FIG. 8 shows the exhaust gas purification rates C500 of each of the three types of catalysts (purification rates of respective components of the gas when the model exhaust gas temperature at the catalyst inlet is 500 ° C.). It is the graph compared. The Na 2 O loading ratio in Example 6 and Comparative Example 2 is 1% by mass (2.3 mol%). The Pd loading ratio is 0.5% by mass for all catalysts.
図7,8をみると、実施例6のNaドープ(Pd後担持)型触媒は、比較例2のNa後担持(Pd後担持)型触媒よりも、ライトオフ温度が低く、排気ガス浄化率C500が高い。特にNOの浄化に関するライトオフ温度では、実施例6と比較例2とに顕著な差が出ている。これから、CeZr系複合酸化物粉末において、Naの担持形態をNaドープ型(焼成前のゲル形態の共沈物(CeZr系複合酸化物前駆体)にNa化合物水溶液を添加)にすると、触媒の排気ガス浄化性能が高くなることがわかる。 7 and 8, the Na-doped (supported after Pd) type catalyst of Example 6 has a lower light-off temperature and the exhaust gas purification rate than the Na-supported (supported after Pd) type catalyst of Comparative Example 2. C500 is high. In particular, there is a significant difference between Example 6 and Comparative Example 2 at the light-off temperature related to NO purification. From this, in the CeZr-based composite oxide powder, when the Na-supported form is Na-doped type (added Na compound aqueous solution to the gel-form coprecipitate (CeZr-based composite oxide precursor) before firing), exhaust of the catalyst It turns out that gas purification performance becomes high.
なお、上記実施形態の触媒では、担体上に単一の触媒層が形成されているが、担体上に複数の触媒層を積層し、各触媒層に相異なる触媒金属を配置するようにしてもよい。例えば、上触媒層のCeZr系複合酸化物粉末及び活性アルミナ粉末に触媒金属としてRhを担持し、下触媒層のCeZr系複合酸化物粉末及び活性アルミナ粉末に触媒金属としてPdを担持するという触媒層構成である。そして、上下の触媒層のいずれかにおいて、或いは各触媒層において、アルカリ金属の担持形態を上述のドープ型として該アルカリ金属をCeZr系複合酸化物粉末上に偏在させるようにすればよい。 In the catalyst of the above embodiment, a single catalyst layer is formed on the carrier. However, a plurality of catalyst layers may be stacked on the carrier, and different catalyst metals may be arranged in each catalyst layer. Good. For example, a catalyst layer in which Rh is supported as a catalyst metal on the CeZr-based composite oxide powder and active alumina powder of the upper catalyst layer, and Pd is supported as a catalyst metal on the CeZr-based composite oxide powder and active alumina powder of the lower catalyst layer. It is a configuration. Then, in any one of the upper and lower catalyst layers, or in each catalyst layer, the alkali metal may be unevenly distributed on the CeZr-based composite oxide powder with the alkali metal supported form described above.
1 担体
2 触媒層
1 Support 2 Catalyst layer
Claims (4)
上記触媒金属がPdであり、該Pdは上記CeZr系複合酸化物粉末の粒子に固溶し、その一部が該粒子表面に露出し、
上記触媒層において、上記CeZr系複合酸化物粉末の粒子表面に担持されるように該粒子に組み込まれて、上記CeZr系複合酸化物粉末上に偏在させたアルカリ金属を備え、
上記CeZr系複合酸化物粉末の粒子に固溶したアルカリ金属の一部が当該粒子の表面に露出し、
上記CeZr系複合酸化物粉末の粒子表面において、上記触媒金属としてのPdと上記アルカリ金属とが互いに近接した状態で存在していることを特徴とする排気ガス浄化用触媒。 An exhaust gas purifying catalyst in which a catalyst layer including a catalytic metal, a CeZr-based composite oxide powder containing Ce and Zr, and a binder made of an inorganic oxide is provided on a carrier,
The catalyst metal is Pd, the Pd is solid-solved in the particles of the CeZr-based composite oxide powder, a part of which is exposed on the particle surface,
The catalyst layer includes an alkali metal incorporated in the particle so as to be supported on the particle surface of the CeZr-based composite oxide powder and unevenly distributed on the CeZr-based composite oxide powder,
A part of the alkali metal dissolved in the particles of the CeZr-based composite oxide powder is exposed on the surface of the particles,
An exhaust gas purifying catalyst characterized in that Pd as the catalyst metal and the alkali metal are present close to each other on the particle surface of the CeZr-based composite oxide powder.
上記CeZr系複合酸化物に対する上記アルカリ金属の担持比率は、酸化物に換算して11モル%以下であることを特徴とする排気ガス浄化用触媒。 In claim 1 ,
The CeZr-based loading ratio of the alkali metal against the composite oxide, the exhaust gas purifying catalyst, characterized in that in terms of oxide is not more than 11 mol%.
上記CeZr系複合酸化物に対する上記アルカリ金属の担持比率は、酸化物に換算して0.2モル%以上5モル%以下であることを特徴とする排気ガス浄化用触媒。 In claim 1 ,
The exhaust gas purifying catalyst, wherein a supporting ratio of the alkali metal to the CeZr-based composite oxide is 0.2 mol% or more and 5 mol% or less in terms of oxide.
上記CeZr系複合酸化物粉末をバインダと共に担体にウォッシュコートして、該担体上に触媒層を形成する工程とを備え、
上記CeZr系複合酸化物粉末を得る工程において、上記溶液に触媒金属としてのPdのイオンを添加して上記Ce及びZrと共にPdを共沈させることにより、該Pdを上記CeZr系複合酸化物の粒子に固溶させるとともに、その一部のPdを該粒子表面に露出させることを特徴とする排気ガス浄化用触媒の製造方法。 An alkali metal solution is mixed with a gel-form coprecipitate containing Ce and Zr obtained from a solution containing Ce and Zr ions, and the mixture is baked, whereby a part of the alkali metal is CeZr-based composite oxide. Obtaining a CeZr-based composite oxide powder that is solid-dissolved in the particles and a part of the dissolved alkali metal is exposed on the particle surface ;
And a step of wash-coating the CeZr-based composite oxide powder together with a binder on a carrier to form a catalyst layer on the carrier,
In the step of obtaining the CeZr-based mixed oxide powder, by co-precipitation of Pd with the Ce and Zr were added ions Pd as the catalytic metal in the solution, the Pd in the CeZr-based mixed oxide particles And a part of the Pd is exposed on the particle surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009188557A JP5589320B2 (en) | 2009-08-17 | 2009-08-17 | Exhaust gas purification catalyst and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009188557A JP5589320B2 (en) | 2009-08-17 | 2009-08-17 | Exhaust gas purification catalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011036824A JP2011036824A (en) | 2011-02-24 |
JP5589320B2 true JP5589320B2 (en) | 2014-09-17 |
Family
ID=43765164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009188557A Expired - Fee Related JP5589320B2 (en) | 2009-08-17 | 2009-08-17 | Exhaust gas purification catalyst and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5589320B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5754691B2 (en) * | 2012-02-16 | 2015-07-29 | 国立大学法人 岡山大学 | Exhaust gas purification three-way catalyst |
JP2018513781A (en) * | 2015-03-19 | 2018-05-31 | ビーエーエスエフ コーポレーション | Automotive catalyst having supported palladium in an alumina-free layer |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296869A (en) * | 1993-04-13 | 1994-10-25 | Nissan Motor Co Ltd | Catalyst for exhaust gas purification |
JPH07213907A (en) * | 1993-12-10 | 1995-08-15 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst and its production |
JP3846139B2 (en) * | 1999-04-22 | 2006-11-15 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and exhaust gas purification method using the same |
JP4496876B2 (en) * | 2004-07-30 | 2010-07-07 | マツダ株式会社 | Exhaust gas purification catalyst |
JP4513453B2 (en) * | 2004-08-02 | 2010-07-28 | マツダ株式会社 | Exhaust gas purification catalyst |
JP4835043B2 (en) * | 2005-05-30 | 2011-12-14 | マツダ株式会社 | Exhaust gas purification catalyst |
-
2009
- 2009-08-17 JP JP2009188557A patent/JP5589320B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011036824A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102483435B1 (en) | Nitrous oxide removal catalysts for exhaust systems | |
JP5515939B2 (en) | Exhaust gas purification catalyst | |
JP5499053B2 (en) | Aging-resistant catalyst article for internal combustion engines | |
JP5515936B2 (en) | Exhaust gas purification catalyst | |
WO2010023919A1 (en) | Exhaust gas purification catalyst and exhaust gas purification method using same | |
JP6822890B2 (en) | Exhaust gas purification catalyst, exhaust gas purification method, and exhaust gas purification system | |
JP2006334490A (en) | Catalyst for cleaning exhaust gas | |
JP7518763B2 (en) | Exhaust gas purification catalyst | |
JP5589321B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
US9415383B2 (en) | Exhaust gas purification catalyst | |
JP2016168586A (en) | Core shell carrier and production method therefor, exhaust emission control catalyst using the core shell carrier and production method therefor, and exhaust emission control method using the exhaust emission control catalyst | |
JP7187654B2 (en) | Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst | |
JP2007098200A (en) | Exhaust gas purification catalyst and manufacturing method of the same | |
JP4656188B2 (en) | Exhaust gas purification catalyst | |
JP4697284B2 (en) | Exhaust gas purification catalyst | |
WO2014175349A1 (en) | Support for exhaust gas purification catalyst, catalyst for exhaust gas purification, and catalyst structure for exhaust gas purification | |
JP6544880B1 (en) | Catalyst for hydrogen production and catalyst for purification of exhaust gas using the same | |
JP5488215B2 (en) | Exhaust gas purification catalyst | |
JP5589320B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2017144412A (en) | Catalyst material for exhaust gas purification, and catalyst for exhaust gas purification | |
EP2493594A1 (en) | Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it | |
JP5412789B2 (en) | Exhaust gas purification catalyst | |
JP2009078203A (en) | Catalytic material for cleaning exhaust gas, method for manufacturing the same and catalyst using the same | |
JP5412788B2 (en) | Exhaust gas purification catalyst | |
JP2001046870A (en) | Exhaust gas cleaning catalyst and exhaust gas cleaning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120625 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5589320 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |