JP4835043B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4835043B2
JP4835043B2 JP2005157359A JP2005157359A JP4835043B2 JP 4835043 B2 JP4835043 B2 JP 4835043B2 JP 2005157359 A JP2005157359 A JP 2005157359A JP 2005157359 A JP2005157359 A JP 2005157359A JP 4835043 B2 JP4835043 B2 JP 4835043B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
exhaust gas
metal component
double oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005157359A
Other languages
Japanese (ja)
Other versions
JP2006326550A (en
Inventor
啓司 山田
誠治 三好
秀治 岩国
真明 赤峰
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005157359A priority Critical patent/JP4835043B2/en
Publication of JP2006326550A publication Critical patent/JP2006326550A/en
Application granted granted Critical
Publication of JP4835043B2 publication Critical patent/JP4835043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排気ガス浄化用触媒に関する。     The present invention relates to an exhaust gas purification catalyst.

内燃機関の排気ガス浄化用触媒はS被毒を生ずることが知られている。これは、内燃機関の燃料や潤滑油にはS(硫黄)が含まれ、このSが酸化物等となって該内燃機関から排出されるためである。     It is known that exhaust gas purification catalysts for internal combustion engines cause S poisoning. This is because S (sulfur) is contained in the fuel and lubricating oil of the internal combustion engine, and this S becomes an oxide or the like and is discharged from the internal combustion engine.

このS被毒の問題に関し、特許文献1には、排気ガス中のNOxを吸収するNOx吸収材よりも上流側の排気通路にイオウ吸収剤を設けることが記載されている。そのイオウ吸収剤としては、アルカリ金属、アルカリ土類金属、希土類元素から選ばれる少なくとも一つと、貴金属とをアルミナ担体に担持したものが開示されている。また、特許文献2には、排気ガス流れの前段側に排気ガス中の硫黄酸化物を吸収し分解するための触媒を配置し、排気ガス流れの後段にNOx吸収能を有する三元触媒を配置することが記載されている。前段触媒は、例えばNa、Mg、Ca、Sr、Ba、Y及びLaから選ばれる少なくとも1種と、Fe、Mn、Co及びNiから選ばれる少なくとも1種との複合酸化物をアルミナに担持させたもので構成されている。     Regarding this S poisoning problem, Patent Document 1 describes that a sulfur absorbent is provided in the exhaust passage upstream of the NOx absorbent that absorbs NOx in the exhaust gas. As the sulfur absorbent, one in which at least one selected from alkali metals, alkaline earth metals and rare earth elements and a noble metal are supported on an alumina carrier is disclosed. In Patent Document 2, a catalyst for absorbing and decomposing sulfur oxides in exhaust gas is disposed on the upstream side of the exhaust gas flow, and a three-way catalyst having NOx absorption capacity is disposed on the downstream side of the exhaust gas flow. It is described to do. The pre-catalyst, for example, supported on alumina a composite oxide of at least one selected from Na, Mg, Ca, Sr, Ba, Y and La and at least one selected from Fe, Mn, Co and Ni. Consists of things.

ところで、本出願人は、金属成分としてCeとZrとを含有する酸素吸蔵能を有するCeZr複酸化物の結晶格子点又は格子点間に触媒金属を配置してなる触媒金属ドープ型の排気ガス浄化用触媒を提案している(特許文献3参照)。この触媒の場合、触媒金属がCeZr複酸化物粒子の表面だけでなく内部に存在し、そのことによって酸素吸蔵量が増大するとともに、酸素吸蔵速度が大きくなるので、排気ガス浄化性能が高くなる。すなわち、少ない触媒金属量でも高い排気ガス浄化性能を示し、コスト低減に有利になる。さらに、触媒金属は複酸化物の結晶格子点又は格子点間に配置されているため、高温の排気ガスによる触媒金属の凝集ないしはシンタリングが抑制される。
特開平6−58138号公報 特開2000−42370号公報 特開2004−174490号公報
By the way, the applicant of the present invention has disclosed a catalyst metal dope type exhaust gas purification in which a catalyst metal is arranged between crystal lattice points or lattice points of CeZr double oxide containing Ce and Zr as metal components and having oxygen storage capacity. Has been proposed (see Patent Document 3). In the case of this catalyst, the catalyst metal is present not only on the surface of the CeZr double oxide particles but also inside thereof, thereby increasing the oxygen storage amount and increasing the oxygen storage rate, thereby improving the exhaust gas purification performance. That is, high exhaust gas purification performance is exhibited even with a small amount of catalyst metal, which is advantageous for cost reduction. Furthermore, since the catalyst metal is disposed between the crystal lattice points of the double oxide or between the lattice points, the aggregation or sintering of the catalyst metal by the high-temperature exhaust gas is suppressed.
JP-A-6-58138 JP 2000-42370 A JP 2004-174490 A

しかし、上述の如く、触媒金属ドープ型の排気ガス浄化用触媒にあっては、触媒金属の全てが当該CeZr複酸化物の表面に存在しているのではない。つまり、CeZr複酸化物の表面には触媒金属が一部しか存在せず、残りは内部に存在する。このため、S被毒が進行してくると、CeZr複酸化物の表面において排気ガスの浄化に有効に働く触媒金属が過度に少なくなる。つまり、排気ガス中のS成分がCeZr複酸化物表面の触媒金属と反応して化合物を生成し、活性サイトが少なくなる。     However, as described above, in the catalyst metal dope type exhaust gas purification catalyst, not all of the catalyst metal is present on the surface of the CeZr mixed oxide. That is, only a part of the catalyst metal exists on the surface of the CeZr double oxide, and the rest exists inside. For this reason, when S poisoning progresses, the catalytic metal that effectively works to purify the exhaust gas on the surface of the CeZr double oxide becomes excessively small. That is, the S component in the exhaust gas reacts with the catalytic metal on the CeZr double oxide surface to generate a compound, and the active sites are reduced.

従って、CeZr複酸化物内部の触媒金属が酸素吸蔵能を高めるとは云っても、S被毒を生じたときの触媒のダメージは大きく、また、S被毒からの再生処理(排気ガスの酸素濃度を低くするとともに、排気ガス温度を高める処理)を行なっても、触媒性能を充分に回復させることができない。もちろん、触媒金属量を多くすれば、多少のS被毒を生じても、触媒性能が大きく低下することはないが、それでは、コスト高になる。     Therefore, even if the catalyst metal inside the CeZr double oxide increases the oxygen storage capacity, the catalyst damage is great when S poisoning occurs, and the regeneration treatment from the S poison (oxygen in the exhaust gas) Even if the concentration is lowered and the exhaust gas temperature is increased, the catalyst performance cannot be sufficiently recovered. Of course, if the amount of the catalyst metal is increased, the catalyst performance will not be greatly reduced even if some amount of S poisoning occurs, but this increases the cost.

すなわち、本発明の課題は、触媒金属量を多くすることなく、上記S被毒に対策することにある。     That is, an object of the present invention is to take measures against the S poisoning without increasing the amount of catalytic metal.

本発明は、上記課題を解決するために、触媒金属をドープするCeZr系複酸化物の塩基性を高めるようにした。     In the present invention, in order to solve the above-mentioned problems, the basicity of the CeZr-based double oxide doped with the catalyst metal is increased.

すなわち、本発明は、酸素吸蔵能を有する複酸化物の結晶格子点又は格子点間に触媒金属が配置されている排気ガス浄化用触媒において、
上記複酸化物は、当該複酸化物を形成する上記触媒金属以外の金属成分が、Ceと、Zrと、アルカリ金属、アルカリ土類金属、La及びPrのうちから選択される少なくとも一種よりなる第三金属成分Mとからなり、該第三金属成分Mの含有により当該複酸化物の塩基性が該第三金属成分Mを含まないCeZr複酸化物の塩基性、並びに該第三金属成分Mを含まずNdを含むCeZr複酸化物の塩基性よりも高くなっていることを特徴とする。
That is, the present invention relates to an exhaust gas purifying catalyst in which a catalytic metal is disposed between crystal lattice points or lattice points of a double oxide having oxygen storage capacity.
In the double oxide, the metal component other than the catalyst metal forming the double oxide is at least one selected from Ce, Zr, alkali metal, alkaline earth metal, La and Pr. It consists of a third metal component M, basic of the mixed oxide by the inclusion of said third metal component M is, basic CeZr mixed oxide containing no said third metal component M, and said third metal component M It is characterized by being higher than the basicity of the CeZr double oxide containing Nd but not containing Nd .

従って、本発明によれば、排気ガス中の酸性が高い硫黄酸化物等のS成分は、上記複酸化物表面に現れている触媒金属付近にきても、その周囲の塩基性が高いサイトに吸着され、或いは触媒金属に一旦吸着されても該触媒金属と強い結合を形成する前に脱離して、その周囲の塩基性が高いサイトに吸着される。これは、上記複酸化物の表面に、上記第三金属成分Mの添加によって触媒金属の存する部位よりも塩基性の高いサイトが形成されるため、或いは価数が変化し易いCeの塩基性が上記第三金属成分Mの添加によって高まるためと考えられる。     Therefore, according to the present invention, even if the S component such as sulfur oxide having high acidity in the exhaust gas comes near the catalytic metal appearing on the surface of the double oxide, it is in a site with high basicity around it. Even if it is adsorbed or once adsorbed on the catalyst metal, it is desorbed before forming a strong bond with the catalyst metal and adsorbed on the surrounding highly basic sites. This is because the site of higher basicity than the site where the catalytic metal exists is formed on the surface of the double oxide by addition of the third metal component M, or the basicity of Ce whose valence is easily changed. This is considered to be due to the addition of the third metal component M.

そうして、このように上記第三金属成分Mの添加により、触媒金属のS被毒が抑制される結果、当該触媒の排気ガス浄化性能の高い状態が長期間にわたって維持される。また、触媒金属にS成分が吸着してもその結合が弱いことから、排気ガス温度が高くなったときに、特に排気ガスの酸素濃度を下げて排気ガス温度を高める再生処理を行なったときに、当該触媒のS被毒からの回復性が良くなる。     Thus, the addition of the third metal component M as described above suppresses S poisoning of the catalyst metal, and as a result, the state of the exhaust gas purification performance of the catalyst is maintained over a long period of time. Further, even if the S component is adsorbed on the catalyst metal, the bond is weak, so when the exhaust gas temperature becomes high, especially when the regeneration process for increasing the exhaust gas temperature by lowering the oxygen concentration of the exhaust gas is performed. The recoverability of the catalyst from S poisoning is improved.

上記第三金属成分Mとしては、Ceよりも塩基性の高いものであることがより好ましい。     As said 3rd metal component M, it is more preferable that it is a basic thing higher than Ce.

以上のように本発明によれば、酸素吸蔵能を有する複酸化物の結晶格子点又は格子点間に触媒金属が配置されている排気ガス浄化用触媒において、上記複酸化物は、当該複酸化物を形成する上記触媒金属以外の金属成分が、Ceと、Zrと、アルカリ金属、アルカリ土類金属、La及びPrのうちから選択される少なくとも一種よりなる第三金属成分Mとからなり、該第三金属成分Mの含有により当該複酸化物の塩基性が該第三金属成分Mを含まないCeZr複酸化物の塩基性、並びに該第三金属成分Mを含まずNdを含むCeZr複酸化物の塩基性よりも高くなっているから、触媒金属のS被毒が抑制され、排気ガス浄化性能が高い状態を長期間維持する上で有利になり、しかも、当該触媒のS被毒からの回復性も良いという効果が得られる。 As described above, according to the present invention, in the exhaust gas purifying catalyst in which the catalytic metal is disposed between the crystal lattice points or the lattice points of the double oxide having oxygen storage ability, the double oxide contains the double oxide. The metal component other than the catalyst metal forming the product comprises Ce, Zr, and a third metal component M composed of at least one selected from alkali metals, alkaline earth metals, La and Pr, basic of the mixed oxide by the inclusion of a third metal component M is, basic CeZr mixed oxide containing no said third metal component M, and CeZr mixed oxide containing Nd free of said third metal component M Since it is higher than the basicity of the product, S poisoning of the catalyst metal is suppressed, which is advantageous in maintaining a high exhaust gas purification performance for a long period of time. The effect of good recovery That.

以下、本発明の実施形態を図面に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す本発明の実施形態に係る排気ガス浄化用触媒1は、自動車エンジンの排気ガス中のHC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)を浄化することに適したものである。この触媒1は、コージェライト等の無機多孔質によって形成されたハニカム状担体2のガス流路であるセル3の壁面に触媒層を形成したものである。すなわち、図2に示すように、ハニカム状担体の各セル3を隔てるセル壁5に触媒層6が形成されている。この触媒層6は、Ceと、Zrと、塩基性を高める第三金属成分Mとを含有する複酸化物の結晶格子点又は格子点間に触媒金属が配置されてなる触媒金属ドープ型の触媒粉末をバインダと共に担体にウォッシュコートすることによって形成されている。     The exhaust gas purifying catalyst 1 according to the embodiment of the present invention shown in FIG. 1 purifies HC (hydrocarbon), CO (carbon monoxide) and NOx (nitrogen oxide) in the exhaust gas of an automobile engine. It is suitable. This catalyst 1 is obtained by forming a catalyst layer on the wall surface of a cell 3 which is a gas flow path of a honeycomb-shaped carrier 2 formed of an inorganic porous material such as cordierite. That is, as shown in FIG. 2, the catalyst layer 6 is formed on the cell wall 5 separating the cells 3 of the honeycomb-shaped carrier. The catalyst layer 6 is a catalyst metal-doped catalyst in which a catalyst metal is disposed between crystal lattice points or between lattice points of a double oxide containing Ce, Zr, and a third metal component M that increases basicity. It is formed by washing the powder with a binder on a carrier.

なお、上記触媒層6には、さらに他のサポート材に触媒金属を担持させてなる触媒粉末を含ませたり、NOx吸収材としてBaその他のアルカリ土類金属又はアルカリ金属を含ませるようにしてもよく、或いは、セル壁5の表面に上記触媒層6と、該触媒層とは成分が異なる他の触媒層とを層状に形成してもよい。     The catalyst layer 6 may further contain a catalyst powder obtained by supporting a catalyst metal on another support material, or may contain Ba or other alkaline earth metal or alkali metal as a NOx absorbent. Alternatively, the catalyst layer 6 and other catalyst layers having different components from the catalyst layer may be formed on the surface of the cell wall 5 in layers.

以下、本発明の実施例及び比較例を説明する。     Examples of the present invention and comparative examples will be described below.

<実施例及び比較例の触媒粉末の調製>
−実施例1−
本例は第三金属成分MとしてLiを採用したものである。その触媒粉末の調製法は次の通りである。オキシ硝酸ジルコニウム、硝酸第一セリウム、硝酸リチウム及び硝酸ロジウム各々の所定量と水とを混合して合計300mLとし、この混合溶液を室温で約1時間撹拌した。この混合溶液を80℃まで加熱昇温させた後、ガラス棒を用いて強く、素早く攪拌しつつ、別のビーカーに用意していた28%アンモニア水50mLを一気に加えて混合した。このアンモニア水の添加・混合は1秒以内に完了させた。アンモニア水の混合により白濁した溶液を一昼夜放置し、生成したケーキを遠心分離器にかけ、十分に水洗した。この水洗したケーキを約150℃の温度で乾燥させた後、400℃の温度に5時間保持し、次いで500℃の温度に2時間保持するという条件で焼成した。
<Preparation of catalyst powders of Examples and Comparative Examples>
Example 1
This example employs Li as the third metal component M. The method for preparing the catalyst powder is as follows. A predetermined amount of each of zirconium oxynitrate, cerous nitrate, lithium nitrate and rhodium nitrate was mixed with water to make a total of 300 mL, and this mixed solution was stirred at room temperature for about 1 hour. This mixed solution was heated to 80 ° C. and heated, and then vigorously stirred rapidly using a glass rod, and 50 mL of 28% ammonia water prepared in another beaker was added at once and mixed. The addition and mixing of the ammonia water was completed within 1 second. The solution clouded by mixing with aqueous ammonia was allowed to stand overnight, and the resulting cake was centrifuged and washed thoroughly with water. The cake washed with water was dried at a temperature of about 150 ° C. and then calcined under the condition that it was kept at a temperature of 400 ° C. for 5 hours and then kept at a temperature of 500 ° C. for 2 hours.

以上により得られた触媒粉末はRh成分を添加して共沈法により生成されているから、Rhは、Ce、Zr及びLiと同じく当該複酸化物の結晶格子点に配置され、換言すれば、当該複酸化物に強く結合した状態になる。あるいはRhは当該複酸化物の格子点間に配置された状態になる。いずれにしても、Rhはその一部が複酸化物の結晶子の表面及び内部に均一に分散した状態になる。     Since the catalyst powder obtained as described above is produced by the coprecipitation method with the addition of the Rh component, Rh is arranged at the crystal lattice point of the double oxide in the same manner as Ce, Zr and Li, in other words, It will be in the state couple | bonded strongly with the said double oxide. Or Rh will be in the state arrange | positioned between the lattice points of the said complex oxide. In any case, a part of Rh is uniformly dispersed on the surface and inside of the double oxide crystallite.

Rhドープ型触媒粉末のRhを除く金属成分の組成は、モル%でCe:Zr:Li=17:75:8であり、Rh量は0.116質量%とした。     The composition of the metal component excluding Rh in the Rh-doped catalyst powder was Ce: Zr: Li = 17: 75: 8 in mol%, and the Rh amount was 0.116% by mass.

−実施例2〜9−
上記第三金属成分Mとして、Liに代えて、Na、K、Ca、Sr、Ba、La、Prをそれぞれ採用した実施例2〜9の各Rhドープ型触媒粉末を実施例1と同じ方法で調製した。それらRhドープ型触媒粉末のRhを除く金属成分の組成は、第三金属成分MがLiの場合と同じく、モル%でCe:Zr:M=17:75:8であり、Rh量は0.116質量%とした。
-Examples 2-9-
As the third metal component M, each of the Rh-doped catalyst powders of Examples 2 to 9 adopting Na, K, Ca, Sr, Ba, La, and Pr instead of Li in the same manner as in Example 1. Prepared. The composition of the metal components excluding Rh of these Rh-doped catalyst powders is Ce: Zr: M = 17: 75: 8 in mol%, as in the case where the third metal component M is Li, and the amount of Rh is 0.8. 116% by mass.

以上のように、実施例1〜9では、いずれも複酸化物における第三金属成分Mのモル比をCeモル比よりも小さくしている。     As described above, in each of Examples 1 to 9, the molar ratio of the third metal component M in the double oxide is made smaller than the Ce molar ratio.

−比較例1,2−
第三金属成分MとしてNdを採用した比較例1に係るRhドープ型触媒粉末を実施例1と同じ方法で調製した。すなわち、このRhドープ型触媒粉末のRhを除く金属成分の組成は、モル%でCe:Zr:Nd=17:75:8であり、Rh量は0.116質量%とした。
-Comparative examples 1 and 2-
An Rh-doped catalyst powder according to Comparative Example 1 employing Nd as the third metal component M was prepared in the same manner as in Example 1. That is, the composition of the metal component excluding Rh in this Rh-doped catalyst powder was Ce: Zr: Nd = 17: 75: 8 in mol%, and the Rh amount was 0.116% by mass.

第三金属成分を含まない比較例2に係るRhドープ型触媒粉末を実施例1と同じ方法で調製した。すなわち、このRhドープ型触媒粉末のRhを除く組成は、Ce0.25Zr0.75であり、Rh量は0.116質量%である。 An Rh-doped catalyst powder according to Comparative Example 2 containing no third metal component was prepared in the same manner as in Example 1. That is, the composition of the Rh-doped catalyst powder excluding Rh is Ce 0.25 Zr 0.75 O 2 and the amount of Rh is 0.116% by mass.

<塩基量の測定>
実施例1〜9及び比較例1,2の各触媒粉末について、固定床流通式の昇温脱離装置にペレット状に形成したサンプルを一定量を仕込み、COを吸着させた後、サンプルを昇温させて脱離したCO量を測定する方法を採用した。
<Measurement of base amount>
For each of the catalyst powders of Examples 1 to 9 and Comparative Examples 1 and 2, a fixed amount of a sample formed in a pellet form in a fixed bed flow-type temperature rising and desorbing device was charged, and CO 2 was adsorbed. A method of measuring the amount of CO 2 desorbed by raising the temperature was adopted.

すなわち、昇温脱離装置にHe100%のキャリアガスを通しながら、サンプル温度を600℃まで上昇させ、その温度に10分間保持することにより、吸着水を脱離させた。次いで、同温度でCO2%含有のHeガスに切り替えて10分間保持した後、室温まで温度を下げてCOをサンプルの塩基点に吸着させた。次いで、He100%のキャリアガスに切り替えることにより、余分なCOを排気した後、同ガスを流通させながら(SV=95000h−1)、室温から600℃まで20℃/分で昇温していき、脱離したCOの総量を定量して、これを塩基量とした。 That is, while passing the carrier gas of He 100% through the temperature-programmed desorption device, the sample temperature was raised to 600 ° C. and held at that temperature for 10 minutes to desorb the adsorbed water. Subsequently, after switching to He gas containing 2% CO 2 at the same temperature and holding for 10 minutes, the temperature was lowered to room temperature to adsorb CO 2 to the base point of the sample. Next, by switching to He 100% carrier gas, after exhausting excess CO 2 , the temperature was raised from room temperature to 600 ° C. at 20 ° C./min while circulating the same gas (SV = 95000 h −1 ). The total amount of desorbed CO 2 was quantified and used as the base amount.

結果は図3に示されている。第三金属成分MとしてLi、Na、K、Ca、Sr、Ba、La、Prを採用した実施例に係る触媒粉末は塩基量が比較例(「無」及び「Nd」)よりも多くなっており、第三金属成分Mの添加により当該複酸化物の塩基性が同図に「無」で示すCeZr複酸化物、並びに「Nd」で示すCeZr複酸化物よりも高くなっていることがわかる。 The result is shown in FIG. The catalyst powder according to the example employing Li, Na, K, Ca, Sr, Ba, La, Pr as the third metal component M has a larger base amount than the comparative examples (“None” and “Nd”). cage, basic of the mixed oxide by the addition of a third metal component M is, CeZr mixed oxide indicated by "NO" in the figure, and that is higher than CeZr mixed oxide indicated by "Nd" Recognize.

<排気ガス浄化性能の評価>
実施例1〜9及び比較例2(第三金属成分無し)の各触媒粉末について、排気ガス浄化性能測定用のサンプルを調製した。すなわち、触媒粉末とジルコニアバインダとを混合し、これにイオン交換水を添加することによってスラリーを調製した。このスラリーにハニカム状担体を浸漬して引き上げ、余分なスラリーを吹き飛ばす、という方法により、該担体にスラリーをコーティングした。次いで、これを150℃の温度で1時間乾燥し、540℃の温度で2時間焼成することによって、セル壁の表面に上記触媒層を形成した。
<Evaluation of exhaust gas purification performance>
Samples for measuring exhaust gas purification performance were prepared for each catalyst powder of Examples 1 to 9 and Comparative Example 2 (no third metal component). That is, slurry was prepared by mixing catalyst powder and zirconia binder and adding ion exchange water thereto. The carrier was coated with the slurry by a method of immersing and lifting the honeycomb-like carrier in this slurry and blowing off the excess slurry. Next, this was dried at a temperature of 150 ° C. for 1 hour and calcined at a temperature of 540 ° C. for 2 hours to form the catalyst layer on the surface of the cell wall.

そうして、各サンプルについて、大気雰囲気において1000℃で24時間保持するエージングを事前に施した後、モデルガス流通反応装置及び排気ガス分析装置を用いて、フレッシュ時(S被毒処理前)、S被毒処理後、及び再生処理後それぞれのNOxの浄化に関するライトオフ温度T50を測定した。     Then, for each sample, after pre-aging for 24 hours at 1000 ° C. in the air atmosphere, using the model gas flow reactor and the exhaust gas analyzer, when fresh (before S poisoning treatment), The light-off temperature T50 related to the purification of NOx after the S poisoning treatment and after the regeneration treatment was measured.

フレッシュ時のT50の測定に当たっては、事前に空燃比リッチのモデル排気ガス(温度600℃)を供試触媒に10分間流した。そうして、評価用モデル排気ガスに切り替えて当該測定を行なった。T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。     In measuring T50 at the time of fresh, a model exhaust gas (temperature 600 ° C.) rich in air-fuel ratio was flowed through the test catalyst for 10 minutes in advance. Then, the measurement was performed by switching to the model exhaust gas for evaluation. T50 is the gas temperature at the catalyst inlet when the temperature of the model gas flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%.

評価用モデル排気ガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスをパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。この振動数は1Hzとした。空間速度SVは60000h−1、モデルガスの昇温速度は30℃/分である。 The model exhaust gas for evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forcibly oscillated with an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulsed manner while constantly flowing the main stream gas of A / F = 14.7. I let you. This frequency was 1 Hz. The space velocity SV is 60000 h −1 , and the rate of temperature increase of the model gas is 30 ° C./min.

S被毒処理は、サンプルにN100%ガスを流通させながら、350℃まで昇温して同温度に保持し、次いで同温度でSO50ppm,O10%,残NのS被毒用ガスに切り替えてこれを1時間流通させ(SV=60000h−1)、その後N100%ガスに切り替えて室温まで温度を下げる、というものである。このS被毒処理後に上記評価用モデル排気ガスによりフレッシュ時と同様にしてT50を測定した。 S-poisoning treatment, while circulating N 2 100% gas sample was heated to 350 ° C. and held at that temperature, then SO 2 50 ppm at the same temperature, O 2 10%, the S in the residual N 2 The gas is switched to poison gas and allowed to flow for 1 hour (SV = 60000 h −1 ), and then switched to N 2 100% gas to lower the temperature to room temperature. After this S poisoning treatment, T50 was measured by the above model exhaust gas for evaluation in the same manner as when fresh.

再生処理は、上記S被毒処理後のサンプルにA/F=14.5相当のリッチモデル排気ガスを流通させながら(SV=120000h−1)、30℃/分で600℃まで昇温させ、その温度に10分間保持した後、N100%ガスに切り替えて室温まで温度を下げるというものである。その後に上記評価用モデル排気ガスによりフレッシュ時と同様にしてT50を測定した。 In the regeneration treatment, the rich model exhaust gas corresponding to A / F = 14.5 is circulated through the sample after the S poisoning treatment (SV = 120,000 h −1 ), and the temperature is raised to 600 ° C. at 30 ° C./min. After maintaining at that temperature for 10 minutes, the temperature is switched to room temperature by switching to N 2 100% gas. Thereafter, T50 was measured with the model exhaust gas for evaluation in the same manner as in the fresh state.

結果を表1に示す。同表のS被毒悪化率及び再生回復率は次式によって求めたものである。なお、S被毒後T50はS被毒処理後のT50、FreshT50はフレッシュ時のT50、再生後T50は再生処理後のT50を意味する。     The results are shown in Table 1. The S poisoning deterioration rate and regeneration recovery rate in the same table are obtained by the following equations. T50 after S poisoning means T50 after S poisoning treatment, FreshT50 means T50 at fresh time, and T50 after regeneration means T50 after regeneration processing.

S被毒悪化率=(S被毒後T50−FreshT50)/FreshT50
再生回復率=(S被毒後T50−再生後T50)/(S被毒後T50−FreshT50)
S poisoning exacerbation rate = (T50 after S poisoning-FreshT50) / FreshT50
Regeneration recovery rate = (T50 after S poisoning-T50 after regeneration) / (T50 after S poisoning-FreshT50)

Figure 0004835043
Figure 0004835043

フレッシュ時のT50をみると、実施例は比較例よりも少し良くなっているが、これは第三金属元素Mの添加により、複酸化物の酸素吸蔵能若しくは耐熱性が向上したためと考えられる。特に希土類元素La、Prを添加した実施例が良くなっている。     Looking at the T50 at the time of freshness, the example is a little better than the comparative example. This is probably because the oxygen storage capacity or heat resistance of the double oxide was improved by the addition of the third metal element M. In particular, an example in which rare earth elements La and Pr are added is improved.

S被毒処理後のT50をみると、実施例はいずれも比較例よりもT50が低くなっており、S被毒悪化率も小さくなっている。これから、実施例のように第三金属成分Mを添加すると、触媒の耐S被毒性が高まることがわかる。     Looking at the T50 after the S poisoning treatment, all of the Examples have a lower T50 than the comparative example, and the S poisoning deterioration rate is also small. From this, it can be seen that when the third metal component M is added as in the Examples, the S-toxicity of the catalyst increases.

再生処理後のT50及び再生回復率をみると、実施例はいずれも当該再生処理により排気ガス浄化性能が100%若しくは100%近くまで回復しているのに対して、比較例では50%程度しか回復していない。これから、実施例のように第三金属成分Mを添加すると、触媒のS被毒後の再生による回復性も高いことがわかる。     Looking at the T50 and regeneration recovery rate after the regeneration treatment, the exhaust gas purification performance recovered to 100% or nearly 100% by the regeneration treatment in all the examples, whereas in the comparative example, only about 50%. It has not recovered. From this, it can be seen that when the third metal component M is added as in the example, the recovery by regeneration after the S poisoning of the catalyst is also high.

以上のS被毒及び再生のメカニズムを検討するに、まず、図4はCeZr複酸化物(第三金属成分を添加していないCeZrO)にRh溶液を接触させ焼成して担持させた従来例を示す。この従来例では、図3の比較例「無」で明らかなように、CeZr複酸化物の塩基性があまり高くないことから、排気ガス中のS成分(SO 2−で表している)は、Rhの近傍にくると、そのままRhに吸着され、硫酸ロジウムの形になって、Rhと非常に強く結合し、脱離しにくい状態になり易いと考えられる。この点は上記比較例「無」も同じであり、そのため、上記表1のようにS被毒悪化率が高く、また、再生回復率が低くなっていると考えられる。 To examine the mechanism of S poisoning and regeneration described above, first, FIG. 4 shows a conventional example in which an Rh solution is brought into contact with BaZr oxide (CeZrO to which no third metal component is added) and baked and supported. Show. In this conventional example, as is apparent from the comparative example “No” in FIG. 3, since the basicity of the CeZr double oxide is not so high, the S component (represented by SO 4 2− ) in the exhaust gas is , It is considered that when it comes to the vicinity of Rh, it is adsorbed to Rh as it is, becomes rhodium sulfate, binds very strongly to Rh, and is not easily detached. This point is the same as in the comparative example “None”. Therefore, as shown in Table 1, it is considered that the S poisoning deterioration rate is high and the regeneration recovery rate is low.

これに対して、実施例の場合、図5に示すように、Rhをドープした複酸化物(第三金属成分Mを有するCeZrMO)は、この第三金属成分Mの働きによって塩基性が高くなっている。このため、排気ガス中のS成分(SO 2−)は、CeZrMO表面のRh付近にきても、その周囲の塩基性が高いサイトに吸着され、或いはRhに一旦吸着されても該Rhと化合物を形成する前に脱離して、その周囲の塩基性が高いサイトに吸着されると考えられる。 On the other hand, in the case of the example, as shown in FIG. 5, the Rh-doped double oxide (CeZrMO having the third metal component M) is highly basic due to the action of the third metal component M. ing. For this reason, even if the S component (SO 4 2− ) in the exhaust gas comes near Rh on the CeZrMO surface, it is adsorbed on the surrounding highly basic site, or once adsorbed on Rh, It is considered that it is desorbed before forming a compound and adsorbed at a site having a high basicity around it.

これは、上記第三金属成分Mの添加により、上記複酸化物の表面にRhよりも塩基性の高いサイトが形成されたため、或いは価数が変化し易いCeの塩基性が上記第三金属成分Mの添加によって高まったためと考えられる。     This is because the addition of the third metal component M resulted in the formation of a site having a higher basicity than Rh on the surface of the double oxide, or the basicity of Ce, whose valence is easily changed, is the third metal component. This is thought to be due to the addition of M.

また、実施例の場合、比較例に比べて再生回復率がきわめて高くなっている、これは、Rhが被毒されても、実施例の場合はそのRhとS成分との結合が弱いこと、これに対して、比較例の場合はRhとS成分との結合が非常に強く、S成分が脱離しにくい状態になっていることを意味する。     Further, in the case of the example, the regeneration recovery rate is extremely high compared to the comparative example. This is because even when Rh is poisoned, in the case of the example, the bond between the Rh and the S component is weak. On the other hand, in the case of the comparative example, the bond between Rh and the S component is very strong, which means that the S component is hardly detached.

また、実施例の再生回復率が略100%になっているということは、再生処理によって、Rhに吸着していたS成分だけでなく、複酸化物のRh以外の部分に吸着していたS成分もその殆ど脱離していることを示唆する。すなわち、第三金属成分Mが塩基性の高いサイトを形成してこれにS成分が吸着されたというよりも、第三金属成分の添加により、価数が変化し易いCeの塩基性が高まり、S成分はこの塩基性が高まったCeに主として吸着されるようになったことを示唆する。このCeは価数が変化し易いが故に再生処理によってS成分を脱離し易く、そのために、再生回復率が略100%になっていると考えられるからである。     In addition, the regeneration recovery rate of the example is about 100%, which means that not only the S component adsorbed to Rh but also the portion other than Rh of the double oxide by the regeneration process. This suggests that most of the components are also detached. That is, rather than the third metal component M forming a highly basic site and the S component adsorbed thereto, the addition of the third metal component increases the basicity of Ce whose valence tends to change, This suggests that the S component is mainly adsorbed on Ce with increased basicity. This is because Ce is easy to desorb the S component by the regeneration process because the valence is likely to change, and therefore, the regeneration recovery rate is considered to be about 100%.

本発明に係る排気ガス浄化用触媒の斜視図である。1 is a perspective view of an exhaust gas purifying catalyst according to the present invention. 同触媒の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of the catalyst. 各種第三金属成分を添加したCeZr系複酸化物の塩基量を比較したグラフ図である。It is the graph which compared the amount of bases of CeZr system double oxide which added various third metal ingredients. 従来の複酸化物CeZrOのRhにS成分(SO 2−)が接触した状態を示す模式図である。Rh to S components of the conventional composite oxide CeZrO (SO 4 2-) is a schematic view showing a state in which the contact. 本発明に係る第三金属成分Mを添加した複酸化物CeZrMOのRhにS成分(SO 2−)が接触した状態を示す模式図である。Rh on S component of mixed oxide CeZrMO added a third metal component M according to the present invention (SO 4 2-) is a schematic view showing a state in which the contact.

1 排気ガス浄化用触媒
2 担体
3 セル
5 セル壁
6 触媒層
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Carrier 3 Cell 5 Cell wall 6 Catalyst layer

Claims (1)

酸素吸蔵能を有する複酸化物の結晶格子点又は格子点間に触媒金属が配置されている排気ガス浄化用触媒において、
上記複酸化物は、当該複酸化物を形成する上記触媒金属以外の金属成分が、Ceと、Zrと、アルカリ金属、アルカリ土類金属、La及びPrのうちから選択される少なくとも一種よりなる第三金属成分Mとからなり、該第三金属成分Mの含有により当該複酸化物の塩基性が該第三金属成分Mを含まないCeZr複酸化物の塩基性、並びに該第三金属成分Mを含まずNdを含むCeZr複酸化物の塩基性よりも高くなっていることを特徴とする排気ガス浄化用触媒。
In an exhaust gas purifying catalyst in which a catalytic metal is disposed between crystal lattice points or lattice points of a double oxide having oxygen storage capacity,
In the double oxide, the metal component other than the catalyst metal forming the double oxide is at least one selected from Ce, Zr, alkali metal, alkaline earth metal, La and Pr. It consists of a third metal component M, basic of the mixed oxide by the inclusion of said third metal component M is, basic CeZr mixed oxide containing no said third metal component M, and said third metal component M An exhaust gas purifying catalyst characterized by being higher in basicity than a CeZr double oxide containing Nd and containing no Nd .
JP2005157359A 2005-05-30 2005-05-30 Exhaust gas purification catalyst Expired - Fee Related JP4835043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157359A JP4835043B2 (en) 2005-05-30 2005-05-30 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157359A JP4835043B2 (en) 2005-05-30 2005-05-30 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2006326550A JP2006326550A (en) 2006-12-07
JP4835043B2 true JP4835043B2 (en) 2011-12-14

Family

ID=37548831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157359A Expired - Fee Related JP4835043B2 (en) 2005-05-30 2005-05-30 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4835043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078638B2 (en) * 2008-01-29 2012-11-21 株式会社豊田中央研究所 Exhaust gas purification device
JP5589320B2 (en) * 2009-08-17 2014-09-17 マツダ株式会社 Exhaust gas purification catalyst and method for producing the same
JP5763711B2 (en) 2013-06-13 2015-08-12 株式会社豊田中央研究所 Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262044B2 (en) * 1996-10-07 2002-03-04 株式会社豊田中央研究所 Composite oxide carrier and composite oxide-containing catalyst
JP3429967B2 (en) * 1997-02-10 2003-07-28 ダイハツ工業株式会社 Oxygen storage cerium-based composite oxide
JP3704279B2 (en) * 2000-07-18 2005-10-12 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP3812565B2 (en) * 2002-11-14 2006-08-23 マツダ株式会社 Exhaust gas purification catalyst material and method for producing the same
JP2004337681A (en) * 2003-05-13 2004-12-02 Toyota Central Res & Dev Lab Inc Method for regenerating exhaust gas cleaning catalyst
JP2004345890A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Porous composite oxide and its production method

Also Published As

Publication number Publication date
JP2006326550A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
EP1967263B1 (en) Catalytic Material And Catalyst For Purifying Exhaust Gas Component
JP2006334490A (en) Catalyst for cleaning exhaust gas
US7863217B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
WO2010041741A1 (en) Exhaust gas purifying device
WO2009087852A1 (en) Exhaust gas cleaner
JP5458973B2 (en) Exhaust gas purification catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4144174B2 (en) Exhaust gas purification device
JP5391664B2 (en) Exhaust gas purification catalyst
JP4767296B2 (en) NOx purification catalyst
JP3704701B2 (en) Exhaust gas purification catalyst
JP4835043B2 (en) Exhaust gas purification catalyst
KR20100037164A (en) Exhaust gas purifying catalyst
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
JP2009082846A (en) Nitrogen oxide adsorbent, and method for exhaust gas purification using the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4666007B2 (en) Exhaust gas purification catalyst
JP5094199B2 (en) Exhaust gas purification device
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP5581745B2 (en) Exhaust gas purification catalyst
JP5181839B2 (en) Exhaust gas purification catalyst
JP4561217B2 (en) Exhaust gas purification catalyst
JP4962753B2 (en) Sulfur oxide absorber and exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees