JP2004337681A - Method for regenerating exhaust gas cleaning catalyst - Google Patents

Method for regenerating exhaust gas cleaning catalyst Download PDF

Info

Publication number
JP2004337681A
JP2004337681A JP2003135055A JP2003135055A JP2004337681A JP 2004337681 A JP2004337681 A JP 2004337681A JP 2003135055 A JP2003135055 A JP 2003135055A JP 2003135055 A JP2003135055 A JP 2003135055A JP 2004337681 A JP2004337681 A JP 2004337681A
Authority
JP
Japan
Prior art keywords
catalyst
activity
ceo
temperature
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135055A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
彰 森川
Hirotaka Yonekura
弘高 米倉
Shinichi Matsunaga
真一 松永
Akihiko Suda
明彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003135055A priority Critical patent/JP2004337681A/en
Publication of JP2004337681A publication Critical patent/JP2004337681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily recover the activity of a catalyst, in which at least Rh is deposited as an active species, even when the activity is deteriorated after its durability limit. <P>SOLUTION: The exhaust gas cleaning catalyst, in which at least Rh is deposited on a carrier containing at least Al<SB>2</SB>O<SB>3</SB>and its activity is deteriorated because of being used in a high-temperature oxygen-excessive atmosphere, is treated at a high-temperature stoichiometric amount of air or in a reducing atmosphere. The activity of the catalyst is deteriorated since the Rh deposited on the carrier is subjected to the solid-phase reaction with Al<SB>2</SB>O<SB>3</SB>in the high-temperature oxygen-excessive atmosphere. Therefore, the activity-deteriorated catalyst is exposed to the high-temperature stoichiometric point or the reducing atmosphere so that metal Rh is precipitated again and consequently the activity of this catalyst can be recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温の酸素過剰雰囲気で使用されることで活性が低下した排ガス浄化用触媒の活性を回復させて再生する方法に関する。
【0002】
【従来の技術】
自動車の排ガス浄化用触媒として、三元触媒、酸化触媒など種々の触媒が用いられている。これらの触媒では、活性種としてPt、Pd、Rhなどの貴金属が用いられ、 Al、ZrO、TiO、CeOなどの担体に担持されて用いられている。浄化反応を効率よく進行させるためには、活性種の表面積を大きくすることが不可欠である。そこで従来より、貴金属の水溶性塩などの水溶液が用いられ、吸着担持法、含浸担持法などによって担体に高分散担持されている。
【0003】
しかし高分散で担持された貴金属は、使用時の熱によって粒成長あるいは担体への固溶が生じ、それに伴って触媒の活性が低下するという問題がある。例えば高温の酸素過剰雰囲気では、Ptは酸化されて揮発性のPtOとなり、担持位置から離脱・拡散して他のPt原子又はPt微粒子に捕捉されるために粒成長が生じる。またRhは、高温の酸素過剰雰囲気で Alなどと固相反応することで、その活性が消失する。さらにPdは、高温のストイキ近傍の雰囲気でシンタリングしやすい。
【0004】
そこで特開平09−075755号公報には、少なくともPdを担持した触媒を、高温の酸素過剰雰囲気中で酸化処理することで、活性を回復させる方法が開示されている。この方法によれば、シンタリングした金属Pdの表面がPd酸化物となって担体上を移動し、使用中に還元されて金属Pdとなるため、シンタリングが解消され再び高分散担持された状態となって活性が回復する。
【0005】
また特開2000−202309号公報には、塩基性担体に少なくともPtを担持した触媒を、酸化雰囲気中で処理した後に還元雰囲気中で処理することで、活性を回復させる方法が開示されている。この方法によれば、塩基性担体はPtとの親和性が大きいため粗大化したPt粒子表面が酸化されやすい。そして生成したPt酸化物は、粗大化したPt粒子表面から離脱・拡散して担体上を移動するため、粗大化したPt粒子は次第に粒径が小さくなる。また移動したPt酸化物は、還元雰囲気中で還元されてPt金属となる。したがってPtは再び高分散担持された状態となり、活性が回復する。
【0006】
【特許文献1】特開平09−075755号
【特許文献2】特開2000−202309号
【0007】
【発明が解決しようとする課題】
ところが上記した特許文献では、Pd及びPtを担持した触媒の再生方法が開示されているだけであり、Rhを担持した触媒については無言である。排ガス中のNOを還元除去する反応に対しては、Rhは最も活性の高い活性種であるので、Rhを担持した触媒についても再生方法の確立が待ち望まれている。
【0008】
本発明はこのような事情に鑑みてなされたものであり、活性種としてRhを担持した触媒において、耐久後に活性が低下した場合でも活性を容易に回復させることを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の再生方法の特徴は、少なくとも Alを含む担体に少なくともRhを担持し、高温の酸素過剰雰囲気で使用されることで活性が低下した排ガス浄化用触媒を、高温のストイキ又は還元雰囲気中で処理することにある。
【0010】
担体はCeO及びZrOをさらに含むことが好ましく、AlとCeO及びZrOがナノレベルで混合されていることがさらに望ましい。
【0011】
【発明の実施の形態】
本発明の排ガス浄化用触媒の再生方法では、少なくとも Alを含む担体に少なくともRhを担持し活性が低下した触媒を、高温のストイキ又は還元雰囲気中で処理している。 少なくともAlを含む担体に担持されたRhは、高温かつ酸素過剰雰囲気下で Alと固相反応し、その結果活性を失う。しかしその後に高温のストイキ又は還元雰囲気下に晒されると、金属Rhが再析出して活性が回復し、触媒機能が再生される。
【0012】
触媒中のRhの担持量は、0.05〜1重量%の範囲が好ましい。Rhの担持量がこの範囲より少ないと排ガス浄化用触媒として十分な活性が得られず、この範囲より多く担持しても活性が飽和するとともに、担持密度が高くなるため再生処理中にRh自体に粒成長が生じて活性が低下する場合がある。なお少なくともRhが担持されている必要があるが、Pt,Pdなど他の貴金属が共存していても構わない。
【0013】
ところで Alには、高温下で相変態が生じて著しく粒成長するという現象が見られる。そのため担持されているRhの一部が Alの凝集粒子の内部に捕捉されると、高温のストイキ又は還元雰囲気中で処理しても、最表面に金属Rhが再析出不可能な部分も存在する。
【0014】
そこで、 Alと通常は固相反応しない他の成分とがナノレベルで混在している担体を用いることが好ましい。このような担体を用いれば、 Alと他の成分とが互いの障壁となるために、 Alの粒成長が抑制されRhが凝集粒子の内部に捕捉されることもない。したがって高温のストイキ又は還元雰囲気下で処理することで、最表面への金属Rhの再析出が可能となり、再生が可能となる。
【0015】
Alと通常は固相反応しない他の成分としては、ZrO、CeO、TiOなどがある。このような他の成分の混合量としては、他の成分の金属元素をMとした場合、原子比でAl:M=4:1〜1:4の範囲が好ましい。他の成分量がこの範囲より多くなると、 Al量が相対的に減少する結果、担体としての耐熱性が低下し再生が困難となる。また他の成分量がこの範囲より少ないと、 Alの粒成長の抑制が困難となり、他の成分を混在させた効果が発現されない。
【0016】
Alと他の成分がナノレベルで混在した担体を調製するには、Alの化合物と、金属Mの化合物とが共に溶解した水溶液から酸化物前駆体の沈殿を析出させ、それを焼成することで調製することができる。この場合、系内に水分が充分に存在している状態で沈殿を焼成することが好ましい。また水を分散媒とした懸濁状態で沈殿を熟成し、その後焼成することも好ましい。熟成は 100〜 200℃で行うことが好ましく、 100〜 150℃で行うことがより望ましい。なお、Alのアルコキシドと金属Mのアルコキシドとの混合物を加水分解して前駆体を形成することも可能である。
【0017】
Alの化合物及び金属Mの化合物としては、一般に塩が用いられ、塩としては、硫酸塩、硝酸塩、塩酸塩、酢酸塩などが利用できる。また塩を均一に溶解する溶媒としては、水、アルコール類が使用できる。さらに、例えば硝酸アルミニウムの原料として、水酸化アルミニウムと硝酸と水とを混合して用いても良い。
【0018】
そしてこの溶液にアルカリ性溶液を添加することで、酸化物前駆体の沈殿が析出する。アルカリ性溶液としては、アンモニア、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶解した水溶液、アルコール溶液が使用できる。焼成時に揮散するアンモニア、炭酸アンモニウムが特に好ましい。なお、アルカリ性溶液のpHは、9以上であることが前駆体の析出反応を促進するのでより好ましい。
【0019】
このような複合酸化物担体にRhを担持する際には、Rhは Al以外の成分にも担持される。高温かつ酸素過剰雰囲気下においては、例えばCeOに担持された金属Rhは RhとなりCeOと固相反応して活性が低下する。しかしCeO上では、 RhはCeOとの強い親和性のためCeO表面に濡れた状態となる。このような状態で高温のストイキ又は還元雰囲気下で処理すると、 Rhが分解されて金属Rhが再析出するが、CeO表面に濡れていた Rhからの再析出であるために、金属Rhは微粒子状に再析出する。したがって再生された触媒は活性点が増加し、時には初期より高い活性を示す。
【0020】
ところがCeO単味に担持されたRhは、CeOとの親和性が高すぎるために、ストイキ又は還元雰囲気下での処理を 900℃以上の高温で行わないと再析出が困難となるという不具合がある。そこで担体には、CeO及びZrOを含むことが好ましい。CeOとZrOとは固溶体を形成しやすく、CeOに比べて固体塩基性が弱いZrOを含むことでCeOの塩基性度が適度に抑制されると考えられ、低温域から金属Rhの再析出が可能となり活性が容易に回復する。またCeO−ZrO固溶体による Alの粒成長の抑制作用は、CeO−ZrO固溶体がCeO単味より耐熱性が高いため、CeO単味と同等以上である。
【0021】
CeOとZrOの比率は、原子比でCe:Zr=19:1〜1:19の範囲が好ましい。ZrO量がこの範囲より多いとCeOが相対的に少なくなり、金属Rhが微粒子状に析出する効果の発現が困難となる。またCeOに起因する酸素吸蔵放出能( OSC)も低下する。一方ZeO量がこの範囲より少なくなると、CeOの固体塩基性を適切に調整する作用が低下するため、活性回復度合いが減少する。
【0022】
またAl以外の他の金属元素として、アルカリ土類金属,希土類元素などを含むこともできる。このような成分を含むことで、 AlあるいはCeO−ZrO固溶体の耐熱性が向上したり、酸素吸蔵放出能( OSC)がさらに向上したりする効果が得られる場合がある。また目的に応じて担体の酸塩基度を調整できるという利点もある。このような成分は、担体に対して 0.1〜5モル%の範囲が好ましい。これより少ないと添加した効果が発現されず、多すぎると活性が低下してしまう。
【0023】
本発明の再生方法では、高温の酸素過剰雰囲気で使用されることで活性が低下した上記触媒を、高温のストイキ又は還元雰囲気中で処理している。酸素過剰雰囲気における高温とは、Rhが少なくとも Alを含む担体と固相反応する、又はRhが酸化物状態となる温度をいい、約 800℃以上である。また酸素過剰雰囲気とは、λ> 1.0相当の雰囲気を意味する。
【0024】
高温のストイキ又は還元雰囲気中で処理する温度は、 500〜1000℃の範囲とするのが好ましく、 600〜 900℃の範囲が特に好ましい。処理温度が 500℃未満であると金属Rhの再析出が困難となり、処理温度が1000℃を超えると担体あるいは金属Rhの粒成長が生じるため好ましくない。なお上記したように、CeO−ZrO固溶体を含む場合には、 600〜 800℃の低温域で処理することで、金属Rhを再析出させることができる。
【0025】
またストイキ又は還元雰囲気の程度は、λ≦ 1.0、より好ましくはλ≦0.95相当の雰囲気とすることが好ましい。相当するλ値が 1.0を超えるとRhの再析出が困難となる。処理時間は、活性低下の程度と還元雰囲気の程度によって異なる。高速走行時のフューエルカットによる数十秒程度の酸素過剰雰囲気に対しては数秒程度、回復操作なしに長時間使用し完全に劣化した触媒であっても5時間以下の処理で十分である。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明する。先ず以下のようにして触媒A〜Fを調製した。
【0027】
(触媒A)
硝酸アルミニウム9水和物と、硝酸セリウム6水和物と、硝酸ジルコニル2水和物の所定量を純水中に溶解し、混合水溶液を調製した。これにCeイオンの 1.1倍当量の過酸化水素水を加えた後、激しく撹拌しながら各塩の硝酸根の中和当量の 1.2倍モルのアンモニア水を添加して中和し、共沈法により前駆体沈殿物を得た。この前駆体沈殿物を溶液とともに 150℃で加熱して乾燥し、大気中で 300で3時間乾燥後 500℃で1時間焼成し、さらに大気中で 700℃で5時間熱処理して複合酸化物粉末を調製した。この複合酸化物の組成は、モル比で Al:CeO:ZrO=1:1:1であり、CeOとZrOは少なくとも一部が固溶体となっている。
【0028】
得られた複合酸化物粉末に、所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、蒸発・乾固後に大気中 300℃で3時間焼成して触媒粉末を調製した。Rhの担持量は、複合酸化物粉末 100gに対して 0.2gである。得られた触媒粉末を圧粉成形後に粉砕し、整粒して 0.5〜1mmのペレット触媒とした。
【0029】
(触媒B)
硝酸アルミニウム9水和物と、硝酸ランタン6水和物とを用い、過酸化水素水を加えなかったこと以外は触媒Aと同様にして、モル比で Al: La=1: 0.025の複合酸化物粉末を調製した。この複合酸化物粉末を用い、触媒Aと同様にして触媒Bを調製した。
【0030】
(触媒C)
金属塩の配合量を変更したこと以外は触媒Aと同様にして、モル比で Al:CeO:ZrO=1: 1.9: 0.1の複合酸化物粉末を調製し、この複合酸化物粉末を用いて触媒Aと同様に触媒Cを調製した。
【0031】
(触媒D)
金属塩の配合量を変更したこと以外は触媒Aと同様にして、モル比で Al:CeO:ZrO=1: 0.1: 1.9の複合酸化物粉末を調製し、この複合酸化物粉末を用いて触媒Aと同様に触媒Dを調製した。
【0032】
(触媒E)
金属塩の配合量を変更したこと以外は触媒Aと同様にして、モル比で Al:CeO:ZrO= 0.5:1:1の複合酸化物粉末を調製し、この複合酸化物粉末を用いて触媒Aと同様に触媒Eを調製した。
【0033】
(触媒F)
硝酸ロジウム水溶液に代えてジニトロジアンミン白金水溶液を用いたこと以外は触媒Aと同様にして、触媒Eを調製した。
【0034】
<試験・評価>
【0035】
【表1】

Figure 2004337681
【0036】
触媒Aを固定床流通型反応装置に搭載し、表1に示すストイキモデルガスの流通下、 100℃〜 500℃まで12℃/分の速度で昇温し、NO、CO及びCの浄化率を連続的に測定した。そして各50%浄化温度を求め、結果を初期50%浄化温度として表3及び図1に示す。
【0037】
次に、触媒Aを大気中にて 800℃で20時間保持する劣化試験を行った。空間速度SVは10,000−1である。劣化試験後の触媒について、初期50%浄化温度の測定と同様にして各50%浄化温度を測定し、結果を劣化試験後50%浄化温度として表3及び図1に示す。
【0038】
【表2】
Figure 2004337681
【0039】
上記劣化試験後の触媒Aを固定床流通型反応装置に搭載し、表2に示すリッチガスとリーンガスを5分間ずつ交互に流通させる雰囲気下、 800℃で5時間保持する再生試験を行った。空間速度SVは10,000−1である。再生試験後の触媒について、初期50%浄化温度の測定と同様にして各50%浄化温度を測定し、結果を再生試験後50%浄化温度として表3及び図1に示す。
【0040】
またNO、CO及びCについてそれぞれ劣化試験後50%浄化温度と再生試験後50%浄化温度との差を算出し、結果を回復度として表3に示す。
【0041】
【表3】
Figure 2004337681
【0042】
次に、触媒B〜Fのそれぞれについて、触媒Aと同様にして劣化試験後50%浄化温度と再生試験後50%浄化温度を測定し、それぞれ回復度を算出した。結果を触媒Aの結果とともに表4に示す。
【0043】
【表4】
Figure 2004337681
【0044】
表3及び図1より、劣化試験によって活性が劣化した触媒Aは、再生試験によって活性が回復し、しかも初期より再生試験後の方が活性が向上していることがわかる。
【0045】
また表4より、触媒Bでも回復現象が認められるものの、回復度は実施例1より小さい。また触媒Aと同じ担体を用いPtを担持した触媒Fでは、再生試験による回復はほとんど認められない。したがって再生試験によって活性が再生するのは少なくともRhを活性種とし、担体には Al単味よりもCeO及びZrOが共存するのが望ましいことが明らかである。
【0046】
すなわち触媒A,C,D,Eでは、 AlとCeOとZrOとが共存しているため、それぞれの酸化物が互いに障壁となって粒成長が抑制され、しかもCeO表面にRhが微細に再析出したため、触媒Bに比べ再生試験後に活性が大きく回復したと考えられる。また触媒A,C,D,Eの比較から、 AlとCeOとZrOとの組成比には最適範囲が存在することが示唆される。
【0047】
【発明の効果】
すなわち本発明の排ガス浄化用触媒の再生方法によれば、高温の酸素過剰雰囲気で使用されることで劣化した触媒の活性を容易に、しかも劣化する前以上に回復させることができる。
【図面の簡単な説明】
【図1】触媒Aの初期、劣化試験後及び再生試験後の各50%浄化温度を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering and regenerating the activity of an exhaust gas purifying catalyst whose activity has been reduced by being used in a high-temperature oxygen-rich atmosphere.
[0002]
[Prior art]
Various catalysts such as three-way catalysts and oxidation catalysts have been used as exhaust gas purification catalysts for automobiles. In these catalysts, noble metals such as Pt, Pd, and Rh are used as active species, and are used by being supported on a carrier such as Al 2 O 3 , ZrO 2 , TiO 2 , and CeO 2 . In order for the purification reaction to proceed efficiently, it is essential to increase the surface area of the active species. Therefore, an aqueous solution of a water-soluble salt of a noble metal or the like has been conventionally used, and has been highly dispersed and supported on a carrier by an adsorption supporting method, an impregnation supporting method, or the like.
[0003]
However, the noble metal supported in a highly dispersed state has a problem in that the heat during use causes grain growth or solid solution in the carrier, and the activity of the catalyst decreases accordingly. For example, in a high-temperature oxygen-rich atmosphere, Pt is oxidized to volatile PtO 2 , detached and diffused from the supporting position, and trapped by other Pt atoms or Pt fine particles, causing grain growth. Rh loses its activity by undergoing a solid phase reaction with Al 2 O 3 or the like in a high-temperature oxygen-rich atmosphere. Further, Pd easily sinters in an atmosphere near a high-temperature stoichiometric state.
[0004]
Therefore, Japanese Patent Application Laid-Open No. 09-075755 discloses a method of recovering the activity by oxidizing at least a catalyst supporting Pd in a high-temperature oxygen-rich atmosphere. According to this method, the surface of the sintered metal Pd becomes a Pd oxide, moves on the carrier, and is reduced during use to become metal Pd. The activity is restored.
[0005]
Japanese Patent Application Laid-Open No. 2000-202309 discloses a method of recovering the activity by treating a catalyst in which at least Pt is supported on a basic carrier in an oxidizing atmosphere and then in a reducing atmosphere. According to this method, the surface of the coarse Pt particles is easily oxidized because the basic carrier has a high affinity for Pt. Then, the generated Pt oxide is separated and diffused from the surface of the coarse Pt particles and moves on the carrier, so that the coarse Pt particles gradually decrease in particle diameter. The transferred Pt oxide is reduced in a reducing atmosphere to become Pt metal. Therefore, Pt is again in a state of being highly dispersed and supported, and the activity is restored.
[0006]
[Patent Document 1] JP-A-09-075755 [Patent Document 2] JP-A-2000-202309
[Problems to be solved by the invention]
However, the above-mentioned patent document only discloses a method for regenerating a catalyst supporting Pd and Pt, and does not say about a catalyst supporting Rh. Since Rh is the most active species for the reaction of reducing and removing NO in exhaust gas, it is desired to establish a regeneration method for a catalyst carrying Rh.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to easily recover the activity of a catalyst supporting Rh as an active species even if the activity decreases after durability.
[0009]
[Means for Solving the Problems]
The feature of the method for regenerating an exhaust gas purifying catalyst of the present invention that solves the above-mentioned problems is that at least Rh is supported on a carrier containing at least Al 2 O 3 , and the exhaust gas whose activity has been reduced by being used in a high-temperature oxygen-rich atmosphere It is to treat the purification catalyst in a high temperature stoichiometric or reducing atmosphere.
[0010]
The support preferably further contains CeO 2 and ZrO 2, and more preferably, Al 2 O 3 is mixed with CeO 2 and ZrO 2 at a nano level.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for regenerating an exhaust gas purifying catalyst of the present invention, a catalyst having at least Rh supported on a carrier containing at least Al 2 O 3 and having reduced activity is treated in a high-temperature stoichiometric or reducing atmosphere. Rh supported on a carrier containing at least Al 2 O 3 undergoes a solid-phase reaction with Al 2 O 3 at a high temperature and in an oxygen-excess atmosphere, resulting in loss of activity. However, when subsequently exposed to a high-temperature stoichiometric or reducing atmosphere, the metal Rh is re-deposited and the activity is recovered, and the catalytic function is regenerated.
[0012]
The amount of Rh supported in the catalyst is preferably in the range of 0.05 to 1% by weight. If the supported amount of Rh is less than this range, sufficient activity as an exhaust gas purifying catalyst cannot be obtained, and even if the supported amount is larger than this range, the activity is saturated and the supported density increases, so that Rh itself is not regenerated during the regeneration treatment. The activity may be reduced due to grain growth. Note that at least Rh must be supported, but other noble metals such as Pt and Pd may coexist.
[0013]
By the way, a phenomenon is observed in Al 2 O 3 in which phase transformation occurs at a high temperature and grain growth is remarkable. Therefore, when a part of the supported Rh is trapped inside the agglomerated particles of Al 2 O 3 , a part where the metal Rh cannot be reprecipitated on the outermost surface even if the treatment is performed in a high-temperature stoichiometric or reducing atmosphere. Also exists.
[0014]
Therefore, it is preferable to use a carrier in which Al 2 O 3 and other components that do not normally react in a solid phase are mixed at the nano level. If such a carrier is used, Al 2 O 3 and other components act as barriers to each other, so that grain growth of Al 2 O 3 is suppressed and Rh is not trapped inside the aggregated particles. Therefore, by performing the treatment under a high-temperature stoichiometric or reducing atmosphere, the metal Rh can be reprecipitated on the outermost surface, and the regeneration can be performed.
[0015]
Other components that do not normally react in a solid phase with Al 2 O 3 include ZrO 2 , CeO 2 , and TiO 2 . When the metal element of the other component is M, the mixing ratio of the other component is preferably in the range of Al: M = 4: 1 to 1: 4 in atomic ratio. If the amount of the other components exceeds this range, the amount of Al 2 O 3 is relatively reduced, and as a result, the heat resistance of the carrier is reduced and the regeneration becomes difficult. If the amount of other components is less than this range, it is difficult to suppress the grain growth of Al 2 O 3 , and the effect of mixing other components will not be exhibited.
[0016]
In order to prepare a carrier in which Al 2 O 3 and other components are mixed at a nano level, a precipitate of an oxide precursor is precipitated from an aqueous solution in which an Al compound and a metal M compound are both dissolved, and the resultant is calcined. Can be prepared. In this case, it is preferable to bake the precipitate in a state where sufficient moisture is present in the system. It is also preferable that the precipitate is aged in a suspended state using water as a dispersion medium, and then calcined. Aging is preferably performed at 100 to 200 ° C, more preferably at 100 to 150 ° C. It is also possible to hydrolyze a mixture of an alkoxide of Al and an alkoxide of metal M to form a precursor.
[0017]
A salt is generally used as the compound of Al and the compound of the metal M, and as the salt, sulfate, nitrate, hydrochloride, acetate and the like can be used. Water and alcohols can be used as a solvent for uniformly dissolving the salt. Furthermore, for example, aluminum hydroxide, nitric acid and water may be mixed and used as a raw material of aluminum nitrate.
[0018]
Then, by adding an alkaline solution to this solution, a precipitate of the oxide precursor is deposited. As the alkaline solution, an aqueous solution in which ammonia, ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate or the like is dissolved, or an alcohol solution can be used. Ammonia and ammonium carbonate which volatilize during firing are particularly preferred. It is more preferable that the pH of the alkaline solution is 9 or more, since the precipitation reaction of the precursor is promoted.
[0019]
When Rh is supported on such a composite oxide carrier, Rh is also supported on components other than Al 2 O 3 . At high temperatures and under an oxygen rich atmosphere, such as metal Rh supported on CeO 2 is active is reduced by solid phase reaction and Rh 2 O 3 next to CeO 2. However on CeO 2 is, Rh 2 O 3 is in a state wet with CeO 2 surface due to the strong affinity with CeO 2. When treated under a high temperature stoichiometric or reducing atmosphere in such a state, Rh 2 O 3 is decomposed and metal Rh is reprecipitated, but it is reprecipitation from Rh 2 O 3 wet on the surface of CeO 2. Then, the metal Rh is reprecipitated into fine particles. Thus, the regenerated catalyst has increased active sites and sometimes exhibits higher activity than at the beginning.
[0020]
However, Rh supported on CeO 2 alone has too high an affinity for CeO 2 , so that reprecipitation becomes difficult unless a treatment under a stoichiometric or reducing atmosphere is performed at a high temperature of 900 ° C. or more. There is. Therefore, the carrier preferably contains CeO 2 and ZrO 2 . CeO 2 and easily form a solid solution and ZrO 2, considered basicity of CeO 2 is moderately suppressed by containing ZrO 2 is weak solid basicity compared to CeO 2, metal from a low temperature range Rh Can be reprecipitated, and the activity is easily recovered. The inhibition of grain growth of Al 2 O 3 by CeO 2 -ZrO 2 solid solution, CeO 2 -ZrO 2 solid solution because of its high heat resistance than the CeO 2 plain is CeO 2 PLAIN least equivalent.
[0021]
The ratio of CeO 2 to ZrO 2 is preferably in the range of Ce: Zr = 19: 1 to 1:19 in atomic ratio. If the amount of ZrO 2 is larger than this range, the amount of CeO 2 will be relatively small, and it will be difficult to exhibit the effect of depositing metal Rh in fine particles. In addition, the oxygen storage / release capacity (OSC) due to CeO 2 also decreases. On the other hand, if the amount of ZeO 2 is less than this range, the effect of appropriately adjusting the solid basicity of CeO 2 is reduced, and the degree of activity recovery is reduced.
[0022]
Further, as other metal elements other than Al, alkaline earth metals, rare earth elements, and the like can be included. When such a component is contained, the effect of improving the heat resistance of the Al 2 O 3 or CeO 2 —ZrO 2 solid solution and further improving the oxygen storage / release capability (OSC) may be obtained. There is also an advantage that the acid-base degree of the carrier can be adjusted according to the purpose. Such a component is preferably in the range of 0.1 to 5 mol% based on the carrier. If the amount is less than this, the added effect is not exhibited, and if it is too large, the activity is reduced.
[0023]
In the regeneration method of the present invention, the catalyst whose activity has been reduced by being used in a high-temperature oxygen-rich atmosphere is treated in a high-temperature stoichiometric or reducing atmosphere. The high temperature in the oxygen-excess atmosphere refers to a temperature at which Rh undergoes a solid-phase reaction with a carrier containing at least Al 2 O 3 or becomes an oxide state, and is about 800 ° C. or higher. The oxygen-excess atmosphere means an atmosphere equivalent to λ> 1.0.
[0024]
The temperature for the treatment in a high-temperature stoichiometric or reducing atmosphere is preferably in the range of 500 to 1000 ° C, and particularly preferably in the range of 600 to 900 ° C. If the treatment temperature is lower than 500 ° C., reprecipitation of metal Rh becomes difficult, and if the treatment temperature exceeds 1000 ° C., grain growth of the carrier or metal Rh occurs, which is not preferable. As described above, when a CeO 2 -ZrO 2 solid solution is included, the metal Rh can be reprecipitated by performing the treatment in a low temperature range of 600 to 800 ° C.
[0025]
The degree of the stoichiometric or reducing atmosphere is preferably λ ≦ 1.0, more preferably λ ≦ 0.95. If the corresponding λ value exceeds 1.0, it becomes difficult to redeposit Rh. The processing time varies depending on the degree of activity reduction and the degree of the reducing atmosphere. For an oxygen-excess atmosphere of several tens of seconds due to fuel cut during high-speed running, a treatment of several seconds is sufficient, and even a catalyst that has been used for a long time without a recovery operation and has been completely degraded for 5 hours or less is sufficient.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. First, catalysts A to F were prepared as follows.
[0027]
(Catalyst A)
A predetermined amount of aluminum nitrate nonahydrate, cerium nitrate hexahydrate, and zirconyl nitrate dihydrate was dissolved in pure water to prepare a mixed aqueous solution. After adding 1.1 times equivalent of hydrogen peroxide solution of Ce ion to this, neutralized by adding 1.2 times mole of ammonia water to neutralization equivalent of nitrate of each salt while stirring vigorously, A precursor precipitate was obtained by a coprecipitation method. This precursor precipitate is dried together with the solution by heating at 150 ° C., dried at 300 ° C. in the air for 3 hours, calcined at 500 ° C. for 1 hour, and further heat-treated at 700 ° C. in the air for 5 hours to obtain a composite oxide powder. Was prepared. The composition of the composite oxide is Al 2 O 3 : CeO 2 : ZrO 2 = 1: 1: 1 in molar ratio, and at least a part of CeO 2 and ZrO 2 is a solid solution.
[0028]
The obtained composite oxide powder was impregnated with a predetermined amount of an aqueous solution of rhodium nitrate having a predetermined concentration, evaporated and dried, and then calcined at 300 ° C. for 3 hours in the atmosphere to prepare a catalyst powder. The supported amount of Rh is 0.2 g per 100 g of the composite oxide powder. The obtained catalyst powder was pulverized after compacting, and sized to obtain a 0.5 to 1 mm pellet catalyst.
[0029]
(Catalyst B)
Using aluminum nitrate 9 hydrate and lanthanum nitrate hexahydrate in the same manner as in catalyst A except that no aqueous hydrogen peroxide was added, the molar ratio of Al 2 O 3 : La 2 O 3 = 1 : 0.025 composite oxide powder was prepared. Using this composite oxide powder, catalyst B was prepared in the same manner as catalyst A.
[0030]
(Catalyst C)
A composite oxide powder having a molar ratio of Al 2 O 3 : CeO 2 : ZrO 2 = 1: 1.9: 0.1 was prepared in the same manner as the catalyst A except that the amount of the metal salt was changed. Using this composite oxide powder, catalyst C was prepared in the same manner as catalyst A.
[0031]
(Catalyst D)
A composite oxide powder having a molar ratio of Al 2 O 3 : CeO 2 : ZrO 2 = 1: 0.1: 1.9 was prepared in the same manner as in the catalyst A except that the amount of the metal salt was changed. Using this composite oxide powder, catalyst D was prepared in the same manner as catalyst A.
[0032]
(Catalyst E)
A composite oxide powder having a molar ratio of Al 2 O 3 : CeO 2 : ZrO 2 = 0.5: 1: 1 was prepared in the same manner as in the catalyst A except that the amount of the metal salt was changed. Catalyst E was prepared in the same manner as Catalyst A using the oxide powder.
[0033]
(Catalyst F)
A catalyst E was prepared in the same manner as the catalyst A except that an aqueous dinitrodiammine platinum solution was used instead of the aqueous rhodium nitrate solution.
[0034]
<Test / Evaluation>
[0035]
[Table 1]
Figure 2004337681
[0036]
The catalyst A was mounted on a fixed bed flow type reactor, and heated at a rate of 12 ° C./min from 100 ° C. to 500 ° C. under the flow of the stoichiometric model gas shown in Table 1 to obtain NO, CO and C 3 H 6 . Purification rates were measured continuously. Then, each 50% purification temperature was determined, and the result is shown in Table 3 and FIG. 1 as an initial 50% purification temperature.
[0037]
Next, a deterioration test was conducted in which the catalyst A was kept at 800 ° C. in the atmosphere for 20 hours. The space velocity SV is 10,000 -1 . For the catalyst after the deterioration test, each 50% purification temperature was measured in the same manner as the measurement of the initial 50% purification temperature, and the results are shown in Table 3 and FIG. 1 as the 50% purification temperature after the deterioration test.
[0038]
[Table 2]
Figure 2004337681
[0039]
The catalyst A after the deterioration test was mounted on a fixed bed flow type reaction apparatus, and a regeneration test was performed at 800 ° C. for 5 hours under an atmosphere in which rich gas and lean gas alternately flowed for 5 minutes as shown in Table 2. The space velocity SV is 10,000 -1 . Regarding the catalyst after the regeneration test, each 50% purification temperature was measured in the same manner as the measurement of the initial 50% purification temperature, and the results are shown in Table 3 and FIG. 1 as the 50% purification temperature after the regeneration test.
[0040]
Further, for NO, CO and C 3 H 6 , the difference between the 50% purification temperature after the deterioration test and the 50% purification temperature after the regeneration test was calculated, and the results are shown in Table 3 as the degree of recovery.
[0041]
[Table 3]
Figure 2004337681
[0042]
Next, for each of the catalysts B to F, the 50% purification temperature after the deterioration test and the 50% purification temperature after the regeneration test were measured in the same manner as the catalyst A, and the degree of recovery was calculated for each. The results are shown in Table 4 together with the results of Catalyst A.
[0043]
[Table 4]
Figure 2004337681
[0044]
From Table 3 and FIG. 1, it can be seen that the activity of Catalyst A, whose activity has been deteriorated by the degradation test, has been recovered by the regeneration test, and the activity has been improved after the regeneration test from the initial stage.
[0045]
Further, from Table 4, although a recovery phenomenon is observed also in the catalyst B, the degree of recovery is smaller than that in Example 1. Further, in the case of the catalyst F in which Pt is supported using the same carrier as the catalyst A, almost no recovery is observed in the regeneration test. Therefore, it is clear that it is preferable that the activity is regenerated by at least Rh as the active species in the regeneration test, and that CeO 2 and ZrO 2 coexist in the carrier rather than Al 2 O 3 alone.
[0046]
That catalyst A, C, D, in E, because it coexist with Al 2 O 3 and CeO 2 and ZrO 2, the grain growth respective oxides becomes a barrier to one another is suppressed, moreover the CeO 2 surface It is considered that the activity was largely recovered after the regeneration test as compared with the catalyst B due to the fine precipitation of Rh. Also, comparison of catalysts A, C, D, and E suggests that there is an optimal range for the composition ratio of Al 2 O 3 , CeO 2, and ZrO 2 .
[0047]
【The invention's effect】
That is, according to the method for regenerating an exhaust gas purifying catalyst of the present invention, the activity of a catalyst that has been deteriorated by being used in a high-temperature oxygen-rich atmosphere can be easily recovered more than before the deterioration.
[Brief description of the drawings]
FIG. 1 is a graph showing 50% purification temperatures of catalyst A at an initial stage, after a deterioration test, and after a regeneration test.

Claims (3)

少なくとも Alを含む担体に少なくともRhを担持し高温の酸素過剰雰囲気で使用されることで活性が低下した排ガス浄化用触媒を、高温のストイキ又は還元雰囲気中で処理することを特徴とする排ガス浄化用触媒の再生方法。An exhaust gas purifying catalyst having at least Rh supported on a carrier containing at least Al 2 O 3 and having reduced activity by being used in a high-temperature oxygen-rich atmosphere is treated in a high-temperature stoichiometric or reducing atmosphere. A method for regenerating an exhaust gas purifying catalyst. 前記担体は、CeO及びZrOをさらに含む請求項1に記載の排ガス浄化用触媒の再生方法。The carrier, the method of regeneration exhaust gas purifying catalyst according to claim 1, further comprising a CeO 2 and ZrO 2. 前記担体は、 AlとCeO及びZrOがナノレベルで混合されている請求項2に記載の排ガス浄化用触媒の再生方法。The carrier, Al 2 O 3 and CeO 2 and ZrO 2 is the method of regeneration exhaust gas purifying catalyst according to claim 2, which is mixed at the nano level.
JP2003135055A 2003-05-13 2003-05-13 Method for regenerating exhaust gas cleaning catalyst Pending JP2004337681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135055A JP2004337681A (en) 2003-05-13 2003-05-13 Method for regenerating exhaust gas cleaning catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135055A JP2004337681A (en) 2003-05-13 2003-05-13 Method for regenerating exhaust gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JP2004337681A true JP2004337681A (en) 2004-12-02

Family

ID=33525445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135055A Pending JP2004337681A (en) 2003-05-13 2003-05-13 Method for regenerating exhaust gas cleaning catalyst

Country Status (1)

Country Link
JP (1) JP2004337681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326550A (en) * 2005-05-30 2006-12-07 Mazda Motor Corp Catalyst for purifying exhaust gas
JP2006341176A (en) * 2005-06-08 2006-12-21 Toyota Motor Corp Manufacturing method of catalyst carrier and manufacturing method of exhaust gas purifying catalyst
WO2012137857A1 (en) * 2011-04-08 2012-10-11 株式会社豊田中央研究所 Exhaust gas purification device, and exhaust gas purification method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326550A (en) * 2005-05-30 2006-12-07 Mazda Motor Corp Catalyst for purifying exhaust gas
JP2006341176A (en) * 2005-06-08 2006-12-21 Toyota Motor Corp Manufacturing method of catalyst carrier and manufacturing method of exhaust gas purifying catalyst
WO2012137857A1 (en) * 2011-04-08 2012-10-11 株式会社豊田中央研究所 Exhaust gas purification device, and exhaust gas purification method using same
JP2012219715A (en) * 2011-04-08 2012-11-12 Toyota Central R&D Labs Inc Exhaust gas purification device and exhaust gas purification method using the same

Similar Documents

Publication Publication Date Title
EP0834348B1 (en) Composite oxide, composite oxide carrier and catalyst
JP4006976B2 (en) Composite oxide powder, method for producing the same and catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
JPH10182155A (en) Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10216509A (en) Oxygen storing cerium-based compounded oxide
JP4982692B2 (en) Catalyst cerium oxide powder and DPF
JP2003277059A (en) Ceria-zirconia compound oxide
JP3988202B2 (en) Exhaust gas purification catalyst
JP2003073123A (en) Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas
JP3956733B2 (en) Cerium-zirconium composite metal oxide for exhaust gas purification catalyst
JP3997783B2 (en) Method for producing catalyst carrier
JP4655436B2 (en) Method for treating exhaust gas purification catalyst
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP4432588B2 (en) Catalyst and method for producing catalyst
JP4697503B2 (en) Composite oxide powder, method for producing the same and catalyst
JP3855262B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5054693B2 (en) Method for producing noble metal-containing metal oxide, oxygen storage material, and catalyst system
JP4661690B2 (en) Diesel exhaust gas purification structure and exhaust gas purification method using the same
JP2004337681A (en) Method for regenerating exhaust gas cleaning catalyst
JP2004321847A (en) Catalyst carrier, its production method, catalyst, and method for cleaning exhaust gas
JP3861385B2 (en) Lean exhaust gas purification catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP5019019B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090219