JP2011030734A - Visual restoration aiding device and method of manufacturing the same - Google Patents

Visual restoration aiding device and method of manufacturing the same Download PDF

Info

Publication number
JP2011030734A
JP2011030734A JP2009179331A JP2009179331A JP2011030734A JP 2011030734 A JP2011030734 A JP 2011030734A JP 2009179331 A JP2009179331 A JP 2009179331A JP 2009179331 A JP2009179331 A JP 2009179331A JP 2011030734 A JP2011030734 A JP 2011030734A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
visual reproduction
assisting device
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009179331A
Other languages
Japanese (ja)
Other versions
JP2011030734A5 (en
JP5578540B2 (en
Inventor
Yasuo Terasawa
靖雄 寺澤
Akihiro Uehara
昭宏 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2009179331A priority Critical patent/JP5578540B2/en
Publication of JP2011030734A publication Critical patent/JP2011030734A/en
Publication of JP2011030734A5 publication Critical patent/JP2011030734A5/ja
Application granted granted Critical
Publication of JP5578540B2 publication Critical patent/JP5578540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a visual restoration aiding device and a visual restoration aiding device, simply increasing the surface area of an electrode. <P>SOLUTION: In this visual restoration aiding device, a plurality of electrodes are installed on a patient's eye, and predetermined electric stimulus pulse signals are output from the electrodes to thereby accelerate visual restoration. The electrodes each have a three-dimensional shape, and the surfaces are treated to have non-uniform and fine rugged shape. This method of manufacturing the visual restoration aiding device in which a plurality of electrodes are installed on a patient's eye, and predetermined electric stimulus pulse signals are output from the electrodes to thereby accelerate visual restoration includes: a first step of forming a plurality of electrodes having three-dimensional shape on a predetermined base plate; and a second step of conducting predetermined surface treatment for the electrodes formed on the base plate in the first step to thereby form non-uniform and fine rugged shape on the surfaces of the electrodes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は患者の視覚の一部又は全部を再生する視覚再生補助装置及び視覚再生補助装置の製造方法に関する。   The present invention relates to a visual reproduction assisting device that reproduces part or all of a patient's vision and a method for manufacturing the visual reproduction assisting device.

近年、失明治療技術の一つとして、複数の電極が形成された基板を有する体内装置を体内に埋植し、網膜を構成する細胞を電気刺激して視覚の再生を試みる視覚再生補助装置の研究がされている。このような視覚再生補助装置は、例えば、体外装置を用いて撮像された映像を所定の信号に変換して体内に設置された体内装置に送信し、電極から電気刺激パルス信号(電荷)を出力して網膜を構成する細胞を電気刺激することにより、視覚の再生を試みる装置が知られている。(例えば、特許文献1参照)。   In recent years, as one of the techniques for treating blindness, research on visual regeneration assisting devices that attempt to regenerate vision by implanting in-vivo devices with a substrate on which multiple electrodes are formed and electrically stimulating cells that make up the retina Has been. Such a visual reproduction assist device, for example, converts a video imaged using an extracorporeal device into a predetermined signal and transmits it to an in-vivo device installed in the body, and outputs an electrical stimulation pulse signal (charge) from the electrode. Devices that attempt to reproduce vision by electrically stimulating the cells constituting the retina are known. (For example, refer to Patent Document 1).

2009‐082496号公報2009-082496

網膜を構成する細胞を電気刺激して視覚を得ようとするためには、刺激電極から所定量の電荷を注入することが必要となるが、刺激電極が電荷を伝達する能力は電極の表面積に比例する。一方、好適な視覚の再生を行うためには、電極密度が高いことが必要とされ、生体内の限られたスペースで電極密度を高めるためには、電極のサイズが小型であることが求められる。そこで、電極のサイズを増加させずに電荷注入能力を向上させるため、電極の表面積を増大させることが望まれている。   In order to electrically stimulate the cells that make up the retina to obtain vision, it is necessary to inject a predetermined amount of charge from the stimulation electrode, but the ability of the stimulation electrode to transfer charge depends on the surface area of the electrode. Proportional. On the other hand, in order to perform suitable visual reproduction, it is necessary that the electrode density is high, and in order to increase the electrode density in a limited space in the living body, the size of the electrode is required to be small. . Therefore, it is desired to increase the surface area of the electrode in order to improve the charge injection capability without increasing the size of the electrode.

本発明は上記従来技術の問題点に鑑み、電極の表面積を簡単に増加させることのできる視覚再生補助装置の製造方法及び視覚再生補助装置を提供することを技術課題とする。   In view of the above-described problems of the prior art, it is an object of the present invention to provide a method for manufacturing a visual reproduction assisting device and a visual reproduction assisting device that can easily increase the surface area of an electrode.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 患者眼に複数の電極を設置し,該電極より所定の電気刺激パルス信号を出力させて視覚の再生を促す視覚再生補助装置において、前記電極は立体形状を有するとともに,その表面が処理されることによって不均一で微細な凹凸形状を有することを特徴とする。
(2) (1)の視覚再生補助装置において、前記電極は電気化学的な酸化還元反応によって表面処理されていることを特徴とする。
(3) (1)の視覚再生補助装置において、前記電極を形成する電極材料は異方性を有していることを特徴とする。
(4) (2)の視覚再生補助装置において、前記電極は前記電極材料を冷間引き抜きによって形成されていることを特徴とする。
(5) 患者眼に複数の電極を設置し,該電極より所定の電気刺激パルス信号を出力させて視覚の再生を促す視覚再生補助装置の製造方法において、所定の基板上に立体形状を有する複数の電極を形成する第1ステップと、該第1ステップにより前記基板上に形成された前記電極に対して所定の表面処理を施すことにより,前記電極表面に不均一で微細な凹凸形状を施す第2ステップと、を有することを特徴とする。
(6) (5)の視覚再生補助装置において、前記表面処理は前記電極に対して電気化学的な酸化還元反応を行わせる処理であることを特徴とする。
(1) In a visual reproduction assisting device that promotes visual reproduction by installing a plurality of electrodes on a patient's eye and outputting predetermined electrical stimulation pulse signals from the electrodes, the electrodes have a three-dimensional shape and the surface thereof is treated. It is characterized by having a non-uniform and fine uneven shape.
(2) In the visual reproduction assisting device according to (1), the electrode is surface-treated by an electrochemical oxidation-reduction reaction.
(3) In the visual reproduction assisting device according to (1), the electrode material forming the electrode has anisotropy.
(4) In the visual reproduction auxiliary device of (2), the electrode is formed by cold drawing of the electrode material.
(5) In a method for manufacturing a visual reproduction assisting device that promotes visual reproduction by installing a plurality of electrodes on a patient's eye and outputting a predetermined electrical stimulation pulse signal from the electrodes, a plurality of three-dimensional shapes on a predetermined substrate A first step of forming the electrode, and a predetermined surface treatment on the electrode formed on the substrate by the first step, thereby forming a non-uniform and fine uneven shape on the electrode surface. And 2 steps.
(6) In the visual reproduction assisting device according to (5), the surface treatment is a treatment for causing the electrode to perform an electrochemical redox reaction.

本発明によれば、視覚再生補助装置に用いられる電極の表面積を簡単に増加させることができる。   According to the present invention, it is possible to easily increase the surface area of the electrode used in the visual reproduction assisting device.

本発明の実施の形態を図面を用いて説明する。図1は視覚再生補助装置の外観を示した概略図、図2は視覚再生補助装置における体内装置を示す図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an external appearance of a visual reproduction assistance device, and FIG. 2 is a diagram showing an in-vivo device in the visual reproduction assistance device.

視覚再生補助装置1は、図1及び図2に示すように、外界を撮影するための体外装置10と、網膜を構成する細胞に電気刺激を与え視覚の再生を促す体内装置20とからなる。体外装置10は、患者が掛けるバイザ11と、バイザ11に取り付けられるCCDカメラ等からなる撮影装置12と、外部デバイス13、一次コイルからなる送信手段14等にて構成されている。   As shown in FIGS. 1 and 2, the visual reproduction assisting device 1 includes an extracorporeal device 10 for photographing the outside world, and an in-vivo device 20 that promotes visual reproduction by applying electrical stimulation to cells constituting the retina. The extracorporeal device 10 includes a visor 11 on which a patient is placed, an imaging device 12 including a CCD camera attached to the visor 11, an external device 13, a transmission unit 14 including a primary coil, and the like.

外部デバイス13には、CPU等の演算処理回路を有するデータ変調手段13a、視覚再生補助装置1(体外装置10及び体内装置20)の電力供給を行うためのバッテリ13bが設けられている。データ変調手段13aは、撮影装置12にて撮影した被写体像を画像処理し、さらに得られた画像処理後のデータを、視覚を再生するための電気刺激パルス用データに変換する処理を行う。送信手段14は、データ変調手段13aにて変換された電気刺激パルス用データ及び後述する体内装置20を駆動させるための電力を所定の信号、本実施形態では、電磁波として体内装置20側に伝送(無線送信)する。この電磁波には、電気刺激パルス用データと電力が重畳されている。また、送信手段14の中心には図示なき磁石が取り付けられている。磁石は後述する受信手段31との位置固定に使用される。   The external device 13 is provided with a data modulation means 13a having an arithmetic processing circuit such as a CPU, and a battery 13b for supplying power to the visual reproduction auxiliary device 1 (external device 10 and internal device 20). The data modulation unit 13a performs image processing on the subject image captured by the image capturing device 12, and further converts the obtained image processed data into electrical stimulation pulse data for reproducing vision. The transmission means 14 transmits the electrical stimulation pulse data converted by the data modulation means 13a and the power for driving the in-vivo device 20 described later to the in-vivo device 20 side as a predetermined signal, in this embodiment, an electromagnetic wave ( Wireless transmission). On this electromagnetic wave, electrical stimulation pulse data and power are superimposed. A magnet (not shown) is attached to the center of the transmission means 14. The magnet is used to fix the position with the receiving means 31 described later.

バイザ11は眼鏡形状を有しており、図1に示すように、患者の眼前に装着して使用することができるようになっている。また、撮影装置12はバイザ11の前面に取り付けてあり、患者に視認させる被写体を撮影することができる。   The visor 11 has an eyeglass shape, and can be used by being mounted in front of the patient's eyes as shown in FIG. The photographing device 12 is attached to the front surface of the visor 11 and can photograph a subject to be visually recognized by the patient.

次に、体内装置20の構成を説明する。図2(a)は、体内装置20の外観を示し、図2(b)は刺激部40の断面を示した図である。体内装置20は、大別して体外装置10から送信される電気刺激パルス信号用データや電力を電磁波にて受け取る受信部(受信ユニット)30と、網膜を構成する細胞を電気刺激する刺激部(刺激ユニット)40により構成される。受信部30には、体外装置10からの電磁波を受信する2次コイルからなる受信手段31や、制御部32が設けられている。制御部32は、受信手段31にて受信された電気刺激パルス用データと電力とを分けるとともに、電気刺激パルス用データを基に、視覚を得るための電気刺激パルス信号と、電気刺激パルス信号と対応する(電気刺激パルス信号を出力させる)電極を指定する電極指定信号等を含む制御信号とに変換し、刺激部40へ送信するための役割を有している。   Next, the configuration of the intracorporeal device 20 will be described. 2A shows an external appearance of the in-vivo device 20, and FIG. 2B shows a cross section of the stimulation unit 40. As shown in FIG. The in-vivo device 20 is roughly divided into a receiving unit (receiving unit) 30 that receives data and electric power for electrical stimulation pulse signals transmitted from the extracorporeal device 10 by electromagnetic waves, and a stimulating unit (stimulating unit) that electrically stimulates cells constituting the retina ) 40. The receiving unit 30 is provided with a receiving unit 31 including a secondary coil that receives electromagnetic waves from the extracorporeal device 10 and a control unit 32. The control unit 32 separates the electrical stimulation pulse data and the power received by the receiving unit 31, and based on the electrical stimulation pulse data, an electrical stimulation pulse signal for obtaining vision, an electrical stimulation pulse signal, It has a role for converting to a control signal including an electrode designation signal for designating a corresponding electrode (for outputting an electrical stimulation pulse signal) and transmitting the control signal to the stimulation unit 40.

これら受信手段31や制御部32は、基板33上に形成されている。なお、受信部30には送信手段14を位置固定させるための図示なき磁石が設けられている。対向電極(帰還電極)34はそれぞれの電極44の対向して配置され、効率的に細胞等を電気刺激するための部材である。   These receiving means 31 and control unit 32 are formed on a substrate 33. The receiving unit 30 is provided with a magnet (not shown) for fixing the position of the transmitting unit 14. The counter electrode (return electrode) 34 is a member for opposing each electrode 44 to efficiently electrically stimulate cells and the like.

また、刺激部40は、電気刺激パルス信号を出力する複数の電極44、刺激制御部42(制御手段)、これらを設置する基板43を含む。各電極44は、各々が刺激制御部42に接続される。刺激制御部42は、制御部32から送られてきた制御信号(電極指定信号を含む)に基づいて、対応する電気刺激パルス信号を電極44の各々へ振り分けるマルチプレクサ機能を有する。   The stimulation unit 40 includes a plurality of electrodes 44 that output electrical stimulation pulse signals, a stimulation control unit 42 (control means), and a substrate 43 on which these are installed. Each electrode 44 is connected to the stimulation control unit 42. The stimulation control unit 42 has a multiplexer function that distributes the corresponding electrical stimulation pulse signal to each of the electrodes 44 based on the control signal (including the electrode designation signal) sent from the control unit 32.

電極44は、機械的に伸展された棒状の白金バルク材料から作られる。白金バルク材料の製造工程において冷間引き抜き等によって機械的に伸ばされるときに、白金バルク材料を構成する白金の金属結晶粒が長軸方向に伸ばされ、その伸展方向(軸方向)に一次元の異方性が発生する。電極44は、白金バルク材料をその軸方向に垂直な断面(断面には結晶粒界が多く含まれる)で切断したときに、その切断面が電極上部44c(図3参照)となるように形成される。ここでは、電極44は外径が100〜500μm、高さが100〜500μmの立体的な弾丸形状に形成される。   The electrode 44 is made from a mechanically extended rod-like platinum bulk material. When the platinum bulk material is mechanically stretched by cold drawing or the like in the manufacturing process of the platinum bulk material, the platinum metal crystal grains constituting the platinum bulk material are stretched in the major axis direction, and are one-dimensional in the stretching direction (axial direction). Anisotropy occurs. The electrode 44 is formed such that when the platinum bulk material is cut along a cross section perpendicular to the axial direction (the cross section includes many crystal grain boundaries), the cut surface becomes the electrode upper portion 44c (see FIG. 3). Is done. Here, the electrode 44 is formed in a three-dimensional bullet shape having an outer diameter of 100 to 500 μm and a height of 100 to 500 μm.

なお、ここでは、電極44を構成する電極材料に白金が使用される場合を説明しているが、これ以外にも、生体適合性が高い金属、例えば金、窒化チタン、純イリジウム又は酸化イリジウム、タンタル等を使用できる。   In addition, although the case where platinum is used for the electrode material which comprises the electrode 44 is demonstrated here, besides this, metals with high biocompatibility, for example, gold, titanium nitride, pure iridium or iridium oxide, Tantalum or the like can be used.

また、電極44は後述の表面処理によって、粗い表面状態(表面に複数の溝からなる凹凸が形成された状態)に形成される。表面処理が行われず電極44の表面が滑らかな場合と比べて表面積が増加することで、電極44の電荷注入能力が高められる。このとき、前述のように白金バルク材料の切断面が電極上部44cとなるように電極44が形成されていることで、表面処理によって効率よく電極44の表面積が増加されるようになる。電極44の表面処理方法の詳細な説明は後述する。   Further, the electrode 44 is formed into a rough surface state (a state in which irregularities including a plurality of grooves are formed on the surface) by a surface treatment described later. By increasing the surface area as compared with the case where the surface treatment is not performed and the surface of the electrode 44 is smooth, the charge injection capability of the electrode 44 is enhanced. At this time, since the electrode 44 is formed so that the cut surface of the platinum bulk material becomes the electrode upper portion 44c as described above, the surface area of the electrode 44 can be efficiently increased by the surface treatment. A detailed description of the surface treatment method of the electrode 44 will be described later.

図3は電極44付近の模式的断面図である。電極44は基台44aと、基台44aを基部として柱状(凸状)に延びた柱部材44bで構成される。基板43は、第1基板となるベース部43aと、第2基板となるカバー部43bにて構成されており、ベース部43aとカバー部43bの間には、基台44aと、基台44aに接続されたワイヤ41が挟持されている。柱部材44bの先端部は、カバー部43bを貫通し、基板43(ベース部43a)から突出している。   FIG. 3 is a schematic cross-sectional view in the vicinity of the electrode 44. The electrode 44 includes a base 44a and a column member 44b extending in a columnar shape (convex shape) with the base 44a as a base. The substrate 43 includes a base portion 43a serving as a first substrate and a cover portion 43b serving as a second substrate. Between the base portion 43a and the cover portion 43b, a base 44a and a base 44a are provided. The connected wire 41 is clamped. The front end portion of the column member 44b penetrates the cover portion 43b and protrudes from the substrate 43 (base portion 43a).

ここで、電極44の作成方法を簡単に説明する。前述のように白金バルク材料から弾丸形状に形成された電極44は、基台44aとワイヤ41とがレーザ溶接、抵抗溶接、圧着加工等の既存の接合技術により機械的に接続されると共に電気的に接続される。電極44とワイヤ41とが接続された状態で、平板状に作製された樹脂製のカバー部43bに形成された図示を略す貫通孔に電極ユニット44の円筒部44bが通される。貫通孔は、レーザ加工又は機械加工により円筒部44bを貫通させる程度の大きさに形成されると共に、所定の位置にある電極44の数に合わせて形成されている。   Here, a method of creating the electrode 44 will be briefly described. As described above, the electrode 44 formed in a bullet shape from a platinum bulk material is electrically connected to the base 44a and the wire 41 by an existing joining technique such as laser welding, resistance welding, or crimping. Connected to. In a state where the electrode 44 and the wire 41 are connected, the cylindrical portion 44b of the electrode unit 44 is passed through a through hole (not shown) formed in the resin cover portion 43b formed in a flat plate shape. The through holes are formed to have a size enough to penetrate the cylindrical portion 44b by laser processing or machining, and are formed in accordance with the number of electrodes 44 at a predetermined position.

次に、既存の蒸着技術を用いて、カバー部43bと同種の樹脂を基台44aに所定の厚さが得られるまで蒸着させ、フレキシブル性を有する平板状のベース部43aを形成する。これにより、基台45a及びワイヤ41は、カバー部43bとベース部43aにて狭持(包埋)され、円筒部45bが、基板43上に凸状に形成される。   Next, using the existing vapor deposition technique, the same kind of resin as the cover portion 43b is vapor-deposited on the base 44a until a predetermined thickness is obtained, thereby forming a flat plate-like base portion 43a having flexibility. Thereby, the base 45 a and the wire 41 are sandwiched (embedded) by the cover portion 43 b and the base portion 43 a, and the cylindrical portion 45 b is formed on the substrate 43 in a convex shape.

本実施形態で用いられる基板43は、眼内、特に、層状の眼組織内に設置されるため、眼球の形状に沿うことが好ましく、層間(層内)に長期埋植されても患者の負担が少ないことが好ましい。このため、基板43は、パリレン、ポリプロピレン、ポリイミド、シリコーン等、生体適合性が高く、所定の厚さにおいて折り曲げ可能(フレキシブル)な材料を長手方向に延びた平板状に加工したものを用いる。基板43の厚みは、10〜100μmとされる。この基板43には、電極44と刺激制御部42が電気的に接続する導線であるワイヤ41が配置される。ワイヤ41は、生体適合性の高い金属、例えば、金、白金等から形成され、その表面を生体適合性を有すると共に絶縁性を有する素材、例えば、パリレン、ポリイミド、テフロン(登録商標テフロン)、シリコーン等の樹脂にて被覆される。ワイヤ41の厚み(径)は、基板43のフレキシブル性や長期設置性に好ましい程度の厚み、例えば、10〜100μmとされる。基板43上に実装された刺激制御部42はワイヤ41を介して基板43上に複数個形成された電極44と接続される。ワイヤ41は基板43にて覆われる。ワイヤ41の金属部分が絶縁性を有する被覆に二重に覆われるため、ワイヤ41部分に体液等の浸潤がしても、漏電等の可能性が低くなる。   Since the substrate 43 used in the present embodiment is installed in the eye, particularly in a layered eye tissue, it preferably conforms to the shape of the eyeball, and even if it is implanted in the interlayer (in the layer) for a long period of time, it is a burden on the patient. It is preferable that there is little. For this reason, the substrate 43 is formed by processing a material that is highly biocompatible and can be bent at a predetermined thickness, such as parylene, polypropylene, polyimide, and silicone, into a flat plate shape extending in the longitudinal direction. The thickness of the substrate 43 is 10 to 100 μm. On this substrate 43, a wire 41, which is a conductive wire that electrically connects the electrode 44 and the stimulation control unit 42, is disposed. The wire 41 is made of a metal having high biocompatibility, such as gold or platinum, and the surface thereof is biocompatible and also has an insulating material such as parylene, polyimide, Teflon (registered trademark Teflon), silicone. It coats with resin. The thickness (diameter) of the wire 41 is set to a thickness preferable for the flexibility and long-term installation of the substrate 43, for example, 10 to 100 μm. The stimulation control unit 42 mounted on the substrate 43 is connected to a plurality of electrodes 44 formed on the substrate 43 through wires 41. The wire 41 is covered with a substrate 43. Since the metal portion of the wire 41 is double covered with the insulating coating, even if body wire or the like is infiltrated into the wire 41 portion, the possibility of leakage or the like is reduced.

刺激制御部42は、各半導体素子の組合せにより機能を果たす半導体の集積回路であり、半導体基板上に集積回路を機能させるパターン配線が形成された面を基板43側にして接合されている。また、詳細な説明は略すが、刺激制御部42は、その周囲をメッキなどに覆われており、生体からの浸潤等を低減させる構成とされる。なお、刺激制御部42は、セラミックスや金属にて形成された気密ケースを用いて密封処理される構成としてもよい。このような場合、刺激制御部42は、ケースに設けられたビアを介してワイヤ41と接続される。   The stimulus control unit 42 is a semiconductor integrated circuit that performs a function by a combination of semiconductor elements, and is bonded to the surface of the semiconductor substrate on which the pattern wiring for functioning the integrated circuit is formed. Although detailed description is omitted, the stimulus control unit 42 is covered with plating or the like to reduce infiltration from a living body. The stimulus control unit 42 may be configured to be sealed using an airtight case formed of ceramics or metal. In such a case, the stimulus control unit 42 is connected to the wire 41 via a via provided in the case.

また、体内において離れた位置に置かれる受信部30と刺激部40とは複数のワイヤ(導線)50によって電気的に接続されている。ワイヤ50は、体内に設置された際に眼球運動に対応した伸縮性、耐久性を備えることが好ましく、上述のワイヤ41と同様の素材にて作製される。受信部30に一端を接続されたワイヤ50は、刺激部40に配置されたワイヤ41の末端部分に接続される。詳細な説明は略すが、ワイヤ50とワイヤ41は、熔接や圧着等により接続される。また、ワイヤ50は、取扱いし易いように、生体適合性の高い素材、例えば、シリコーン、パリレン等により作製されたケーブル51に収められる。   In addition, the receiving unit 30 and the stimulating unit 40 placed at positions separated from each other in the body are electrically connected by a plurality of wires (conductive wires) 50. The wire 50 preferably has elasticity and durability corresponding to eye movement when placed in the body, and is made of the same material as the wire 41 described above. The wire 50 having one end connected to the receiving unit 30 is connected to the end portion of the wire 41 arranged in the stimulating unit 40. Although detailed description is omitted, the wire 50 and the wire 41 are connected by welding, pressure bonding, or the like. Further, the wire 50 is housed in a cable 51 made of a material having high biocompatibility, for example, silicone, parylene, etc. so as to be easily handled.

なお、図示は略すが、受信部30は、ケーブル51、対向電極34を外に出して、気密性の高い容器に収められ、その容器の蓋を密閉される。さらに、容器の上から生体適合性がよく絶縁性を有する樹脂等でコーティングされる。これにより、受信部30はハーメチックシールされる。   In addition, although illustration is abbreviate | omitted, the receiving part 30 takes out the cable 51 and the counter electrode 34, is accommodated in a highly airtight container, and the lid | cover of the container is sealed. Furthermore, it is coated from above the container with a resin having good biocompatibility and insulating properties. Thereby, the receiver 30 is hermetically sealed.

次に、基板43上に形成された電極44に対して表面処理を行い表面積を増大させる方法について説明する。図4に電極44の表面のエッチングを行い、微細な凹凸形状を有した粗い表面状態に形成するための表面処理装置100の構成を示す。   Next, a method for increasing the surface area by subjecting the electrode 44 formed on the substrate 43 to surface treatment will be described. FIG. 4 shows a configuration of the surface treatment apparatus 100 for etching the surface of the electrode 44 to form a rough surface state having a fine uneven shape.

ガラスビーカ等の容器(セル)101には、電気分解を行うための水溶液101aが入れられる。水溶液101aとしては、燐酸緩衛生理食塩水等の他、食塩水、塩酸等、白金を溶解することができる塩化物塩を含む媒質が溶解されたものが好適に使用される。   A container (cell) 101 such as a glass beaker contains an aqueous solution 101a for performing electrolysis. As the aqueous solution 101a, a solution in which a medium containing a chloride salt capable of dissolving platinum, such as saline and hydrochloric acid, is used in addition to a mild saline solution of phosphoric acid.

水溶液101aには、刺激部40(電極44)、対向電極103及び参照電極104が浸される。この時、刺激部40は全ての電極44が水溶液101aに浸されるようにセル101に入れられる。対向電極103には、白金、タンタル、チタン、炭素電極など水溶液101aにより腐食しない材質のものが使用される。参照電極(基準電極)104には、例えば、銀塩化銀参照電極、飽和カロメル電極、Ag/AgCl電極などが使用される。   The stimulation unit 40 (electrode 44), the counter electrode 103, and the reference electrode 104 are immersed in the aqueous solution 101a. At this time, the stimulating unit 40 is placed in the cell 101 so that all the electrodes 44 are immersed in the aqueous solution 101a. The counter electrode 103 is made of a material that does not corrode by the aqueous solution 101a, such as platinum, tantalum, titanium, or carbon electrode. As the reference electrode (reference electrode) 104, for example, a silver-silver chloride reference electrode, a saturated calomel electrode, an Ag / AgCl electrode, or the like is used.

刺激部40(電極44)、対向電極103、参照電極104は水溶液101aで一定の距離を隔てて配置される。ここでは、刺激部40と参照電極104とは所定の間隔を保つようにシリコンゴム107で固定される。また、刺激部40の電極44と対向電極103とは互いに向かい合うように配置されると共に、平行に配置される。   The stimulating unit 40 (electrode 44), the counter electrode 103, and the reference electrode 104 are arranged with a certain distance in the aqueous solution 101a. Here, the stimulation unit 40 and the reference electrode 104 are fixed with silicon rubber 107 so as to maintain a predetermined interval. Further, the electrode 44 and the counter electrode 103 of the stimulating unit 40 are disposed so as to face each other and are disposed in parallel.

なお、ここでは電極44が刺激部40に組み込まれた状態で表面処理を行う場合を説明するが、電極44のみの状態(刺激部40に組み込まれる前の状態)で表面処理が行われても良い。   In addition, although the case where the surface treatment is performed in a state where the electrode 44 is incorporated in the stimulation unit 40 will be described here, the surface treatment may be performed only in the state of the electrode 44 (a state before being incorporated in the stimulation unit 40). good.

刺激部40(電極44)、対向電極103、参照電極104は、定電圧(定電流)を出力するための電圧制御手段であるポテンショスタット(ポテンシオスタット)105に配線を介して接続される。なお、各電極44は、刺激部40のワイヤ50がクリップ等を介して配線と接続されることで、ポテンショスタット105と電気的に接続される。(電極44を単体で表面処理する場合は、電極44の基台44aにクリップ等を介して配線が接続される)。   The stimulation unit 40 (electrode 44), the counter electrode 103, and the reference electrode 104 are connected to a potentiostat (potentiostat) 105, which is a voltage control means for outputting a constant voltage (constant current), via wiring. Each electrode 44 is electrically connected to the potentiostat 105 by connecting the wire 50 of the stimulating unit 40 to the wiring via a clip or the like. (When the electrode 44 is surface-treated alone, wiring is connected to the base 44a of the electrode 44 via a clip or the like).

また、ポテンショスタット105は、所定の電圧波形を出力させる信号源106と接続される。信号源106からの出力は、ポテンショスタット105により定電圧(定電流)にされ、刺激部40(電極44)と対向電極103との間に印加される。
以上のように、表面処理装置100は、特殊な薬品又は特殊な設備を必要とせず、簡単で安価に構成することができる。
The potentiostat 105 is connected to a signal source 106 that outputs a predetermined voltage waveform. The output from the signal source 106 is made a constant voltage (constant current) by the potentiostat 105 and applied between the stimulation unit 40 (electrode 44) and the counter electrode 103.
As described above, the surface treatment apparatus 100 does not require special chemicals or special equipment, and can be configured simply and inexpensively.

次に、以上のような構成を備える表面処理装置100を用いて、電極44の表面処理(エッチング)をする方法を実験に基づき説明する。実験条件として、電極44は直径が約500μm、高が約500μmの弾丸形状のものを使用した。水溶液101aには燐酸緩衛生理食塩水(濃度0.9%の塩化ナトリウム溶液で燐酸緩衛してあるもの)を使用し、室温(23度)にて表面処理を行った。なお、ポテンショスタット105には、NF社製のWavefactory WF1946を使用した。信号源106には、北斗電工 社製 HA‐151を使用した。   Next, a method for performing surface treatment (etching) of the electrode 44 using the surface treatment apparatus 100 having the above configuration will be described based on experiments. As an experimental condition, an electrode 44 having a bullet shape having a diameter of about 500 μm and a height of about 500 μm was used. As the aqueous solution 101a, mild phosphate sanitary physiologic saline (having a mild phosphate phosphate with a 0.9% sodium chloride solution) was used, and surface treatment was performed at room temperature (23 degrees). As the potentiostat 105, Wavefactory WF1946 manufactured by NF Corporation was used. As the signal source 106, HA-151 manufactured by Hokuto Denko Corporation was used.

信号源106からは、振幅±5V、duty比50%の方形波を出力させ、ポテンショスタット105を介して電極44の電位を+5Vに1秒間、−5Vに1秒間保持させた状態(周波数0.5Hz)を1サイクルとして、5時間印加させ、電極44に対して電気化学的な酸化還元反応を起こし、その表面に微細な凹凸形状を形成させた。なお本文書において、断わりのない限り電圧は、銀塩化銀参照電極を基準とした値である。   A square wave with an amplitude of ± 5 V and a duty ratio of 50% is output from the signal source 106, and the potential of the electrode 44 is held at +5 V for 1 second and −5 V for 1 second via the potentiostat 105 (frequency 0. 5 Hz) was applied for 5 hours to cause an electrochemical oxidation-reduction reaction to the electrode 44 to form a fine uneven shape on the surface. In this document, unless otherwise noted, the voltage is a value based on a silver-silver chloride reference electrode.

図5に実験結果として、走査型電子顕微鏡SEMによる電極44の撮影画像を示す。図5(a)は表面処理前の電極44を斜め方向から撮影した画像(倍率:150倍)、図5(b)は表面処理後の電極44を斜め方向から撮影した画像(倍率:150倍)、図5(c)は表面処理前の電極上部44cの拡大画像(倍率:1000倍)、図5(d)は表面処理後の電極上部44cの拡大画像(倍率:1000倍)である。   FIG. 5 shows a photographed image of the electrode 44 by a scanning electron microscope SEM as an experimental result. 5A is an image obtained by photographing the electrode 44 before the surface treatment from an oblique direction (magnification: 150 times), and FIG. 5B is an image obtained by photographing the electrode 44 after the surface treatment from an oblique direction (magnification: 150 times). 5 (c) is an enlarged image (magnification: 1000 times) of the electrode upper part 44c before the surface treatment, and FIG. 5 (d) is an enlarged image (magnification: 1000 times) of the electrode upper part 44c after the surface treatment.

図5(b)、(d)から、表面処理装置100によるエッチングにより、電極44の表面に複数の溝が形成されたことが分かる。なお、本実験では直径2〜8μm程度、深さ2〜8μm程度の複数の溝が形成され、電極44の表面は微細な凹凸形状とされている。   5B and 5D, it can be seen that a plurality of grooves are formed on the surface of the electrode 44 by etching with the surface treatment apparatus 100. In this experiment, a plurality of grooves having a diameter of about 2 to 8 μm and a depth of about 2 to 8 μm are formed, and the surface of the electrode 44 has a fine uneven shape.

図示を略すサイクリックボルタンメトリー(電子スキャン速度0.05V/秒、電圧範囲+1.1V〜ー‐0.85V)で得られた図示を略すサイクリックボルタモグラムを用いて、表面処理前後での電極44の表面積を比較した。その結果、図5(b)、(d)に示す表面処理後の電極44の表面積は、図5(a)、(c)に示す表面処理前の電極44の表面積と比べて約4.3倍に増加していることが分かった。
つまり、以上のように簡単な構成の表面処理装置を用いて、簡単に電極44の表面積を増加させることができるようになる。
By using a cyclic voltammogram (not shown) obtained by cyclic voltammetry (electronic scan speed 0.05 V / second, voltage range +1.1 V to -0.85 V) not shown, the electrode 44 before and after the surface treatment The surface areas were compared. As a result, the surface area of the electrode 44 after the surface treatment shown in FIGS. 5B and 5D is about 4.3 compared with the surface area of the electrode 44 before the surface treatment shown in FIGS. It turned out that it has increased by a factor of two.
That is, the surface area of the electrode 44 can be easily increased by using the surface treatment apparatus having a simple configuration as described above.

なお、図5(b)(d)の表面処理後の撮影画像から、電極44の表面は全体が均一にエッチングされておらず、電極上部44c(患者の網膜を構成する細胞に接触される面)が集中してエッチングされていることが分かる。   5B and 5D, the surface of the electrode 44 is not uniformly etched as a whole, and the electrode upper portion 44c (the surface that contacts the cells constituting the patient's retina). ) Are concentrated and etched.

これは、電極形成の際に電極材料を冷間引き抜きによって伸展させたために、電極44を構成する白金分子が異方性(結晶粒界)を持ち、その結果、電極上部44c伸展方向のエッチング速度が、電極側面よりも速くなるためだと考えられる。つまり、異方性を有する材料で電極44を形成することで、特定の方向をエッチングしやすく(しにくく)できる。   This is because, since the electrode material was extended by cold drawing during the electrode formation, the platinum molecules constituting the electrode 44 had anisotropy (crystal grain boundaries), and as a result, the etching rate in the extension direction of the electrode upper portion 44c. However, this is considered to be faster than the electrode side surface. That is, by forming the electrode 44 with a material having anisotropy, a specific direction can be easily etched (difficult).

なお、エッチングにより電極上部44cの表面積がより増加されることで、電極上部44cから放出される電荷量がより増加され、網膜を構成する細胞をより効率よく電気刺激できるようになる。一方、電極44の側面はエッチングされにくくすることで、基板43と電極44との間に隙間を生じにくくさせ、より刺激部40の絶縁性が保たれるようになる。   Note that the surface area of the electrode upper portion 44c is further increased by etching, so that the amount of charge released from the electrode upper portion 44c is further increased, and the cells constituting the retina can be electrically stimulated more efficiently. On the other hand, the side surface of the electrode 44 is made difficult to be etched, so that a gap is hardly formed between the substrate 43 and the electrode 44, and the insulation of the stimulating unit 40 is further maintained.

なお、電極44のみ(電極44が刺激部40に組み込まれていない状態)で表面処理を行う場合も、電極材料の異方性を利用して、電極上面44cの表面積の増加量が大きくなるようにすると共に、電極44の側面をエッチングされにくくできる。これにより、電極44の表面を、より効率良く電気刺激が出来る表面状態にできると共に、基盤43との間の隙間を生じにくく出来る。   Even when the surface treatment is performed only with the electrode 44 (in a state where the electrode 44 is not incorporated in the stimulating portion 40), the increase in the surface area of the electrode upper surface 44c is increased by utilizing the anisotropy of the electrode material. In addition, the side surface of the electrode 44 can be made difficult to be etched. Thereby, the surface of the electrode 44 can be brought into a surface state where electrical stimulation can be performed more efficiently, and a gap between the electrode 44 and the substrate 43 can be hardly generated.

なお、電極44をエッチングするためには、電極44に印加される電圧の極性が一定の周期で反転されれば良い。例えば、電圧波形の周波数は0.5Hzから10Hz程度に設定すればよい。(周波数が高いとエッチングされにくくなる。一方、周波数が低いとエッチングに時間がかかる。)   In addition, in order to etch the electrode 44, the polarity of the voltage applied to the electrode 44 should just be reversed with a fixed period. For example, the frequency of the voltage waveform may be set to about 0.5 Hz to 10 Hz. (If the frequency is high, etching is difficult. On the other hand, if the frequency is low, etching takes time.)

また、上記では、実験条件として電圧の振幅をプラス側に+5V、マイナス側に−5Vに設定した場合を説明したが、電圧の振幅はプラス側に+1.5〜+5.0V、マイナス側に−5.0V〜−1.5Vの範囲で設定しても良い。なお、電圧の振幅の絶対値が1.5Vよりも小さいとエッチングされにくくなる。一方、電圧の振幅の絶対値が5Vよりも大きくなると、電気分解により発生したガスが電極44の表面に付着することでエッチングの斑に繋がることが懸念される。   In the above description, the case where the amplitude of the voltage is set to +5 V on the plus side and −5 V on the minus side is described as the experimental condition. However, the amplitude of the voltage is +1.5 to +5.0 V on the plus side and − on the minus side. You may set in the range of 5.0V--1.5V. If the absolute value of the voltage amplitude is smaller than 1.5V, etching is difficult. On the other hand, when the absolute value of the voltage amplitude is larger than 5V, there is a concern that gas generated by electrolysis adheres to the surface of the electrode 44 and leads to etching spots.

以上のように、電気分解により電極44の表面積を増加させる方法を説明したが、これ以外にも、電極44の表面積を簡単に増加させる方法としては、表面処理装置として図示無きヤスリを用いて機械的に行う方法がある。ヤスリは、電極44の表面に深さ数μm程度の溝を形成するような種類のものが使用される。ヤスリで、電極44の表面(特に上側44c付近)が磨かれるようにすることで凹凸が形成され、これにより電極44の表面積が増加される。   As described above, the method for increasing the surface area of the electrode 44 by electrolysis has been described. However, as another method for easily increasing the surface area of the electrode 44, a machine using a file (not shown) is used as a surface treatment apparatus. There is a way to do it. A type of file that forms a groove with a depth of several μm on the surface of the electrode 44 is used. The surface of the electrode 44 (especially in the vicinity of the upper side 44c) is polished with a file to form irregularities, thereby increasing the surface area of the electrode 44.

また、表面処理装置としてレーザ光源を利用して、レーザ照射により電極44の表面に溝を形成させて表面積を増加させても良い。レーザ光源としては金属加工ができる種類のものが使用される。例えば、炭酸(CO2)レーザを用いて熱で電極44の表面を溶解することで溝が形成される。同様に、YAGレーザを用いて電極44の表面に溝が形成される。   Alternatively, a laser light source may be used as a surface treatment device to increase the surface area by forming grooves on the surface of the electrode 44 by laser irradiation. As the laser light source, a type capable of metal processing is used. For example, the groove is formed by melting the surface of the electrode 44 with heat using a carbonic acid (CO2) laser. Similarly, a groove is formed on the surface of the electrode 44 using a YAG laser.

更には、図6(図6(a)は模式的断面図、図6(b)は模式的上面図である。)に示すように、表面積を増加させるために、予め孔46が形成された形状の電極44に対して上記の表面処理方法を適用すると、電極44のサイズを変えずにより表面積を増やすことができるようになる。   Furthermore, as shown in FIG. 6 (FIG. 6A is a schematic cross-sectional view and FIG. 6B is a schematic top view), holes 46 are formed in advance to increase the surface area. When the above surface treatment method is applied to the electrode 44 having a shape, the surface area can be increased without changing the size of the electrode 44.

電極44には、複数の開口46aが形成されており、各開口46aから基板43に向かって、所定の深さを有する孔46が形成される。孔46は内径D2にて、円柱状に座繰られて基板43に対して略垂直に形成される。孔46の高さ(電極44の先端から低までの深さ)は、最大で電極44が基板43から突出した高さと同程度とされる。これにより、開口46aに対応して形成された孔46内の表面積を出来るだけ広くしている。このように、電極44の形状を予め表面積を広くするように形成させ、上記のいずれかの表面処理を行うことで、電極44のサイズに対しての表面積をより広くすることができ、これにより電極44の電荷注入能力を向上させることができる。   A plurality of openings 46 a are formed in the electrode 44, and holes 46 having a predetermined depth are formed from the openings 46 a toward the substrate 43. The hole 46 is formed in a columnar shape with an inner diameter D <b> 2 so as to be substantially perpendicular to the substrate 43. The height of the hole 46 (the depth from the tip of the electrode 44 to the low) is approximately the same as the height at which the electrode 44 protrudes from the substrate 43. Thereby, the surface area in the hole 46 formed corresponding to the opening 46a is made as wide as possible. Thus, by forming the shape of the electrode 44 in advance so as to increase the surface area, and performing any of the above surface treatments, the surface area with respect to the size of the electrode 44 can be further increased. The charge injection capability of the electrode 44 can be improved.

視覚再生補助装置の外観を示した概略図である。It is the schematic which showed the external appearance of the visual reproduction auxiliary | assistance apparatus. 視覚再生補助装置における体内装置を示す図である。It is a figure which shows the internal body apparatus in a visual reproduction assistance device. 電極付近の模式的断面図である。It is a typical sectional view near an electrode. 表面処理装置の例である。It is an example of a surface treatment apparatus. 走査型電子顕微鏡による電極の撮影画像である。It is the picked-up image of the electrode by a scanning electron microscope. 電極形状の変容例である。It is an example of a change of an electrode shape.

1 視覚再生補助装置
10 体外装置
20 体内装置
30 受信部
40 刺激部
44 電極
100 表面処理装置
DESCRIPTION OF SYMBOLS 1 Visual reproduction | regeneration assistance apparatus 10 External device 20 In-vivo device 30 Receiving part 40 Stimulation part 44 Electrode 100 Surface treatment apparatus

Claims (6)

患者眼に複数の電極を設置し,該電極より所定の電気刺激パルス信号を出力させて視覚の再生を促す視覚再生補助装置において、前記電極は立体形状を有するとともに,その表面が処理されることによって不均一で微細な凹凸形状を有することを特徴とする視覚再生補助装置。 In a visual reproduction assisting device in which a plurality of electrodes are installed on a patient's eye and a predetermined electrical stimulation pulse signal is output from the electrodes to promote visual reproduction, the electrodes have a three-dimensional shape and the surface thereof is processed. A visual reproduction assisting device characterized by having a non-uniform and fine uneven shape. 請求項1の視覚再生補助装置において、前記電極は電気化学的な酸化還元反応によって表面処理されていることを特徴とする視覚再生補助装置。 2. The visual reproduction assisting device according to claim 1, wherein the electrode is surface-treated by an electrochemical oxidation-reduction reaction. 請求項1の視覚再生補助装置において、前記電極を形成する電極材料は異方性を有していることを特徴とする視覚再生補助装置。 2. The visual reproduction assisting device according to claim 1, wherein the electrode material forming the electrode has anisotropy. 請求項2の視覚再生補助装置において、前記電極は前記電極材料を冷間引き抜きによって形成されていることを特徴とする視覚再生補助装置。 3. The visual reproduction assisting device according to claim 2, wherein the electrode is formed by cold drawing of the electrode material. 患者眼に複数の電極を設置し,該電極より所定の電気刺激パルス信号を出力させて視覚の再生を促す視覚再生補助装置の製造方法において、所定の基板上に立体形状を有する複数の電極を形成する第1ステップと、該第1ステップにより前記基板上に形成された前記電極に対して所定の表面処理を施すことにより,前記電極表面に不均一で微細な凹凸形状を施す第2ステップと、を有することを特徴とする視覚再生補助装置の製造方法。 In a method for manufacturing a visual reproduction assisting device that promotes visual reproduction by installing a plurality of electrodes on a patient's eye and outputting a predetermined electrical stimulation pulse signal from the electrodes, a plurality of electrodes having a three-dimensional shape are formed on a predetermined substrate. A first step of forming, and a second step of applying a predetermined surface treatment to the electrode formed on the substrate by the first step, thereby forming a non-uniform and fine uneven shape on the electrode surface; A method for manufacturing a visual reproduction assisting device, comprising: 請求項5の視覚再生補助装置において、前記表面処理は前記電極に対して電気化学的な酸化還元反応を行わせる処理であることを特徴とする視覚再生補助装置の製造方法。 6. The visual reproduction assisting device according to claim 5, wherein the surface treatment is a process of causing the electrode to perform an electrochemical redox reaction.
JP2009179331A 2009-07-31 2009-07-31 VISUAL PLAYBACK ASSISTANCE DEVICE AND VISUAL PLAYBACK ASSISTANCE DEVICE MANUFACTURING METHOD Active JP5578540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179331A JP5578540B2 (en) 2009-07-31 2009-07-31 VISUAL PLAYBACK ASSISTANCE DEVICE AND VISUAL PLAYBACK ASSISTANCE DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179331A JP5578540B2 (en) 2009-07-31 2009-07-31 VISUAL PLAYBACK ASSISTANCE DEVICE AND VISUAL PLAYBACK ASSISTANCE DEVICE MANUFACTURING METHOD

Publications (3)

Publication Number Publication Date
JP2011030734A true JP2011030734A (en) 2011-02-17
JP2011030734A5 JP2011030734A5 (en) 2012-09-13
JP5578540B2 JP5578540B2 (en) 2014-08-27

Family

ID=43760412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179331A Active JP5578540B2 (en) 2009-07-31 2009-07-31 VISUAL PLAYBACK ASSISTANCE DEVICE AND VISUAL PLAYBACK ASSISTANCE DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5578540B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074956A (en) * 2011-09-30 2013-04-25 Nidek Co Ltd Stimulus electrode for biological tissue and method of producing the stimulus electrode
JP2014514070A (en) * 2011-04-07 2014-06-19 オキュリーブ, インコーポレイテッド Stimulation device and method
US9440065B2 (en) 2013-04-19 2016-09-13 Oculeve, Inc. Nasal stimulation devices and methods
US9687652B2 (en) 2014-07-25 2017-06-27 Oculeve, Inc. Stimulation patterns for treating dry eye
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US9764150B2 (en) 2014-10-22 2017-09-19 Oculeve, Inc. Contact lens for increasing tear production
US9770583B2 (en) 2014-02-25 2017-09-26 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10143846B2 (en) 2010-11-16 2018-12-04 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10610095B2 (en) 2016-12-02 2020-04-07 Oculeve, Inc. Apparatus and method for dry eye forecast and treatment recommendation
US10918864B2 (en) 2016-05-02 2021-02-16 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
CN113041492A (en) * 2021-03-15 2021-06-29 博睿康科技(常州)股份有限公司 Electrode contact piece for balancing charge and manufacturing method
US11883655B2 (en) 2020-02-24 2024-01-30 Boston Scientific Scimed, Inc. Systems and methods for treatment of pancreatic cancer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513385A (en) * 1995-02-07 1998-12-22 サルザー インターメディクス インコーポレーテッド Stimulation electrode that can be inserted subcutaneously
WO2008043439A1 (en) * 2006-10-10 2008-04-17 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Device with a base body
JP2009004409A (en) * 2007-06-19 2009-01-08 Nichicon Corp Apparatus and method for manufacturing etching foil for electrolytic capacitor
JP2009515571A (en) * 2005-10-26 2009-04-16 セカンド サイト メディカル プロダクツ インコーポレイテッド Platinum electrode surface coating and production method thereof
JP2009082497A (en) * 2007-09-28 2009-04-23 Nidek Co Ltd Manufacture process of stimulation unit used for sight regeneration aid
JP2009112354A (en) * 2007-11-01 2009-05-28 Nidek Co Ltd Apparatus for assisting vision recovery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513385A (en) * 1995-02-07 1998-12-22 サルザー インターメディクス インコーポレーテッド Stimulation electrode that can be inserted subcutaneously
JP2009515571A (en) * 2005-10-26 2009-04-16 セカンド サイト メディカル プロダクツ インコーポレイテッド Platinum electrode surface coating and production method thereof
WO2008043439A1 (en) * 2006-10-10 2008-04-17 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Device with a base body
JP2009004409A (en) * 2007-06-19 2009-01-08 Nichicon Corp Apparatus and method for manufacturing etching foil for electrolytic capacitor
JP2009082497A (en) * 2007-09-28 2009-04-23 Nidek Co Ltd Manufacture process of stimulation unit used for sight regeneration aid
JP2009112354A (en) * 2007-11-01 2009-05-28 Nidek Co Ltd Apparatus for assisting vision recovery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835748B2 (en) 2010-11-16 2020-11-17 Oculeve, Inc. Stimulation devices and methods
US11771908B2 (en) 2010-11-16 2023-10-03 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US10328262B2 (en) 2010-11-16 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10722718B2 (en) 2010-11-16 2020-07-28 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US10143846B2 (en) 2010-11-16 2018-12-04 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
JP2014514070A (en) * 2011-04-07 2014-06-19 オキュリーブ, インコーポレイテッド Stimulation device and method
JP2013074956A (en) * 2011-09-30 2013-04-25 Nidek Co Ltd Stimulus electrode for biological tissue and method of producing the stimulus electrode
US10537469B2 (en) 2013-03-12 2020-01-21 Oculeve, Inc. Implant delivery devices, systems, and methods
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US10238861B2 (en) 2013-04-19 2019-03-26 Oculeve, Inc. Nasal stimulation devices and methods for treating dry eye
US10155108B2 (en) 2013-04-19 2018-12-18 Oculeve, Inc. Nasal stimulation devices and methods
US10835738B2 (en) 2013-04-19 2020-11-17 Oculeve, Inc. Nasal stimulation devices and methods
US10967173B2 (en) 2013-04-19 2021-04-06 Oculeve, Inc. Nasal stimulation devices and methods for treating dry eye
US10799695B2 (en) 2013-04-19 2020-10-13 Oculeve, Inc. Nasal stimulation devices and methods
US9737702B2 (en) 2013-04-19 2017-08-22 Oculeve, Inc. Nasal stimulation devices and methods
US9440065B2 (en) 2013-04-19 2016-09-13 Oculeve, Inc. Nasal stimulation devices and methods
US9956397B2 (en) 2014-02-25 2018-05-01 Oculeve, Inc. Polymer Formulations for nasolacrimal stimulation
US9770583B2 (en) 2014-02-25 2017-09-26 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US10799696B2 (en) 2014-02-25 2020-10-13 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9687652B2 (en) 2014-07-25 2017-06-27 Oculeve, Inc. Stimulation patterns for treating dry eye
US10722713B2 (en) 2014-07-25 2020-07-28 Oculeve, Inc. Stimulation patterns for treating dry eye
US10780273B2 (en) 2014-10-22 2020-09-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10610695B2 (en) 2014-10-22 2020-04-07 Oculeve, Inc. Implantable device for increasing tear production
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US10112048B2 (en) 2014-10-22 2018-10-30 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US9764150B2 (en) 2014-10-22 2017-09-19 Oculeve, Inc. Contact lens for increasing tear production
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10940310B2 (en) 2016-02-19 2021-03-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10918864B2 (en) 2016-05-02 2021-02-16 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
US10610095B2 (en) 2016-12-02 2020-04-07 Oculeve, Inc. Apparatus and method for dry eye forecast and treatment recommendation
US11883655B2 (en) 2020-02-24 2024-01-30 Boston Scientific Scimed, Inc. Systems and methods for treatment of pancreatic cancer
CN113041492A (en) * 2021-03-15 2021-06-29 博睿康科技(常州)股份有限公司 Electrode contact piece for balancing charge and manufacturing method

Also Published As

Publication number Publication date
JP5578540B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5578540B2 (en) VISUAL PLAYBACK ASSISTANCE DEVICE AND VISUAL PLAYBACK ASSISTANCE DEVICE MANUFACTURING METHOD
JP2008183248A (en) Apparatus for supporting eyesight recovery
US6643552B2 (en) Implantable devices having a liquid crystal polymer substrate
JP5899814B2 (en) Implantation device
JP2007044323A (en) Eyesight regeneration supporting apparatus
AU2016248247A1 (en) An implantable neuro-stimulation device
WO2011086545A2 (en) Penetrating electrodes for retinal stimulation
JP2008055000A (en) Visual regeneration device
JP2012508626A (en) Implantable micro stimulator
AU2007222773B2 (en) Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
US20100145425A1 (en) Electrode for stimulating cranial nerves and substrate comprising the same
JP2013074956A (en) Stimulus electrode for biological tissue and method of producing the stimulus electrode
Noda et al. Performance improvement and functionalization of an electrode array for retinal prosthesis by iridium oxide coating and introduction of smart-wiring technology using CMOS microchips
JP2010187747A (en) Visual reproduction supporting apparatus
US20200188679A1 (en) Contacting method and system
JP6357752B2 (en) Manufacturing method of visual reproduction assist device
JP5122244B2 (en) Visual reproduction assist device
JP5219443B2 (en) Method for producing stimulation unit for visual reproduction assist device
JP2006280412A (en) Auxiliary device for regenerating visual sense and method of manufacturing
JP5265209B2 (en) Visual reproduction assist device
JP4359567B2 (en) Visual reproduction assist device and method of manufacturing the same
JP2011160984A (en) Visual sense regeneration assisting apparatus
CN218187546U (en) Biological nerve regulation and control electrode
JP2009082496A (en) Sight regeneration aid
CN215653437U (en) Electrode structure, cochlear implant electrode, and cochlear implant device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5578540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250