JP2011030463A - Underwater lighting, and culture device using the same - Google Patents

Underwater lighting, and culture device using the same Download PDF

Info

Publication number
JP2011030463A
JP2011030463A JP2009178006A JP2009178006A JP2011030463A JP 2011030463 A JP2011030463 A JP 2011030463A JP 2009178006 A JP2009178006 A JP 2009178006A JP 2009178006 A JP2009178006 A JP 2009178006A JP 2011030463 A JP2011030463 A JP 2011030463A
Authority
JP
Japan
Prior art keywords
glass
underwater
led
glass substrate
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009178006A
Other languages
Japanese (ja)
Inventor
Yasuhisa Ushida
泰久 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2009178006A priority Critical patent/JP2011030463A/en
Publication of JP2011030463A publication Critical patent/JP2011030463A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellently pressure-resistant and long-lasting LED solid light which can be disposed under water; and to provide a culture device using the light. <P>SOLUTION: The underwater lighting 1 is structured by: implementing a blue LED 13a and a red LED 13b to a glass substrate 11 provided with a circuit pattern 12 respectively with flip chips; and forming a glass sealing part 14 made of fused glass closely attached to the LEDs to integrally seal them, so as to promote photosynthesis of algae having chlorophyll. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水中に設置可能なLED固体照明、及び、LED固体照明により水草・海草などの光合成を促進させる技術に関するものである。   The present invention relates to an LED solid-state illumination that can be installed in water, and a technique for promoting photosynthesis of aquatic plants, seaweeds, and the like by LED solid-state illumination.

近年、植物にLED光のような単色光を照射し、成長を促進させ養殖する技術が注目されている。
植物は、二酸化炭素を炭素源とし、光をエネルギー源とする光合成を利用して成長する。このため光合成を行う光合成色素(クロロフィル、カルテノイド、フィコビリンなど)に対し、より取り込みやすく、吸収しやすい光を効率的に供給できれば、植物の成長を促進させることができる。
In recent years, a technique for irradiating plants with monochromatic light such as LED light to promote growth and cultivate has attracted attention.
Plants grow using photosynthesis using carbon dioxide as a carbon source and light as an energy source. Therefore, plant growth can be promoted if light that can be easily taken up and absorbed can be efficiently supplied to a photosynthetic pigment (such as chlorophyll, carotenoid, and phycobilin) that performs photosynthesis.

図1にクロロフィルa、bの光吸収スペクトルを示す。クロロフィルは400〜480nmの青色光と、600〜700nmの赤色光の波長領域で、強い光吸収が生じる。このため光供給源として青色LEDと赤色LEDとを用いることで、植物の成長を促進させることができる(特許文献1)。
また特許文献2には、800nm以上の近赤外光により、水中の光合成細菌を増殖させ、水を浄化させる技術も提案されている。
FIG. 1 shows the light absorption spectra of chlorophyll a and b. Chlorophyll has strong light absorption in the wavelength region of blue light of 400 to 480 nm and red light of 600 to 700 nm. For this reason, the growth of a plant can be promoted by using a blue LED and a red LED as a light supply source (Patent Document 1).
Patent Document 2 also proposes a technique for purifying water by growing photosynthetic bacteria in water with near-infrared light of 800 nm or more.

これら原理を適用し、水中の植物に対してLED光を照射することで光合成や植物の成長を促進させ、養殖させようとする技術がある。
水草や海草などの水中に生息する植物では、太陽光などの外光が水により吸収・散乱されてしまうため、特に水深の深いエリアでは光合成を行うことが困難である。
There is a technique for applying these principles to promote photosynthesis and plant growth by irradiating an underwater plant with LED light for cultivation.
In plants inhabiting underwater such as aquatic plants and seaweeds, external light such as sunlight is absorbed and scattered by water, so that it is difficult to carry out photosynthesis particularly in deep water areas.

上記問題を鑑み、水中に光を効果的に供給するための手段として、水中に照明を沈め、植物のより近くから光照射することが考えられる。このような照明として特許文献3には、LEDを線状に配列しケース体に収め防水構造としたLED固体照明が開示されている。   In view of the above problems, as a means for effectively supplying light into the water, it is conceivable to illuminate the light in the water and irradiate light from closer to the plant. As such illumination, Patent Document 3 discloses LED solid-state illumination in which LEDs are arranged in a linear form and housed in a case body to have a waterproof structure.

特開平8−103167JP-A-8-103167 実用新案登録3073908Utility model registration 3073908 特開2009−022197JP2009-022197

特許文献3に記載のLED固体照明では、LEDを透明樹脂で封止した構成のため、透明樹脂がLED光により劣化(濁色化)してしまい、長時間の使用には適さない。さらに線状のLED光源部を、アクリル蓋材とケース体とで気密封止した防水構造としているため、光源部とアクリル蓋材との間に空気(不活性ガスなどの気体、または真空状態)が存在し、これによりLEDから発せられた光が、各界面においてその屈折率差により反射してしまい、効果的に光を放出できない。またこの空気によりケース体の内外で断熱された構造となるため、ケース体内に熱がこもり、LEDの発光効率が低下する。   In the LED solid state illumination described in Patent Document 3, since the LED is sealed with a transparent resin, the transparent resin is deteriorated (turbidized) by the LED light and is not suitable for long-time use. Furthermore, since the linear LED light source part has a waterproof structure in which the acrylic lid member and the case body are hermetically sealed, air (a gas such as an inert gas or a vacuum state) is provided between the light source part and the acrylic lid member. Thus, the light emitted from the LED is reflected by the difference in refractive index at each interface, and the light cannot be emitted effectively. Moreover, since it becomes the structure insulated by the inside and outside of a case body by this air, heat accumulates in a case body and the luminous efficiency of LED falls.

以上のような照明内部に不活性ガスなどの気体を充填した照明、または真空雰囲気とする照明では、水圧や外部からの衝撃に耐えるため、耐圧ガラスなどの高強度で大型の非常に高価なケースを用いる必要があり、コストが増大してしまう。
また気体封入や真空形成を行わないような、例えば特許文献3に記載された光源部分のみ、即ち、単にLEDをエポキシやシリコーンなどの透明樹脂で封止したのみ、の照明を水中灯として適用した場合、封止樹脂が水圧により収縮・圧縮され、樹脂内部のLED、ワイヤなどの配線部に負荷がかかり、封止樹脂の剥離や断線などの問題が生じてしまう。また海水中では封止樹脂が塩分により劣化してしまうなどの問題も発生する。
In such lighting with an inert gas filled inside or lighting in a vacuum atmosphere as described above, high-strength and large-scale extremely expensive cases such as pressure-resistant glass are used to withstand water pressure and external impact. Need to be used, which increases the cost.
Moreover, only the light source part described in Patent Document 3, for example, that does not perform gas sealing or vacuum formation, that is, the LED is simply sealed with a transparent resin such as epoxy or silicone, is applied as an underwater lamp. In this case, the sealing resin is shrunk / compressed by the water pressure, and a load is applied to the wiring portion such as LED and wire inside the resin, causing problems such as peeling or disconnection of the sealing resin. In addition, problems such as the deterioration of the sealing resin due to salt content occur in seawater.

本発明は上記した問題を鑑み、水中に設置可能な高耐圧で長寿命なLED固体照明、及び、これを用いた養殖装置を提供することを目的とする。   An object of this invention is to provide the LED solid-state illumination with the high pressure | voltage resistance and long life which can be installed in water in view of the above-mentioned problem, and a culture apparatus using the same.

上記目的を達成するため、本発明は、ガラス基板上に青色LED、及び赤色LEDを複数配列し、熱融着ガラスで一体に封止しガラス封止部を形成した水中用照明、とすることを特徴とする。   In order to achieve the above object, the present invention provides an underwater illumination in which a plurality of blue LEDs and red LEDs are arranged on a glass substrate and are integrally sealed with heat-sealing glass to form a glass sealing portion. It is characterized by.

本発明によれば、熱融着ガラスで封止された水中用照明そのものが防水機能を有することとなり、構造が大幅に簡略化され、低コストで小型の水中用照明を得ることができる。
またガラス封止部を用いたことで光や熱による劣化を抑制できる他、水中に含まれる塩素など不純物の、内部への浸透等による水中用照明の破損、破壊を、大型の防水ケースなど用いることなく防止することができる。
さらにガラス封止部とLED、およびガラス封止部と基板、との間に空気が入り込まないよう密着させ一体に封止することで、内部に熱がこもることに伴う発光効率の低下や、光が界面で全反射することによる光のロスを低減することができる。
According to the present invention, the underwater illumination itself sealed with the heat-sealing glass has a waterproof function, the structure is greatly simplified, and a small underwater illumination can be obtained at low cost.
In addition to suppressing deterioration due to light and heat by using a glass sealing part, use a large waterproof case to damage or destroy underwater lighting due to penetration of impurities such as chlorine contained in water into the interior. It can prevent without.
Furthermore, the glass sealing part and the LED, and the glass sealing part and the substrate are tightly sealed so that air does not enter, and the sealing is performed integrally. Can reduce light loss due to total reflection at the interface.

クロロフィルの光吸収スペクトルを示す。The light absorption spectrum of chlorophyll is shown. 本発明の水中用照明により養殖装置を構成した模式説明図である。It is a model explanatory view which constituted a culture device with underwater lighting of the present invention. 本発明の水中用照明の拡大斜視図である。It is an expansion perspective view of the underwater illumination of this invention. 本発明の水中用照明の内部構造を示した図面である。It is drawing which showed the internal structure of the underwater illumination of this invention. 本発明の水中用照明の製造方法を説明する図面である。It is drawing explaining the manufacturing method of the underwater illumination of this invention.

図2から図5は本発明の実施形態を示したものである。
図2に示すよう、本発明の水中用照明1は、水中に沈め海水中の植物2の近傍に配置することで、光を植物のより近くから供給して光合成を促進させる。水中に沈めて配置された水中用照明1には、供給電力を制御し供給する外部電源4が、ケーブル3を介して接続されている。外部電源4にまで防水機能を持たせることは、コスト状あまり好ましいことでないため、海水に触れないよう外部に配置されている。しかしこのような構成とすることで、複数の端子(ポート)を備える外部電源4に多数の水中用照明1を接続し、単一の外部電源4により養殖装置全体の照明を一括で制御することも可能となる。
以上のような構成により、本発明の養殖装置が構成される。
2 to 5 show an embodiment of the present invention.
As shown in FIG. 2, the underwater illumination 1 of the present invention is submerged in water and disposed near the plant 2 in seawater, so that light is supplied from closer to the plant to promote photosynthesis. An external power supply 4 that controls and supplies power is connected to the underwater lighting 1 that is submerged in water via a cable 3. Providing the external power supply 4 with a waterproof function is not preferable in terms of cost, and is therefore arranged outside so as not to touch seawater. However, by adopting such a configuration, a large number of underwater lights 1 are connected to an external power source 4 having a plurality of terminals (ports), and the lighting of the entire aquaculture device can be collectively controlled by a single external power source 4. Is also possible.
The aquaculture apparatus of the present invention is configured as described above.

次に図3から図5を用い、本発明の水中用照明1について説明する。
この水中用照明1の基本構成は、ガラス基板11、回路パターン12、LED13、ガラス封止部14からなる。
(LED13)
Next, the underwater illumination 1 of the present invention will be described with reference to FIGS.
The basic configuration of the underwater illumination 1 includes a glass substrate 11, a circuit pattern 12, an LED 13, and a glass sealing portion 14.
(LED13)

LED13は、青色光を発光する青色LED13aと、赤色光を発光する赤色LED13bと、で構成される。青色LED13a、および赤色LED13bにより、植物の光合成および成長を促進させることができる。この他に紫外光を発光する紫外LEDを加えても良い。植物2にとって有害な水中の細菌を紫外光により殺菌し、植物の育成を補助することができるためである。   The LED 13 includes a blue LED 13a that emits blue light and a red LED 13b that emits red light. The blue LED 13a and the red LED 13b can promote plant photosynthesis and growth. In addition, an ultraviolet LED that emits ultraviolet light may be added. This is because underwater bacteria harmful to the plant 2 can be sterilized with ultraviolet light to assist plant growth.

青色LED13a、及び前述の紫外LEDは、サファイア(Al2O3)からなる成長基板の表面に、InGaAlN系のIII族窒化物系半導体をエピタキシャル成長させることにより、バッファ層と、n型層と、MQW層と、p型層とがこの順で形成されている。青色LED13aは、700℃以上で成長し、その耐熱温度は600℃以上であり、後述する低融点のガラス封止部14を用いた封止加工における加工温度に対し安定である。青色LED13aは、回路パターン12の形成されたガラス基板11に対し、Auバンプを介してフリップチップ実装される。   The blue LED 13a and the above-described ultraviolet LED are formed by epitaxially growing an InGaAlN group III nitride semiconductor on the surface of a growth substrate made of sapphire (Al2O3), whereby a buffer layer, an n-type layer, an MQW layer, The p-type layer is formed in this order. The blue LED 13a grows at 700 ° C. or higher, has a heat resistant temperature of 600 ° C. or higher, and is stable with respect to a processing temperature in sealing processing using a low-melting glass sealing portion 14 described later. The blue LED 13a is flip-chip mounted on the glass substrate 11 on which the circuit pattern 12 is formed via Au bumps.

赤色LED13bは、GaAs系などのIII−V族半導体で構成される。このため成長温度が青色LED13aに比べ低く、後述の熱融着ガラスを用いた封止加工の加工温度に耐えられない場合が生じうる。
このため加工温度に対する安定性を重視するのであれば、青色LED13aと同様のIII族窒化物系半導体で構成することが好ましいが、現状での発光効率はGaAs系に比べて低い。よってIII族窒化物系半導体とGaAs系を、発光効率や生産性の観点で、所望に応じ使い分けることが好ましい。
The red LED 13b is made of a III-V group semiconductor such as GaAs. For this reason, the growth temperature is lower than that of the blue LED 13a, and there may be a case where the growth temperature cannot withstand the processing temperature of sealing processing using a heat-sealing glass described later.
For this reason, if importance is attached to the stability with respect to the processing temperature, it is preferable to use a group III nitride semiconductor similar to the blue LED 13a, but the current luminous efficiency is lower than that of the GaAs system. Therefore, it is preferable to use a group III nitride semiconductor and a GaAs system as required from the viewpoint of luminous efficiency and productivity.

また赤色LED13bは一般に、垂直型(または縦型、上下型など)と呼ばれる、チップ上下面にそれぞれ電極を形成するものが多い。この場合、一方の電極をワイヤ接続することとなるため、後述の熱融着ガラスによる封止加工の際、ワイヤがつぶれ破断してしまう。このため青色LED13aと同様に、赤色LED13bについても一面にn電極およびp電極が形成されたチップを用い、フリップチップ実装することが好ましい。
(ガラス基板11、回路パターン12)
The red LED 13b is generally called a vertical type (or vertical type, vertical type, etc.) and has many electrodes formed on the upper and lower surfaces of the chip. In this case, since one of the electrodes is connected by wire, the wire is crushed and broken at the time of sealing with heat-bonding glass described later. Therefore, similarly to the blue LED 13a, the red LED 13b is preferably flip-chip mounted using a chip in which an n electrode and a p electrode are formed on one surface.
(Glass substrate 11, circuit pattern 12)

ガラス基板11はZnO−SiO2−R2O系ガラスで構成されている。その表面には回路パターン12が、LED13の電極形状にあわせて形成されている。
ガラス基板11としては、ゾルゲルガラスやセラミックスなどの多結晶焼結材料を用いることもできる。しかし焼結材料は多孔質体からなり、無数の孔を有している。このため水中用照明としては防水機能が低下するため、長時間の使用には好ましくない。このため単位面積(体積)あたりの孔数の少ない、後述のガラス封止部14と同様の熱融着ガラスを用いることが好ましい。熱融着ガラスを用いることで防水性が高まる他、透明性を有するため、ガラス基板11側からもLED13の光が放出され、周囲の植物2をより少ない数で照明し養殖できるためである。
The glass substrate 11 is made of ZnO—SiO 2 —R 2 O glass. A circuit pattern 12 is formed on the surface according to the electrode shape of the LED 13.
As the glass substrate 11, a polycrystalline sintered material such as sol-gel glass or ceramics can also be used. However, the sintered material is made of a porous body and has innumerable pores. For this reason, since a waterproof function falls as underwater illumination, it is unpreferable for long-time use. For this reason, it is preferable to use the heat sealing | fusion glass similar to the below-mentioned glass sealing part 14 with few holes per unit area (volume). This is because the use of heat-sealing glass increases the waterproof property and also has transparency, so that the light of the LED 13 is also emitted from the glass substrate 11 side, and the surrounding plants 2 can be illuminated and cultivated with a smaller number.

本実施例において回路パターン12は、3つの直列接続されたLED13が3列に並列接続された構造となっている。一般にLEDの駆動電圧はその組成により決まり、本願のInGaAlN系の青色LED13aは3.0〜3.5V、GaAs系の赤色LED13bは2.5〜3.0Vである。このため単純にこれらLED13を並列接続すると各LED13を流れる電流値が所望の値から大きく異なり、輝度の違いとなってあらわれたり故障の原因となる。
このため図示しない抵抗素子をいれて電流値を調整したり、青色LED13aと赤色LED13bの実装個数を変更し、各LED13に印加される電圧、電流値を所望の範囲内とすることが考えられる。または本実施例においては2端子型の水中用照明1としているが、4端子型として青色LED13aと赤色LED13bとを別に駆動、制御するなどの構成としても良い。
(ガラス封止部14)
In this embodiment, the circuit pattern 12 has a structure in which three series-connected LEDs 13 are connected in parallel in three rows. In general, the drive voltage of an LED is determined by its composition, and the InGaAlN blue LED 13a of the present application is 3.0 to 3.5V, and the GaAs red LED 13b is 2.5 to 3.0V. For this reason, when these LEDs 13 are simply connected in parallel, the value of the current flowing through each LED 13 is greatly different from a desired value, resulting in a difference in luminance or causing a failure.
For this reason, it is possible to adjust the current value by inserting a resistance element (not shown) or change the number of mounted blue LEDs 13a and red LEDs 13b so that the voltage and current value applied to each LED 13 are within a desired range. Alternatively, although the two-terminal underwater illumination 1 is used in the present embodiment, the blue LED 13a and the red LED 13b may be separately driven and controlled as a four-terminal type.
(Glass sealing part 14)

ガラス封止部14は、熱融着ガラスを加熱し軟化させ、LED13がAuバンプを介し回路パターン12にフリップチップ実装されたガラス基板11に接触させ押圧する、ホットプレス加工により形成される。熱融着ガラスはZnO−B2O3−SiO2−Nb2O5−Li2O系のガラスである。尚、ガラスの組成はこれに限定されるものではなく、例えばLi2Oを含有しなくてもよいし、任意成分としてZrO2、TiO2等を含んでいても良い。
この熱融着ガラスは、ガラス転位温度Tgが490℃、屈伏点Atが520℃、軟化点が545℃であり、青色LED13aのエピタキシャル成長温度よりも、ガラス転移温度Tgが200℃以上低くなっている。
また熱融着ガラスの100℃〜300℃における熱膨張率αは6×10−6/℃である。熱膨張率αはガラス転移温度Tgを超えると、より大きな値となる。これにより熱融着ガラスは約550℃でガラス基板11と接着し、ホットプレス加工が可能となっている。
The glass sealing portion 14 is formed by hot press processing in which the heat-sealing glass is heated and softened, and the LED 13 contacts and presses the glass substrate 11 flip-chip mounted on the circuit pattern 12 via the Au bump. The heat-sealing glass is a ZnO—B 2 O 3 —SiO 2 —Nb 2 O 5 —Li 2 O glass. In addition, the composition of glass is not limited to this, For example, it does not need to contain Li2O and may contain ZrO2, TiO2 etc. as an arbitrary component.
This thermally fused glass has a glass transition temperature Tg of 490 ° C., a yield point At of 520 ° C., and a softening point of 545 ° C., and a glass transition temperature Tg of 200 ° C. or lower than the epitaxial growth temperature of the blue LED 13a. .
Further, the thermal expansion coefficient α at 100 ° C. to 300 ° C. of the heat-sealing glass is 6 × 10 −6 / ° C. The coefficient of thermal expansion α is larger when the glass transition temperature Tg is exceeded. As a result, the heat-sealing glass is bonded to the glass substrate 11 at about 550 ° C., and hot pressing is possible.

熱融着ガラスからなるガラス封止部14が軟化、溶解してガラス基板11に密着するため、界面に隙間が形成されない。このため防水性に優れた水中用照明1を得ることが可能となる。また、ガラス基板11にも熱融着ガラスを用いることで、ホットプレス加工時にガラス基板11の表面も軟化し、ガラス封止部14とより強固に隙間なく封止加工することができる。このような構成により、さらに防水性を高めることが出来る。   Since the glass sealing portion 14 made of the heat-sealing glass is softened and melted and is in close contact with the glass substrate 11, no gap is formed at the interface. For this reason, it becomes possible to obtain the underwater illumination 1 excellent in waterproofness. Moreover, by using heat-sealing glass for the glass substrate 11, the surface of the glass substrate 11 is also softened during hot press processing, so that the glass substrate 11 can be more securely sealed with no gap. With such a configuration, waterproofness can be further improved.

ガラス転移温度Tgが比較的低く、熱膨張率が比較的小さいガラスとしては、例えば、ZnO−SiO2−R2O系(RはLi、Na、K等のI族の元素から選ばれる少なくとも1種)のガラス、リン酸系のガラス及び鉛ガラスが挙げられる。これらのガラスでは、ZnO−SiO2−R2O系のガラスが、リン酸系のガラスに比して耐湿性が良好で、鉛ガラスのように環境的な問題が生じることがないので好適である。またガラス転移温度が低いことで、前述の赤色LED13bにおける封止加工の生産性が向上し、選択の幅が広がるためより好ましい。   Examples of the glass having a relatively low glass transition temperature Tg and a relatively small coefficient of thermal expansion include, for example, ZnO—SiO 2 —R 2 O (where R is at least one selected from Group I elements such as Li, Na, and K). Glass, phosphate glass and lead glass can be mentioned. Of these glasses, ZnO—SiO 2 —R 2 O glass is preferable because it has better moisture resistance than phosphoric acid glass and does not cause environmental problems like lead glass. Moreover, since the glass transition temperature is low, the productivity of the sealing process in the above-described red LED 13b is improved, and the range of selection is widened.

ここで、熱融着ガラスとは加熱により軟化状態として成形したガラスであり、ゾルゲル法により成形されるガラスと異なる。ゾルゲルガラスでは成形時の体積変化が大きいのでクラックが生じやすくガラスによる厚膜を形成することが困難であるところ、熱融着ガラスはこの問題点を回避することができる。また、ゾルゲルガラスでは細孔を生じるので気密性を損なうことがあるが、熱融着ガラスはこの問題点を生じることもなく、LED13の封止を的確に行うことができる。このため防水性に優れた水中用照明1を得ることができる。   Here, the heat-fusible glass is glass that is molded in a softened state by heating, and is different from glass that is molded by a sol-gel method. Since the sol-gel glass has a large volume change at the time of molding, cracks are likely to occur, and it is difficult to form a thick film of glass. However, the heat-fused glass can avoid this problem. Further, since the sol-gel glass generates pores, airtightness may be impaired. However, the heat-sealed glass does not cause this problem, and the LED 13 can be accurately sealed. For this reason, the underwater illumination 1 excellent in waterproofness can be obtained.

以上で構成される水中用照明1は、従来の樹脂封止された照明装置と比べ、構造が簡素化されつつも防水性を容易に確保できる。
また水中用照明1全体が熱融着ガラスや金属パターンで形成される回路からなり、内部に有機物を含まずに構成できるため、光、及び熱に対して、非常に安定な光源とすることが出来る。
さらに、ガラス基板11、LED13、とガラス封止部14の間が、ホットプレス加工により密着し、内部に気体などが含まれないよう形成することで、耐水圧性も付与される。
The underwater lighting 1 configured as described above can easily ensure waterproofness while the structure is simplified as compared with a conventional resin-sealed lighting device.
In addition, since the entire underwater illumination 1 is composed of a circuit formed of heat-fused glass or a metal pattern, and can be configured without containing organic matter inside, it can be a light source that is extremely stable against light and heat. I can do it.
Furthermore, between the glass substrate 11, LED13, and the glass sealing part 14 adhere | attaches by hot press processing, and water pressure resistance is also provided by forming so that gas etc. may not be contained inside.

本実施例においては、クロロフィルの2つの光吸収帯に光照射するため、青色LED13a及び赤色LED13bを用いたLED13を示した。
しかしクロロフィル以外の光合成色素である、カルテノイド、フィコビリンに対して光照射する場合は、それぞれの光吸収帯の波長域で発光するLED13を用いなければならない。カルテノイドは緑色〜青色領域に光吸収帯を有し、また、フィコビリンは緑色領域の光を強く吸収する。このためカルテノイドを含有する植物に対しては青色LED及び/または緑色LEDを、フィコビリンを多く含有する藻類などの植物に対しては緑色LEDを、夫々用いることでより効果的に光合成、養殖を促進させることができる。
In the present embodiment, the LED 13 using the blue LED 13a and the red LED 13b is shown in order to irradiate two light absorption bands of chlorophyll.
However, when irradiating the carotenoid and phycobilin, which are photosynthetic pigments other than chlorophyll, LEDs 13 that emit light in the wavelength regions of the respective light absorption bands must be used. Carotenoids have a light absorption band in the green to blue region, and phycobilin strongly absorbs light in the green region. For this reason, blue LEDs and / or green LEDs are used for plants containing carotenoids, and green LEDs are used for plants such as algae that contain a large amount of phycobilin. Can be made.

なお、上述した形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で適宜変形、応用することができる。   In addition, the form mentioned above shows the one aspect | mode of this invention to the last, and can be suitably deform | transformed and applied within the scope of the present invention.

本発明の水中用照明は、海藻類の養殖装置として適用できるほか、水中に沈めて使用する照明やイルミネーションなどの用途にも適用できる。   The underwater lighting of the present invention can be applied as a seaweed aquaculture device, and can also be applied to uses such as lighting and illumination used by being submerged in water.

1 水中用照明
2 植物
3 ケーブル
4 外部電源
11 ガラス基板
12 回路パターン
13 LED
14 ガラス封止部
DESCRIPTION OF SYMBOLS 1 Underwater lighting 2 Plant 3 Cable 4 External power supply 11 Glass substrate 12 Circuit pattern 13 LED
14 Glass sealing part

Claims (5)

水中または海水中に沈めて配置され、その放出光によりクロロフィルを有する藻類の光合成を促す水中用照明において、
回路パターンが形成されたガラス基板と、
前記ガラス基板上に複数配列され、前記回路パターンに導電接続される、青色LEDおよび赤色LEDと、
前記青色LEDと前記赤色LEDと、これらが実装された前記ガラス基板の表面側と、に密着し一体に封止する熱融着ガラスからなるガラス封止部と、
を備える水中用照明。
Underwater lighting that is placed underwater or submerged in seawater and promotes photosynthesis of algae with chlorophyll by the emitted light,
A glass substrate on which a circuit pattern is formed;
A plurality of blue and red LEDs arranged on the glass substrate and conductively connected to the circuit pattern;
A glass sealing portion made of heat-sealing glass that is in close contact with and integrally seals with the blue LED and the red LED and the surface side of the glass substrate on which they are mounted;
Underwater lighting with.
前記赤色LEDは、前記回路パターンに対しフリップチップ実装される、ことを特徴とする請求項1に記載の水中用照明。   The underwater illumination according to claim 1, wherein the red LED is flip-chip mounted on the circuit pattern. 請求項1または2に記載の水中用照明を用いた海水中植物の養殖装置であって、
前記海水中に沈めて配置される前記水中用照明と、
前記海水の外部に配置され、前記水中用照明に供給する電力を制御する外部電源と、
前記水中用照明および前記外部電源とを互いに接続するケーブルと、
を有することを特徴とする養殖装置。
An apparatus for cultivating underwater plants using the underwater illumination according to claim 1 or 2,
The underwater lighting arranged submerged in the sea water;
An external power source disposed outside the seawater to control power supplied to the underwater lighting;
A cable for connecting the underwater illumination and the external power source to each other;
An aquaculture device characterized by comprising:
前記ガラス封止部は、前記ガラス基板上に配置される紫外LEDを更に一体に封止し、
前記紫外LEDの放出光により前記前記海水中の細菌を殺菌する
ことを特徴とする請求項3に記載の養殖装置。
The glass sealing portion further integrally seals the ultraviolet LED disposed on the glass substrate,
The aquaculture apparatus according to claim 3, wherein bacteria in the seawater are sterilized by light emitted from the ultraviolet LED.
海水中に沈めて配置され、フィコビリンを有する藻類の光合成を促す海水中用照明において、
回路パターンが形成されたガラス基板と、
前記ガラス基板上に複数配列され、前記回路パターンに導電接続される緑色LEDと、
前記緑色LEDと、これらが実装された前記ガラス基板の表面側と、に密着し一体に封止する熱融着ガラスからなるガラス封止部と、
を備える海水中用照明。
In underwater lighting that is placed in seawater and promotes photosynthesis of algae with phycobilin,
A glass substrate on which a circuit pattern is formed;
A plurality of green LEDs arranged on the glass substrate and conductively connected to the circuit pattern;
A glass sealing portion made of heat-sealing glass that is in close contact with and integrally seals with the green LED and the surface side of the glass substrate on which these are mounted;
Underwater lighting with
JP2009178006A 2009-07-30 2009-07-30 Underwater lighting, and culture device using the same Withdrawn JP2011030463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178006A JP2011030463A (en) 2009-07-30 2009-07-30 Underwater lighting, and culture device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178006A JP2011030463A (en) 2009-07-30 2009-07-30 Underwater lighting, and culture device using the same

Publications (1)

Publication Number Publication Date
JP2011030463A true JP2011030463A (en) 2011-02-17

Family

ID=43760163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178006A Withdrawn JP2011030463A (en) 2009-07-30 2009-07-30 Underwater lighting, and culture device using the same

Country Status (1)

Country Link
JP (1) JP2011030463A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500194A (en) * 2012-07-23 2016-01-07 グイジョウ ジーゼットジーピーエス カンパニー・リミテッド Interchangeable and versatile LED bulb construction method and integrated LED bulb and lamp
JP2017023118A (en) * 2015-07-17 2017-02-02 八馬 宏樹 Aquatic life aquaculture tank
JP2017212428A (en) * 2016-05-25 2017-11-30 國立中正大學 Light source module
WO2020162407A1 (en) * 2019-02-04 2020-08-13 浜松ホトニクス株式会社 Haptophyte culturing method and haptophyte culturing device
US11473051B2 (en) 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor
CN115380812A (en) * 2022-07-07 2022-11-25 温州大学 Algae breeding device for algae-eating organisms and breeding method thereof
JP7207108B2 (en) 2019-04-03 2023-01-18 トヨタ自動車株式会社 Body side structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084800A (en) * 1996-09-19 1998-04-07 Sanyo Electric Co Ltd Culture device
JP2002315569A (en) * 2001-04-24 2002-10-29 Tokai Sangyo Kk Method for culturing algae
JP2008277055A (en) * 2007-04-26 2008-11-13 Toyoda Gosei Co Ltd Light source device
JP2009059883A (en) * 2007-08-31 2009-03-19 Toyoda Gosei Co Ltd Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084800A (en) * 1996-09-19 1998-04-07 Sanyo Electric Co Ltd Culture device
JP2002315569A (en) * 2001-04-24 2002-10-29 Tokai Sangyo Kk Method for culturing algae
JP2008277055A (en) * 2007-04-26 2008-11-13 Toyoda Gosei Co Ltd Light source device
JP2009059883A (en) * 2007-08-31 2009-03-19 Toyoda Gosei Co Ltd Light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500194A (en) * 2012-07-23 2016-01-07 グイジョウ ジーゼットジーピーエス カンパニー・リミテッド Interchangeable and versatile LED bulb construction method and integrated LED bulb and lamp
JP2017023118A (en) * 2015-07-17 2017-02-02 八馬 宏樹 Aquatic life aquaculture tank
JP2017212428A (en) * 2016-05-25 2017-11-30 國立中正大學 Light source module
WO2020162407A1 (en) * 2019-02-04 2020-08-13 浜松ホトニクス株式会社 Haptophyte culturing method and haptophyte culturing device
JP2020124143A (en) * 2019-02-04 2020-08-20 浜松ホトニクス株式会社 Method for culturing chrysochromulina sp. and device for culturing chrysochromulina sp.
JP7313832B2 (en) 2019-02-04 2023-07-25 浜松ホトニクス株式会社 Method for culturing haptoalgae and apparatus for culturing haptoalgae
US11473051B2 (en) 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor
JP7207108B2 (en) 2019-04-03 2023-01-18 トヨタ自動車株式会社 Body side structure
CN115380812A (en) * 2022-07-07 2022-11-25 温州大学 Algae breeding device for algae-eating organisms and breeding method thereof

Similar Documents

Publication Publication Date Title
JP2011030463A (en) Underwater lighting, and culture device using the same
KR101473277B1 (en) Light-emitting device
JP5651302B2 (en) Light source for plant cultivation
US20130207136A1 (en) Chip-on-board leds package with different wavelengths
CN106505134B (en) A kind of quantum spot white light LED device and preparation method thereof
KR20150094402A (en) Light source package and a display device including the same
CN103629596B (en) A kind of laser instrument plant lamp and preparation method thereof
US11502066B2 (en) Red flip chip light emitting diode, package, and method of making the same
WO2014087047A1 (en) A hermetically sealed optoelectronic component
KR20160056167A (en) Method of manufacturing a light emitting device, apparatus for inspection of a light emitting module, and method of making a decision on whether a light emitting module meets a quality requirement
KR101039930B1 (en) Light emitting device package and method for fabricating the same
TWI589035B (en) Organism cultivation apparatus and light emitting module modification method
US20120256560A1 (en) Light emitting device module and surface light source device
JP6401047B2 (en) Photosynthesis promotion light source
KR101435925B1 (en) A display apparatus having an array-type light-emitting device
CN105405937A (en) Light source for plant growth and plant culture method
KR101578142B1 (en) Led package for growing plants
JP3724490B2 (en) Light emitting diode
CN104851953A (en) Dimmable LED packaging structure
TW201445073A (en) Completely-artificial red-and-blue-light type photosynthetic light-conversion glass plane light source
CN101442091B (en) Method for producing gallium nitride or other LED employing rinsing treatment
CN207674132U (en) Intelligent poultry cultivation lamp and intelligent farm
CN107123713A (en) A kind of device architecture of suitable monochromatic light LED die level encapsulation
Ata et al. Thermal analysis of pulsed LED lighting in Plant Factory
TW201332158A (en) Chip-on-board LEDs structure with different wavelengths

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121121