JP2011029148A - Post-treatment method and deposition/post-treatment device for conductive metal oxide - Google Patents
Post-treatment method and deposition/post-treatment device for conductive metal oxide Download PDFInfo
- Publication number
- JP2011029148A JP2011029148A JP2010058892A JP2010058892A JP2011029148A JP 2011029148 A JP2011029148 A JP 2011029148A JP 2010058892 A JP2010058892 A JP 2010058892A JP 2010058892 A JP2010058892 A JP 2010058892A JP 2011029148 A JP2011029148 A JP 2011029148A
- Authority
- JP
- Japan
- Prior art keywords
- post
- metal oxide
- conductive metal
- gas
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
この発明は、導電性金属酸化物に対して成膜後に行なう後処理方法及び成膜兼後処理装置に関し、特に有機金属化合物を含む原料を用い、CVD(Chemical Vapor Deposition)法、スプレー法、ゾルゲル法などによって成膜した結晶性の導電性金属酸化物に適した後処理方法及び成膜兼後処理装置に関する。 TECHNICAL FIELD The present invention relates to a post-processing method and a film-forming / post-processing apparatus performed on a conductive metal oxide after film formation, and in particular, using a raw material containing an organometallic compound, a CVD (Chemical Vapor Deposition) method, a spray method, a sol-gel. The present invention relates to a post-processing method and a film forming / post-processing apparatus suitable for a crystalline conductive metal oxide formed by a method or the like.
導電性金属酸化物は、フラットパネルディスプレイの透明電極や太陽電池の透明電極をはじめ、帯電防止用コーティング等の材料としても用いられ、年々需要が高まっている。代表的な導電性金属酸化物としては、ITO(Indium Tin Oxide)、酸化亜鉛、酸化スズ、酸化チタンなどが知られている。この種の導電性金属酸化物は結晶性である。結晶性の金属酸化物は、原子や分子が空間的に繰り返しパターンを持った配列をしており、一般にX線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。 Conductive metal oxides are also used as materials for antistatic coatings, including transparent electrodes for flat panel displays and transparent electrodes for solar cells, and the demand is increasing year by year. As typical conductive metal oxides, ITO (Indium Tin Oxide), zinc oxide, tin oxide, titanium oxide, and the like are known. This type of conductive metal oxide is crystalline. A crystalline metal oxide has an arrangement in which atoms and molecules have a spatially repeated pattern, and generally acts as a diffraction grating for light having a wavelength of about X-rays, causing a phenomenon called X-ray diffraction. .
導電性金属酸化物の成膜方法としては、衝突や蒸着等の物理的作用を利用した物理的成膜方法と、化学反応を利用した化学的成膜方法とに大別される。物理的成膜方法としては、真空下でのスパッタリングや、真空蒸着等が挙げられる。これら物理的成膜法では、一般に純度の高い金属酸化物の焼結体を成膜原料として用いる。化学的成膜方法としては、CVD法、スプレー法、ゾルゲル法等が挙げられる。これら化学的成膜法では、一般に有機金属化合物を成膜原料として用いている。 The method for forming a conductive metal oxide is roughly classified into a physical film formation method using a physical action such as collision or vapor deposition, and a chemical film formation method using a chemical reaction. Examples of the physical film forming method include sputtering under vacuum and vacuum deposition. In these physical film forming methods, a sintered body of high-purity metal oxide is generally used as a film forming raw material. Examples of the chemical film forming method include a CVD method, a spray method, and a sol-gel method. In these chemical film forming methods, an organometallic compound is generally used as a film forming raw material.
導電性金属酸化物は、成膜後に電気的特性や加工性を改善するための後処理が必要となることがある。電気的特性の改善のための後処理としては、還元性処理や熱処理が多く用いられている。酸素空孔を増加させることで電気抵抗率を低下させることを狙った還元性後処理の例としては、非特許文献1の水素雰囲気下での熱処理や特許文献1の水素プラズマ処理等が知られている。導電性薄膜中のキャリア電子の移動度の増加による電気抵抗率の低下を狙った熱処理の例としては特許文献2が挙げられる。導電性薄膜への酸素吸着の抑制による電気抵抗率の低下を狙った熱処理の例としては特許文献3が挙げられる。導電性薄膜の結晶性を向上させることによる電気抵抗率の低下を狙った熱処理の例としては特許文献4が挙げられる。 Conductive metal oxides may require post-treatment to improve electrical characteristics and workability after film formation. As post-treatments for improving electrical characteristics, reducing treatments and heat treatments are often used. As examples of reducing post-treatment aimed at lowering electrical resistivity by increasing oxygen vacancies, heat treatment in a hydrogen atmosphere of Non-Patent Document 1 and hydrogen plasma treatment of Patent Document 1 are known. ing. Patent Document 2 is an example of heat treatment aiming at a decrease in electrical resistivity due to an increase in the mobility of carrier electrons in the conductive thin film. Patent Document 3 is an example of heat treatment aimed at lowering electrical resistivity by suppressing oxygen adsorption to the conductive thin film. Patent Document 4 is an example of heat treatment aimed at lowering electrical resistivity by improving the crystallinity of the conductive thin film.
スパッタリング法や真空蒸着法等の物理的成膜法は、高純度の金属酸化物の焼結体を原料とするため、導電性金属酸化物薄膜の生産コストが高い。
これに対し、CVD法、スプレー法、ゾルゲル法等の化学的成膜法は、有機金属化合物を原料とするため、導電性金属酸化物薄膜の生産コストを低くできる。しかし、有機金属化合物を原料とするため、膜の表面や結晶粒界に原料中の炭素成分に起因する有機不純物が取り込まれやすい。このような有機不純物は導電の障壁になり、膜の電気抵抗率上昇の要因になる。この種の有機不純物は、上述した還元性後処理だけでは充分に除去することが難しい。また、熱処理の場合、処理温度を有機不純物が除去される温度(例えば700℃程度)まで上昇させると、膜と基板の膨張係数の違いから膜構造が乱れ、却って電気抵抗率が上昇するおそれがある。
本発明は、かかる事情に鑑み、炭素を含有する導電性金属酸化物に対し、その電気的特性を確実に改善できる後処理方法を提供するものである。
A physical film formation method such as sputtering or vacuum evaporation uses a sintered body of high-purity metal oxide as a raw material, and thus the production cost of the conductive metal oxide thin film is high.
On the other hand, chemical film formation methods such as CVD, spraying, and sol-gel methods use an organometallic compound as a raw material, so that the production cost of the conductive metal oxide thin film can be reduced. However, since an organic metal compound is used as a raw material, organic impurities caused by the carbon component in the raw material are easily taken into the film surface or crystal grain boundaries. Such organic impurities serve as a barrier for conduction and cause an increase in the electrical resistivity of the film. This type of organic impurity is difficult to remove sufficiently only by the reducing post-treatment described above. In the case of heat treatment, if the treatment temperature is increased to a temperature at which organic impurities are removed (for example, about 700 ° C.), the film structure may be disturbed due to the difference in expansion coefficient between the film and the substrate, and the electrical resistivity may increase. is there.
In view of such circumstances, the present invention provides a post-treatment method that can reliably improve the electrical characteristics of a conductive metal oxide containing carbon.
従来、導電性金属酸化物膜を酸化性雰囲気下で後処理すると、導電性金属酸化物膜の表面や結晶粒界で酸素の吸着が起き、この吸着酸素がキャリア電子移動の障壁となって電気抵抗率を上昇させると考えられていた。そのため、電気抵抗率を低下させる目的の場合、非酸化雰囲気下もしくは不活性雰囲気下で後処理を行なうことが望ましいと考えられていた。
しかし、発明者は、酸化性雰囲気下での処理によって、膜構造の乱れを誘起する温度まで昇温しなくても、導電性金属酸化物膜の表面や結晶粒界に存在する炭素成分を除去できることを見出した(後記実施例1参照)。さらに、酸化性後処理によって、導電性金属酸化物膜に含まれる金属と水酸基の結合体を酸化し、導電性金属酸化物膜中の水酸基濃度を減らすことができることを見出した(後記実施例1及び図5参照)。
Conventionally, when a conductive metal oxide film is post-treated in an oxidizing atmosphere, oxygen is adsorbed on the surface of the conductive metal oxide film or at the crystal grain boundary, and this adsorbed oxygen acts as a barrier for carrier electron transfer to cause electricity. It was thought to increase resistivity. Therefore, for the purpose of reducing the electrical resistivity, it has been considered desirable to perform post-treatment in a non-oxidizing atmosphere or an inert atmosphere.
However, the inventor removed the carbon component present on the surface of the conductive metal oxide film and the crystal grain boundary without raising the temperature to a temperature that induces disorder of the film structure by the treatment in an oxidizing atmosphere. It was found that this can be done (see Example 1 below). Furthermore, it has been found that the oxidative post-treatment can oxidize a metal-hydroxyl conjugate contained in the conductive metal oxide film to reduce the hydroxyl group concentration in the conductive metal oxide film (Example 1 described later). And FIG. 5).
本発明は、かかる知見に基づいてなされたものであり、炭素を含有する導電性金属酸化物を成膜した後、前記導電性金属酸化物の膜に対して行なう後処理方法であって、
前記導電性金属酸化物膜に酸化作用を有する酸化性ガスを接触させる酸化性後処理工程と、
前記酸化性後処理工程後の導電性金属酸化物膜に還元作用を有する還元性ガスを接触させる還元性後処理工程と、
を含むことを特徴とする。
The present invention has been made on the basis of such findings, and is a post-treatment method performed on the conductive metal oxide film after forming the conductive metal oxide containing carbon.
An oxidizing post-treatment step in which an oxidizing gas having an oxidizing action is brought into contact with the conductive metal oxide film;
A reducing post-treatment step of bringing a reducing gas having a reducing action into contact with the conductive metal oxide film after the oxidizing post-treatment step;
It is characterized by including.
上記酸化性後処理工程によって、導電性金属酸化物膜の表面や結晶粒界における炭素を主成分とする有機不純物を除去する第1の作用と、導電性金属酸化物膜に含まれる金属と水酸基の結合体を酸化して導電性金属酸化物膜中の水酸基濃度を減らす第2の作用とを奏することができる。上記第1の作用は、膜構造の乱れを誘起する温度(例えば700℃程度)まで昇温しなくても、比較的低温下で奏することができる。上記第1、第2の作用によって、導電性金属酸化物膜におけるキャリア電子の捕獲サイトを減らすことができ、キャリア電子の移動度を上げることができる。上記酸化性後処理工程に続いて還元性後処理工程を行なうことによって、導電性金属酸化物膜の表面を安定化でき、導電性金属酸化物膜が大気に触れても、大気中の酸素や水分が導電性金属酸化物膜の表面や結晶粒界に侵入するのを防止でき、侵入した酸素や水分がキャリア電子の捕獲サイトとなるのを防止できる。更に、還元性後処理によって、キャリア電子を持つ酸素空孔を増加させることができる。
この結果、導電性金属酸化物膜の電気抵抗率を低下させることができる。更には、導電性金属酸化物膜の電気抵抗率の経時上昇を低減することができる。
The first action of removing organic impurities mainly composed of carbon at the surface of the conductive metal oxide film or at the grain boundary by the oxidizing post-treatment step, and the metal and hydroxyl group contained in the conductive metal oxide film The second effect of reducing the concentration of hydroxyl groups in the conductive metal oxide film by oxidizing the combined body can be achieved. The first effect can be achieved at a relatively low temperature without raising the temperature to a temperature (for example, about 700 ° C.) that induces disturbance of the film structure. By the first and second actions, the number of carrier electron capture sites in the conductive metal oxide film can be reduced, and the mobility of carrier electrons can be increased. By performing the reducing post-treatment step subsequent to the oxidizing post-treatment step, the surface of the conductive metal oxide film can be stabilized, and even if the conductive metal oxide film is exposed to the atmosphere, It is possible to prevent moisture from entering the surface of the conductive metal oxide film and crystal grain boundaries, and to prevent the invading oxygen and moisture from becoming a carrier electron capture site. Furthermore, oxygen vacancies having carrier electrons can be increased by reducing post-treatment.
As a result, the electrical resistivity of the conductive metal oxide film can be reduced. Furthermore, an increase in electrical resistivity of the conductive metal oxide film with time can be reduced.
前記導電性金属酸化物を、成膜後、大気に晒すことなく、前記酸化性後処理工程に供することが好ましい。これにより、大気中の水分をはじめとする酸素以外の成分が導電性金属酸化物に触れて不適な反応を起こすのを防止できる。或いは、大気中の酸素が導電性金属酸化物に触れて不完全な酸化膜ができるのを防止でき、その後の酸化性後処理が阻害されるのを防止できる。加熱手段で基板を加熱しながら基板の表面に導電性金属酸化物を成膜し、その後、酸化性後処理までの間、上記成膜時の残留熱によって、又は成膜終了後も加熱し続けることによって、大気中の水分が導電性金属酸化物に付着しないようにしてもよい。 The conductive metal oxide is preferably subjected to the oxidative post-treatment step without being exposed to the air after film formation. Thereby, it can prevent that components other than oxygen including the water | moisture content in air | atmosphere touch an electroconductive metal oxide, and raise | generate an inappropriate reaction. Alternatively, oxygen in the atmosphere can be prevented from coming into contact with the conductive metal oxide to form an incomplete oxide film, and the subsequent oxidative post-treatment can be prevented from being inhibited. A conductive metal oxide film is formed on the surface of the substrate while heating the substrate with a heating means, and then continues to be heated by the residual heat at the time of film formation or after the film formation is completed until after the oxidizing post-treatment. Thus, moisture in the atmosphere may be prevented from adhering to the conductive metal oxide.
好ましくは、前記酸化性後処理工程において、プラズマ化手段、マイクロ波照射手段、紫外線照射手段の群から選択される1の活性化手段によって前記酸化性ガスを活性化し、又は前記導電性金属酸化物膜を加熱する。これによって、前記酸化作用を確実に起こさせることができる。前記酸化性ガスの活性化と前記導電性金属酸化物膜の加熱のうち何れか一方のみを実行してもよい。より好ましくは、前記酸化性ガスの活性化と前記導電性金属酸化物膜の加熱の両方を同時に実行する。 Preferably, in the oxidizing post-treatment step, the oxidizing gas is activated by one activating means selected from the group consisting of plasma generating means, microwave irradiating means, and ultraviolet irradiating means, or the conductive metal oxide Heat the membrane. Thereby, the oxidation action can be surely caused. Only one of activation of the oxidizing gas and heating of the conductive metal oxide film may be performed. More preferably, both the activation of the oxidizing gas and the heating of the conductive metal oxide film are performed simultaneously.
前記酸化性後処理工程におけるプラズマ化手段は、酸化性ガスをプラズマ化して活性化する。例えば、プラズマ化手段は、少なくとも一対の電極を有し、これら電極間に電界を印加して放電を生成するとともに、電極間に酸化性ガスを導入してプラズマ化する。プラズマ化は大気圧近傍下で行なうことが好ましい。ここで、大気圧近傍とは、1.013×104Pa〜50.663×104Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×104Pa〜10.664×104Paが好ましく、前記酸化性後処理工程及び前記還元性後処理工程では更に9.331×104Pa〜10.397×104Paがより好ましい。成膜工程では、5×104Pa〜10.397×104Paがより好ましい。
前記酸化性後処理工程におけるマイクロ波照射手段は、酸化性ガスにマイクロ波を照射して活性化する。
前記酸化性後処理工程における紫外線照射手段は、酸化性ガスに紫外線を照射して活性化する。例えば、酸化性ガスが酸素含有ガスである場合、紫外線照射によって酸素がオゾン化(活性化)される。
前記酸化性後処理工程における前記導電性金属酸化物膜の加熱温度は、膜構造の乱れを誘起する温度未満であり、好ましくは100℃〜300℃程度であり、より好ましくは200℃〜300℃程度である。前記導電性金属酸化物は、通常、ガラスや半導体ウェハ等の基板の表面に成膜されるから、前記基板を加熱することで前記導電性金属酸化物膜を加熱するとよい。
The plasma generating means in the oxidizing post-processing step is activated by converting the oxidizing gas into plasma. For example, the plasma generating means has at least a pair of electrodes, applies an electric field between these electrodes to generate a discharge, and introduces an oxidizing gas between the electrodes to generate plasma. Plasmaization is preferably performed near atmospheric pressure. Here, the vicinity of atmospheric pressure refers to a range of 1.013 × 10 4 Pa to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4. Pa~10.664 × 10 4 Pa, and more preferably still 9.331 × 10 4 Pa~10.397 × 10 4 Pa in the oxidative post-treatment step and the reducing post-treatment step. The film-forming step, and more preferably 5 × 10 4 Pa~10.397 × 10 4 Pa.
The microwave irradiation means in the oxidizing post-treatment step is activated by irradiating the oxidizing gas with microwaves.
The ultraviolet irradiation means in the oxidizing post-treatment step is activated by irradiating the oxidizing gas with ultraviolet rays. For example, when the oxidizing gas is an oxygen-containing gas, oxygen is ozonized (activated) by ultraviolet irradiation.
The heating temperature of the conductive metal oxide film in the oxidative post-treatment step is less than the temperature that induces disorder of the film structure, preferably about 100 ° C. to 300 ° C., more preferably 200 ° C. to 300 ° C. Degree. Since the conductive metal oxide is usually formed on the surface of a substrate such as glass or a semiconductor wafer, the conductive metal oxide film may be heated by heating the substrate.
前記酸化性ガスは、酸化性成分として、酸素(O2)、亜酸化窒素(N2O)、その他の酸素含有化合物を含み、好ましくは酸素(O2)を含む。前記酸化性ガス中の酸素等の酸化性成分の濃度は、微量でもよいが、好ましくは5体積%以上であり、より好ましくは50体積%以上であり、一層好ましくは70体積%以上である。前記酸化性ガスが、酸素等の酸化性成分100%で構成されていてもよい。前記酸化性ガス中の酸素等の酸化性成分の濃度が100%未満の場合、酸化性ガスの残部は不活性ガスであることが好ましい。前記不活性ガスとしては、窒素、アルゴン、ヘリウム等が挙げられる。前記酸化性ガスの酸素(O2)の一部又は全部が、前記活性化手段にて活性化され、オゾン、酸素プラズマ、酸素ラジカルになっていてもよい。 The oxidizing gas contains oxygen (O 2 ), nitrous oxide (N 2 O), and other oxygen-containing compounds as an oxidizing component, and preferably contains oxygen (O 2 ). The concentration of the oxidizing component such as oxygen in the oxidizing gas may be a trace amount, but is preferably 5% by volume or more, more preferably 50% by volume or more, and still more preferably 70% by volume or more. The oxidizing gas may be composed of 100% oxidizing components such as oxygen. When the concentration of an oxidizing component such as oxygen in the oxidizing gas is less than 100%, the remainder of the oxidizing gas is preferably an inert gas. Examples of the inert gas include nitrogen, argon, helium and the like. Part or all of oxygen (O 2 ) of the oxidizing gas may be activated by the activating means to become ozone, oxygen plasma, or oxygen radical.
前記導電性金属酸化物を、前記酸化性後処理工程の後、大気に晒すことなく、前記還元性後処理工程に供することが好ましい。これにより、大気中の水分が導電性金属酸化物に触れて不適な反応を起こすのを防止できる。酸化性後処理の後、還元性後処理までの間、導電性金属酸化物を加熱し続けることによって、大気中の水分が導電性金属酸化物に付着しないようにしてもよい。 The conductive metal oxide is preferably subjected to the reducing post-treatment step without being exposed to the air after the oxidizing post-treatment step. Thereby, it can prevent that the water | moisture content in air | atmosphere contacts an electroconductive metal oxide, and raise | generates an inappropriate reaction. It may be possible to prevent moisture in the atmosphere from adhering to the conductive metal oxide by continuing to heat the conductive metal oxide after the oxidizing post-treatment until the reducing post-treatment.
好ましくは、前記還元性後処理工程において、プラズマ化手段、マイクロ波照射手段、紫外線照射手段の群から選択される1の活性化手段によって前記還元性ガスを活性化し、又は前記導電性金属酸化物膜を加熱する。これによって、前記還元作用を確実に起こさせることができる。前記還元性ガスの活性化と前記導電性金属酸化物膜の加熱のうち何れか一方のみを実行してもよい。前記還元性ガスの活性化と前記導電性金属酸化物膜の加熱の両方を同時に実行してもよい。 Preferably, in the reducing post-treatment step, the reducing gas is activated by one activating means selected from the group consisting of plasmaizing means, microwave irradiating means, and ultraviolet irradiating means, or the conductive metal oxide Heat the membrane. Thereby, the reduction action can be surely caused. Only one of activation of the reducing gas and heating of the conductive metal oxide film may be performed. Both the activation of the reducing gas and the heating of the conductive metal oxide film may be performed simultaneously.
前記還元性後処理工程におけるプラズマ化手段は、還元性ガスをプラズマ化して活性化する。例えば、プラズマ化手段は、少なくとも一対の電極を有し、これら電極間に電界を印加して放電を生成するとともに、電極間に還元性ガスを導入してプラズマ化する。プラズマ化は上記酸化性後処理工程と同様に大気圧近傍下で行なうことが好ましい。
前記還元性後処理工程におけるマイクロ波照射手段は、還元性ガスにマイクロ波を照射して活性化する。
前記還元性後処理工程における紫外線照射手段は、還元性ガスに紫外線を照射して活性化する。
前記還元性後処理工程における前記導電性金属酸化物膜の加熱温度は、200℃〜500℃程度が好ましい。還元性後処理工程に先立って酸化性後処理工程を行うことにより、還元性後処理工程における前記導電性金属酸化物膜の加熱温度を低くすることができる。前記還元性後処理工程においても前記酸化性後処理工程と同様に前記導電性金属酸化物を被膜すべき基板を加熱することで前記導電性金属酸化物膜を加熱するとよい。
The plasma generating means in the reducing post-treatment step activates the reducing gas by converting it into plasma. For example, the plasma generating means has at least a pair of electrodes, generates an electric discharge by applying an electric field between these electrodes, and introduces a reducing gas between the electrodes to generate plasma. Plasma conversion is preferably performed under atmospheric pressure in the same manner as in the oxidizing post-treatment step.
The microwave irradiation means in the reducing post-treatment step is activated by irradiating the reducing gas with microwaves.
The ultraviolet irradiation means in the reducing post-treatment step is activated by irradiating the reducing gas with ultraviolet rays.
The heating temperature of the conductive metal oxide film in the reducing post-treatment step is preferably about 200 ° C to 500 ° C. By performing the oxidizing post-treatment step prior to the reducing post-treatment step, the heating temperature of the conductive metal oxide film in the reducing post-treatment step can be lowered. Also in the reducing post-treatment step, the conductive metal oxide film may be heated by heating the substrate on which the conductive metal oxide is to be coated, as in the oxidizing post-treatment step.
前記還元性ガスは、水素(H2)、一酸化炭素(CO)、硫化水素(H2S)、酸化硫黄(SOx)、ホルムアルデヒド等の還元性成分を含むことが好ましい。より好ましくは、前記還元性ガスは、水素(H2)を含む。前記還元性ガス中の水素等の還元性成分の濃度は、好ましくは0.5体積%以上であり、より好ましくは1体積%以上であり、上限濃度は100%である。還元性成分が水素である場合、安全性の観点からは、還元性ガス中の水素濃度の上限は、10体積%程度が好ましく、5体積%程度がより好ましい。また、還元性ガスが酸素を含まないことが好ましい。更には、成膜対象の基板を配置する処理空間内に酸素が存在しないことが好ましい。処理空間を窒素等で置換することより酸素を完全に除外できる場合、前記還元性ガスが水素100%で構成されていてもよい。前記還元性ガス中の水素等の還元性成分の濃度が100%未満の場合、還元性ガスの還元性成分を除いた残部は、窒素、アルゴン、ヘリウム等の不活性ガスであることが好ましい。 The reducing gas preferably contains reducing components such as hydrogen (H 2 ), carbon monoxide (CO), hydrogen sulfide (H 2 S), sulfur oxide (SOx), and formaldehyde. More preferably, the reducing gas contains hydrogen (H 2 ). The concentration of the reducing component such as hydrogen in the reducing gas is preferably 0.5% by volume or more, more preferably 1% by volume or more, and the upper limit concentration is 100%. When the reducing component is hydrogen, from the viewpoint of safety, the upper limit of the hydrogen concentration in the reducing gas is preferably about 10% by volume, more preferably about 5% by volume. Moreover, it is preferable that reducing gas does not contain oxygen. Furthermore, it is preferable that oxygen does not exist in the processing space where the substrate to be deposited is placed. When oxygen can be completely excluded by replacing the treatment space with nitrogen or the like, the reducing gas may be composed of 100% hydrogen. When the concentration of a reducing component such as hydrogen in the reducing gas is less than 100%, the remainder of the reducing gas excluding the reducing component is preferably an inert gas such as nitrogen, argon, or helium.
前記導電性金属酸化物は、結晶性であり、インジウム、亜鉛、チタン、スズ、カドミウム、ガリウム、アルミニウム、アンチモンから選ばれた1種類以上の金属の酸化物であることが好ましい。 The conductive metal oxide is preferably crystalline and is an oxide of one or more metals selected from indium, zinc, titanium, tin, cadmium, gallium, aluminum, and antimony.
前記導電性金属酸化物は、例えば有機金属化合物を含む原料によって成膜される。その場合、導電性金属酸化物には、有機金属化合物に由来する炭素が含まれる。成膜方法としては、CVD法、スプレー法、ゾルゲル法が挙げられる。CVD法は、プラズマCVD、熱CVDを含む。
有機金属化合物として、亜鉛アセチルアセトネート[Zn(CH2COCH2COCH3)2;Zn(acac)2]、ガリウムアセチルアセトネート[Ga(acac)3]等が挙げられる。
The conductive metal oxide is formed using a raw material containing an organometallic compound, for example. In that case, the conductive metal oxide includes carbon derived from an organometallic compound. Examples of the film forming method include a CVD method, a spray method, and a sol-gel method. The CVD method includes plasma CVD and thermal CVD.
Examples of the organometallic compound include zinc acetylacetonate [Zn (CH 2 COCH 2 COCH 3 ) 2 ; Zn (acac) 2 ], gallium acetylacetonate [Ga (acac) 3 ], and the like.
本発明に係る成膜兼後処理装置は、炭素を含有する導電性金属酸化物を成膜し、かつ成膜後の後処理を行なう装置であって、
(a)基板を処理空間内に支持する支持部と、
(b)前記処理空間と同一の、又は前記処理空間に連なるプラズマ空間を形成する電極を含むプラズマ化手段と、
(c)前記基板を加熱する加熱手段と、
(d)前記導電性金属酸化物の原料を含む成膜用ガスと、前記導電性金属酸化物膜に対し酸化作用を有する酸化性ガスと、前記導電性金属酸化物膜に対し還元作用を有する還元性ガスとのうち1つを選択して、前記プラズマ空間に供給し、更には前記処理空間に供給するガス供給系と、
を備え、前記ガス供給系による前記選択が、前記成膜用ガス、前記酸化性ガス、前記還元性ガスの順になされることを特徴とする。
これにより、共通の処理装置を用い、成膜工程と酸化性後処理工程と還元性後処理工程を順次かつ連続的に行なうことができる。その結果、基板に導電性金属酸化物を成膜でき、さらには、成膜した導電性金属酸化物膜の導電性を高めることができる。基板を支持部で支持して処理空間内に配置した状態のまま、成膜工程から酸化性後処理工程へ移行でき、かつ酸化性後処理工程から還元性後処理工程へ移行できる。よって、工程移行時に導電性金属酸化物膜が大気に晒されるのを容易に防止でき、酸化性後処理や還元性後処理が阻害されるのを確実に防止できる。
The film formation and post-treatment apparatus according to the present invention is an apparatus for forming a conductive metal oxide containing carbon and performing post-treatment after film formation,
(A) a support for supporting the substrate in the processing space;
(B) Plasmaizing means including an electrode that forms a plasma space that is the same as or continuous with the processing space;
(C) heating means for heating the substrate;
(D) A film forming gas containing the conductive metal oxide raw material, an oxidizing gas having an oxidizing action on the conductive metal oxide film, and a reducing action on the conductive metal oxide film A gas supply system that selects one of the reducing gases, supplies the plasma space, and supplies the processing space;
And the selection by the gas supply system is performed in the order of the film forming gas, the oxidizing gas, and the reducing gas.
Thereby, the film-forming process, the oxidizing post-treatment process, and the reducing post-treatment process can be performed sequentially and continuously using a common processing apparatus. As a result, a conductive metal oxide can be formed on the substrate, and further, the conductivity of the formed conductive metal oxide film can be increased. The substrate can be transferred from the film forming step to the oxidative post-treatment step and can be transferred from the oxidative post-treatment step to the reductive post-treatment step while the substrate is supported by the support portion and disposed in the processing space. Therefore, it is possible to easily prevent the conductive metal oxide film from being exposed to the atmosphere during the process transition, and to reliably prevent the oxidative post-treatment and the reductive post-treatment from being hindered.
前記プラズマ空間および処理空間の圧力は、大気圧近傍であることが好ましい。
前記電極に電圧を供給して前記プラズマ化手段を稼働することによって、前記選択された処理ガス(成膜用ガス、酸化性ガス、又は還元性ガス)をプラズマ空間内でプラズマ化でき、プラズマ処理による成膜工程、酸化性後処理工程、又は還元性後処理工程を実行できる。前記プラズマ化手段の稼働と併行して、前記加熱手段をも稼働してもよい。
前記プラズマ化手段の稼働を停止し、かつ前記加熱手段を稼働してもよい。これにより、熱処理による成膜工程、酸化性後処理工程、又は還元性後処理工程を実行できる。
The pressure of the plasma space and the processing space is preferably near atmospheric pressure.
By supplying a voltage to the electrode and operating the plasma generating means, the selected processing gas (film forming gas, oxidizing gas, or reducing gas) can be converted into plasma in a plasma space, and plasma processing is performed. The film forming step, the oxidizing post-processing step, or the reducing post-processing step can be executed. In parallel with the operation of the plasmarization means, the heating means may also be operated.
The operation of the plasmarizing unit may be stopped and the heating unit may be operated. Thereby, the film-forming process by heat processing, an oxidizing post-process, or a reducing post-process can be performed.
本発明によれば、導電性金属酸化物が成膜時に炭素を含んでいても、その電気的特性を確実に改善できる。 According to the present invention, even when the conductive metal oxide contains carbon at the time of film formation, the electrical characteristics can be reliably improved.
以下、本発明の一実施形態を説明する。
本発明は、導電性金属酸化物を成膜し、その後、この導電性金属酸化物膜に対して特性改善のための後処理を行なう。後処理は、酸化性後処理工程及び還元性後処理工程を含む。図1〜図3に示すように、この実施形態では、成膜処理工程及び後処理工程を共通の処理装置1を用いて連続的に行なう。
Hereinafter, an embodiment of the present invention will be described.
In the present invention, a conductive metal oxide is formed, and then the conductive metal oxide film is subjected to post-treatment for improving characteristics. The post-treatment includes an oxidative post-treatment step and a reducing post-treatment step. As shown in FIGS. 1 to 3, in this embodiment, the film forming process and the post-process are continuously performed using a common processing apparatus 1.
導電性金属酸化物膜92(図1において仮想線)は、有機金属化合物を原料にして基板91の表面に成膜される。この実施形態では、導電性金属酸化物膜92として、例えばガリウムを含有する酸化亜鉛系の膜を成膜する。膜92の亜鉛源となる亜鉛含有有機金属化合物としては、例えば亜鉛アセチルアセトネート[Zn(acac)2]を用いる。膜92のガリウム源となるガリウム含有有機金属化合物としては、例えばガリウムアセチルアセトネート[Ga(acac)3]を用いる。亜鉛アセチルアセトネート及びガリウムアセチルアセトネートは、常温常圧で液体である。 The conductive metal oxide film 92 (the phantom line in FIG. 1) is formed on the surface of the substrate 91 using an organometallic compound as a raw material. In this embodiment, for example, a zinc oxide film containing gallium is formed as the conductive metal oxide film 92. For example, zinc acetylacetonate [Zn (acac) 2 ] is used as the zinc-containing organometallic compound that becomes the zinc source of the film 92. As the gallium-containing organometallic compound that becomes the gallium source of the film 92, for example, gallium acetylacetonate [Ga (acac) 3 ] is used. Zinc acetylacetonate and gallium acetylacetonate are liquid at normal temperature and pressure.
図1に示すように、成膜兼後処理装置1は、処理部10と、ガス供給系20を備えている。処理部10は、チャンバー19と、一対の電極11,12を備えている。チャンバー19内に電極11,12が収容されている。一対の電極11,12は、上下に対向する平行平板型の電極構造になっている。少なくとも一方の電極11,12の対向面には固体誘電体層(図示省略)が形成されている。一方(例えば上側)の電極11が電源13に接続されている。他方(例えば下側)の電極12は電気的に接地されている。電源13からの電圧供給によって電極11,12間の処理空間14が大気圧近傍のプラズマ空間になる。
処理部10は、プラズマ化手段ないしは活性化手段を構成する。
As shown in FIG. 1, the film forming and post-processing apparatus 1 includes a processing unit 10 and a gas supply system 20. The processing unit 10 includes a chamber 19 and a pair of electrodes 11 and 12. The electrodes 11 and 12 are accommodated in the chamber 19. The pair of electrodes 11 and 12 has a parallel plate type electrode structure which is vertically opposed. A solid dielectric layer (not shown) is formed on the opposing surface of at least one of the electrodes 11 and 12. One (for example, the upper side) electrode 11 is connected to the power source 13. The other (eg, the lower) electrode 12 is electrically grounded. By supplying voltage from the power supply 13, the processing space 14 between the electrodes 11 and 12 becomes a plasma space near atmospheric pressure.
The processing unit 10 constitutes a plasma generating means or an activating means.
処理空間14内に被処理体90が配置される。被処理体90は、基板91を備えている。基板91の上面に導電性金属酸化物膜92が形成される。基板91は、例えばガラスの板にて構成されている。下側の電極12上に基板91が載せられる。下側の電極12が基板支持部を兼ねている。電極12には加熱手段15が熱的に接続されている。加熱手段15は、電熱ヒータでもよく、電極12内に形成された温調媒体路でもよい。加熱手段15によって、電極12を介して基板91が加熱される。 A workpiece 90 is arranged in the processing space 14. The object 90 includes a substrate 91. A conductive metal oxide film 92 is formed on the upper surface of the substrate 91. The substrate 91 is made of, for example, a glass plate. A substrate 91 is placed on the lower electrode 12. The lower electrode 12 also serves as a substrate support portion. A heating means 15 is thermally connected to the electrode 12. The heating means 15 may be an electric heater or a temperature control medium path formed in the electrode 12. The substrate 91 is heated via the electrode 12 by the heating means 15.
図1〜図3に示すように、成膜兼後処理装置1のガス供給系20は、ガス源21〜25と、ガス供給路28を有している。処理空間14の一端部(図1において右端部)にガス供給路28の先端が連なっている。処理空間14の他端部(図1において左端部)から排気路29が延びている。 As shown in FIGS. 1 to 3, the gas supply system 20 of the film forming and post-processing apparatus 1 includes gas sources 21 to 25 and a gas supply path 28. The tip of the gas supply path 28 is connected to one end of the processing space 14 (the right end in FIG. 1). An exhaust passage 29 extends from the other end (the left end in FIG. 1) of the processing space 14.
ガス供給路28には、処理工程に応じたガス源21〜25が選択的に接続される。図1に示すように、成膜工程では、有機金属化合物源21,22と不活性ガス源23と酸素ガス源24とがガス供給路28に接続される。図2に示すように、酸化性後処理工程では、不活性ガス源23と酸素ガス源24(酸化性成分源)とがガス供給路28に接続される。図3に示すように、還元性後処理工程では、不活性ガス源23と還元性成分源25とがガス供給路28に接続される。ガス供給系20は、処理工程に応じた処理ガスを選択的に処理空間14(プラズマ空間)に供給する。 Gas sources 21 to 25 corresponding to processing steps are selectively connected to the gas supply path 28. As shown in FIG. 1, in the film forming process, the organometallic compound sources 21 and 22, the inert gas source 23, and the oxygen gas source 24 are connected to the gas supply path 28. As shown in FIG. 2, in the oxidizing post-treatment process, an inert gas source 23 and an oxygen gas source 24 (oxidizing component source) are connected to a gas supply path 28. As shown in FIG. 3, in the reducing post-treatment process, the inert gas source 23 and the reducing component source 25 are connected to the gas supply path 28. The gas supply system 20 selectively supplies a processing gas corresponding to the processing step to the processing space 14 (plasma space).
図1において、2つの有機金属化合物源21,22は、それぞれ気化器にて構成されている。気化器21には導電性金属酸化物膜92の亜鉛原料として液体の亜鉛アセチルアセトネートが蓄えられている。気化器22には導電性金属酸化物膜92のガリウム原料として液体のガリウムアセチルアセトネートが蓄えられている。 In FIG. 1, the two organometallic compound sources 21 and 22 are each configured by a vaporizer. The vaporizer 21 stores liquid zinc acetylacetonate as a zinc raw material for the conductive metal oxide film 92. The vaporizer 22 stores liquid gallium acetylacetonate as a gallium raw material for the conductive metal oxide film 92.
不活性ガス源23には、不活性ガスとして窒素(N2)が蓄えられている。不活性ガス源23のガスは、キャリアガス、希釈ガス、プラズマ生成用ガス等の役目を果たす。
図1及び図2に示すように、酸素ガス源24には、100%の酸素ガス(O2)が蓄えられている。
The inert gas source 23 stores nitrogen (N 2 ) as an inert gas. The gas of the inert gas source 23 serves as a carrier gas, a dilution gas, a plasma generation gas, or the like.
As shown in FIGS. 1 and 2, 100% oxygen gas (O 2 ) is stored in the oxygen gas source 24.
図3に示すように、還元性成分源25には、還元性成分として水素ガス(H2)が蓄えられている。図3において、不活性ガス源23の窒素と還元性成分源25の水素とを別々に蓄えるのに代えて、窒素と水素を所定の混合比で混合した混合ガスを1つの還元性ガス源に蓄えることにしてもよい。窒素と水素の体積混合比は、好ましくはN2:H2=99.5:0.5〜90:10であり、より好ましくはN2:H2=99:1〜95:5である。 As shown in FIG. 3, hydrogen gas (H 2 ) is stored in the reducing component source 25 as a reducing component. In FIG. 3, instead of storing the nitrogen of the inert gas source 23 and the hydrogen of the reducing component source 25 separately, a mixed gas obtained by mixing nitrogen and hydrogen at a predetermined mixing ratio is used as one reducing gas source. You may store it. The volume mixing ratio of nitrogen and hydrogen is preferably N 2 : H 2 = 99.5: 0.5 to 90:10, more preferably N 2 : H 2 = 99: 1 to 95: 5.
上記構成の処理装置1による処理方法を詳述する。
[成膜工程]
図1に示すように、導電性金属酸化物膜92を形成すべきガラス基板91を電極兼基板支持部12上に設置する。加熱手段15によって、基板91の温度を100℃〜300℃程度に調節する。
The processing method by the processing apparatus 1 having the above configuration will be described in detail.
[Film formation process]
As shown in FIG. 1, a glass substrate 91 on which a conductive metal oxide film 92 is to be formed is placed on the electrode / substrate support portion 12. The temperature of the substrate 91 is adjusted to about 100 ° C. to 300 ° C. by the heating means 15.
成膜工程では、2つの気化器21,22をガス供給路28に接続する。また、不活性ガス源23と酸素ガス源24をガス供給路28に接続する。成膜工程における酸素ガス源24の酸素(O2)は、成膜すべき導電性金属酸化物膜92の酸素原料となる。 In the film forming process, the two vaporizers 21 and 22 are connected to the gas supply path 28. Further, the inert gas source 23 and the oxygen gas source 24 are connected to the gas supply path 28. Oxygen (O 2 ) from the oxygen gas source 24 in the film forming process becomes an oxygen source for the conductive metal oxide film 92 to be formed.
不活性ガス源23の窒素と酸素ガス源24の酸素とを混合してガス供給路28へ送出する。混合ガス(N2+O2)中の酸素の含有量は、窒素に対し例えばO2/N2=60〜95vol%程度である。 Nitrogen from the inert gas source 23 and oxygen from the oxygen gas source 24 are mixed and sent to the gas supply path 28. The oxygen content in the mixed gas (N 2 + O 2 ) is, for example, about O 2 / N 2 = 60 to 95 vol% with respect to nitrogen.
上記混合ガス(N2+O2)をキャリアガスとし、気化器21において上記キャリアガス中に亜鉛原料液(亜鉛アセチルアセトネート)を気化させる。気化方法は、気化器21内の亜鉛原料液の液面より上側の空間にキャリアガス(N2+O2)を導入し、上記液面より上側の空間内に存在する飽和亜鉛原料蒸気をキャリアガス(N2+O2)と混合しながら押し出す方式とする。押し出し方式に代えて、気化器21内の亜鉛原料液中にキャリアガス(N2+O2)をバブリングする方式を採用してもよい。亜鉛原料液を加熱して蒸発を促進させてもよく、押し出しと加熱、又はバブリングと加熱を併用してもよい。 The mixed gas (N 2 + O 2 ) is used as a carrier gas, and the zinc raw material liquid (zinc acetylacetonate) is vaporized in the carrier gas in the vaporizer 21. In the vaporization method, a carrier gas (N 2 + O 2 ) is introduced into a space above the liquid level of the zinc raw material liquid in the vaporizer 21, and the saturated zinc raw material vapor existing in the space above the liquid level is transferred to the carrier gas. Extrusion while mixing with (N 2 + O 2 ). Instead of the extrusion method, a method of bubbling a carrier gas (N 2 + O 2 ) into the zinc raw material liquid in the vaporizer 21 may be adopted. The zinc raw material liquid may be heated to promote evaporation, and extrusion and heating, or bubbling and heating may be used in combination.
また、気化器22において、上記キャリアガス(N2+O2)にガリウム原料液(ガリウムアセチルアセトネート)を気化させる。気化方法は、亜鉛原料の気化と同様である。これにより、有機金属化合物(Zn(acac)2及びGa(acac)3)を含む成膜用ガスが生成される。 In the vaporizer 22, the carrier gas (N 2 + O 2 ) vaporizes a gallium raw material liquid (gallium acetylacetonate). The vaporization method is the same as that for the zinc raw material. Thereby, a film forming gas containing an organometallic compound (Zn (acac) 2 and Ga (acac) 3 ) is generated.
上記の成膜用ガスをガス供給路28から処理空間14に導入する。併行して、電源13から電極11に電圧を供給し、処理空間14内に電界を印加して大気圧グロー放電を生成する。これにより、成膜用ガスがプラズマ化される。このプラズマガスが基板9に接触して反応が起きる。これによって、基板1の表面に導電性金属酸化物の結晶を気相成長させることができる。この導電性金属酸化物は、酸化亜鉛系であり、かつガリウムを含有する。成膜した導電性金属酸化物膜のガリウム含有量は、亜鉛元素比で例えばGa/Zn=1〜5wt%程度である。
有機金属化合物を原料とする化学的成膜法を採用することで、スパッタリングや真空蒸着等の物理的成膜法よりも成膜コストを安価にすることができる。
The film forming gas is introduced into the processing space 14 from the gas supply path 28. In parallel, a voltage is supplied from the power source 13 to the electrode 11 and an electric field is applied in the processing space 14 to generate an atmospheric pressure glow discharge. Thereby, the film-forming gas is turned into plasma. The plasma gas comes into contact with the substrate 9 to cause a reaction. As a result, a crystal of the conductive metal oxide can be vapor-phase grown on the surface of the substrate 1. This conductive metal oxide is based on zinc oxide and contains gallium. The gallium content of the formed conductive metal oxide film is, for example, Ga / Zn = 1-5 wt% in terms of the zinc element ratio.
By employing a chemical film formation method using an organometallic compound as a raw material, the film formation cost can be reduced compared to a physical film formation method such as sputtering or vacuum deposition.
処理済みの成膜用ガスは、処理空間14から排気路29に排出され、無害化処理を経て大気に放出される。 The film-forming gas that has been processed is discharged from the processing space 14 to the exhaust passage 29, and is discharged to the atmosphere through a detoxification process.
[酸化性後処理工程]
図2に示すように、導電性金属酸化物の成膜後、酸化性後処理工程を行なう。成膜工程から引き続いて酸化性後処理工程でも処理装置1を用いる。被処理体90は、処理空間14の外部ひいてはチャンバー19の外部に取り出すことなく、電極兼基板支持部12上にそのまま載置しておく。したがって、成膜工程後、酸化性後処理工程までの間、導電性金属酸化物膜92が大気に晒されることはない。これにより、大気中の水分等が導電性金属酸化物に触れて不適な反応を起こすのを防止できる。たとえ大気に晒されたとしても、成膜後、酸化性後処理までの間の被処理体90には成膜時の熱が残っているため、大気中の水分による影響は小さい。さらに、加熱手段15によって、被処理体90を成膜工程の終了後も加熱し続けることで、大気中の水分による影響をほぼ回避できる。
[Oxidative post-treatment process]
As shown in FIG. 2, after the conductive metal oxide film is formed, an oxidizing post-treatment process is performed. The processing apparatus 1 is also used in the oxidative post-processing step subsequent to the film-forming step. The workpiece 90 is placed on the electrode / substrate support 12 as it is without being taken out of the processing space 14 and thus outside the chamber 19. Therefore, the conductive metal oxide film 92 is not exposed to the atmosphere after the film formation process until the oxidizing post-treatment process. Thereby, it can prevent that the water | moisture content etc. in air | atmosphere touch an electroconductive metal oxide, and raise | generate an unsuitable reaction. Even if it is exposed to the atmosphere, since the heat during film formation remains in the object 90 after the film formation and before the oxidizing post-treatment, the influence of moisture in the air is small. Further, the heating means 15 can keep the object 90 to be heated even after the film forming process is completed, so that the influence of moisture in the atmosphere can be substantially avoided.
酸化性後処理工程では、加熱手段15による被処理体90の加熱温度を、好ましくは100℃〜300℃程度、より好ましくは200℃〜300℃程度に調節する。この温度範囲は、膜構造の乱れを誘起する温度(700℃程度)より十分に低い。 In the oxidizing post-treatment step, the heating temperature of the object 90 to be treated by the heating means 15 is preferably adjusted to about 100 ° C. to 300 ° C., more preferably about 200 ° C. to 300 ° C. This temperature range is sufficiently lower than the temperature that induces disturbance of the film structure (about 700 ° C.).
酸化性後処理工程では、有機金属化合物源21,22をガス供給路28から切り離す。不活性ガス源23及び酸素ガス源24については、そのままガス供給路28に接続した状態を維持する。 In the oxidizing post-treatment process, the organometallic compound sources 21 and 22 are disconnected from the gas supply path 28. About the inert gas source 23 and the oxygen gas source 24, the state connected to the gas supply path 28 as it is is maintained.
酸素ガス源24の酸素(O2)を不活性ガス源23の窒素(N2)にて希釈し、酸化性後処理用の酸化性ガス(O2+N2)を得る。酸化性ガス中の酸素濃度O2/(O2+N2)は、例えば5体積%〜100%の範囲で設定でき、好ましくは50体積%以上であり、より好ましくは70体積%以上であり、一層好ましくは約100%である。酸化性ガスが酸素100%である場合、不活性ガス源23からの窒素供給量は0である。 Oxygen (O 2 ) from the oxygen gas source 24 is diluted with nitrogen (N 2 ) from the inert gas source 23 to obtain an oxidizing gas (O 2 + N 2 ) for oxidizing post-treatment. The oxygen concentration O 2 / (O 2 + N 2 ) in the oxidizing gas can be set, for example, in the range of 5% by volume to 100%, preferably 50% by volume or more, more preferably 70% by volume or more, More preferably, it is about 100%. When the oxidizing gas is 100% oxygen, the amount of nitrogen supplied from the inert gas source 23 is zero.
酸化性ガス(O2+N2又はO2100%)を、ガス供給路28を経て、処理空間14に導入し、処理空間14全体のガスを酸化性ガスにて置換する。チャンバー19全体のガスを酸化性ガスにて置換してもよい。併行して、電源13から電極11に電圧を供給し、電極11,12間に電圧を印加して大気圧放電を生成する。これにより、酸化性ガスがプラズマ化(活性化)され、酸素プラズマ、酸素ラジカル、オゾン等の酸素系活性種が生成される。この結果、酸化性ガスの酸化作用が発現又は促進される。 An oxidizing gas (O 2 + N 2 or O 2 100%) is introduced into the processing space 14 via the gas supply path 28, and the gas in the entire processing space 14 is replaced with the oxidizing gas. The gas in the entire chamber 19 may be replaced with an oxidizing gas. In parallel, a voltage is supplied from the power source 13 to the electrode 11, and a voltage is applied between the electrodes 11 and 12 to generate an atmospheric pressure discharge. As a result, the oxidizing gas is turned into plasma (activated), and oxygen-based active species such as oxygen plasma, oxygen radicals, and ozone are generated. As a result, the oxidizing action of the oxidizing gas is expressed or promoted.
上記酸化作用の発現又は促進のために、酸化性ガスをプラズマ化(活性化)する一方、加熱手段15を停止してもよい。これとは逆に、酸化性ガスをプラズマ化(活性化)せず、加熱手段15で被処理体90を加熱するだけでも上記酸化作用を発現又は促進可能である。この場合、電源13からの電圧供給は行わない。 In order to develop or promote the oxidation action, the heating means 15 may be stopped while the oxidizing gas is turned into plasma (activated). On the contrary, the oxidizing action can be expressed or promoted only by heating the object 90 by the heating means 15 without converting the oxidizing gas into plasma (activation). In this case, voltage supply from the power supply 13 is not performed.
プラズマ化された酸化性ガスが、被処理体90の加熱された導電性金属酸化物膜92に接触する。これにより、導電性金属酸化物の表面や結晶界面で酸化反応(酸化作用)が起きる。この酸化反応によって、導電性金属酸化物膜の表面や結晶界面に存在する原料由来の有機不純物を除去できる。非酸素雰囲気下で有機不純物を除去する場合より加熱温度を低くでき、膜構造が乱れるのを回避できる。さらに、導電性金属酸化物膜に含まれる金属と水酸基の結合体を酸化して導電性金属酸化物膜中の水酸基濃度を減らすことができる。これにより、導電性金属酸化物のキャリア電子の捕獲サイトを減らすことができる。この結果、キャリア電子の移動度を上げることができる。 The oxidized oxidizing gas is brought into contact with the heated conductive metal oxide film 92 of the workpiece 90. Thereby, an oxidation reaction (oxidation action) occurs at the surface of the conductive metal oxide or at the crystal interface. By this oxidation reaction, organic impurities derived from the raw materials present on the surface of the conductive metal oxide film and the crystal interface can be removed. The heating temperature can be made lower than when organic impurities are removed in a non-oxygen atmosphere, and the film structure can be prevented from being disturbed. Further, the concentration of hydroxyl groups in the conductive metal oxide film can be reduced by oxidizing the metal-hydroxyl conjugate contained in the conductive metal oxide film. Thereby, the capture site | part of the carrier electron of an electroconductive metal oxide can be reduced. As a result, the mobility of carrier electrons can be increased.
処理済みの酸化性ガスは、処理空間14から排気路29に排出され、無害化処理を経て大気に放出される。 The treated oxidizing gas is discharged from the treatment space 14 to the exhaust passage 29, and is discharged to the atmosphere through a detoxification process.
[還元性後処理工程]
図3に示すように、酸化性後処理工程の後、還元性後処理工程を行なう。成膜工程及び酸化性後処理工程から引き続いて還元性後処理工程でも処理装置1を用いる。被処理体90は、処理空間14の外部ひいてはチャンバー19の外部に取り出すことなく、電極兼基板支持部12上にそのまま載置しておく。したがって、酸化性後処理工程後、還元性後処理工程までの間、導電性金属酸化物膜92が大気に晒されることはない。これにより、大気中の水分等が導電性金属酸化物に触れて不適な反応を起こすのを防止できる。たとえ大気に晒されたとしても、酸化性後処理工程後、還元性後処理までの間の被処理体90には酸化性後処理時の熱が残っているため、大気中の水分による影響は小さい。さらに、加熱手段15によって、被処理体90を酸化性後処理工程の終了後も加熱し続けることで、大気中の水分による影響をほぼ回避できる。
[Reducing post-treatment process]
As shown in FIG. 3, a reducing post-treatment step is performed after the oxidizing post-treatment step. The processing apparatus 1 is also used in the reducing post-processing step following the film forming step and the oxidizing post-processing step. The workpiece 90 is placed on the electrode / substrate support 12 as it is without being taken out of the processing space 14 and thus outside the chamber 19. Therefore, the conductive metal oxide film 92 is not exposed to the atmosphere after the oxidizing post-treatment process and before the reducing post-treatment process. Thereby, it can prevent that the water | moisture content etc. in air | atmosphere touch an electroconductive metal oxide, and raise | generate an unsuitable reaction. Even if it is exposed to the atmosphere, since the heat during the oxidizing post-treatment remains in the object 90 after the oxidizing post-treatment process and before the reducing post-treatment, the influence of moisture in the atmosphere is not affected. small. Furthermore, by continuing to heat the object 90 after the end of the oxidative post-processing step by the heating means 15, the influence of moisture in the atmosphere can be substantially avoided.
還元性後処理工程では、加熱手段15による被処理体90の加熱温度を好ましくは200℃〜500℃程度に調節する。 In the reducing post-treatment step, the heating temperature of the object 90 to be treated by the heating means 15 is preferably adjusted to about 200 ° C to 500 ° C.
還元性処理工程では、不活性ガス源23をガス供給路28に接続したまま、酸素ガス源24をガス供給路28から切り離し、代わりに、水素ガス源25をガス供給路28に接続する。 In the reducing process, the oxygen gas source 24 is disconnected from the gas supply path 28 while the inert gas source 23 is connected to the gas supply path 28, and instead, the hydrogen gas source 25 is connected to the gas supply path 28.
水素ガス源25の水素(H2)を不活性ガス源23の窒素(N2)にて希釈し、還元性後処理用の還元性ガス(H2+N2)を得る。還元性ガス中の水素濃度は、H2/(H2+N2)=0.5体積%以上の範囲で設定できる。処理空間14から酸素を完全に除外できる場合、還元性ガスが水素100%であってもよく、その場合、不活性ガス源23からの窒素供給量は0である。還元性ガス中の水素は、0.5体積%〜10体積%程度が好ましく、1体積%〜5体積%程度がより好ましい。 Hydrogen (H 2 ) from the hydrogen gas source 25 is diluted with nitrogen (N 2 ) from the inert gas source 23 to obtain a reducing gas (H 2 + N 2 ) for reducing post-treatment. The hydrogen concentration in the reducing gas can be set in a range of H 2 / (H 2 + N 2 ) = 0.5% by volume or more. When oxygen can be completely excluded from the processing space 14, the reducing gas may be 100% hydrogen, and in that case, the amount of nitrogen supplied from the inert gas source 23 is zero. The hydrogen in the reducing gas is preferably about 0.5% to 10% by volume, more preferably about 1% to 5% by volume.
還元性ガス(H2+N2又はH2100%)を、ガス供給路28を経て、処理空間14に導入し、処理空間14全体のガスを還元性ガスにて置換する。チャンバー19全体のガスを還元性ガスにて置換してもよい。併行して、電源13から電極11に電圧を供給し、電極11,12間に電圧を印加して大気圧放電を生成する。これにより、還元性ガスがプラズマ化(活性化)され、水素プラズマ、水素ラジカル等の水素系活性種が生成される。この結果、還元性ガスの還元作用が発現又は促進される。 A reducing gas (H 2 + N 2 or H 2 100%) is introduced into the processing space 14 via the gas supply path 28, and the gas in the entire processing space 14 is replaced with the reducing gas. The gas in the entire chamber 19 may be replaced with a reducing gas. In parallel, a voltage is supplied from the power source 13 to the electrode 11, and a voltage is applied between the electrodes 11 and 12 to generate an atmospheric pressure discharge. As a result, the reducing gas is turned into plasma (activated), and hydrogen-based active species such as hydrogen plasma and hydrogen radicals are generated. As a result, the reducing action of the reducing gas is expressed or promoted.
上記還元作用の発現又は促進のために、還元性ガスをプラズマ化(活性化)せず、加熱手段15で被処理体90を加熱するだけでもよい。この場合、電源13からの電圧供給は行わない。これとは逆に、還元性ガスをプラズマ化(活性化)する一方、加熱手段15を停止してもよい。 In order to develop or promote the reducing action, the reducing gas may not be converted into plasma (activated) and the object to be processed 90 may be heated only by the heating means 15. In this case, voltage supply from the power supply 13 is not performed. On the contrary, the heating means 15 may be stopped while the reducing gas is turned into plasma (activated).
上記の還元性ガスが、被処理体90の加熱された導電性金属酸化物膜92に接触する。これにより、導電性金属酸化物の表面や結晶界面で還元反応(還元作用)が起きる。この還元反応によって、導電性金属酸化物膜92の表面を安定化でき、空気中の酸素や水分が導電性金属酸化物膜92の表面や結晶粒界に侵入するのを防止して、キャリア電子の捕獲サイトができるのを防止できる。また、酸素空孔を増加させることができ、キャリア電子を充分に確保できる。
この結果、導電性金属酸化薄膜の電気抵抗率を低下させることができる。更には、導電性金属酸化物膜の電気抵抗率の経時上昇を低減することができる。
The reducing gas comes into contact with the heated conductive metal oxide film 92 of the workpiece 90. Thereby, a reduction reaction (reduction action) occurs at the surface of the conductive metal oxide or at the crystal interface. By this reduction reaction, the surface of the conductive metal oxide film 92 can be stabilized, and oxygen and moisture in the air can be prevented from entering the surface of the conductive metal oxide film 92 and the crystal grain boundary, thereby generating carrier electrons. Can prevent the capture site of. In addition, oxygen vacancies can be increased and sufficient carrier electrons can be secured.
As a result, the electrical resistivity of the conductive metal oxide thin film can be reduced. Furthermore, an increase in electrical resistivity of the conductive metal oxide film with time can be reduced.
処理済みの還元性ガスは、処理空間14から排気路29に排出され、無害化処理を経て大気に放出される。 The treated reducing gas is discharged from the processing space 14 to the exhaust passage 29, and is discharged to the atmosphere through a detoxification process.
還元性後処理工程の終了後、被処理体90をチャンバー19から取り出す。導電性金属酸化物膜92の表面が安定化されているため、その後、大気に晒しても、導電性金属酸化物膜92が劣化するのを防止できる。 After completion of the reducing post-treatment process, the object 90 is removed from the chamber 19. Since the surface of the conductive metal oxide film 92 is stabilized, it is possible to prevent the conductive metal oxide film 92 from being deteriorated even when exposed to the air thereafter.
本発明は、上記実施形態に限定されず、その要旨の範囲内において種々の態様を採用できる。
例えば、成膜兼後処理装置1のプラズマ化手段10は、被処理体90が配置される処理空間14と、電極11,12間のプラズマ空間とが同一であり、被処理体90をプラズマ空間内に配置して、プラズマを被処理体90に直接的に接触させる所謂ダイレクト方式であるが、処理空間とプラズマ空間を分離し、プラズマ空間に処理空間を連ね、プラズマ空間からプラズマガスを噴出して処理空間の被処理体90に接触させる所謂リモート方式のプラズマ化手段を用いてもよい。この場合、基板支持手段を電極12とは別に設ける。
プラズマ化手段10は、大気圧近傍下でプラズマ放電を生成するものであるが、真空下でプラズマ放電を生成するものであってもよい。
酸化性ガスまたは還元性ガスの活性化手段は、プラズマ化手段に代えて、マイクロ波を照射してガスを活性化するマイクロ波照射手段であってもよく、紫外線を照射してガスを活性化する紫外線照射手段であってもよい。
酸化性ガスの酸化性成分としては、酸素(O2)やオゾン(O3)に限られず、酸化作用を奏するものであればよく、或いは酸素原子を含有するガスであればよく、亜酸化窒素(N2O)等を用いてもよい。
還元性ガスの還元性成分としては、水素(H2)に限られず、還元作用を奏するものであればよく、一酸化炭素(CO)、硫化水素(H2S)、酸化硫黄(SOx)、ホルムアルデヒド等を用いてもよい。
不活性ガス源23として、窒素に代えて、アルゴン、ヘリウム等の希ガスを用いてもよい。
The present invention is not limited to the above embodiment, and various modes can be adopted within the scope of the gist.
For example, in the plasma forming means 10 of the film forming and post-processing apparatus 1, the processing space 14 in which the object to be processed 90 is disposed and the plasma space between the electrodes 11 and 12 are the same, and the object to be processed 90 is placed in the plasma space. This is a so-called direct method in which the plasma is in direct contact with the workpiece 90, but the processing space and the plasma space are separated, the processing space is connected to the plasma space, and plasma gas is ejected from the plasma space. In other words, so-called remote-type plasmarizing means for contacting the target object 90 in the processing space may be used. In this case, the substrate support means is provided separately from the electrode 12.
The plasmatizing means 10 generates a plasma discharge near atmospheric pressure, but may generate a plasma discharge under vacuum.
The oxidizing gas or reducing gas activating means may be a microwave irradiating means for activating the gas by irradiating microwaves instead of the plasma generating means, and activating the gas by irradiating with ultraviolet rays. It may be an ultraviolet irradiation means.
The oxidizing component of the oxidizing gas is not limited to oxygen (O 2 ) or ozone (O 3 ), and may be any that exhibits an oxidizing action, or any gas containing oxygen atoms, such as nitrous oxide. (N 2 O) or the like may be used.
The reducing component of the reducing gas is not limited to hydrogen (H 2 ), but may be anything that exhibits a reducing action, such as carbon monoxide (CO), hydrogen sulfide (H 2 S), sulfur oxide (SOx), Formaldehyde or the like may be used.
As the inert gas source 23, a rare gas such as argon or helium may be used instead of nitrogen.
成膜工程を行う装置と後処理工程を行う装置が互いに別になっていてもよい。
酸化性後処理工程を行う装置と還元性後処理工程を行う装置が互いに別になっていてもよい。
導電性金属酸化物膜の成膜方法として、大気圧プラズマCVDに代えて、真空プラズマCVDを適用してもよく、熱CVDを適用してもよい。CVD法に限られず、スプレー法やゾルゲル法等によって導電性金属酸化物膜を成膜してもよい。スプレー法では、有機金属化合物を含む原料液を霧状にして基板に吹き付け、加熱して結晶化させる。ゾルゲル法では、有機金属化合物を含む原料液を基板に塗布し、ゾルゲル反応を起こさせて結晶化させる。
導電性金属酸化物膜に含まれる金属は、亜鉛及びガリウムに限られず、インジウム、スズ、チタン、カドミウム、アルミニウム、アンチモン等であってもよい。導電性金属酸化物膜は、酸化亜鉛系に限られず、ITO、酸化スズ、酸化チタン、酸化カドミウム、酸化アルミニウム、酸化アンチモン等であってもよい。成膜すべき膜の成分に応じて有機金属化合物原料を適宜選択する。
本発明の処理対象は、炭素を含む金属酸化物膜であればよく、有機金属化合物を原料に成膜された膜に限定されない。
The apparatus for performing the film forming process and the apparatus for performing the post-processing process may be separated from each other.
The apparatus that performs the oxidizing post-treatment process and the apparatus that performs the reducing post-treatment process may be separate from each other.
As a method for forming the conductive metal oxide film, vacuum plasma CVD may be applied instead of atmospheric pressure plasma CVD, or thermal CVD may be applied. The conductive metal oxide film may be formed by a spray method or a sol-gel method without being limited to the CVD method. In the spray method, a raw material liquid containing an organometallic compound is sprayed on a substrate and crystallized by heating. In the sol-gel method, a raw material liquid containing an organometallic compound is applied to a substrate, and a sol-gel reaction is caused to crystallize.
The metal contained in the conductive metal oxide film is not limited to zinc and gallium, and may be indium, tin, titanium, cadmium, aluminum, antimony, or the like. The conductive metal oxide film is not limited to the zinc oxide type, and may be ITO, tin oxide, titanium oxide, cadmium oxide, aluminum oxide, antimony oxide, or the like. An organic metal compound raw material is appropriately selected according to the components of the film to be formed.
The object to be treated of the present invention may be a metal oxide film containing carbon, and is not limited to a film formed using an organometallic compound as a raw material.
本発明の実施例を説明するが、本発明はこれに限定されるものではない。
[成膜工程]
図1に示す成膜兼後処理装置1を用いて成膜を行なった。基板91として、コーニング社製の無アルカリガラス(#1737)を用いた。キャリアガスの窒素(N2)と酸素(O2)の流量比は、N2:O2=1:5.5であった。このキャリアガスに亜鉛原料の亜鉛アセチルアセトネート[Zn(acac)2]とガリウム原料のガリウムアセチルアセトネート[Ga(acac)2]を気化させて混合し、成膜用ガスを得た。この成膜用ガスを大気圧プラズマ空間14に導入してプラズマ化して基板91に接触させた。基板温度は、300℃とした。これにより、基板91の表面に薄膜を気相成長させた。
Examples of the present invention will be described, but the present invention is not limited thereto.
[Film formation process]
Film formation was performed using the film formation and post-treatment apparatus 1 shown in FIG. As the substrate 91, non-alkali glass (# 1737) manufactured by Corning was used. The flow rate ratio of nitrogen (N 2 ) and oxygen (O 2 ) as the carrier gas was N 2 : O 2 = 1: 5.5. The carrier gas was vaporized and mixed with zinc acetylacetonate [Zn (acac) 2 ] as a zinc raw material and gallium acetylacetonate [Ga (acac) 2 ] as a gallium raw material to obtain a film forming gas. This film forming gas was introduced into the atmospheric pressure plasma space 14 to be converted into plasma and brought into contact with the substrate 91. The substrate temperature was 300 ° C. Thereby, the thin film was vapor-phase grown on the surface of the substrate 91.
得られた薄膜の結晶性、組成、電気抵抗率を測定した。結晶性はX線回折法により測定した。その結果、図4に示すように、得られた薄膜が結晶性酸化亜鉛系膜であることが確認された。図4は、酸化亜鉛の(002)面由来のピークを拡大したものである。X線光電子分光法により膜の組成を測定したところ、膜には、亜鉛元素比でGa/Zn=1〜5wt%と推定される量のガリウムが含まれていた。さらに、膜には3%程度の炭素が含まれていた。電気抵抗率の測定は、四端針法により行なった(以下の実施例及び比較例において同様)。
この成膜工程終了段階を比較例1とする。すなわち、比較例1のサンプルは、成膜後、酸化性後処理及び還元性後処理を行なっていない。表1において、比較例1の電気抵抗率を100とした。
The crystallinity, composition, and electrical resistivity of the obtained thin film were measured. Crystallinity was measured by X-ray diffraction method. As a result, as shown in FIG. 4, it was confirmed that the obtained thin film was a crystalline zinc oxide film. FIG. 4 is an enlarged view of a peak derived from the (002) plane of zinc oxide. When the composition of the film was measured by X-ray photoelectron spectroscopy, the film contained an amount of gallium estimated to be Ga / Zn = 1 to 5 wt% in terms of the zinc element ratio. Furthermore, the film contained about 3% carbon. The electrical resistivity was measured by the four-end needle method (the same applies to the following examples and comparative examples).
This film formation process end stage is referred to as Comparative Example 1. That is, the sample of Comparative Example 1 is not subjected to an oxidizing post-treatment and a reducing post-treatment after film formation. In Table 1, the electrical resistivity of Comparative Example 1 was set to 100.
[酸化性後処理工程]
次に、上記の膜に対し酸化性後処理を施した。酸化性後処理は、大気圧プラズマ処理により行なった。酸化性ガスとして、100%酸素(O2)ガスを用いた。この酸化性ガスを電極11,12間の処理空間14に導入してプラズマ化し、膜に接触させた。基板温度は、300℃とした。電極11,12間への印加電圧は、Vpp=6kVとした。印加電圧の周波数は、180kHzとした。電極11,12間のギャップは、1.0mmとした。
[Oxidative post-treatment process]
Next, an oxidative post-treatment was performed on the above film. Oxidative post-treatment was performed by atmospheric pressure plasma treatment. As the oxidizing gas, 100% oxygen (O 2 ) gas was used. This oxidizing gas was introduced into the processing space 14 between the electrodes 11 and 12 to be turned into plasma and brought into contact with the film. The substrate temperature was 300 ° C. The applied voltage between the electrodes 11 and 12 was Vpp = 6 kV. The frequency of the applied voltage was 180 kHz. The gap between the electrodes 11 and 12 was 1.0 mm.
酸化性後処理後の膜の成分構成をX線光電子分光法により測定し、成膜後酸化性後処理前と比較した。その結果を図5に示す。図5は、酸素の1s軌道由来のピークを拡大したものである。同図(a)は、成膜後酸化性後処理前であり、同図(b)は、酸化性後処理後である。図中の斜線部が導電性金属酸化物膜中の水酸基を示すピークである。酸化性後処理を行うことで膜中の水酸基濃度が減少したことが確認された。成膜後酸化性後処理工程前の膜中の炭素含有量は3%であったのに対し、酸化性後処理工程後の膜中の炭素含有量は1%であった。 The component composition of the film after the oxidative post-treatment was measured by X-ray photoelectron spectroscopy and compared with that after the oxidative post-treatment and before the oxidative post-treatment. The result is shown in FIG. FIG. 5 is an enlarged view of the peak derived from the 1s orbital of oxygen. FIG. 4A shows the state after the film formation and before the oxidation post-treatment, and FIG. 4B shows the state after the oxidation post-treatment. The hatched portion in the figure is a peak indicating a hydroxyl group in the conductive metal oxide film. It was confirmed that the hydroxyl group concentration in the film was reduced by performing the oxidizing post-treatment. The carbon content in the film after the film formation and before the oxidative post-treatment process was 3%, whereas the carbon content in the film after the oxidative post-treatment process was 1%.
[還元性後処理工程]
次に、上記の膜に対し還元性後処理を施した。還元性後処理は、熱処理により行なった。加熱手段15によって基板温度を500℃に調節した。この基板に還元性ガスを接触させた。還元性ガスとして、窒素95vol%及び水素5vol%の混合ガスを用いた。電源13は停止し、還元性ガスのプラズマ化はしなかった。
[Reducing post-treatment process]
Next, the film was subjected to a reducing post-treatment. The reducing post-treatment was performed by heat treatment. The substrate temperature was adjusted to 500 ° C. by the heating means 15. A reducing gas was brought into contact with this substrate. As the reducing gas, a mixed gas of 95 vol% nitrogen and 5 vol% hydrogen was used. The power source 13 was stopped and the reducing gas was not converted into plasma.
還元性後処理後、膜の電気抵抗率を測定した。結果は表1に記載の通りであり、電気抵抗率を比較例1(成膜後酸化性後処理前)の2%にまで大幅に低減できた。 After the reducing post-treatment, the electrical resistivity of the film was measured. The results are as shown in Table 1, and the electrical resistivity could be greatly reduced to 2% of Comparative Example 1 (after film formation and before oxidative post-treatment).
実施例2では、実施例1と同一内容、同一条件で成膜工程を行なった後、酸化性後処理として熱処理を行なった。加熱手段15によって基板温度を300℃に調節した。この基板に酸化性ガスを接触させた。酸化性ガスとして、100%酸素(O2)ガスを用いた。処理時間は5分間とした。電源13は停止し、酸化性ガスのプラズマ化はしなかった。
続いて、実施例1と同一内容、同一条件の還元後処理工程を行なった。すなわち、還元性ガスとして窒素95vol%及び水素5vol%の混合ガスを用い、基板温度を500℃にして、膜の熱処理を行った。
その後、膜の電気抵抗率を測定したところ、表1に示すように、電気抵抗率を比較例1(成膜後酸化性後処理前)の23%にまで低減できたことが確認された。
実施例1、2の結果から、大気圧プラズマによる酸化性後処理が熱処理のみによる酸化性後処理よりも膜の導電率を高くできることが判明した。
In Example 2, after performing the film forming process under the same contents and the same conditions as in Example 1, heat treatment was performed as an oxidizing post-treatment. The substrate temperature was adjusted to 300 ° C. by the heating means 15. An oxidizing gas was brought into contact with this substrate. As the oxidizing gas, 100% oxygen (O 2 ) gas was used. The treatment time was 5 minutes. The power source 13 was stopped and the oxidizing gas was not converted into plasma.
Subsequently, a post-reduction treatment step having the same contents and the same conditions as in Example 1 was performed. That is, the film was heat-treated by using a mixed gas of 95 vol% nitrogen and 5 vol% hydrogen as the reducing gas and setting the substrate temperature to 500 ° C.
Then, when the electrical resistivity of the film was measured, as shown in Table 1, it was confirmed that the electrical resistivity could be reduced to 23% of Comparative Example 1 (after film formation and before oxidative post-treatment).
From the results of Examples 1 and 2, it was found that the oxidative post-treatment using atmospheric pressure plasma can increase the film conductivity than the oxidative post-treatment using only heat treatment.
実施例3では、成膜工程を実施例1と同一内容、同一条件で行なった。さらに、酸化性後処理工程を実施例1と同一内容、同一条件で行なった。すなわち、酸化性ガスとして100%酸素(O2)ガスを用い、導電性金属酸化物膜を大気圧プラズマ処理した。基板温度は300℃とした。その後、還元性後処理工程を行った。実施例3の還元性後処理工程では、還元性ガス組成を水素0.5vol%、窒素99.5vol%とし、それ以外の条件は実施例1の還元性後処理工程と同一とした。すなわち、上記組成の還元性ガスを用い、基板温度を500℃にして膜を熱処理した。
その後、膜の電気抵抗率を測定したところ、表1に示すように、電気抵抗率を比較例1(成膜後酸化性後処理前)の6%にまで低減できたことが確認された。
実施例1〜3より、酸化性後処理を大気圧プラズマにて行なうと、還元性後処理の水素濃度が低くても、酸化性後処理を熱処理のみにて行なうよりも膜の導電率を高くできることが判明した。
In Example 3, the film forming process was performed under the same contents and the same conditions as in Example 1. Furthermore, the oxidizing post-treatment process was performed under the same conditions and conditions as in Example 1. That is, 100% oxygen (O 2 ) gas was used as the oxidizing gas, and the conductive metal oxide film was subjected to atmospheric pressure plasma treatment. The substrate temperature was 300 ° C. Thereafter, a reducing post-treatment step was performed. In the reducing post-treatment step of Example 3, the reducing gas composition was 0.5 vol% hydrogen and 99.5 vol% nitrogen, and the other conditions were the same as those of the reducing post-treatment step of Example 1. That is, using a reducing gas having the above composition, the film was heat-treated at a substrate temperature of 500 ° C.
Then, when the electrical resistivity of the film was measured, as shown in Table 1, it was confirmed that the electrical resistivity could be reduced to 6% of Comparative Example 1 (after film formation and before oxidative post-treatment).
From Examples 1 to 3, when the oxidizing post-treatment is performed by atmospheric pressure plasma, the conductivity of the film is higher than when the oxidizing post-treatment is performed only by heat treatment even if the hydrogen concentration of the reducing post-treatment is low. It turns out that you can.
[比較例2]
比較例2では、成膜後の後処理として大気圧プラズマ処理による酸化性後処理工程のみを実行した。すなわち、実施例1と同一内容、同一条件で成膜工程を行ない、その後、実施例1と同一内容、同一条件の酸化性後処理工程(酸素100%、基板温度300℃の大気圧プラズマ処理)を行ない、かつ還元性後処理を省略した。その結果、表1に示すように、膜の電気抵抗率が比較例1(成膜後酸化性後処理前)の207%に増大した。
[Comparative Example 2]
In Comparative Example 2, only an oxidative post-treatment step by atmospheric pressure plasma treatment was performed as a post-treatment after film formation. That is, the film forming process is performed under the same contents and the same conditions as in Example 1, and then the oxidizing post-treatment process (at 100% oxygen and 300 ° C. atmospheric pressure plasma treatment) having the same contents and the same conditions as in Example 1. And reductive post-treatment was omitted. As a result, as shown in Table 1, the electrical resistivity of the film increased to 207% of Comparative Example 1 (after film formation and before oxidative post-treatment).
[比較例3]
比較例3では、成膜後の後処理として熱処理による酸化性後処理工程のみを実行した。すなわち、実施例2と同一内容、同一条件で成膜工程を行ない、その後、実施例2と同一内容、同一条件の酸化性後処理工程(酸素100%、基板温度300℃の熱処理)を行ない、かつ還元性後処理を省略した。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の104%になった。
実施例1、2及び比較例2、3より、酸化性後処理のみでは膜の導電性の改善効果が不十分又は逆効果であり、酸化性後処理と還元性後処理とを組み合わせることで導電性の改善効果を奏し得ることが確認された。
[Comparative Example 3]
In Comparative Example 3, only an oxidative post-treatment step by heat treatment was performed as a post-treatment after film formation. That is, the film forming step is performed under the same contents and the same conditions as in Example 2, and then the oxidative post-processing step (heat treatment at 100% oxygen and the substrate temperature of 300 ° C.) of the same contents and the same conditions as in Example 2 is performed. And the reducing post-treatment was omitted. As a result, as shown in Table 1, the electrical resistivity of the film was 104% of Comparative Example 1 (after film formation and before oxidative post-treatment).
From Examples 1 and 2 and Comparative Examples 2 and 3, the effect of improving the conductivity of the film is insufficient or adversely affected only by the oxidizing post-treatment, and the conductivity is obtained by combining the oxidizing post-treatment and the reducing post-treatment. It was confirmed that the effect of improving sex could be achieved.
[比較例4]
比較例4では、成膜後の後処理として熱処理による還元性後処理工程のみを実行した。すなわち、実施例1と同一内容、同一条件で成膜工程を行ない、その後、実施例1と同一内容、同一条件の還元性後処理工程(水素5vol%、窒素95vol%の混合ガス雰囲気で基板温度500℃の熱処理)を行なった。酸化性後処理工程は行わなかった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の61%になった。
[Comparative Example 4]
In Comparative Example 4, only a reducing post-treatment process by heat treatment was performed as a post-treatment after film formation. That is, the film forming process is performed under the same contents and the same conditions as in Example 1, and then the reducing post-treatment process with the same contents and the same conditions as in Example 1 (substrate temperature in a mixed gas atmosphere of 5 vol% hydrogen and 95 vol% nitrogen). (Heat treatment at 500 ° C.). An oxidative post-treatment step was not performed. As a result, as shown in Table 1, the electrical resistivity of the film was 61% of Comparative Example 1 (after film formation and before oxidative post-treatment).
[比較例5]
比較例5では、成膜後の後処理として大気圧プラズマ処理による還元性後処理工程のみを実行した。すなわち、実施例1と同一内容、同一条件で成膜工程を行ない、その後、還元性ガスをプラズマ化して基板に接触させた。還元性ガスとして、窒素95vol%、水素5vol%の混合ガスを用いた。電極11,12間への印加電圧及び周波数並びに電極11,12間のギャップは、実施例1の酸化性後処理と同じであった。基板温度は、300℃とした。酸化性後処理は行わなかった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の84%になった。
比較例4、5は従来から知られている後処理方法であるが、本発明に係る実施例1、2と比べ、電気抵抗率の低下効果が小さかった。
[Comparative Example 5]
In Comparative Example 5, only the reducing post-treatment step by atmospheric pressure plasma treatment was performed as post-treatment after film formation. That is, the film forming process was performed under the same contents and the same conditions as in Example 1, and then the reducing gas was turned into plasma and brought into contact with the substrate. As a reducing gas, a mixed gas of 95 vol% nitrogen and 5 vol% hydrogen was used. The applied voltage and frequency between the electrodes 11 and 12 and the gap between the electrodes 11 and 12 were the same as in the oxidizing post-treatment of Example 1. The substrate temperature was 300 ° C. No oxidative post-treatment was performed. As a result, as shown in Table 1, the electrical resistivity of the film was 84% of Comparative Example 1 (after film formation and before oxidative post-treatment).
Comparative Examples 4 and 5 are conventionally known post-processing methods, but the effect of lowering the electrical resistivity was small compared to Examples 1 and 2 according to the present invention.
[比較例6]
比較例6では、成膜後の後処理の順番を実施例1に対し入れ替えた。すなわち、実施例1と同一内容、同一条件で成膜工程を行なった後、実施例1と同一内容、同一条件の還元性後処理工程(水素5vol%、窒素95vol%の混合ガス雰囲気で基板温度500℃の熱処理)を行なった。その後、実施例1と同一内容、同一条件の酸化性後処理工程(酸素100%、基板温度300℃の大気圧プラズマ処理)を行なった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の444%にまで大幅に上昇した。
これにより、膜の導電性を改善するには、後処理の順序が重要であり、先ず酸化性後処理を行い、次に還元性後処理を行うべきことが確認された。
[Comparative Example 6]
In Comparative Example 6, the order of post-processing after film formation was changed with respect to Example 1. That is, after performing the film forming process under the same contents and the same conditions as those in Example 1, a reducing post-treatment process having the same contents and the same conditions as in Example 1 (substrate temperature in a mixed gas atmosphere of 5 vol% hydrogen and 95 vol% nitrogen) (Heat treatment at 500 ° C.). Thereafter, an oxidative post-treatment step (atmospheric pressure plasma treatment with oxygen of 100% and substrate temperature of 300 ° C.) having the same contents and the same conditions as in Example 1 was performed. As a result, as shown in Table 1, the electrical resistivity of the film significantly increased to 444% of Comparative Example 1 (after film formation and before oxidative post-treatment).
Thereby, in order to improve the electroconductivity of a film | membrane, the order of post-processing was important, and it was confirmed that an oxidizing post-treatment should be performed first and then a reducing post-treatment should be performed.
[比較例7]
比較例7では、実施例1と同一内容、同一条件で成膜工程を行なった後、実施例1と同一内容、同一条件の酸化性後処理工程(酸素100%、基板温度300℃の大気圧プラズマ処理)を行なった。その後、窒素100%の雰囲気下で膜の熱処理を行った。熱処理の基板温度は500℃とした。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の34%になった。
実施例1及び比較例7より、酸化性後処理に続く熱処理では、雰囲気中に水素等の還元性成分を含ませたほうが、膜の導電率をより高くできることが確認された。
[Comparative Example 7]
In Comparative Example 7, after performing the film forming process under the same contents and the same conditions as in Example 1, an oxidizing post-treatment process (at 100% oxygen and atmospheric pressure with a substrate temperature of 300 ° C.) having the same contents and the same conditions as in Example 1. Plasma treatment) was performed. Thereafter, the film was heat-treated in an atmosphere of 100% nitrogen. The substrate temperature for the heat treatment was 500 ° C. As a result, as shown in Table 1, the electrical resistivity of the film was 34% of Comparative Example 1 (after film formation and before oxidative post-treatment).
From Example 1 and Comparative Example 7, it was confirmed that in the heat treatment subsequent to the oxidative post-treatment, the conductivity of the film can be further increased if a reducing component such as hydrogen is included in the atmosphere.
[比較例8]
比較例8では、実施例1と同一内容、同一条件で成膜工程を行なった後、100%の窒素ガスをプラズマ化し、膜を大気圧プラズマ処理した。基板温度は300℃とした。大気圧プラズマ処理の条件は、ガス組成を除き実施例1と同一とした。還元性後処理は行わなかった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の106%になった。
[Comparative Example 8]
In Comparative Example 8, after performing the film forming process under the same contents and the same conditions as in Example 1, 100% nitrogen gas was converted into plasma, and the film was subjected to atmospheric pressure plasma treatment. The substrate temperature was 300 ° C. The conditions for atmospheric pressure plasma treatment were the same as in Example 1 except for the gas composition. No reducing post-treatment was performed. As a result, as shown in Table 1, the electrical resistivity of the film was 106% of Comparative Example 1 (after film formation and before oxidative post-treatment).
[比較例9]
比較例9では、実施例1と同一内容、同一条件で成膜工程を行なった後、酸素5%、残部窒素からなる酸化性ガスをプラズマ化し、膜を大気圧プラズマ処理した。基板温度は300℃とした。酸化性後処理の条件は、ガス組成を除き実施例1と同一とした。還元性後処理は行わなかった。その後、膜の電気抵抗率を測定した。その結果、表1に示すように、電気抵抗率は比較例1(成膜後酸化性後処理前)の128%になった。
[Comparative Example 9]
In Comparative Example 9, after performing the film forming step under the same contents and the same conditions as in Example 1, the oxidizing gas consisting of 5% oxygen and the balance nitrogen was turned into plasma, and the film was subjected to atmospheric pressure plasma treatment. The substrate temperature was 300 ° C. The conditions for the oxidizing post-treatment were the same as in Example 1 except for the gas composition. No reducing post-treatment was performed. Thereafter, the electrical resistivity of the film was measured. As a result, as shown in Table 1, the electrical resistivity was 128% of Comparative Example 1 (after film formation and before oxidative post-treatment).
[比較例10]
比較例10では、実施例1と同一内容、同一条件で成膜工程を行なった後、酸素27%、残部窒素からなる酸化性ガスをプラズマ化し、膜を大気圧プラズマ処理した。基板温度は300℃とした。酸化性後処理の条件は、ガス組成を除き実施例1と同一とした。還元性後処理は行わなかった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の110%になった。
[Comparative Example 10]
In Comparative Example 10, the film forming process was performed under the same conditions and the same conditions as in Example 1, and then an oxidizing gas composed of 27% oxygen and the balance nitrogen was turned into plasma, and the film was subjected to atmospheric pressure plasma treatment. The substrate temperature was 300 ° C. The conditions for the oxidizing post-treatment were the same as in Example 1 except for the gas composition. No reducing post-treatment was performed. As a result, as shown in Table 1, the electrical resistivity of the film was 110% of Comparative Example 1 (after film formation and before oxidative post-treatment).
[比較例11]
比較例11では、実施例1と同一内容、同一条件で成膜工程を行なった後、酸素73%、残部窒素からなる酸化性ガスをプラズマ化し、膜を大気圧プラズマ処理した。基板温度は300℃とした。酸化性後処理の条件は、ガス組成を除き実施例1と同一とした。還元性後処理は行わなかった。その結果、表1に示すように、膜の電気抵抗率は比較例1(成膜後酸化性後処理前)の64%になった。
比較例8〜11より、窒素プラズマ処理のみ又は酸化性後処理のみでは膜の導電性の改善効果が不十分又は逆効果であることが確認された。
[Comparative Example 11]
In Comparative Example 11, the film forming process was performed under the same contents and the same conditions as in Example 1, and then an oxidizing gas composed of 73% oxygen and the balance nitrogen was converted into plasma, and the film was subjected to atmospheric pressure plasma treatment. The substrate temperature was 300 ° C. The conditions for the oxidizing post-treatment were the same as in Example 1 except for the gas composition. No reducing post-treatment was performed. As a result, as shown in Table 1, the electrical resistivity of the film was 64% of Comparative Example 1 (after film formation and before oxidative post-treatment).
From Comparative Examples 8 to 11, it was confirmed that the effect of improving the conductivity of the film was insufficient or adversely affected only by nitrogen plasma treatment or only by oxidizing post-treatment.
以上の実施例及び比較例の結果を表1にまとめる。表1において、成膜後、最初に行なった後処理内容を「後処理1」の欄に記し、次に行なった後処理内容を「後処理2」の欄に記す。本発明の二段階の後処理を施すことにより、導電性金属酸化物の導電性を大幅に改善できることが確認された。
更に、比較例1に相当するサンプルすなわち後処理を一切施さなかったサンプルと、実施例1のサンプルについて、大気雰囲気下で2週間放置した後、これらサンプルの電気抵抗率を測定した。結果を表2に示す。比較例1相当のサンプルにおいては、電気抵抗率が当初(成膜直後)の278%に上昇した。これに対し、実施例1のサンプルの電気抵抗率は、当初(成膜後の酸化性後処理及び還元性後処理直後)の125%になった。本発明による後処理工程を施すことによって、電気抵抗率の経時上昇を低減できることが確認された。
本発明は、例えば、ディスプレイや太陽電池の透明電極の製造分野に適用できる。 The present invention can be applied, for example, to the field of manufacturing transparent electrodes for displays and solar cells.
1 成膜兼後処理装置
10 処理部(プラズマ化手段、活性化手段)
11 上側電極
12 下側電極兼基板支持部
13 電源
14 処理空間、プラズマ空間
15 加熱手段
19 チャンバー
20 ガス供給系
21 気化器(亜鉛含有有機金属化合物源)
22 気化器(ガリウム含有有機金属化合物源)
23 不活性ガス源
24 酸素ガス源(酸化性成分源)
25 水素ガス源(還元性成分源)
28 ガス供給路
29 排気路
DESCRIPTION OF SYMBOLS 1 Film-forming and post-processing apparatus 10 Processing part (Plasmaization means, activation means)
DESCRIPTION OF SYMBOLS 11 Upper electrode 12 Lower electrode and board | substrate support part 13 Power supply 14 Processing space, plasma space 15 Heating means 19 Chamber 20 Gas supply system 21 Vaporizer (zinc containing organometallic compound source)
22 Vaporizer (Gallium-containing organometallic compound source)
23 Inert gas source 24 Oxygen gas source (oxidizing component source)
25 Hydrogen gas source (reducing component source)
28 Gas supply passage 29 Exhaust passage
Claims (9)
前記導電性金属酸化物膜に酸化作用を有する酸化性ガスを接触させる酸化性後処理工程と、
前記酸化性後処理工程後の導電性金属酸化物膜に還元作用を有する還元性ガスを接触させる還元性後処理工程と、
を含むことを特徴とする導電性金属酸化物膜の後処理方法。 A post-treatment method for forming a conductive metal oxide containing carbon and then performing the process on the conductive metal oxide film,
An oxidizing post-treatment step in which an oxidizing gas having an oxidizing action is brought into contact with the conductive metal oxide film;
A reducing post-treatment step of bringing a reducing gas having a reducing action into contact with the conductive metal oxide film after the oxidizing post-treatment step;
A post-treatment method for a conductive metal oxide film, comprising:
(a)基板を処理空間内に支持する支持部と、
(b)前記処理空間と同一の、又は前記処理空間に連なるプラズマ空間を形成する電極を含むプラズマ化手段と、
(c)前記基板を加熱する加熱手段と、
(d)前記導電性金属酸化物の原料を含む成膜用ガスと、前記導電性金属酸化物膜に対し酸化作用を有する酸化性ガスと、前記導電性金属酸化物膜に対し還元作用を有する還元性ガスとのうち1つを選択して、前記プラズマ空間に供給し、更には前記処理空間に供給するガス供給系と、
を備え、前記選択が、前記成膜用ガス、前記酸化性ガス、前記還元性ガスの順になされることを特徴とする成膜兼後処理装置。 An apparatus for forming a conductive metal oxide containing carbon and performing post-treatment after film formation,
(A) a support for supporting the substrate in the processing space;
(B) Plasmaizing means including an electrode that forms a plasma space that is the same as or continuous with the processing space;
(C) heating means for heating the substrate;
(D) A film forming gas containing the conductive metal oxide raw material, an oxidizing gas having an oxidizing action on the conductive metal oxide film, and a reducing action on the conductive metal oxide film A gas supply system that selects one of the reducing gases, supplies the plasma space, and supplies the processing space;
The film forming and post-processing apparatus is characterized in that the selection is performed in the order of the film forming gas, the oxidizing gas, and the reducing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010058892A JP2011029148A (en) | 2009-06-23 | 2010-03-16 | Post-treatment method and deposition/post-treatment device for conductive metal oxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009149115 | 2009-06-23 | ||
JP2010058892A JP2011029148A (en) | 2009-06-23 | 2010-03-16 | Post-treatment method and deposition/post-treatment device for conductive metal oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011029148A true JP2011029148A (en) | 2011-02-10 |
Family
ID=43637642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010058892A Pending JP2011029148A (en) | 2009-06-23 | 2010-03-16 | Post-treatment method and deposition/post-treatment device for conductive metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011029148A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129701A1 (en) * | 2012-03-02 | 2013-09-06 | 独立行政法人科学技術振興機構 | Method for forming electroconductive film |
KR101811927B1 (en) | 2015-11-10 | 2017-12-26 | 군산대학교산학협력단 | A method for improving conductivity of azo film |
CN116490055A (en) * | 2023-04-27 | 2023-07-25 | 本源量子计算科技(合肥)股份有限公司 | Method for processing substrate and manufacturing flip quantum chip |
-
2010
- 2010-03-16 JP JP2010058892A patent/JP2011029148A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013129701A1 (en) * | 2012-03-02 | 2013-09-06 | 独立行政法人科学技術振興機構 | Method for forming electroconductive film |
CN104160456A (en) * | 2012-03-02 | 2014-11-19 | 独立行政法人科学技术振兴机构 | Method for forming electroconductive film |
US9082618B2 (en) | 2012-03-02 | 2015-07-14 | Japan Science And Technology Agency | Method of forming a conductive film |
JPWO2013129701A1 (en) * | 2012-03-02 | 2015-07-30 | 独立行政法人科学技術振興機構 | Method for forming conductive film |
KR101811927B1 (en) | 2015-11-10 | 2017-12-26 | 군산대학교산학협력단 | A method for improving conductivity of azo film |
CN116490055A (en) * | 2023-04-27 | 2023-07-25 | 本源量子计算科技(合肥)股份有限公司 | Method for processing substrate and manufacturing flip quantum chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102189015B1 (en) | Apparatus and method for selective oxidation at lower temperature using remote plasma source | |
KR101908180B1 (en) | Fuel cell separator and manufacturing method of fuel cell separator | |
JP2009010412A (en) | Chemical vapor deposition method | |
JP5761724B2 (en) | Thin film forming method and apparatus | |
JP2015520716A (en) | Manufacturing method of oxide thin film using low temperature process, oxide thin film and electronic device thereof | |
WO2005093120A1 (en) | Film-forming apparatus and film-forming method | |
US10181603B2 (en) | Manufacturing method of separator for fuel cell | |
KR20100009625A (en) | Silicide forming method and system thereof | |
CN105070619A (en) | Preparation method for carbon nanotube array cathode on Fe-based metal alloy substrate | |
JP2011029148A (en) | Post-treatment method and deposition/post-treatment device for conductive metal oxide | |
TW200933738A (en) | Method for sr-ti-o-base film formation and recording medium | |
JP2003247062A (en) | Method and apparatus for depositing thin film | |
JP2014034699A (en) | Film manufacturing method | |
CN113998694B (en) | Preparation method for obtaining large-size graphene by using solid carbon source | |
JP2007314391A (en) | Substrate for growth of carbon nanotube and fabrication process for carbon nanotube using the same | |
Chiu et al. | Atmospheric-pressure-plasma-jet sintered nanoporous AlN/CNT composites | |
JP4919272B2 (en) | Carbon nanotube forming apparatus and carbon nanotube forming method | |
JP4505073B2 (en) | Chemical vapor deposition equipment | |
JP5124082B2 (en) | PDP manufacturing equipment | |
KR102388445B1 (en) | Improved Apparatus and Method for Manufacturing Oxide Thin Film Using Low-Temperature Process | |
JP6883274B2 (en) | Metal oxide thin film manufacturing method and thin film manufacturing equipment | |
KR101726042B1 (en) | Thin film comprising Indium Tin Oxide(ITO), method of fabricating the same, and transistor comprising the same | |
WO2014170972A1 (en) | Film forming method | |
WO2013105154A1 (en) | Method for reducing carbon dioxide | |
JP2007113031A (en) | Method for forming oxide film |