JP2011027356A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2011027356A
JP2011027356A JP2009174947A JP2009174947A JP2011027356A JP 2011027356 A JP2011027356 A JP 2011027356A JP 2009174947 A JP2009174947 A JP 2009174947A JP 2009174947 A JP2009174947 A JP 2009174947A JP 2011027356 A JP2011027356 A JP 2011027356A
Authority
JP
Japan
Prior art keywords
storage chamber
heat insulating
wall surface
cold air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009174947A
Other languages
Japanese (ja)
Other versions
JP5229147B2 (en
Inventor
Katsunori Horii
克則 堀井
Yoshimasa Horio
好正 堀尾
Shinichi Horii
愼一 堀井
Masaaki Tanaka
正昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009174947A priority Critical patent/JP5229147B2/en
Priority to CN201010243354.0A priority patent/CN101986067B/en
Publication of JP2011027356A publication Critical patent/JP2011027356A/en
Application granted granted Critical
Publication of JP5229147B2 publication Critical patent/JP5229147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of improving cooling efficiency and reducing electric power consumption by suppressing heat absorbing amount of an inner wall face within a storage chamber. <P>SOLUTION: The refrigerator includes: a heat insulating case body 101; a heat insulating door 119 for opening/closing an opening front face of the heat insulating case body 101; the storage chamber 106 formed of the heat insulating case body 101 and the heat insulating door 119; and a cooling means for supplying cold air to cool inside of the storage chamber 106 by forced convection or natural convection. A heat absorption suppressing shape for suppressing absorption of heat from outside air with respect to the flowing direction of the cold air is provided on the inner wall face opposing to an outer wall face exposed to outside air out of the inner wall face within the storage chamber 106 where the cold air is made to flow. Due to this shape, the inner wall face within the storage chamber 106 can suppress the heat absorbing amount from the outside air, so as to provide the refrigerator capable of improving cooling efficiency and reducing electric power consumption. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は省エネ効果の高い冷蔵庫に関するものである。   The present invention relates to a refrigerator having a high energy saving effect.

図7は、従来の冷蔵庫の冷凍室の基本構造の断面図である。   FIG. 7 is a cross-sectional view of the basic structure of a freezer compartment of a conventional refrigerator.

図7に示すように、扉11の内面の端部には全周にわたり扉ガスケット12が設けられており、扉ガスケット12の受け面を形成する仕切壁13の前面に構成されている金属受け部材14と扉ガスケット12とを密着させて、冷気が外部に漏れるのを防止している。   As shown in FIG. 7, a door gasket 12 is provided over the entire periphery at the end of the inner surface of the door 11, and a metal receiving member configured on the front surface of the partition wall 13 that forms the receiving surface of the door gasket 12. 14 and the door gasket 12 are brought into close contact with each other to prevent cold air from leaking to the outside.

本体の背部に設置した冷却器15で生成した冷気をファン16によって冷凍室25の背面の吐出口17から庫内に吹き出し、収納されている食品類を冷却するように構成されている。   Cold air generated by a cooler 15 installed on the back of the main body is blown out from the discharge port 17 on the back of the freezer compartment 25 by a fan 16 to cool the food stored therein.

そして、食品類を冷却した冷気は、矢印に示すように、収納ケース18、19の前方上部に至り、扉11の内壁と収納ケース18、19の前面との空間、さらに収納ケース19の底面と貯蔵室底壁との空間を通ってリターンダクト21から冷却器15に戻る循環をおこなっている。   Then, the cold air that has cooled the food reaches the upper front part of the storage cases 18 and 19, as shown by the arrows, and the space between the inner wall of the door 11 and the front surfaces of the storage cases 18 and 19, and the bottom surface of the storage case 19. Circulation returns from the return duct 21 to the cooler 15 through the space with the bottom wall of the storage chamber.

また、収納ケース18の前方上部に至った冷気によって、冷凍室25と上部貯蔵室22とを仕切る仕切壁13の前面に構成されている金属受け部材14が冷却され、内外の温度差により仕切壁13の前面に構成されている金属受け部材14が結露することを防止するために、放熱パイプ23を金属受け部材14の貯蔵室内側面に密着するように配設している。この放熱パイプ23は冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって仕切壁13の前面に構成されている金属受け部材14を高温に加温していることから、結露を防止する反面、冷凍室25の前部上方空気を加熱してしまい、その結果、冷却効率を低下させていた。   Further, the metal receiving member 14 formed on the front surface of the partition wall 13 that partitions the freezer compartment 25 and the upper storage chamber 22 is cooled by the cool air reaching the upper front part of the storage case 18, and the partition wall is caused by the temperature difference between the inside and the outside. In order to prevent the metal receiving member 14 formed on the front surface of the 13 from condensing, the heat radiating pipe 23 is disposed in close contact with the side surface of the metal receiving member 14 in the storage chamber. Since this heat radiating pipe 23 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown) and heats the metal receiving member 14 formed on the front surface of the partition wall 13 to a high temperature by the heat, While preventing condensation, the air above the front of the freezer compartment 25 is heated, resulting in a reduction in cooling efficiency.

これを防止するために、仕切壁13の近傍の収納ケース18の上方空間部分に、二点鎖線で示すシール部材24を設け、扉ガスケット12側への冷気流れを遮蔽する機構が提案されている。(例えば、特許文献1参照)。   In order to prevent this, a mechanism has been proposed in which a seal member 24 indicated by a two-dot chain line is provided in the upper space portion of the storage case 18 in the vicinity of the partition wall 13 to shield the cold air flow toward the door gasket 12. . (For example, refer to Patent Document 1).

特開平10−96584号公報Japanese Patent Laid-Open No. 10-96584

しかしながら、上記従来の構成では、収納ケース18内で食品を冷却した冷気は、収納ケース18の上部、あるいは収納ケース18の前壁に設けた開口18aから収納ケース18と扉内壁11aとの間の空間Aを流下して収納ケース19の底面、さらに、高温の圧縮機26に対向する背面の空間を通ってリターンダクト21に戻るものである。   However, in the above-described conventional configuration, the cold air that has cooled the food in the storage case 18 flows between the storage case 18 and the door inner wall 11a from the opening 18a provided in the upper part of the storage case 18 or the front wall of the storage case 18. It flows down the space A and returns to the return duct 21 through the bottom surface of the storage case 19 and the space on the back surface facing the high-temperature compressor 26.

ところで、貯蔵室内の内壁面である扉内壁11aは、外気を吸熱して加温される。外気を吸熱して加温された貯蔵室内の内壁面と貯蔵室内を循環する冷気とが熱交換するので、吸熱量が多いと冷却効率を低下してしまうという課題があった。   By the way, the door inner wall 11a which is an inner wall surface in the storage chamber is heated by absorbing the outside air. Since heat exchange is performed between the inner wall surface of the storage chamber heated by absorbing the outside air and the cool air circulating in the storage chamber, there is a problem that the cooling efficiency is lowered when the heat absorption amount is large.

本発明は、上記従来の課題を解決するもので、貯蔵室内の内壁面の吸熱量を抑制させることで、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the refrigerator which improved the cooling efficiency and reduced the power consumption by suppressing the heat absorption amount of the inner wall surface in a storage chamber.

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室内を強制対流または自然対流で冷却する冷気を供給するための冷却手段とを備えて、前記冷気が流通する前記貯蔵室内の内壁面のうち相対する外壁面が外気に曝される内壁面に、前記冷気の流通方向に対して前記外気からの吸熱を抑制する吸熱抑制形状を設けたものである。   In order to solve the above conventional problems, the refrigerator of the present invention is a storage formed by a heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, and the heat insulating box and the heat insulating door. And a cooling means for supplying cold air that cools the storage chamber by forced convection or natural convection, and the opposed outer wall surfaces of the inner wall surfaces of the storage chamber through which the cold air flows are exposed to the outside air. The inner wall surface is provided with an endothermic suppression shape that suppresses the endothermic heat from the outside air with respect to the flow direction of the cold air.

これによって、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなる。   Thereby, the inner wall surface in the storage chamber can suppress the amount of heat absorbed from the outside air.

本発明の冷蔵庫は、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   In the refrigerator according to the present invention, the inner wall surface in the storage chamber can suppress the amount of heat absorbed from the outside air, and the refrigerator can be provided with improved cooling efficiency and reduced power consumption.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の冷凍室断面図Cross-sectional view of the freezer compartment of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の冷凍室の断熱扉上部拡大断面図The heat insulation door upper part expanded sectional view of the freezer compartment of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の冷凍室の凸形状拡大断面図Convex shape expanded sectional view of the freezer compartment of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の冷凍室の凸形状の寸法を示す拡大断面図The expanded sectional view which shows the dimension of the convex shape of the freezer compartment of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫の冷凍室の下部拡大断面図The lower expanded sectional view of the freezer compartment of the refrigerator in Embodiment 2 of the present invention. 従来の冷蔵庫の冷凍室の断面図Sectional view of the freezer compartment of a conventional refrigerator

請求項1に記載の発明は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室内を強制対流または自然対流で冷却する冷気を供給するための冷却手段とを備えて、前記冷気が流通する前記貯蔵室内の内壁面のうち相対する外壁面が外気に曝される内壁面に、前記冷気の流通方向に対して前記外気からの吸熱を抑制する吸熱抑制形状を設けたことにより、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   The invention according to claim 1 includes a heat insulating box, a heat insulating door that opens and closes an opening front of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and the storage chamber. Cooling means for supplying cold air to be cooled by forced convection or natural convection, and the inner wall surface of the storage chamber through which the cold air flows is opposed to the inner wall surface exposed to the outside air. By providing a heat absorption suppression shape that suppresses heat absorption from the outside air with respect to the flow direction, the inner wall surface of the storage chamber can suppress the amount of heat absorption from the outside air, improving cooling efficiency and reducing power consumption. A refrigerator can be provided.

請求項2に記載の発明は、請求項1に記載の発明において、前記貯蔵室内に引き出し可能な収納ケースを備えたことにより、前記貯蔵室内の内壁面と前記収納ケースとの間に空間が成形され、冷気は空間を風路として流れ、貯蔵室内全体に冷気が行き渡ることで温度分布を均一にすることができる。   According to a second aspect of the present invention, in the first aspect of the invention, a storage case that can be pulled out is provided in the storage chamber, so that a space is formed between the inner wall surface of the storage chamber and the storage case. Then, the cold air flows through the space as an air passage, and the cold air is distributed throughout the storage chamber, so that the temperature distribution can be made uniform.

請求項3に記載の発明は、請求項1に記載の発明において、前記貯蔵室内に引き出し可能な収納ケースと、前記貯蔵室の背部に設けられ前記冷気を前記貯蔵室内に供給する冷気吐出口と、前記収納ケースの背面に設けられ前記貯蔵室内の内壁面に沿って循環した前記冷気を前記冷却手段に戻す冷気吸込み口と、を備えたことにより、貯蔵室内全体に強制的に冷気を循環させることができ、温度分布をより均一にすることができる。   According to a third aspect of the present invention, in the first aspect of the present invention, the storage case that can be pulled out into the storage chamber, and a cold air discharge port that is provided on the back of the storage chamber and supplies the cold air to the storage chamber; And a cold air inlet for returning the cold air circulated along the inner wall surface of the storage chamber to the cooling means, and forcibly circulating the cold air throughout the storage chamber. Temperature distribution can be made more uniform.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものであ
ることにより、簡易な加工で、凸形状の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、その結果、消費電力量を低減した冷蔵庫を提供できる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the endothermic suppression shape has a convex shape on the inner wall surface of the heat insulating door toward the storage chamber side. As a result, it is possible to generate a region where the flow velocity is slow behind the convex shape with a simple process, and the heat transfer coefficient in the region where the flow velocity is slowed down. Therefore, it is possible to provide a refrigerator with improved cooling efficiency and, as a result, reduced power consumption.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、前記吸熱抑制形状は、前記断熱箱体の内壁面に前記貯蔵室側に向かって凸形状を有するものであることにより、簡易な加工で、凸形状の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、その結果、消費電力量を低減した冷蔵庫を提供できる。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the endothermic suppression shape has a convex shape toward an inner wall surface of the heat insulation box toward the storage chamber. As a result, it is possible to generate a region where the flow velocity is slow behind the convex shape with a simple process, and the heat transfer coefficient in the region where the flow velocity is slowed down. Therefore, it is possible to provide a refrigerator with improved cooling efficiency and, as a result, reduced power consumption.

請求項6に記載の発明は、請求項4または5に記載の発明において、前記凸形状は、前記内壁面の同一表面に複数形成していることにより、流速が遅くなる領域をより多く発生させることができ、貯蔵室内の内壁面は外気からの吸熱量をより抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein a plurality of the convex shapes are formed on the same surface of the inner wall surface, thereby generating more regions where the flow velocity becomes slower. In addition, the inner wall surface in the storage chamber can further suppress the amount of heat absorbed from the outside air, so that the refrigerator can be provided with improved cooling efficiency and reduced power consumption.

請求項7に記載の発明は、請求項3に記載の発明において、前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものであり、前記収納ケースの上部には前記収納ケースを引き出すための取っ手部を有し、前記凸形状の少なくとも一部は、前記取っ手部の上端と下端との間に設けたことにより、凸形状を冷気吐出口から吹き出された温度の低い冷気が断熱扉の内壁面に最も早く到達する部分である、取っ手部の上端と下端との間に設けることで、冷気の温度上昇をより抑制しながら、冷気は貯蔵室内を循環するので、冷却効率をより高めることができ、消費電力量を低減した冷蔵庫を提供できる。   The invention according to claim 7 is the invention according to claim 3, wherein the endothermic suppression shape has a convex shape on the inner wall surface of the heat insulating door toward the storage chamber side, The upper portion has a handle for pulling out the storage case, and at least a part of the convex shape is provided between the upper end and the lower end of the handle portion, so that the convex shape is blown out from the cold air discharge port. By providing it between the upper and lower ends of the handle, which is the part where the cool air with the lowest temperature reaches the inner wall surface of the insulated door the earliest, the cool air circulates in the storage chamber while further suppressing the temperature rise of the cool air. Therefore, the cooling efficiency can be further improved, and a refrigerator with reduced power consumption can be provided.

請求項8に記載の発明は、請求項3に記載の発明において、前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものであり、前記貯蔵室と隣接する他の貯蔵室とを区画する仕切壁を備え、前記収納ケースの上部には前記収納ケースを引き出すための取っ手部を有し、前記凸形状の少なくとも一部は、前記取っ手部の上端と前記仕切壁の下端との間に設けたことにより、仕切板の前面に設けられ高温に加温された金属受け部材へ向かう冷気の流れを低減でき、冷凍室の前部上方空気の加熱を抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   The invention according to claim 8 is the invention according to claim 3, wherein the endothermic suppression shape has a convex shape toward an inner wall surface of the heat insulating door toward the storage chamber side, A partition wall partitioning another adjacent storage chamber; and having a handle portion for pulling out the storage case at an upper portion of the storage case, wherein at least a part of the convex shape is formed at an upper end of the handle portion. By providing it between the lower end of the partition wall, it is possible to reduce the flow of cold air toward the metal receiving member that is provided on the front surface of the partition plate and is heated to a high temperature, and suppresses the heating of the air above the front of the freezer compartment As a result, a refrigerator with improved cooling efficiency and reduced power consumption can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1における冷蔵庫の冷凍室断面図である。図3は、本発明の実施の形態1における冷蔵庫の冷凍室の断熱扉上部拡大断面図である。図4は、本発明の実施の形態1における冷蔵庫の冷凍室の凸形状拡大断面図である。図5は、本発明の実施の形態1における冷蔵庫の冷凍室の凸形状の寸法を示す拡大断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the freezer compartment of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is an enlarged cross-sectional view of the heat insulation door upper part of the freezer compartment of the refrigerator according to Embodiment 1 of the present invention. FIG. 4 is an enlarged cross-sectional view of the convex shape of the freezer compartment of the refrigerator according to Embodiment 1 of the present invention. FIG. 5 is an enlarged cross-sectional view showing the dimensions of the convex shape of the freezer compartment of the refrigerator in the first embodiment of the present invention.

図1において、冷蔵庫100の断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、を備え、その内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填されて、周囲と断熱され、複数の貯蔵室に区分されている。最上部に冷蔵室104、その冷蔵室104の下方に野菜室105、そして最下部に冷凍室106が配置される構成となっている。   In FIG. 1, a heat insulating box 101 of a refrigerator 100 includes an outer box 102 mainly using a steel plate and an inner box 103 molded of a resin such as ABS, and the inside thereof is made of, for example, hard foam urethane or the like. Filled with foam insulation, insulated from the surroundings, divided into a plurality of storage rooms. The refrigerator compartment 104 is arranged at the top, the vegetable compartment 105 is arranged below the refrigerator compartment 104, and the freezer compartment 106 is arranged at the bottom.

各貯蔵室には、冷蔵庫本体に回転自在に枢支した断熱扉117、118、119によってその前面開口部を閉塞している。   The front opening of each storage room is closed by heat insulating doors 117, 118, and 119 that are pivotally supported on the refrigerator main body.

冷蔵室104は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室105は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃としている。冷凍室106は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerator compartment 104 is normally set to 1 ° C. to 5 ° C. at the lower limit of the temperature at which it is not frozen for refrigerated storage. The freezer compartment 106 is set to a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

断熱箱体101の最下部の冷凍室106の後方領域に機械室107を形成して圧縮機108、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。   A machine room 107 is formed in the rear region of the freezer compartment 106 at the lowermost part of the heat insulating box 101, and the compressor 108 and components on the high pressure side of the refrigeration cycle such as a dryer (not shown) for removing moisture are accommodated. .

図2において、冷凍室106の背面には冷気を生成する冷却室109が設けられ、その間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切壁110とが構成されている。冷却室109内には、冷却器111が配設されており、冷却器111の上部空間には強制対流方式により冷却器111で冷却した冷気を冷蔵室104、野菜室105、冷凍室106に送風する冷却ファン112が配置され、冷却器111の下部空間には、冷却時に冷却器111やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ113が設けられ、さらにその下部には除霜時に生じる除霜水を受けとめ庫外に排水するためのドレンパン114が構成され、その下流側の庫外に蒸発皿116が構成されている。なお、本実施の形態では、冷凍サイクルの内部には可燃性冷媒であるイソブタンが封入されている。   In FIG. 2, a cooling chamber 109 for generating cold air is provided on the back surface of the freezing chamber 106, and a cooling air conveyance air passage to each chamber having heat insulation properties and an insulating partition with each chamber are provided between them. The rear surface partition wall 110 is configured. A cooler 111 is disposed in the cooling chamber 109, and in the upper space of the cooler 111, cold air cooled by the cooler 111 by a forced convection method is blown to the refrigerator compartment 104, the vegetable compartment 105, and the freezer compartment 106. A cooling fan 112 is disposed, and a lower space of the cooler 111 is provided with a radiant heater 113 made of glass tube for defrosting the frost and ice adhering to the cooler 111 and its surroundings at the time of cooling. A drain pan 114 for receiving defrosted water generated at the time of defrosting and draining it outside the storage is configured at the lower part, and an evaporating dish 116 is configured outside the storage on the downstream side. In this embodiment, isobutane, which is a flammable refrigerant, is enclosed in the refrigeration cycle.

奥面仕切壁110には冷却器111で生成された冷気を冷却ファン112によって冷凍室106へと供給するための冷気吐出口124と、冷気吐出口124の下方に、冷凍室106内を循環した冷気を冷却器111へ戻すための冷気吸込み口125と、を設けている。   A cool air discharge port 124 for supplying the cool air generated by the cooler 111 to the freezing chamber 106 by the cooling fan 112 and the inside of the freezing chamber 106 are circulated below the cool air discharge port 124 in the rear partition wall 110. A cold air inlet 125 for returning the cold air to the cooler 111 is provided.

また、冷凍室106内には引き出し機構に保持されて引き出されるとともに、食品類を貯蔵する収納ケースを配置している。本実施の形態では、冷凍室内には収納ケースは3つ配置している。具体的には、上段の収納ケース126、中段の収納ケース127、下段の収納ケース128を配置している。   In addition, a storage case is provided in the freezer compartment 106 to be pulled out while being held by a drawer mechanism. In the present embodiment, three storage cases are arranged in the freezer compartment. Specifically, an upper storage case 126, a middle storage case 127, and a lower storage case 128 are arranged.

また、収納ケース126の上部には、収納ケース126を引き出すための取っ手部126Aを有している。また、図3に示すように、凸形状129の少なくとも一部は、取っ手部126Aの上端(X部分)と下端(Y部分)との間に設けている。   Further, a handle portion 126 </ b> A for pulling out the storage case 126 is provided on the upper portion of the storage case 126. Further, as shown in FIG. 3, at least a part of the convex shape 129 is provided between the upper end (X portion) and the lower end (Y portion) of the handle portion 126A.

図3において、断熱扉119の内面の端部には全周にわたり扉ガスケット121が設けられており(冷蔵室104、野菜室105においても同様に扉ガスケットが設けられている)、野菜室105と冷凍室106とを区切る外周を樹脂部で構成している仕切壁122の前面に設けた金属受け部材123と扉ガスケット121とを密着させて冷気が外部に漏れるのを防止している。   In FIG. 3, a door gasket 121 is provided on the entire inner edge of the heat insulating door 119 (the door gasket is also provided in the refrigerator compartment 104 and the vegetable compartment 105). The metal receiving member 123 and the door gasket 121 provided on the front surface of the partition wall 122 having a resin portion on the outer periphery that separates the freezer compartment 106 are closely attached to prevent cold air from leaking to the outside.

さらに、金属受け部材123の下部に設けた断熱部材130は、仕切壁122の外周を構成している樹脂部で保持されている。   Further, the heat insulating member 130 provided at the lower portion of the metal receiving member 123 is held by a resin portion that constitutes the outer periphery of the partition wall 122.

また、金属受け部材123には貯蔵室外側面に結露することを防止するために、金属受け部材123の貯蔵室内側面に密着するように放熱パイプ131を配設している。この放
熱パイプ131は冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部材123を高温に加温している。
The metal receiving member 123 is provided with a heat radiating pipe 131 so as to be in close contact with the side surface of the metal receiving member 123 in the storage chamber in order to prevent condensation on the outer surface of the storage chamber. The heat radiating pipe 131 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the metal receiving member 123 to a high temperature.

図4において、断熱扉119の内壁面には、凸形状129が、冷気吐出口124から供給される冷気の流れと垂直になるように、冷凍室106側に向かって、設けられている。具体的には、冷蔵庫の幅方向(図1の紙面の奥側から手前側に向かって)に、凸形状129が設けられている。なお、断熱扉119の内壁面は、貯蔵室内の内壁面の一例である。   In FIG. 4, a convex shape 129 is provided on the inner wall surface of the heat insulating door 119 toward the freezer compartment 106 side so as to be perpendicular to the flow of cold air supplied from the cold air discharge port 124. Specifically, a convex shape 129 is provided in the width direction of the refrigerator (from the back side to the front side in FIG. 1). The inner wall surface of the heat insulating door 119 is an example of the inner wall surface in the storage chamber.

なお、この凸形状129は、冷気が流通する貯蔵室内の内壁面のうち相対する外壁面が外気に曝される内壁面に設けたものであって、冷気の流通方向に対して外気からの吸熱を抑制する吸熱抑制形状の一例である。   The convex shape 129 is provided on the inner wall surface of the inner wall surface of the storage chamber through which cool air flows, and the opposite outer wall surface is exposed to the outside air, and absorbs heat from the outside air with respect to the flow direction of the cold air. It is an example of the endothermic suppression shape which suppresses.

また、より具体的には、凸形状129は、断熱扉119の高さ方向(図3の上下方向)に対して、断熱扉119の最上部近傍から最下部近傍にわたって、一定の間隔(等ピッチ)をあけて、断熱扉119に複数本設けられている。   More specifically, the convex shape 129 has a constant interval (equal pitch) from the vicinity of the top of the heat insulating door 119 to the vicinity of the bottom of the heat insulating door 119 in the height direction (vertical direction in FIG. 3). ) And a plurality of heat insulating doors 119 are provided.

また、凸形状129は、冷蔵庫の幅方向に連続的に設けている。   Moreover, the convex shape 129 is provided continuously in the width direction of the refrigerator.

また、本実施の形態では、凸形状の詳細は、以下の通りである。図5に示すように、隣り合う凸形状129の間隔(A寸法)は46.5mm、凸形状129の幅寸法(B寸法)は5mm、凸形状129の高さ寸法(D寸法)は2mm、角度Eは120度である。   In the present embodiment, details of the convex shape are as follows. As shown in FIG. 5, the distance (A dimension) between adjacent convex shapes 129 is 46.5 mm, the width dimension (B dimension) of the convex shape 129 is 5 mm, and the height dimension (D dimension) of the convex shape 129 is 2 mm. The angle E is 120 degrees.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷凍室106内の冷気の流れについて説明する。冷却器111により冷却された冷気は、モータの回転に伴い回転する冷却ファン112により強制的に冷気吐出口124から冷凍室106内の上段、中段、下段へとそれぞれ吹き出される。吹き出された冷気は、収納ケース126、127、128に吹きつけられて収納されている食品類を冷却する。   First, the flow of cold air in the freezer compartment 106 will be described. The cool air cooled by the cooler 111 is forcibly blown from the cool air discharge port 124 to the upper, middle, and lower stages in the freezer compartment 106 by the cooling fan 112 that rotates as the motor rotates. The blown-out cool air is blown to the storage cases 126, 127, and 128 to cool the food stored.

食品類を冷却した冷気は、図3の矢印に示すように、上段では収納ケース126と仕切壁122との間隙部分、中段では収納ケース126と収納ケース127の間隙部分、下段では収納ケース127と収納ケース128の間隙部分をそれぞれ通って合流し、収納ケース128と内箱103の底壁との空隙を通って冷気吸込み口125より吸い込まれて、冷却器111に戻ってくる風路構成になっている。   As shown by the arrows in FIG. 3, the cold air that has cooled the foods is the gap between the storage case 126 and the partition wall 122 in the upper stage, the gap between the storage case 126 and the storage case 127 in the middle stage, and the storage case 127 in the lower stage. The air flows through the gaps of the storage case 128, passes through the gap between the storage case 128 and the bottom wall of the inner box 103, is sucked from the cold air inlet 125, and returns to the cooler 111. ing.

上記のように、冷気は冷凍室106内を循環する際に、冷凍室106内の内壁面と熱交換を行うことで加温される。上段の冷気においては、放熱パイプ131によって加温された金属受け部材123近傍で最も熱交換が行われるが、金属受け部材123の下部に断熱部材130を設けていることにより、放熱パイプ131から冷気と接する面への熱移動が、熱伝導率の低い断熱部材130を介するため低減され、冷気と接する面の温度上昇を防止している。   As described above, the cold air is heated by exchanging heat with the inner wall surface in the freezer compartment 106 when circulating in the freezer compartment 106. In the upper stage cool air, heat exchange is performed most in the vicinity of the metal receiving member 123 heated by the heat radiating pipe 131, but the heat insulating member 130 is provided below the metal receiving member 123, so that Transfer to the surface in contact with the heat is reduced by the heat insulating member 130 having a low thermal conductivity, thereby preventing an increase in the temperature of the surface in contact with the cold air.

さらにその後、冷気は断熱扉119の内壁に沿って流れるが、冷気の流れと垂直になるように凸形状129を設けることで、図4の矢印に示すように、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、冷凍室106内の内壁面は外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   After that, the cold air flows along the inner wall of the heat insulating door 119. By providing the convex shape 129 so as to be perpendicular to the flow of the cold air, the flow velocity is increased behind the convex shape 129 as shown by the arrow in FIG. A slow region can be generated, and the heat transfer coefficient in the region where the flow rate is slowed down. Therefore, the inner wall surface in the freezer compartment 106 can suppress the amount of heat absorbed from the outside air, thereby improving the cooling efficiency. As a result, the power consumption can be reduced.

また、冷気の加温を抑制できることにより、冷気が低い温度のまま循環するため冷凍室
106内全体の温度分布をより均一に保つことができる。
In addition, since the cooling of the cold air can be suppressed, the cold air circulates at a low temperature, so that the temperature distribution in the entire freezer compartment 106 can be kept more uniform.

ここで、吸熱量の抑制に関して、詳細を述べる。   Here, details regarding the suppression of the endothermic amount will be described.

一般に、熱の通過量(吸熱量)Qは、次式で表される。   In general, the heat passing amount (endothermic amount) Q is represented by the following equation.

Q=K*A*ΔT
K=1/(1/αo+1/αi+L/λ)
(Q:熱の通過量、K:熱通過率、A:伝熱面積、ΔT:温度差、αo:外面熱伝達率、αi:内面熱伝達率、λ:断熱壁熱伝導率(断熱材λ1と内箱樹脂λ2と外箱鋼板λ3の複合熱伝導率)、L:断熱壁の厚さ)
本実施の形態のように、貯蔵室の内壁面である断熱扉の内壁面に凸形状を設けて、内壁面の形状を凹凸型にすることにより、凹面で冷気の流通方向に対して内面熱伝達率αiが小さくなり、Kが小さくなり、その結果、外気からの吸熱量を抑制できる。
Q = K * A * ΔT
K = 1 / (1 / αo + 1 / αi + L / λ)
(Q: heat passing rate, K: heat transfer rate, A: heat transfer area, ΔT: temperature difference, αo: outer surface heat transfer rate, αi: inner surface heat transfer rate, λ: heat insulating wall heat transfer rate (heat insulating material λ1 And composite heat conductivity of inner box resin λ2 and outer box steel plate λ3), L: thickness of heat insulating wall)
As in this embodiment, by providing a convex shape on the inner wall surface of the heat insulating door, which is the inner wall surface of the storage room, and making the inner wall surface into a concavo-convex shape, the inner surface heat with respect to the flow direction of cold air on the concave The transmission rate αi is reduced and K is reduced. As a result, the amount of heat absorbed from the outside air can be suppressed.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室である冷凍室106と、冷凍室106内を強制対流で冷却する冷気を供給するための冷却手段とを備えて、冷気が流通する冷凍室106内の内壁面のうち相対する外壁面が外気に曝される内壁面に、冷気の流通方向に対して外気からの吸熱を抑制する凸形状129を設けたことにより、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage room formed by the heat insulating box body 101 and the heat insulating door 119 are used. A freezing chamber 106 and a cooling means for supplying cold air that cools the inside of the freezing chamber 106 by forced convection are provided, and the opposed outer wall surfaces of the inner wall surfaces in the freezing chamber 106 through which the cold air flows are exposed to the outside air. By providing the inner wall surface with a convex shape 129 that suppresses heat absorption from the outside air with respect to the flow direction of the cold air, the inner wall surface in the storage chamber can suppress the amount of heat absorption from the outside air, thereby improving the cooling efficiency. A refrigerator with reduced power consumption can be provided.

また、冷凍室106内に引き出し可能な収納ケース126,127,128を備えたことにより、冷凍室106内の内壁面と収納ケースとの間に空間が成形され、冷気はその空間を風路として流れ、冷凍室106内全体に冷気が行き渡ることで温度分布を均一にすることができる。   In addition, since the storage cases 126, 127, and 128 that can be pulled out into the freezer compartment 106 are provided, a space is formed between the inner wall surface of the freezer compartment 106 and the storage case, and the cool air serves as an air path. The temperature distribution can be made uniform by the flow and the cold air spreading throughout the freezer compartment 106.

また、冷凍室106内に引き出し可能な収納ケースと、冷凍室106の背部に設けられ冷気を冷凍室106内に供給する冷気吐出口124と、収納ケースの背面に設けられ冷凍室内の内壁面に沿って循環した冷気を冷却手段に戻す冷気吸込み口125と、を備えたことにより、冷凍室内全体に強制的に冷気を循環させることができ、温度分布をより均一にすることができる。   Also, a storage case that can be drawn into the freezer compartment 106, a cold air outlet 124 that is provided at the back of the freezer compartment 106 to supply cold air into the freezer compartment 106, and an inner wall surface in the freezer compartment that is provided at the back of the storage case. By providing the cold air inlet 125 for returning the cold air circulated along the cooling means, the cold air can be forced to circulate throughout the freezer compartment, and the temperature distribution can be made more uniform.

また、断熱扉119の内壁面に冷凍室106側に向かって凸形状を有していることにより、複雑な加工を行うことなく、簡易な加工を行うだけで、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、冷凍室106内の内壁面は外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   Further, since the inner wall surface of the heat insulating door 119 has a convex shape toward the freezer compartment 106 side, the flow velocity can be increased behind the convex shape 129 by performing simple processing without performing complicated processing. A slow region can be generated, and the heat transfer coefficient in the region where the flow rate is slowed down. Therefore, the inner wall surface in the freezer compartment 106 can suppress the amount of heat absorbed from the outside air, thereby improving the cooling efficiency. As a result, the power consumption can be reduced.

また、凸形状129を断熱扉119の内壁面の同一表面に複数設けることにより、流速が遅くなる領域をより多く発生させることができ、貯蔵室内の内壁面は外気からの吸熱量をより抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   In addition, by providing a plurality of convex shapes 129 on the same surface of the inner wall surface of the heat insulating door 119, more regions where the flow velocity becomes slower can be generated, and the inner wall surface in the storage chamber can further suppress the amount of heat absorbed from the outside air. Thus, a refrigerator with improved cooling efficiency and reduced power consumption can be provided.

また、凸形状129は断熱扉119の内壁面と一体で形成していることにより、別部品は必要なく、非常に安価でかつ組立工数も増加することはない。   Further, since the convex shape 129 is formed integrally with the inner wall surface of the heat insulating door 119, no separate parts are required, and it is very inexpensive and does not increase the number of assembly steps.

また、凸形状129を、冷気吐出口124から吹き出された温度の低い冷気が断熱扉119の内壁面に最も早く到達する部分である、断熱扉119の内壁面の最上部近傍に設け
ることで、冷気の温度上昇をより抑制しながら、冷気は貯蔵室内を循環するので、冷却効率をより高めることができる。
Further, by providing the convex shape 129 in the vicinity of the uppermost portion of the inner wall surface of the heat insulating door 119, which is the portion where the cold air blown out from the cold air discharge port 124 reaches the inner wall surface of the heat insulating door 119 earliest, Since the cold air circulates in the storage chamber while further suppressing the temperature rise of the cold air, the cooling efficiency can be further increased.

また、収納ケース126の上部には、収納ケース126を引き出すための取っ手部126Aを有している。これにより、使用者が収納ケースを引き出す際の使い勝手が向上する。本実施の形態では、図3に示すように、凸形状129の少なくとも一部は、取っ手部126Aの上端(X部分)と下端(Y部分)との間に設けたことにより、冷気の温度上昇をより抑制しながら、冷気は貯蔵室内を循環するので、冷却効率をより高めることができ、消費電力量を低減した冷蔵庫を提供できる。   Further, a handle portion 126 </ b> A for pulling out the storage case 126 is provided on the upper portion of the storage case 126. Thereby, usability when the user pulls out the storage case is improved. In the present embodiment, as shown in FIG. 3, at least a part of the convex shape 129 is provided between the upper end (X portion) and the lower end (Y portion) of the handle portion 126A, thereby increasing the temperature of the cold air. Since the cool air circulates in the storage chamber while further suppressing the cooling, the cooling efficiency can be further increased, and a refrigerator with reduced power consumption can be provided.

すなわち、断熱扉119に沿ってほぼ平行に冷気が流れ始める地点の近傍に凸形状129を設けることが望ましい。   That is, it is desirable to provide the convex shape 129 in the vicinity of the point where the cold air begins to flow substantially in parallel along the heat insulating door 119.

また、図3に示すように、凸形状129の少なくとも一部は、取っ手部126Aの上端(X部分)と仕切壁122の下端との間に設けたことにより、高温に加温された金属受け部材123へ向かう冷気の流れを低減でき、冷凍室106の前部上方空気の加熱を抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   Further, as shown in FIG. 3, at least a part of the convex shape 129 is provided between the upper end (X portion) of the handle portion 126A and the lower end of the partition wall 122, so that the metal receiver heated to a high temperature is received. The flow of cold air toward the member 123 can be reduced, heating of the air above the front of the freezer compartment 106 can be suppressed, and a refrigerator with improved cooling efficiency and reduced power consumption can be provided.

また、凸形状129の高さ寸法(D寸法)は2mmとすることにより、収納ケースと断熱扉119の内壁との隙間寸法を確保できることとなり、冷気の流れ(風路)を確保することができる。   In addition, by setting the height dimension (D dimension) of the convex shape 129 to 2 mm, a clearance dimension between the storage case and the inner wall of the heat insulating door 119 can be secured, and the flow of cold air (air path) can be secured. .

また、凸形状129の幅寸法(B寸法)は5mmとすることにより、凸形状の部分を金型で押さえることができ、凸形状129の成形性を確保することができる。   Further, by setting the width dimension (B dimension) of the convex shape 129 to 5 mm, the convex portion can be pressed with a mold, and the moldability of the convex shape 129 can be ensured.

また、断熱扉の高さが高いと、冷気が断熱扉に沿って流れる区間が長くなり、外気からの吸熱量の抑制効果はより大きくなる。   Moreover, when the height of the heat insulating door is high, a section in which cold air flows along the heat insulating door becomes long, and the effect of suppressing the amount of heat absorbed from the outside air becomes larger.

さらに、冷凍室106以外の貯蔵室に、例えば、野菜室105の断熱扉118の内壁や、あるいは、冷蔵室104の断熱扉117の内壁に、凸形状129を設けても、同様の効果を得ることができる。   Further, the same effect can be obtained by providing a convex shape 129 on the inner wall of the heat insulation door 118 of the vegetable compartment 105 or the inner wall of the heat insulation door 117 of the refrigerator compartment 104 in the storage room other than the freezer compartment 106. be able to.

なお、本実施の形態では、凸形状129は、断熱扉119の高さ方向に対して、一定の間隔(等ピッチ)をあけて設けたが、この間隔は不等ピッチとしてもよい。   In the present embodiment, the convex shape 129 is provided at a constant interval (equal pitch) with respect to the height direction of the heat insulating door 119, but this interval may be an unequal pitch.

なお、本実施の形態では、凸形状129は、冷蔵庫の幅方向に連続的に設けているものとしたが、冷蔵庫の幅方向において間欠的に設けたもの(すなわち、冷蔵庫の幅方向において凸形状を設けていない箇所があるもの)でもよい。   In the present embodiment, the convex shape 129 is provided continuously in the width direction of the refrigerator, but is provided intermittently in the width direction of the refrigerator (that is, the convex shape in the width direction of the refrigerator). There may be a place where there is no provision).

なお、冷却手段としては、本実施の形態では、強制対流で冷却するものとしたが、自然対流で冷却するもの(いわゆる直冷式)としてもよい。   In this embodiment, the cooling means is cooled by forced convection, but may be cooled by natural convection (so-called direct cooling).

なお、本実施の形態では、貯蔵室内に3つの収納ケースを備えたものとしたが、貯蔵室内に収納ケースは1つ、もしくは2つ備えたものでもよい。   In the present embodiment, three storage cases are provided in the storage chamber. However, one or two storage cases may be provided in the storage chamber.

(実施の形態2)
図6は、本発明の実施の形態2における冷蔵庫の下部拡大断面図である。
(Embodiment 2)
FIG. 6 is a lower enlarged sectional view of the refrigerator in the second embodiment of the present invention.

図6に示すように、冷凍室106内の内壁面である内箱103の底面、および、圧縮機108に対向する背面の表面に凸形状129を備えている。なお、内箱103の内壁面は
、貯蔵室内の内壁面の一例である。
As shown in FIG. 6, a convex shape 129 is provided on the bottom surface of the inner box 103, which is the inner wall surface in the freezer compartment 106, and on the back surface facing the compressor 108. The inner wall surface of the inner box 103 is an example of the inner wall surface in the storage chamber.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1と同様である動作、作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement similar to Embodiment 1 and an effect | action is abbreviate | omitted.

冷気吐出口124から冷凍室106内に吹き出された冷気は、図6の矢印に示すように収納ケース128の底面、さらに圧縮機108に対向する背面の空間を流れるが、冷気の流れと垂直となる方向に凸形状129を設けることにより、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、冷凍室106内の内壁面は外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   The cold air blown into the freezing chamber 106 from the cold air discharge port 124 flows through the space on the bottom surface of the storage case 128 and the back surface facing the compressor 108 as shown by the arrows in FIG. By providing the convex shape 129 in such a direction, it is possible to generate a region where the flow velocity is slow behind the convex shape 129, and the heat transfer coefficient in the region where the flow velocity is slow is reduced. The wall surface can suppress the amount of heat absorbed from the outside air, thereby improving the cooling efficiency and consequently reducing the power consumption.

特に、高温になる圧縮機108と対向する冷凍室106の内壁面に凸形状129を設けることにより、冷凍室106内の内壁面は外気からの吸熱量をより一層抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量をより一層低減することができる。   In particular, by providing a convex shape 129 on the inner wall surface of the freezer compartment 106 facing the compressor 108 that becomes high in temperature, the inner wall surface in the freezer compartment 106 can further suppress the amount of heat absorbed from the outside air. Efficiency can be improved, and as a result, power consumption can be further reduced.

また、冷気の加温を抑制できることにより、冷気が低い温度のまま循環するため冷凍室106内全体の温度分布をより均一に保つことができる。   Further, since the cooling of the cold air can be suppressed, the cold air circulates at a low temperature, so that the temperature distribution in the entire freezer compartment 106 can be kept more uniform.

また、内箱103の内壁面に冷凍室106側に向かって凸形状を有していることにより、複雑な加工を行うことなく、簡易な加工を行うだけで、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、冷凍室106内の内壁面は外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   In addition, since the inner wall surface of the inner box 103 has a convex shape toward the freezer compartment 106 side, the flow velocity can be increased behind the convex shape 129 by performing simple processing without performing complicated processing. A slow region can be generated, and the heat transfer coefficient in the region where the flow rate is slowed down. Therefore, the inner wall surface in the freezer compartment 106 can suppress the amount of heat absorbed from the outside air, thereby improving the cooling efficiency. As a result, the power consumption can be reduced.

また、凸形状129を内箱103の内壁面の同一表面に複数設けることにより、流速が遅くなる領域をより多く発生させることができ、冷凍室内の内壁面は外気からの吸熱量をより抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   Further, by providing a plurality of convex shapes 129 on the same surface of the inner wall surface of the inner box 103, it is possible to generate more regions where the flow velocity becomes slower, and the inner wall surface in the freezer compartment can further suppress the amount of heat absorbed from the outside air. Thus, a refrigerator with improved cooling efficiency and reduced power consumption can be provided.

また、凸形状129は内箱103の内壁面と一体で形成していることにより、別部品は必要なく、非常に安価でかつ組立工数も増加することはない。   Further, since the convex shape 129 is formed integrally with the inner wall surface of the inner box 103, no separate parts are required, and it is very inexpensive and does not increase the number of assembly steps.

なお、実施の形態1で示した断熱扉の内壁面に凸形状を設けることと、実施の形態2で示した断熱箱体の内箱の内壁面に凸形状を設けることとを合わせることで、より一層、貯蔵室内の内壁面は外気からの吸熱量を抑制できることとなり、冷却効率を向上させ、消費電力量をより一層低減した冷蔵庫を提供できる。   In addition, by providing a convex shape on the inner wall surface of the heat insulating door shown in the first embodiment and providing a convex shape on the inner wall surface of the inner box of the heat insulating box shown in the second embodiment, Further, the inner wall surface in the storage room can suppress the amount of heat absorbed from the outside air, thereby improving the cooling efficiency and providing a refrigerator with further reduced power consumption.

以上のように、本発明にかかる冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対しても適用できる。   As described above, the refrigerator according to the present invention can be applied to a household or commercial refrigerator or a vegetable storage.

100 冷蔵庫
101 断熱箱体
106 冷凍室(貯蔵室)
117、118、119 断熱扉
111 冷却器
124 冷気吐出口
125 冷気吸込み口
126、127、128 収納ケース
126A 取っ手部
129 凸形状
100 Refrigerator 101 Heat insulation box 106 Freezer compartment (storage compartment)
117, 118, 119 Thermal insulation door 111 Cooler 124 Cold air outlet 125 Cold air inlet 126, 127, 128 Storage case 126A Handle part 129 Convex shape

Claims (8)

断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室内を強制対流または自然対流で冷却する冷気を供給するための冷却手段とを備えて、前記冷気が流通する前記貯蔵室内の内壁面のうち相対する外壁面が外気に曝される内壁面に、前記冷気の流通方向に対して前記外気からの吸熱を抑制する吸熱抑制形状を設けた冷蔵庫。 A heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and cold air that cools the storage chamber by forced convection or natural convection. A cooling means for supplying the cooling air to the inner wall surface of the inner wall surface of the storage chamber through which the cool air circulates, the opposite outer wall surface being exposed to the outside air from the outside air with respect to the flow direction of the cool air. A refrigerator provided with an endothermic suppression shape that suppresses the endothermic heat. 前記貯蔵室内に引き出し可能な収納ケースを備えた請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, further comprising a storage case that can be pulled out into the storage chamber. 前記貯蔵室内に引き出し可能な収納ケースと、前記貯蔵室の背部に設けられ前記冷気を前記貯蔵室内に供給する冷気吐出口と、前記収納ケースの背面に設けられ前記貯蔵室内の内壁面に沿って循環した前記冷気を前記冷却手段に戻す冷気吸込み口と、を備えた請求項1に記載の冷蔵庫。 A storage case that can be drawn into the storage chamber, a cool air discharge port that is provided at the back of the storage chamber and supplies the cool air to the storage chamber, and an inner wall surface of the storage chamber that is provided at the back of the storage case The refrigerator according to claim 1, further comprising: a cold air inlet for returning the circulated cold air to the cooling means. 前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものである請求項1から3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the endothermic suppression shape has a convex shape toward an inner wall surface of the heat insulating door toward the storage room. 前記吸熱抑制形状は、前記断熱箱体の内壁面に前記貯蔵室側に向かって凸形状を有するものである請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the endothermic suppression shape has a convex shape toward an inner wall surface of the heat insulating box toward the storage chamber. 前記凸形状は、前記内壁面の同一表面に複数形成している請求項4または5に記載の冷蔵庫。 The refrigerator according to claim 4 or 5, wherein a plurality of the convex shapes are formed on the same surface of the inner wall surface. 前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものであり、前記収納ケースの上部には前記収納ケースを引き出すための取っ手部を有し、前記凸形状の少なくとも一部は、前記取っ手部の上端と下端との間に設けた請求項3に記載の冷蔵庫。 The endothermic suppression shape has a convex shape on the inner wall surface of the heat insulating door toward the storage chamber side, and has a handle portion for pulling out the storage case at the upper portion of the storage case, The refrigerator according to claim 3, wherein at least a part of the shape is provided between an upper end and a lower end of the handle portion. 前記吸熱抑制形状は、前記断熱扉の内壁面に前記貯蔵室側に向かって凸形状を有するものであり、前記貯蔵室と隣接する他の貯蔵室とを区画する仕切壁を備え、前記収納ケースの上部には前記収納ケースを引き出すための取っ手部を有し、前記凸形状の少なくとも一部は、前記取っ手部の上端と前記仕切壁の下端との間に設けた請求項3に記載の冷蔵庫。 The endothermic suppression shape has a convex shape toward the storage chamber side on the inner wall surface of the heat insulating door, and includes a partition wall that divides the storage chamber and another storage chamber adjacent thereto, and the storage case The refrigerator according to claim 3, further comprising a handle portion for pulling out the storage case at an upper portion of the tub, wherein at least a part of the convex shape is provided between an upper end of the handle portion and a lower end of the partition wall. .
JP2009174947A 2009-07-28 2009-07-28 refrigerator Active JP5229147B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009174947A JP5229147B2 (en) 2009-07-28 2009-07-28 refrigerator
CN201010243354.0A CN101986067B (en) 2009-07-28 2010-07-28 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174947A JP5229147B2 (en) 2009-07-28 2009-07-28 refrigerator

Publications (2)

Publication Number Publication Date
JP2011027356A true JP2011027356A (en) 2011-02-10
JP5229147B2 JP5229147B2 (en) 2013-07-03

Family

ID=43636301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174947A Active JP5229147B2 (en) 2009-07-28 2009-07-28 refrigerator

Country Status (2)

Country Link
JP (1) JP5229147B2 (en)
CN (1) CN101986067B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202603A (en) * 2011-03-25 2012-10-22 Panasonic Corp Refrigerator
JP2012202604A (en) * 2011-03-25 2012-10-22 Panasonic Corp Refrigerator
JP2014070769A (en) * 2012-09-28 2014-04-21 Panasonic Corp Refrigerator
WO2018216235A1 (en) * 2017-05-24 2018-11-29 シャープ株式会社 Refrigerator
US10866021B2 (en) 2016-09-09 2020-12-15 Panasonic Corporation Heat-insulation box

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692111B (en) * 2011-03-25 2016-02-10 松下电器产业株式会社 Freezer
CN102518348B (en) * 2011-12-06 2014-10-22 合肥美的电冰箱有限公司 Refrigerator and door locking component used for refrigerator
JP6905856B2 (en) * 2017-05-10 2021-07-21 パナソニック株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096584A (en) * 1996-09-20 1998-04-14 Mitsubishi Electric Corp Heat insulating mechanism for refrigerator
JPH10103056A (en) * 1996-09-26 1998-04-21 Mitsubishi Heavy Ind Ltd Piston
JP2000046455A (en) * 1998-05-25 2000-02-18 Hitachi Ltd Refrigerator
JP2006322698A (en) * 2005-04-22 2006-11-30 Denso Corp Heat exchanger
JP2008249292A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Refrigerator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2033487U (en) * 1988-08-04 1989-03-01 李芧华 Vacuum chamber heat isolator of a refrigerator
CN2066123U (en) * 1989-09-19 1990-11-21 万长荣 Energy-saving vacuum heat-insulating refrigerator
CN2348339Y (en) * 1998-04-10 1999-11-10 淄博市科尼实业有限公司 Section for inner wall of refrigerating facilities
JP2001082868A (en) * 1999-09-08 2001-03-30 Matsushita Refrig Co Ltd Cold insulation warehouse
AU2002258258B2 (en) * 2001-06-04 2005-03-10 Matsushita Refrigeration Company Insulated box body, refrigerator having the box body, and method of recycling materials for insulated box body
JP2005172307A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Refrigerator
JP4576197B2 (en) * 2004-10-12 2010-11-04 日立アプライアンス株式会社 Vacuum insulation and refrigerator
JP2007078229A (en) * 2005-09-13 2007-03-29 Fuji Electric Retail Systems Co Ltd Storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096584A (en) * 1996-09-20 1998-04-14 Mitsubishi Electric Corp Heat insulating mechanism for refrigerator
JPH10103056A (en) * 1996-09-26 1998-04-21 Mitsubishi Heavy Ind Ltd Piston
JP2000046455A (en) * 1998-05-25 2000-02-18 Hitachi Ltd Refrigerator
JP2006322698A (en) * 2005-04-22 2006-11-30 Denso Corp Heat exchanger
JP2008249292A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202603A (en) * 2011-03-25 2012-10-22 Panasonic Corp Refrigerator
JP2012202604A (en) * 2011-03-25 2012-10-22 Panasonic Corp Refrigerator
JP2014070769A (en) * 2012-09-28 2014-04-21 Panasonic Corp Refrigerator
EP2902734A4 (en) * 2012-09-28 2015-10-21 Panasonic Ip Man Co Ltd Refrigerator
US10866021B2 (en) 2016-09-09 2020-12-15 Panasonic Corporation Heat-insulation box
WO2018216235A1 (en) * 2017-05-24 2018-11-29 シャープ株式会社 Refrigerator
JPWO2018216235A1 (en) * 2017-05-24 2020-04-02 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
JP5229147B2 (en) 2013-07-03
CN101986067B (en) 2014-02-26
CN101986067A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP5229147B2 (en) refrigerator
JP5957684B2 (en) refrigerator
CN104641190B (en) Freezer
JP2010060188A (en) Refrigerator
WO2013084460A1 (en) Refrigerator
JP5966145B2 (en) refrigerator
JP2009041793A (en) Refrigerator
JP2014077615A (en) Refrigerator
JP5434431B2 (en) refrigerator
JP5909623B2 (en) refrigerator
JP2009092340A (en) Refrigerator
JP5510077B2 (en) refrigerator
JP5617003B2 (en) refrigerator
JP6909966B2 (en) refrigerator
US10739057B2 (en) Refrigerator
WO2011036870A1 (en) Refrigerator
JP2009068800A (en) Refrigerator
JP6035506B2 (en) refrigerator
JP2012202603A (en) Refrigerator
JP7012139B2 (en) refrigerator
JP5620538B2 (en) refrigerator
JP2018109501A (en) refrigerator
CN102692111B (en) Freezer
JP5849179B2 (en) refrigerator
JP2013185731A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3