JP5909623B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5909623B2
JP5909623B2 JP2011067239A JP2011067239A JP5909623B2 JP 5909623 B2 JP5909623 B2 JP 5909623B2 JP 2011067239 A JP2011067239 A JP 2011067239A JP 2011067239 A JP2011067239 A JP 2011067239A JP 5909623 B2 JP5909623 B2 JP 5909623B2
Authority
JP
Japan
Prior art keywords
box
heat insulating
outer box
heat
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011067239A
Other languages
Japanese (ja)
Other versions
JP2012202604A (en
Inventor
克則 堀井
克則 堀井
堀尾 好正
好正 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011067239A priority Critical patent/JP5909623B2/en
Priority to CN201210055902.6A priority patent/CN102692111B/en
Publication of JP2012202604A publication Critical patent/JP2012202604A/en
Application granted granted Critical
Publication of JP5909623B2 publication Critical patent/JP5909623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は省エネ効果の高い冷蔵庫に関するものである。   The present invention relates to a refrigerator having a high energy saving effect.

図7は、従来の冷蔵庫の冷凍室の基本構造の縦断面図である。   FIG. 7 is a longitudinal sectional view of a basic structure of a freezer compartment of a conventional refrigerator.

図7に示すように、冷蔵庫の箱体10は、外箱11と内箱13とによって形成される断熱壁中に配置される真空断熱材50、52、53、55と、外箱11、内箱13および真空断熱材50、52、53、55を接着可能であり、それ自身に接着力を有するウレタン等の発泡断熱材12とを有して構成されている。   As shown in FIG. 7, the refrigerator box 10 includes a vacuum heat insulating material 50, 52, 53, 55 disposed in a heat insulating wall formed by the outer box 11 and the inner box 13, and the outer box 11, the inner box 13, and the inner box 13. The box 13 and the vacuum heat insulating materials 50, 52, 53, and 55 can be bonded to each other, and are configured to have a foam heat insulating material 12 such as urethane having an adhesive force.

内箱10内には、図示しない野菜室やチルド室を有する設定温度10℃以下の冷蔵温度室14と、製氷室や急冷凍室を有する設定温度−16℃から−30℃程度の冷凍温度室15とが設けられており、各室の間は前仕切り16や仕切壁17により区画されている。   In the inner box 10, there are a refrigerated temperature chamber 14 having a set temperature of 10 ° C. or less having a vegetable room and a chilled chamber (not shown), and a freezing temperature chamber having a set temperature of −16 ° C. to −30 ° C. having an ice making room and a quick freezer 15, and each room is partitioned by a front partition 16 and a partition wall 17.

冷蔵温度室14の開口前面には、この開口前面を開閉可能に閉塞する扉体30を備えている。この扉体30は、外箱31と内箱33とによって形成される断熱壁中に設置された真空断熱材52と、外箱31、内箱33および真空断熱材50と接着可能であり、それ自身に接着力を有するウレタン等の発泡断熱材32とを有して構成されている。   A door body 30 that closes the front face of the opening so as to be openable and closable is provided on the front face of the refrigeration temperature chamber 14. This door body 30 can be bonded to the vacuum heat insulating material 52 installed in the heat insulating wall formed by the outer box 31 and the inner box 33, and to the outer box 31, the inner box 33 and the vacuum heat insulating material 50. It is configured to have a foam heat insulating material 32 such as urethane having an adhesive force.

冷凍温度室15の開口前面には、この開口前面を開閉可能に閉塞する扉体35を備えている。この扉体35は、外箱36と内箱38とによって形成される断熱壁中に設置された真空断熱材54と、外箱36、内箱38および真空断熱材54と接着可能であり、それ自身に接着力を有するウレタン等の発泡断熱材37を有して構成されている。   The front surface of the opening of the freezing temperature chamber 15 is provided with a door body 35 that closes the front surface of the opening so as to be opened and closed. This door body 35 can be bonded to the vacuum heat insulating material 54 installed in the heat insulating wall formed by the outer box 36 and the inner box 38, and to the outer box 36, the inner box 38 and the vacuum heat insulating material 54. It is configured to have a foam heat insulating material 37 such as urethane having adhesive strength to itself.

なお、図7では省略しているが、上記の各貯蔵室は独立した扉によって前面が閉塞されており、例えば、製氷室と急冷凍室との間は前仕切16に相当する部材によって仕切られ、この前仕切16相当部材によって扉体を受ける構成としている。また、温度帯の異なる貯蔵室の間は、仕切壁17に相当する部材によって仕切られており、仕切壁17相当部材は断熱構造を有している。   Although not shown in FIG. 7, the front of each storage chamber is closed by an independent door. For example, the ice making chamber and the quick freezing chamber are partitioned by a member corresponding to the front partition 16. The door is received by the front partition 16 equivalent member. In addition, the storage rooms having different temperature zones are partitioned by a member corresponding to the partition wall 17, and the member corresponding to the partition wall 17 has a heat insulating structure.

また、冷凍温度室15の下部には断熱壁を介して下部機械室が構成されており、圧縮機40が設置されている。   In addition, a lower machine chamber is formed below the freezing temperature chamber 15 via a heat insulating wall, and a compressor 40 is installed.

これらの真空断熱材50、52、52、53、54、55は、発泡断熱材12、32、37より高い断熱性能が実現可能であり、例えば、箱体10側の発泡断熱材12の熱伝導率が0.016W/mK程度、扉体側の発泡断熱材32、37の熱伝導率が0.018W/mK程度であるのに対し、真空断熱材50、52、52、53、54、55の熱伝導率は0.002W/mKから0.003W/mK程度とすることができる。   These vacuum heat insulating materials 50, 52, 52, 53, 54, and 55 can realize higher heat insulating performance than the foam heat insulating materials 12, 32, and 37, for example, heat conduction of the foam heat insulating material 12 on the box 10 side. While the rate is about 0.016 W / mK and the thermal conductivity of the foam insulation 32 and 37 on the door body side is about 0.018 W / mK, the vacuum insulation 50, 52, 52, 53, 54 and 55 The thermal conductivity can be about 0.002 W / mK to about 0.003 W / mK.

したがって、熱漏洩の生ずる断熱壁面積を一定と仮定すれば、ウレタン等の発泡断熱材のみで形成した断熱壁厚さの約1/5から1/9程度の厚さ寸法を有する真空断熱材を使用すれば、断熱壁からの熱漏洩量を同等に設定できるということになる。   Accordingly, assuming that the heat insulating wall area where heat leakage occurs is constant, a vacuum heat insulating material having a thickness dimension of about 1/5 to 1/9 of the heat insulating wall thickness formed only of a foam heat insulating material such as urethane is provided. If used, the amount of heat leakage from the heat insulating wall can be set to be equal.

なお、真空断熱材50、52、52、53、54、55は、図7に示すように、冷蔵温度室14周囲の断熱壁内および冷凍温度室15周囲の断熱壁内の各面に設置している。   The vacuum heat insulating materials 50, 52, 52, 53, 54, 55 are installed on each surface in the heat insulating wall around the refrigeration temperature chamber 14 and in the heat insulating wall around the refrigeration temperature chamber 15, as shown in FIG. ing.

これらの真空断熱材は、冷蔵庫の庫内温度と箱体外表面周囲温度との温度差の大きい部分ほど、外箱11と内箱13とによって形成される断熱壁体積に占める真空断熱材の体積率を大きく設定してある。   As for these vacuum heat insulating materials, the volume of the vacuum heat insulating material which occupies the heat insulating wall volume formed by the outer box 11 and the inner box 13 as the temperature difference between the refrigerator internal temperature and the box outer surface ambient temperature increases. The rate is set large.

例えば、冷蔵温度室14周囲の断熱壁面積と冷凍温度室15周囲の断熱壁面積とを同一面積と仮定し、冷蔵温度室14周囲の断熱壁厚さTr内に設置される真空断熱材50、52、52の厚さをtr寸法とし、冷凍温度室16周囲の断熱壁厚さTf内に設置する真空断熱材53、54、55の厚さをtf寸法とすると、
tf/Tf>tr/Tr
となるように構成してある。
For example, assuming that the heat insulation wall area around the refrigeration temperature chamber 14 and the heat insulation wall area around the refrigeration temperature chamber 15 are the same area, the vacuum heat insulating material 50 installed in the heat insulation wall thickness Tr around the refrigeration temperature chamber 14; When the thickness of 52, 52 is the tr dimension, and the thickness of the vacuum heat insulating materials 53, 54, 55 installed in the heat insulating wall thickness Tf around the freezing temperature chamber 16 is the tf dimension,
tf / Tf> tr / Tr
It is comprised so that it may become.

つまり、庫内の温度と箱体外表面周囲温度との温度差の大きい部分ほど、外箱11と内箱13とによって形成される断熱壁体積に占める真空断熱材の体積率を大きく設定してある。   That is, the larger the temperature difference between the temperature inside the box and the ambient temperature on the outer surface of the box body, the larger the volume ratio of the vacuum heat insulating material to the heat insulating wall volume formed by the outer box 11 and the inner box 13 is set. is there.

このように、庫内温度と箱体外表面周囲温度との温度差の大きい部分ほど、外箱と内箱とによって形成される断熱壁体積に占める真空断熱材の体積率を大きく設定することで省エネ運転を促進でき、全体として省エネ性が向上する冷蔵庫を提供することが提案されている(例えば、特許文献1参照)。   In this way, by setting a larger volume ratio of the vacuum heat insulating material in the heat insulating wall volume formed by the outer box and the inner box, the larger the temperature difference between the internal temperature and the box outer surface ambient temperature, It has been proposed to provide a refrigerator that can promote energy saving operation and improve energy saving performance as a whole (see, for example, Patent Document 1).

特開2006−189207号公報JP 2006-189207 A

しかしながら、上記従来の構成は、外気と外箱表面とで熱交換して吸熱した熱を、いかに断熱性を高めて庫内へ到達させないかに特化しており、外箱表面で外気との熱交換、すなわち外箱表面から吸熱量そのものを低減する配慮がなされていない。特に、冷蔵庫下部に構成されている下部機械室内に設置された凝縮器は冷却運転中に外気より高温になるために空冷ファンによって空冷されるが、その際の排気が、外箱表面に沿って上方へ流れる。その高温の上昇気流が外箱表面と熱交換するため、外箱表面からの吸熱量は大きい。   However, the above-described conventional configuration specializes in how heat absorbed by heat exchange between the outside air and the outer box surface is not increased to reach the interior by increasing heat insulation. No consideration is given to replacement, that is, to reduce the amount of heat absorbed from the outer box surface itself. In particular, the condenser installed in the lower machine room at the lower part of the refrigerator is air-cooled by an air-cooling fan because it becomes hotter than the outside air during the cooling operation, but the exhaust at that time is along the outer box surface Flows upward. Since the high-temperature updraft exchanges heat with the outer box surface, the amount of heat absorbed from the outer box surface is large.

本発明は、上記従来の課題を解決するもので、外箱表面での熱交換を抑制して吸熱量を低減することで、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a refrigerator that reduces heat absorption by suppressing heat exchange on the surface of the outer box, thereby improving cooling efficiency and reducing power consumption. With the goal.

上記従来の課題を解決するために、本発明の冷蔵庫は、内箱と外箱で構成され、前記内箱と前記外箱との間に断熱材を備えた断熱箱体と、前記断熱箱体の下部に構成された下部機械室と、前記下部機械室内の設置された凝縮器と、前記凝縮器を空冷する空冷ファンと、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される異なった複数の温度帯の貯蔵室とを備えて、運転中に外気より高温となる前記凝縮器を前記空冷ファンによって空冷し、高温となった排気が流通する前記断熱箱体の前記外箱
表面に、高温の排気からの吸熱を抑制する吸熱抑制形状を設けたもので、前記吸熱抑制形状は、前記断熱箱体の前記外箱底部表面と、冷却器が配設された冷却室と対向する外箱表面に、外気側に向かって凸形状を有し、下部機械室内の前記空冷ファンの作動で生じる負圧により生じる上方の流れと垂直となる幅方向に前記凸形状を設け、上昇気流の下流において、流速が遅くなる領域を発生させ、熱伝達率を減少させたものである。
In order to solve the above-described conventional problems, the refrigerator of the present invention includes an inner box and an outer box, a heat insulating box body including a heat insulating material between the inner box and the outer box, and the heat insulating box body. A lower machine room configured in a lower part of the machine, a condenser installed in the lower machine room, an air cooling fan for air-cooling the condenser, a heat-insulating door for opening and closing an opening front of the heat-insulating box, and the heat insulation A storage chamber of a plurality of different temperature zones formed by a box and the heat insulating door is provided, and the condenser that is hotter than the outside air during operation is air-cooled by the air-cooling fan, and the exhaust that has become hot is A heat absorption suppression shape that suppresses heat absorption from high-temperature exhaust is provided on the surface of the outer box of the heat insulation box that circulates, and the heat absorption suppression shape includes the bottom surface of the outer box of the heat insulation box , and cooling. an outer packaging surface of the vessel is facing the cooling chamber disposed, convex toward the outside air A, the convex upper flow and the width direction perpendicular caused by the negative pressure generated by operation of the lower machine room the air-cooling fan provided downstream of rising air, to generate a region where the flow velocity is slow, thermal The transmission rate is reduced .

これによって、外箱表面からの吸熱量を低減することができる。   As a result, the amount of heat absorbed from the outer box surface can be reduced.

本発明の冷蔵庫は、外箱表面からの吸熱量を低減することで、冷却効率を向上させ、消
費電力量を低減した冷蔵庫を提供できる。
The refrigerator of the present invention can provide a refrigerator with improved cooling efficiency and reduced power consumption by reducing the amount of heat absorbed from the outer box surface.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の冷凍室断面図Cross-sectional view of the freezer compartment of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の冷却室拡大断面図Cooling chamber enlarged sectional view of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の外箱表面の凸形状拡大断面図The convex-shaped expanded sectional view of the outer case surface of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の外箱表面の凸形状の寸法を示す拡大断面図The expanded sectional view which shows the dimension of the convex shape of the outer case surface of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫の冷凍室の下部拡大断面図The lower expanded sectional view of the freezer compartment of the refrigerator in Embodiment 2 of the present invention. 従来の冷蔵庫の冷凍室の断面図Sectional view of the freezer compartment of a conventional refrigerator

請求項1に記載の発明は、内箱と外箱で構成され、前記内箱と前記外箱との間に断熱材を備えた断熱箱体と、前記断熱箱体の下部に構成された下部機械室と、前記下部機械室内の設置された凝縮器と、前記凝縮器を空冷する空冷ファンと、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される異なった複数の温度帯の貯蔵室とを備えて、運転中に外気より高温となる前記凝縮器を前記空冷ファンによって空冷し、高温となった排気が流通する前記断熱箱体の前記外箱表面に、高温の排気からの吸熱を抑制する吸熱抑制形状を設けたもので、前記吸熱抑制形状は、前記断熱箱体の前記外箱底部表面と、冷却器が配設された冷却室と対向する外箱表面に、外気側に向かって凸形状を有し、下部機械室内の前記空冷ファンの作動で生じる負圧により生じる上方の流れと垂直となる幅方向に前記凸形状を設け、上昇気流の下流において、流速が遅くなる領域を発生させ、熱伝達率を減少させたことにより、外箱表面からの吸熱量を低減することができ、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。
Invention of Claim 1 is comprised by the inner box and the outer box, the heat insulation box provided with the heat insulating material between the said inner box and the said outer box, and the lower part comprised by the lower part of the said heat insulation box A machine room, a condenser installed in the lower machine room, an air-cooling fan for air-cooling the condenser, a heat-insulating door that opens and closes an opening front of the heat-insulating box, the heat-insulating box and the heat-insulating door A storage chamber of a plurality of different temperature zones formed by the above, the condenser that is hotter than the outside air during operation is air-cooled by the air-cooling fan, The outer box surface is provided with an endothermic suppression shape that suppresses heat absorption from high-temperature exhaust, and the endothermic suppression shape is the cooling of the outer box bottom surface of the heat insulating box and a cooler. the chamber facing the outer box surface has a convex shape toward the outside air, the lower machine chamber of the Above the flow and the width direction perpendicular caused by the negative pressure generated by operation of the cold fan provided with the convex downstream updraft to generate a region in which the flow velocity is slowed, by having reduced heat transfer coefficient The amount of heat absorbed from the surface of the outer box can be reduced, the cooling efficiency can be improved, and a refrigerator with reduced power consumption can be provided.

請求項に記載の発明は、請求項に記載の発明において、前記凸形状は、前記断熱箱体の前記外箱表面の同一表面に複数形成するにより、凸形状の後方において流速が遅くなる領域をより多く発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、外箱表面からの吸熱量を低減できることとなり、冷却効率を向上させ、その結果、消費電力量を低減することができる。 According to a second aspect of the present invention, in the first aspect of the present invention, a plurality of the convex shapes are formed on the same surface of the outer box surface of the heat insulating box, so that the flow velocity is slow behind the convex shape. More areas can be generated, and the heat transfer coefficient in the area where the flow rate is slowed down, so the amount of heat absorbed from the outer box surface can be reduced, improving the cooling efficiency and consequently reducing the power consumption. Can be reduced.

請求項に記載の発明は、請求項1または2に記載の発明において、前記凸形状の少なくとも一部は、前記貯蔵室の中で最も設定温度が低い貯蔵室に対向する前記外箱表面に設けることで、より大きな吸熱量低減効果を得られることができ、冷却効率を向上させ、その結果、消費電力量を低減することができる。
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein at least a part of the convex shape is formed on the surface of the outer box facing the storage chamber having the lowest set temperature among the storage chambers. By providing, a greater effect of reducing the amount of absorbed heat can be obtained, and the cooling efficiency can be improved. As a result, the amount of power consumption can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, detailed description of the same configurations as those of the conventional example will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1における冷蔵庫の冷凍室断面図である。図3は、本発明の実施の形態1における冷蔵庫の冷却室拡大断面図である。図4は、本発明の実施の形態1における冷蔵庫の外箱表面の凸形状拡大断面図である。図5は、本発明の実施の形態1における冷蔵庫の外箱表面の凸形状の寸法を示す拡大断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the freezer compartment of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is an enlarged cross-sectional view of the cooling chamber of the refrigerator in the first embodiment of the present invention. FIG. 4 is an enlarged sectional view of a convex shape on the surface of the outer box of the refrigerator in the first embodiment of the present invention. FIG. 5 is an enlarged cross-sectional view showing the dimensions of the convex shape of the outer box surface of the refrigerator in the first embodiment of the present invention.

図1において、冷蔵庫100の断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、を備え、その内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填されて、周囲と断熱され、複数の貯蔵室に区分されている。最上部に冷蔵室104、その冷蔵室104の下方に野菜室105、そして最下部に冷凍室106が配置される構成となっている。   In FIG. 1, a heat insulating box 101 of a refrigerator 100 includes an outer box 102 mainly using a steel plate and an inner box 103 molded of a resin such as ABS, and the inside thereof is made of, for example, hard foam urethane or the like. Filled with foam insulation, insulated from the surroundings, divided into a plurality of storage rooms. The refrigerator compartment 104 is arranged at the top, the vegetable compartment 105 is arranged below the refrigerator compartment 104, and the freezer compartment 106 is arranged at the bottom.

各貯蔵室には、冷蔵庫本体に回転自在に枢支した断熱扉117、118、119によってその前面開口部を閉塞している。   The front opening of each storage room is closed by heat insulating doors 117, 118, and 119 that are pivotally supported on the refrigerator main body.

冷蔵室104は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室105は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃としている。冷凍室106は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerator compartment 104 is normally set to 1 ° C. to 5 ° C. at the lower limit of the temperature at which it does not freeze for refrigerated storage, and the vegetable compartment 105 is set to 2 ° C. to 7 ° C., which is a temperature setting that is equal to or slightly higher than that of the refrigerator compartment 104. The freezer compartment 106 is set to a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

断熱箱体101の最下部の冷凍室106の後方領域に下部機械室107を形成して、凝縮器108a、凝縮器108aを空冷するための空冷ファン108b、圧縮機(図示せず)、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。   A lower machine chamber 107 is formed in the rear region of the freezer compartment 106 at the bottom of the heat insulation box 101, and the condenser 108a, an air cooling fan 108b for cooling the condenser 108a, a compressor (not shown), and moisture removal The high-pressure side components of the refrigeration cycle such as a dryer (not shown) for performing the above are accommodated.

図2において、冷凍室106の背面には冷気を生成する冷却室109が設けられ、その間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切壁110とが構成されている。冷却室109内には、冷却器111が配設されており、冷却器111の上部空間には強制対流方式により冷却器111で冷却した冷気を冷蔵室104、野菜室105、冷凍室106に送風する冷却ファン112が配置され、冷却器111の下部空間には、冷却時に冷却器111やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ113が設けられ、さらにその下部には除霜時に生じる除霜水を受けとめ庫外に排水するためのドレンパン114が構成され、その下流側の庫外に蒸発皿116が構成されている。なお、本実施の形態では、冷凍サイクルの内部には可燃性冷媒であるイソブタンが封入されている。   In FIG. 2, a cooling chamber 109 for generating cold air is provided on the back surface of the freezing chamber 106, and a cooling air conveyance air passage to each chamber having heat insulation properties and an insulating partition with each chamber are provided between them. The rear surface partition wall 110 is configured. A cooler 111 is disposed in the cooling chamber 109, and in the upper space of the cooler 111, cold air cooled by the cooler 111 by a forced convection method is blown to the refrigerator compartment 104, the vegetable compartment 105, and the freezer compartment 106. A cooling fan 112 is disposed, and a lower space of the cooler 111 is provided with a radiant heater 113 made of glass tube for defrosting the frost and ice adhering to the cooler 111 and its surroundings at the time of cooling. A drain pan 114 for receiving defrosted water generated at the time of defrosting and draining it outside the storage is configured at the lower part, and an evaporating dish 116 is configured outside the storage on the downstream side. In this embodiment, isobutane, which is a flammable refrigerant, is enclosed in the refrigeration cycle.

奥面仕切壁110には冷却器111で生成された冷気を冷却ファン112によって冷凍室106へと供給するための冷気吐出口124と、冷気吐出口124の下方に、冷凍室106内を循環した冷気を冷却器111へ戻すための冷気吸込み口125と、を設けている。   A cool air discharge port 124 for supplying the cool air generated by the cooler 111 to the freezing chamber 106 by the cooling fan 112 and the inside of the freezing chamber 106 are circulated below the cool air discharge port 124 in the rear partition wall 110. A cold air inlet 125 for returning the cold air to the cooler 111 is provided.

また、冷凍室106内には引き出し機構に保持されて引き出されるとともに、食品類を貯蔵する収納ケースを配置している。本実施の形態では、冷凍室内には収納ケースは3つ配置している。具体的には、上段の収納ケース126、中段の収納ケース127、下段の収納ケース128を配置している。   In addition, a storage case is provided in the freezer compartment 106 to be pulled out while being held by a drawer mechanism. In the present embodiment, three storage cases are arranged in the freezer compartment. Specifically, an upper storage case 126, a middle storage case 127, and a lower storage case 128 are arranged.

断熱扉119の内面の端部には全周にわたり扉ガスケット121が設けられており(冷蔵室104、野菜室105においても同様に扉ガスケットが設けられている)、野菜室1
05と冷凍室106とを区切る外周を樹脂部で構成している仕切壁122の前面に設けた金属受け部材123と扉ガスケット121とを密着させて冷気が外部に漏れるのを防止している。
A door gasket 121 is provided at the inner edge of the heat insulating door 119 over the entire circumference (the door gasket is also provided in the refrigerator compartment 104 and the vegetable compartment 105).
The metal receiving member 123 and the door gasket 121 provided on the front surface of the partition wall 122 having a resin portion on the outer periphery separating 05 and the freezer compartment 106 are closely attached to prevent cold air from leaking to the outside.

また、金属受け部材123には貯蔵室外側面に結露することを防止するために、金属受け部材123の貯蔵室内側面に密着するように放熱パイプ131を配設している。この放熱パイプ131は冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部材123を高温に加温している。   The metal receiving member 123 is provided with a heat radiating pipe 131 so as to be in close contact with the side surface of the metal receiving member 123 in the storage chamber in order to prevent condensation on the outer surface of the storage chamber. The heat radiating pipe 131 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the metal receiving member 123 to a high temperature.

図3および4において、冷却室109と対向する外箱102の表面には、凸形状129が、外気側に向かって、設けられている。具体的には、冷蔵庫の幅方向(図1の紙面の奥側から手前側に向かって)に、凸形状129が設けられている。なお、冷却室109と対向する外箱102の表面は、外箱102表面の一例である。   3 and 4, a convex shape 129 is provided on the surface of the outer box 102 facing the cooling chamber 109 toward the outside air side. Specifically, a convex shape 129 is provided in the width direction of the refrigerator (from the back side to the front side in FIG. 1). Note that the surface of the outer box 102 facing the cooling chamber 109 is an example of the surface of the outer box 102.

また、より具体的には、凸形状129は、冷蔵庫100の高さ方向(図3の上下方向)に対して、冷却室109と対向する外箱102表面に、一定の間隔(等ピッチ)をあけて、複数本設けられている。   More specifically, the convex shape 129 has a constant interval (equal pitch) on the surface of the outer box 102 facing the cooling chamber 109 with respect to the height direction of the refrigerator 100 (vertical direction in FIG. 3). A plurality of them are provided.

また、凸形状129は、冷蔵庫の幅方向に連続的に設けている。   Moreover, the convex shape 129 is provided continuously in the width direction of the refrigerator.

また、本実施の形態では、凸形状の詳細は、以下の通りである。図5に示すように、隣り合う凸形状129の間隔(A寸法)は45mm、凸形状129の幅寸法(B寸法)は5mm、凸形状129の高さ寸法(D寸法)は3mm、角度Eは120度である。   In the present embodiment, details of the convex shape are as follows. As shown in FIG. 5, the distance (A dimension) between adjacent convex shapes 129 is 45 mm, the width dimension (B dimension) of the convex shape 129 is 5 mm, the height dimension (D dimension) of the convex shape 129 is 3 mm, and the angle E Is 120 degrees.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、下部機械室107周辺の外気の流れについて説明する。   First, the flow of outside air around the lower machine room 107 will be described.

一般的に冷蔵庫100は、キッチンなどの壁と背面側の外箱102との間に適切な空間を設けて設置される。冷蔵庫100内を冷却中、凝縮器108aおよび圧縮機の表面は外気温より高温となる。放熱性能を高めるために、空冷ファン108bによって凝縮器108aおよび圧縮機の表面を空冷する。凝縮器108aおよび圧縮機表面を空冷した後の高温の空気は、お客様が不快に感じないように図2および3の実線矢印で示すように冷蔵庫100の背面側に排気され、キッチンなどの壁と外箱102との間の空間を風路として、下部機械室107から冷却室109と対向する外箱102表面に沿って冷蔵庫100の上方へと流れていく。   Generally, the refrigerator 100 is installed by providing an appropriate space between a wall such as a kitchen and the outer box 102 on the back side. While the inside of the refrigerator 100 is being cooled, the surfaces of the condenser 108a and the compressor become higher than the outside air temperature. In order to improve the heat radiation performance, the air cooling fan 108b cools the condenser 108a and the surface of the compressor. The hot air after the condenser 108a and the compressor surface are air-cooled is exhausted to the back side of the refrigerator 100 as shown by the solid arrows in FIGS. 2 and 3 so that the customer does not feel uncomfortable. The space between the outer box 102 and the outer box 102 flows from the lower machine chamber 107 to the upper side of the refrigerator 100 along the surface of the outer box 102 facing the cooling chamber 109.

それと同時に、空冷ファン108bの作動によって下部機械室107内が負圧になるため、図2および3の破線矢印で示すような冷蔵庫100の底部の外気が下部機械室107内に引き込まれ、キッチンなどの床面と外箱102の間の空間を風路として流れが生じる。   At the same time, the inside of the lower machine room 107 becomes negative pressure by the operation of the air cooling fan 108b, so that the outside air at the bottom of the refrigerator 100 as shown by the broken line arrows in FIGS. A flow is generated by using the space between the floor of the floor and the outer box 102 as an air path.

全体的に見ると、冷蔵庫100内を冷却中は、断熱扉119の下部から冷蔵庫100背面上方への大きな流れが発生している。   Overall, a large flow from the lower part of the heat insulating door 119 to the upper rear of the refrigerator 100 is generated while the inside of the refrigerator 100 is being cooled.

上記のように、凝縮器108aおよび圧縮機を空冷した後の高温の排気が冷却室109と対向する外箱102表面に沿って流れる際に、冷却室109と対向する外箱102表面が排気との熱交換により加温される。特に、冷却室109は蒸発器111を備えているため冷蔵庫100の中で最も低温であり、吸熱量が大きくなる。   As described above, when the high-temperature exhaust gas after cooling the condenser 108a and the compressor flows along the surface of the outer box 102 facing the cooling chamber 109, the surface of the outer box 102 facing the cooling chamber 109 is exhausted. It is heated by heat exchange. In particular, since the cooling chamber 109 is provided with the evaporator 111, it is the lowest temperature in the refrigerator 100 and the heat absorption amount is increased.

さらに、冷蔵庫100内に一度に多量の商品を収納した場合など、急激に冷却能力が必要になる際には、同時に放熱能力も必要となるため凝縮器108aおよび圧縮機表面が更に高温となる。この時、空冷ファン108bの回転数を上昇させ、大風量により凝縮器108aおよび圧縮機表面を空冷するため、排気される空気は大風量かつ高温となるため、外箱102表面からの吸熱量が大きくなる。   Furthermore, when a large amount of products are stored in the refrigerator 100 at a time, for example, when the cooling capacity is suddenly required, the heat dissipation capacity is also required at the same time, so that the condenser 108a and the compressor surface are further heated. At this time, since the rotational speed of the air cooling fan 108b is increased and the condenser 108a and the compressor surface are air-cooled by a large air volume, the exhausted air has a large air volume and a high temperature. growing.

しかしながら、本発明のように上昇気流と垂直になるように凸形状129を設けることで、図4の矢印に示すように、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、冷却室109と対向する外箱102表面からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   However, by providing the convex shape 129 so as to be perpendicular to the ascending air current as in the present invention, as shown by the arrow in FIG. 4, it is possible to generate a region where the flow velocity is slow behind the convex shape 129, Since the heat transfer coefficient in the region where the flow velocity is slowed down, the amount of heat absorbed from the surface of the outer box 102 facing the cooling chamber 109 can be suppressed, thereby improving the cooling efficiency and consequently reducing the power consumption. Can be reduced.

また、冷気の加温を抑制できることにより、冷気が低い温度のまま循環するため冷凍室106内全体の温度分布をより均一に保つことができる。   In addition, since the cooling of the cold air can be suppressed, the cold air circulates at a low temperature, so that the temperature distribution in the entire freezer compartment 106 can be kept more uniform.

ここで、吸熱量の抑制に関して、詳細を述べる。   Here, details regarding the suppression of the endothermic amount will be described.

一般に、熱の通過量Qは、次式で表される。   Generally, the amount Q of heat passing is expressed by the following equation.

Q=K*A*Δt K=1/(1/αo+1/αi+1/λ)
(Q:熱の通過量、A:熱通過面積、K:熱通過率、Δt:温度差、αo:外表面熱伝達率、αi:貯蔵室内面熱伝達率、λ:断熱壁熱伝導率(断熱材λ1と内箱樹脂λ2と外箱鋼板λ3の複合熱伝導率))
本実施の形態のように、冷却室109と対向する外箱102表面に凸形状を設けて、外箱102表面の形状を凹凸型にすることにより、凸形状直後の凹面で上昇気流の流通方向に対して外表面熱伝達率αoが小さくなり、Kが小さくなり、その結果、吸熱量を抑制できる。
Q = K * A * Δt K = 1 / (1 / αo + 1 / αi + 1 / λ)
(Q: heat passage amount, A: heat passage area, K: heat passage rate, Δt: temperature difference, αo: outer surface heat transfer rate, αi: storage room surface heat transfer rate, λ: heat insulation wall heat transfer rate ( Combined thermal conductivity of heat insulating material λ1, inner box resin λ2, and outer box steel plate λ3))
As in this embodiment, by providing a convex shape on the surface of the outer box 102 facing the cooling chamber 109 and making the shape of the outer box 102 surface an uneven shape, the flow direction of the updraft on the concave surface immediately after the convex shape As a result, the outer surface heat transfer coefficient αo becomes smaller and K becomes smaller, so that the amount of heat absorption can be suppressed.

以上のように、本実施の形態においては、内箱103と外箱102で構成され、内箱103と外箱102との間に断熱材を備えた断熱箱体101と、断熱箱体101の下部に構成された下部機械室107と、下部機械室107内の設置された凝縮器108aと、凝縮器108aを空冷する空冷ファン108bと、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される異なった複数の温度帯の貯蔵室106とを備えて、運転中に外気より高温となる凝縮器108aを空冷ファン108bによって空冷し、高温となった排気が流通する断熱箱体101の外箱102表面に、高温の排気からの吸熱を抑制する凸形状129を設けたことにより、外箱102表面からの吸熱量を低減することができ、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   As described above, in the present embodiment, the heat insulating box body 101 includes the inner box 103 and the outer box 102, and the heat insulating box body 101 includes the heat insulating material between the inner box 103 and the outer box 102. A lower machine room 107 formed in the lower part, a condenser 108a installed in the lower machine room 107, an air cooling fan 108b for air-cooling the condenser 108a, and a heat-insulating door 119 for opening and closing the front surface of the opening of the heat-insulating box 101. And a storage chamber 106 having a plurality of different temperature zones formed by the heat insulating box 101 and the heat insulating door 119, and the condenser 108a, which is hotter than the outside air during operation, is air-cooled by the air cooling fan 108b. By providing a convex shape 129 that suppresses heat absorption from high-temperature exhaust gas on the surface of the outer box 102 of the heat insulating box 101 through which the exhaust becomes distributed, the amount of heat absorbed from the surface of the outer box 102 can be reduced. , The 却効 rate is improved, can be provided a refrigerator having reduced power consumption.

また、外箱102表面に外気側に向かって凸形状を有していることにより、複雑な加工を行うことなく、簡易な加工を行うだけで、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   Further, by having a convex shape toward the outside air on the surface of the outer box 102, a region where the flow velocity becomes slow behind the convex shape 129 can be obtained by performing simple processing without performing complicated processing. Since the heat transfer coefficient in the region where the flow rate is slowed down can be generated, the amount of heat absorbed from outside air can be suppressed, thereby improving the cooling efficiency and consequently reducing the power consumption. Can do.

また、凸形状129を外箱102表面の同一表面に複数設けることにより、流速が遅くなる領域をより多く発生させることができ、外箱102表面からの吸熱量をより抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   In addition, by providing a plurality of convex shapes 129 on the same surface of the outer box 102 surface, it is possible to generate more regions where the flow velocity is slower, and to further suppress the amount of heat absorbed from the surface of the outer box 102, thereby improving the cooling efficiency. A refrigerator with improved power consumption can be provided.

また、凸形状129は外箱102表面と一体で形成していることにより、別部品は必要
なく、非常に安価でかつ組立工数も増加することはなく、外箱の剛性強度も向上できる。
Further, since the convex shape 129 is formed integrally with the surface of the outer box 102, no separate parts are required, it is very inexpensive, the number of assembling steps is not increased, and the rigidity strength of the outer box can be improved.

また、凸形状129を、凝縮器108aを空冷ファン108bによって空冷し、高温となった排気が外箱102表面に最も早く到達する部分であり、かつ冷蔵庫100の中で最も温度が低い冷却室109と対向する外箱102表面に設けることで、最も温度差が生じる部分での吸熱量を抑制することができ、より一層冷却効率を高めることができる。   Further, the convex shape 129 is a part where the condenser 108 a is air-cooled by the air-cooling fan 108 b, and the exhaust gas that has reached a high temperature reaches the surface of the outer box 102 earliest and the cooling chamber 109 has the lowest temperature in the refrigerator 100. By providing it on the surface of the outer box 102 that opposes the heat absorption amount, it is possible to suppress the amount of heat absorption at the portion where the temperature difference occurs most, and the cooling efficiency can be further enhanced.

具体的には、図3に示すように、凸形状129の少なくとも一部は、冷却室109内の最下部に設けたドレンパン114の取り付け面(X部分)とラジアントヒータ113の設置位置(Y部分)との間に設けている。   Specifically, as shown in FIG. 3, at least a part of the convex shape 129 includes an attachment surface (X portion) of the drain pan 114 provided at the lowermost part in the cooling chamber 109 and an installation position (Y portion) of the radiant heater 113. ).

すなわち、外箱102に沿ってほぼ平行に自然対流が流れ始める地点の近傍に凸形状129を設けている。   That is, the convex shape 129 is provided in the vicinity of the point where the natural convection begins to flow along the outer box 102 almost in parallel.

さらに、冷凍室106以外の貯蔵室に、例えば、冷蔵室104と対向する外箱102表面に、凸形状129を設けても、同様の効果を得ることができる。   Further, even if a convex shape 129 is provided on the surface of the outer box 102 facing the refrigerator compartment 104 in a storage room other than the freezer compartment 106, the same effect can be obtained.

なお、本実施の形態では、凸形状129は、外箱102の高さ方向に対して、一定の間隔(等ピッチ)をあけて設けたが、この間隔は不等ピッチとしてもよい。   In the present embodiment, the convex shapes 129 are provided at a constant interval (equal pitch) with respect to the height direction of the outer box 102, but the intervals may be unequal pitches.

なお、本実施の形態では、凸形状129は、冷蔵庫100の幅方向に連続的に設けているものとしたが、冷蔵庫100の幅方向において間欠的に設けたもの(すなわち、冷蔵庫100の幅方向において凸形状を設けていない箇所があるもの)でもよい。   In the present embodiment, the convex shape 129 is provided continuously in the width direction of the refrigerator 100, but is provided intermittently in the width direction of the refrigerator 100 (that is, the width direction of the refrigerator 100). There may be a portion where a convex shape is not provided.

なお、冷却手段としては、本実施の形態では、強制対流で冷却するものとしたが、自然対流で冷却するもの(いわゆる直冷式)としてもよい。   In this embodiment, the cooling means is cooled by forced convection, but may be cooled by natural convection (so-called direct cooling).

なお、本実施の形態で示した凸形状寸法は一例であり、本発明はこの寸法に限られるものではない。   The convex dimensions shown in this embodiment are examples, and the present invention is not limited to these dimensions.

(実施の形態2)
図6は、本発明の実施の形態2における冷蔵庫の下部拡大断面図である。
(Embodiment 2)
FIG. 6 is a lower enlarged sectional view of the refrigerator in the second embodiment of the present invention.

図6に示すように、冷蔵庫100の底部の外箱102表面に凸形状129を備えている。   As shown in FIG. 6, a convex shape 129 is provided on the surface of the outer box 102 at the bottom of the refrigerator 100.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1と同様である動作・作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement and an effect similar to Embodiment 1 is abbreviate | omitted.

空冷ファン108bの作動によって下部機械室107内が負圧になるため、図6の破線矢印で示すような冷蔵庫100の底部の外気が下部機械室107内に引き込まれ、冷蔵庫100の底部の外箱102に沿った流れが生じる。外箱102表面に流れと垂直となる方向に凸形状129を設けることにより、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   Since the inside of the lower machine room 107 becomes negative pressure by the operation of the air cooling fan 108b, the outside air at the bottom of the refrigerator 100 as shown by the broken line arrow in FIG. 6 is drawn into the lower machine room 107, and the outer box at the bottom of the refrigerator 100 A flow along 102 occurs. By providing the convex shape 129 on the surface of the outer box 102 in a direction perpendicular to the flow, it is possible to generate a region where the flow velocity is slow behind the convex shape 129, and the heat transfer coefficient of the region where the flow velocity is slow is reduced. Therefore, the amount of heat absorption can be suppressed, thereby improving the cooling efficiency and consequently reducing the power consumption.

また、冷気の加温を抑制できることにより、冷気が低い温度のまま循環するため冷凍室106内全体の温度分布をより均一に保つことができる。   In addition, since the cooling of the cold air can be suppressed, the cold air circulates at a low temperature, so that the temperature distribution in the entire freezer compartment 106 can be kept more uniform.

また、外箱102表面に外気側に向かって凸形状を有していることにより、複雑な加工を行うことなく、簡易な加工を行うだけで、凸形状129の後方において流速が遅くなる領域を発生させることができ、流速が遅くなった領域の熱伝達率は減少するため、外気からの吸熱量を抑制できることとなり、これによって、冷却効率を向上させ、その結果、消費電力量を低減することができる。   Further, by having a convex shape toward the outside air on the surface of the outer box 102, a region where the flow velocity becomes slow behind the convex shape 129 can be obtained by performing simple processing without performing complicated processing. Since the heat transfer coefficient in the region where the flow rate is slowed down can be generated, the amount of heat absorbed from outside air can be suppressed, thereby improving the cooling efficiency and consequently reducing the power consumption. Can do.

また、凸形状129を外箱102表面の同一表面に複数設けることにより、流速が遅くなる領域をより多く発生させることができ、外箱102表面からの吸熱量をより抑制できることとなり、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。   In addition, by providing a plurality of convex shapes 129 on the same surface of the outer box 102 surface, it is possible to generate more regions where the flow velocity is slower, and to further suppress the amount of heat absorbed from the surface of the outer box 102, thereby improving the cooling efficiency. A refrigerator with improved power consumption can be provided.

また、凸形状129は外箱102表面と一体で形成していることにより、別部品は必要なく、非常に安価でかつ組立工数も増加することはない。   Further, since the convex shape 129 is formed integrally with the surface of the outer box 102, no separate parts are required, and it is very inexpensive and does not increase the number of assembly steps.

なお、実施の形態1で示した外箱102に凸形状を設けることと、実施の形態2で示した外箱102に凸形状を設けることとを合わせることで、より一層、吸熱量を抑制できることとなり、冷却効率を向上させ、消費電力量をより一層低減した冷蔵庫を提供できる。   In addition, the amount of heat absorption can be further suppressed by combining the provision of the convex shape in the outer box 102 shown in the first embodiment and the provision of the convex shape in the outer box 102 shown in the second embodiment. Thus, it is possible to provide a refrigerator with improved cooling efficiency and further reduced power consumption.

以上のように、本発明にかかる冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対しても適用できる。   As described above, the refrigerator according to the present invention can be applied to a household or commercial refrigerator or a vegetable storage.

100 冷蔵庫
101 断熱箱体
102 外箱
103 内箱
106 冷凍室(貯蔵室)
107 下部機械室
108a 凝縮器
108b 空冷ファン
117、118、119 断熱扉
129 凸形状
100 Refrigerator 101 Heat insulation box 102 Outer box 103 Inner box 106 Freezer room (storage room)
107 Lower machine room 108a Condenser 108b Air cooling fan 117, 118, 119 Thermal insulation door 129 Convex shape

Claims (3)

内箱と外箱で構成され、前記内箱と前記外箱との間に断熱材を備えた断熱箱体と、前記断熱箱体の下部に構成された下部機械室と、前記下部機械室内の設置された凝縮器と、前記凝縮器を空冷する空冷ファンと、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される異なった複数の温度帯の貯蔵室とを備えて、運転中に外気より高温となる前記凝縮器を前記空冷ファンによって空冷し、高温となった排気が流通する前記断熱箱体の前記外箱表面に、高温の排気からの吸熱を抑制する吸熱抑制形状を設けたもので、前記吸熱抑制形状は、前記断熱箱体の前記外箱底部表面と、冷却器が配設された冷却室と対向する外箱表面に、外気側に向かって凸形状を有し、下部機械室内の前記空冷ファンの作動で生じる負圧により生じる上方の流れと垂直となる幅方向に前記凸形状を設け、上昇気流の下流において、流速が遅くなる領域を発生させ、熱伝達率を減少させた冷蔵庫。 An inner box and an outer box, and a heat insulating box provided with a heat insulating material between the inner box and the outer box; a lower machine room formed at a lower portion of the heat insulating box; and A plurality of different temperatures formed by the installed condenser, an air cooling fan for cooling the condenser, a heat insulating door for opening and closing the front surface of the opening of the heat insulating box, and the heat insulating box and the heat insulating door A high temperature exhaust gas on the surface of the outer box of the heat insulation box through which the high temperature exhaust air is circulated by the air cooling fan. The endothermic suppression shape is provided on the outer box bottom surface of the heat insulation box and the outer box surface facing the cooling chamber in which the cooler is disposed . It has a convex shape toward the outside air and is generated by the operation of the air cooling fan in the lower machine room The upper flow and the protruded to be a width direction perpendicular provided that caused by pressure, downstream of the updraft is generated a region where the flow velocity is slowed, reduced heat transfer coefficient refrigerator. 前記凸形状は、前記断熱箱体の前記外箱表面の同一表面に複数形成している請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a plurality of the convex shapes are formed on the same surface of the outer box surface of the heat insulating box. 前記凸形状の少なくとも一部は、前記貯蔵室の中で最も設定温度が低い貯蔵室と対向する前記外箱表面に設けた請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein at least a part of the convex shape is provided on a surface of the outer box facing a storage room having a lowest set temperature in the storage room.
JP2011067239A 2011-03-25 2011-03-25 refrigerator Active JP5909623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011067239A JP5909623B2 (en) 2011-03-25 2011-03-25 refrigerator
CN201210055902.6A CN102692111B (en) 2011-03-25 2012-03-05 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067239A JP5909623B2 (en) 2011-03-25 2011-03-25 refrigerator

Publications (2)

Publication Number Publication Date
JP2012202604A JP2012202604A (en) 2012-10-22
JP5909623B2 true JP5909623B2 (en) 2016-04-27

Family

ID=47183801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067239A Active JP5909623B2 (en) 2011-03-25 2011-03-25 refrigerator

Country Status (1)

Country Link
JP (1) JP5909623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202603A (en) * 2011-03-25 2012-10-22 Panasonic Corp Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041643A (en) * 1999-07-30 2001-02-16 Sanyo Electric Co Ltd Refrigerator
JP2005048979A (en) * 2003-07-30 2005-02-24 Hitachi Home & Life Solutions Inc Refrigerator
JP4473788B2 (en) * 2005-06-09 2010-06-02 株式会社東芝 refrigerator
DE102007029184A1 (en) * 2007-06-25 2009-01-08 BSH Bosch und Siemens Hausgeräte GmbH Heat-insulating wall for a refrigeration appliance
JP5229147B2 (en) * 2009-07-28 2013-07-03 パナソニック株式会社 refrigerator

Also Published As

Publication number Publication date
JP2012202604A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5023025B2 (en) refrigerator
JP5957684B2 (en) refrigerator
JP5229147B2 (en) refrigerator
KR101544452B1 (en) Refrigerator with heat conduction sheet
JP6089222B2 (en) refrigerator
JP2010038528A (en) Refrigerator
CA2670334C (en) Refrigerator
WO2013084460A1 (en) Refrigerator
CN102472561A (en) Refrigerator
JP5847198B2 (en) refrigerator
JP5966145B2 (en) refrigerator
JP6314312B2 (en) refrigerator
JP5909623B2 (en) refrigerator
JP5434431B2 (en) refrigerator
US10739057B2 (en) Refrigerator
JP5401866B2 (en) refrigerator
JP5510077B2 (en) refrigerator
WO2012169573A1 (en) Refrigerator
WO2011036870A1 (en) Refrigerator
JP2012202603A (en) Refrigerator
JP2019132494A (en) refrigerator
CN102692111B (en) Freezer
JP6862094B2 (en) refrigerator
JP5849179B2 (en) refrigerator
JP2017009142A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5909623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151