WO2011036870A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2011036870A1
WO2011036870A1 PCT/JP2010/005728 JP2010005728W WO2011036870A1 WO 2011036870 A1 WO2011036870 A1 WO 2011036870A1 JP 2010005728 W JP2010005728 W JP 2010005728W WO 2011036870 A1 WO2011036870 A1 WO 2011036870A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
heat
wall
storage
dimension
Prior art date
Application number
PCT/JP2010/005728
Other languages
French (fr)
Japanese (ja)
Inventor
克則 堀井
好正 堀尾
愼一 堀井
正昭 田中
雅司 湯浅
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009218450A external-priority patent/JP5434431B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to BR112012006383-9A priority Critical patent/BR112012006383B1/en
Priority to CN201080042520.9A priority patent/CN102510986B/en
Publication of WO2011036870A1 publication Critical patent/WO2011036870A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures

Definitions

  • the present invention relates to a refrigerator with high energy saving effect.
  • intrusion heat the temperature inside the cabinet rises due to the intrusion of heat from the outside air through the heat insulating wall of the cabinet (hereinafter referred to as intrusion heat), and the compressor is operated for a long time. It is conceivable to drive at a high frequency. Therefore, the higher the heat insulation performance of the cabinet, the smaller the intrusion heat from the outside air, so that the temperature rise in the cabinet can be suppressed, the compressor operation time can be shortened, or the compressor can be driven at a low frequency. Can be achieved.
  • a cabinet has a structure in which a heat insulating material such as urethane foam is foam-filled between an inner box and an outer box.
  • a heat insulating material such as urethane foam
  • the heat insulating performance increases as the thickness of the heat insulating material (heat insulating wall thickness) simply increases, and the heat insulating wall thickness is increased in order to reduce intrusion heat.
  • the greater the difference between the temperature around the cabinet and the temperature in the storage room the greater the heat insulation wall thickness, the greater the effect of reducing intrusion heat, and the power can be saved.
  • FIG. 13 is a longitudinal sectional view of a basic structure of a storage room adjacent to a machine room of a conventional refrigerator. Insulating doors are omitted.
  • the heat insulating box 2 is partitioned into a plurality of storage rooms by the heat insulating partition wall 1, and a storage case 3 for storing food is provided in each storage room.
  • a machine room 5 for arranging devices such as the compressor 4 is configured on the back surface of the lower part of the heat insulation box 2, and the compressor 4 and the like generate heat during operation. It becomes hotter than other parts outside the body 2. Therefore, the heat insulation wall thickness 6 of the heat insulation wall thickness 6 covering the machine room 5 where the temperature difference from the storage room becomes large is set to be the largest. On the other hand, since the temperature difference between the adjacent storage chambers becomes smaller than the temperature difference from the outside of the heat insulation box 2, the heat insulation wall thickness of the heat insulation partition wall 1 is set to be the smallest.
  • the refrigerator of the present invention includes a heat insulation box, a heat insulation door that opens and closes the front surface of the opening of the heat insulation box, a storage room having a heat insulation box and a heat insulation door, and a heat insulation partition that partitions the storage room into a plurality of storage rooms.
  • the wall thickness of a heat insulation partition wall is made larger than the wall thickness of the heat insulation wall provided between the store room and the machine room.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the upper part of the heat insulating door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing the relationship between the general amount of intrusion heat and the heat insulation wall thickness.
  • FIG. 5 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 1 of the present invention.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention
  • FIG. 6 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator in the second embodiment of the present invention.
  • FIG. 7 is a longitudinal cross-sectional view of the basic structure of a storage room adjacent to the machine room of the refrigerator in Embodiment 3 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of the lower part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 9 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 3 of the present invention.
  • FIG. 10 is a plan sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention.
  • FIG. 11 is an enlarged cross-sectional view of a heat insulating door side part of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention.
  • FIG. 12 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 4 of the present invention.
  • FIG. 13 is a longitudinal sectional view of a basic structure of a storage room adjacent to a machine room of a conventional refrigerator.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • the refrigerator 100 is a machine that houses a heat insulating box body 101, heat insulating doors 117, 118, 119, storage chambers 104, 105, 106, heat insulating partition walls 120, 121, and a compressor 108. Chamber 107.
  • the heat insulating box 101 is provided with an outer box 102 mainly using a steel plate and an inner box 103 molded with a resin such as ABS. And the inside of the heat insulation box 101 is filled with foam heat insulating materials, such as hard foaming urethane, for example, and is thermally insulated with the circumference
  • the temperature at which the refrigerated room 104 does not freeze for refrigerated storage is normally set to 1 ° C. to 5 ° C.
  • the vegetable room 105 has a temperature setting of 2 ° C. to 7 ° C., which is the same as or slightly higher than that of the refrigerator room.
  • the freezer compartment 106 is set in a freezing temperature zone and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but for example, ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. It may be set at a low temperature.
  • the machine room 107 is formed in the back area of the lowermost storage room 106 of the heat insulation box 101 and houses components constituting the refrigeration cycle such as the compressor 108 and a dryer (not shown) for removing moisture. To do.
  • FIG. 2 is a longitudinal sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention.
  • a cooling chamber 109 that generates cold air is provided on the back surface of the storage chamber 106.
  • a back partition wall 110 is formed between the storage chamber 106 and the cooling chamber 109.
  • the rear partition wall 110 has heat insulation properties, and insulates the storage chamber 106 and the cooling chamber 109.
  • a cooler 111 is disposed in the cooling chamber 109. In the space above the cooler 111, a cooling fan 112 is provided for blowing the cool air cooled by the cooler 111 by the forced convection method, for example, to the storage chambers 104, 105, and 106 shown in FIG. .
  • the space below the cooler 111 is provided with a radiant heater 113 made of glass tube for defrosting the frost and ice adhering to the cooler 111 and its periphery during cooling.
  • a drain pan 114 for receiving defrost water generated at the time of defrosting and draining it outside the warehouse is formed in the through passage 115 at the lower part of the radiant heater 113, and an evaporating dish 116 is provided outside the warehouse on the downstream side of the through passage 115. It is configured.
  • the rear partition wall 110 is provided with a cold air outlet 124 and a cold air inlet 125.
  • the cool air generated by the cooler 111 is supplied from the cool air discharge port 124 to the storage chamber 106 by the cooling fan 112.
  • the cold air inlet 125 is provided below the cold air outlet 124, and the cold air circulated in the storage chamber 106 is returned to the cooler 111 from the cold air inlet 125.
  • a storage case is provided in the storage chamber 106.
  • the storage case is held and pulled out by a drawer mechanism such as a rail, and stores foods.
  • three storage cases are provided in the storage chamber 106. Specifically, the upper storage case 126, the middle storage case 127, and the lower storage case 128.
  • the dimension a is the dimension of the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine chamber 107.
  • the dimension a is the dimension of the largest portion of the heat insulating wall that covers the machine room 107.
  • the dimension a is the dimension of the wall thickness of the heat insulating wall where the storage chamber 106 and the machine chamber 107 face each other in the front-rear direction.
  • the dimension a is the dimension of the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage chamber 106 and the machine room 107.
  • the dimension a is the dimension of the wall thickness of the heat insulating wall where the storage chamber 106 and the machine chamber 107 face each other.
  • the dimension b is the dimension of the wall thickness of the heat insulating partition wall 121. A detailed description of the dimension b will be given with reference to FIG.
  • FIG. 3 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the refrigerator machine room in Embodiment 1 of the present invention.
  • a door gasket 122 is provided on the inner edge of the heat insulating door 119 over the entire circumference (the same applies to the storage chamber 104 and the storage chamber 105).
  • a U-shaped metal receiving member 123 is provided on the front surface of the heat insulating partition wall 121 whose outer periphery is formed of a resin portion so as to extend inside and outside the storage chamber 106, and the metal receiving member 123 is in close contact with the door gasket 122. This prevents the cold air from leaking outside.
  • the metal receiving member 123 is a U-shaped (Greek-shaped saddle shape) having a horizontal portion and a vertical portion, so that the horizontal portion is appropriately supported by the front portion of the heat insulating material 121 and the vertical portion is the door gasket 122. To maintain a close contact state. Thereby, the heat intrusion to the storage chamber 105 or the storage chamber 106 is suppressed.
  • heat penetration can be further suppressed by providing a heat exchange suppressing portion between the metal receiving member 123 and the storage chamber 106.
  • the heat insulating member 130 is provided directly below the metal receiving member 123.
  • the horizontal portion of the metal receiving member 123 is positioned above the heat insulating member 130 and is sandwiched between the front surface portion of the heat insulating partition wall 121 and the heat insulating material 130. Thereby, the heat dissipation from the horizontal part of the metal receiving member 123 can be suppressed appropriately.
  • the heat insulating member 130 is held by a resin portion that forms the outer periphery of the heat insulating partition wall 121.
  • the metal receiving member 123 is provided with a heat radiating pipe 131 as a heating unit so as to be in close contact with the side surface of the metal receiving member 123 in order to prevent condensation on the outer side surface of the storage chamber 106.
  • the heat radiating pipe 131 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and the metal receiving member 123 is heated by the heat.
  • the dimension b is the dimension of the wall thickness of the heat insulating partition wall 121.
  • the b1 dimension is a height dimension including the metal receiving member 123 and the holding part of the metal receiving member 123
  • the b2 dimension is a height dimension including the heat insulating member 130 and the holding part.
  • the b1 dimension is fixed.
  • the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm
  • the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm (the dimension b1 is 49 mm, b2 dimension is 21 mm).
  • the door gasket 122 is disposed above the lower surface of the heat insulating member 130 (C position in FIG. 3).
  • the cold air in the freezer compartment 106 is less likely to flow in the direction of the door gasket 122, the flow of cold air to the door gasket 122, which is a member that crosses the inside and outside of the warehouse, can be reduced, and heat exchange is further suppressed. it can.
  • heat exchange between the metal receiving member 123 and cold air cools the metal receiving member 123, and prevents condensation on the surface of the metal receiving member 123 in contact with the outside due to a rapid temperature difference between inside and outside. it can.
  • the metal receiving member 123 heated by the heat radiating pipe 131 has a lower flange 123a.
  • the lower flange 123a only needs to be covered with the heat insulating member 130, and the length between the length of the lower flange 123a (dimension A in FIG. 3) and the lateral length of the heat insulating member 130 (dimension B).
  • the relationship is A ⁇ B.
  • the cool air cooled by the cooler 111 is forcibly blown from the discharge port 124 to the upper, middle, and lower stages in the storage chamber 106 as indicated by arrows A by the cooling fan 112 that rotates as the motor rotates.
  • the blown-out cool air blows on the storage cases 126, 127, and 128 to cool the food stored.
  • the cold air that has cooled the food is stored between the storage case 126 and the heat insulating partition wall 121 in the upper stage, between the storage case 126 and the storage case 127 in the middle stage, and stored in the storage case 127 in the lower stage.
  • Each case 128 passes through.
  • the cool air that has come out of each storage case 126, 127, 128 joins between each storage case 126, 127, 128 and the inner wall surface in the storage chamber 106.
  • the merged cold air passes through the gap between the storage case 128 and the bottom wall of the inner box 103 as indicated by the arrow C, and is sucked from the suction port 125 as indicated by the arrow D, and returns to the cooler 111.
  • the surface of the compressor 108 becomes hot due to heat conduction from the refrigerant that is increased in pressure and heat becomes high, motor loss, mechanical loss, etc., and as a result, the temperature of the machine room 107 is an average compared to the ambient outside air. Increases by about 10 ° C.
  • intrusion heat Q (W) is expressed by the following equation.
  • K is the heat transfer rate (W / m 2 K)
  • A is the heat transfer area (m 2 )
  • ⁇ T is the temperature difference (K) outside the storage chamber
  • ⁇ o is the convective heat transfer rate (W / m) outside the storage chamber.
  • K) ⁇ i is the convective heat transfer coefficient (W / m 2 K) in the storage chamber
  • L is the heat insulation distance (m)
  • is the heat conductivity (W / mK) of the heat insulation part.
  • the heat that enters from the opening is due to the outside air entering the storage chamber 106 due to the heat conduction of the metal receiving member 123.
  • the temperature of the metal receiving member 123 reaches almost the same as that of the outside air up to the part extending into the storage chamber 106, it can be seen that the contribution of the heat insulation distance L, that is, the dimension b2 in FIG. Is ignored). It can be seen that there is a large amount of intrusion heat when there is no heat insulating member 130 and the b2 dimension is only the thickness of the resin component constituting the outer periphery of the heat insulating partition wall 121 as in the prior art.
  • FIG. 4 is a diagram showing the relationship between a general amount of intrusion heat and a heat insulation wall thickness.
  • FIG. 5 is a relationship diagram between the amount of heat entering the refrigerator storage room and the heat insulation wall thickness ratio (value obtained by dividing the b dimension by the a dimension) according to Embodiment 1 of the present invention.
  • the region I indicates a region where a dimension ⁇ b dimension.
  • the intrusion heat can be reduced to prevent the temperature rise in the surface of the storage room, the cool air circulates at a low temperature. As a result, the temperature distribution in the entire storage chamber 106 can be kept uniform.
  • the wall thickness of the heat insulating partition wall 121 is not necessarily constant with respect to the depth direction of the storage chamber 106. In other words, the same effect can be obtained even when the wall thickness of the heat insulating partition wall 121 is made thicker than the dimension a only in the vicinity of the metal receiving member 123 in the vicinity of the opening, and the other parts are made thinner.
  • the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
  • FIG. 6 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the machine room showing the configuration of the refrigerator in the second embodiment of the present invention. 6 differs from Embodiment 1 in that a convex portion 150 is provided on the surface of the partition wall 122 in contact with the storage chamber 106, and the convex portion 150 and the upper storage case 126 are brought into contact with each other. It is a point.
  • the wall surface of the partition wall 122 that contacts the freezing chamber 106 is made convex 150 and brought into contact with the storage case 126.
  • the flow of cold air toward the metal receiving member 123 heated by the heat radiating pipe 131 is shielded.
  • heat exchange between the metal receiving member 123 and the cold air can be suppressed without increasing the cost due to the addition of parts and without increasing the number of assembly steps, thereby improving the cooling efficiency and consequently reducing the power consumption. can do.
  • the contact of the partition wall 122 with the convex shape 150 of the wall surface in contact with the freezer compartment 106 may be eliminated, and cold air may leak to the metal receiving member 123 side.
  • the heat insulating member 130 directly below the metal receiving member 123 the heat transfer from the heat radiating pipe 131 to the surface in contact with the cold air is reduced, and the temperature rise of the surface in contact with the cold air is prevented. Suppresses heat exchange.
  • the temperature distribution throughout the freezer compartment 106 can be kept uniform.
  • the metal receiving member 123 is cooled by heat exchange between the metal receiving member 123 and cold air, and condensation on the surface of the metal receiving member 123 in contact with the outside due to a rapid temperature difference between the inside and outside is prevented.
  • the heat exchange suppressing portion has a structure in which a convex portion is provided on the lower surface of the partition wall and the convex portion and the storage case are brought into contact with each other.
  • the convex portion provided on the partition wall and the storage case are sealed, and the flow of cold air to the heated metal receiving member side is reduced, and with a simple configuration, the warming of the cold air can be suppressed and the cooling efficiency can be improved.
  • a refrigerator with improved power consumption can be provided.
  • heat transfer from the heat radiating pipe to the surface in contact with the cold air passes through the heat insulating member having low thermal conductivity. Reduced, prevents temperature rise on the surface in contact with cold air, and suppresses heat exchange. Thereby, warming of cold air can be suppressed more, cooling efficiency can be improved, and as a result, power consumption can be reduced more.
  • the heat insulating member 130 is provided directly below the metal receiving member 123, but the heat insulating member 130 may not be provided.
  • the convex shape 150 is configured integrally with the partition wall 122, but may be configured separately.
  • FIG. 7 is a longitudinal cross-sectional view of the basic structure of a storage room adjacent to the machine room of the refrigerator in Embodiment 3 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of the lower part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention.
  • it attaches
  • the dimension c is the dimension of the insulation wall thickness of the bottom insulation wall 133 of the storage chamber 106.
  • a metal receiving member 131 is provided on the front surface of the bottom heat insulating wall 133 so as to extend outside the storage chamber, and a door gasket 122 is provided at an end of the inner surface of the heat insulating door 119. The metal receiving member 131 is in close contact with the door gasket 122 to prevent cold air from leaking to the outside.
  • the folded flange portion of the metal receiving member 131 is embedded in the bottom heat insulating wall 133.
  • the c1 dimension is the height dimension from the bottom surface of the outer box 102 to the folded tip of the metal receiving member 131
  • the c2 dimension is the height dimension from the folded flange end of the metal receiving member 131 to the storage chamber 106, that is, the heat insulation distance. It is.
  • the c1 dimension is fixed.
  • the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm
  • the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm
  • the dimension b1 is 49 mm
  • b2 dimension is 21 mm
  • c dimension which is the wall thickness of the bottom heat insulating wall 133 is 71 mm (c1 dimension is 41 mm, c2 dimension is 30 mm).
  • the c2 dimension is small in the wall thickness of the bottom heat insulating wall 133 that is set only by the temperature difference between the outside and the inside of the storage chamber as in the prior art, that is, the heat insulating distance is small, and the amount of intrusion heat is very large.
  • FIG. 9 is a relationship diagram of the amount of heat entering the refrigerator storage room and the heat insulation wall thickness ratio (the value obtained by dividing the average value of the b dimension and the c dimension by the a dimension) in the third embodiment of the present invention.
  • Region I indicates a region where a dimension ⁇ b dimension and a dimension ⁇ c dimension.
  • the dimension b which is the wall thickness of the heat insulating partition wall 121
  • the dimension a which is the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine room 107
  • the dimension c which is the wall thickness of the bottom heat insulating wall 133, is made larger than the dimension a, which is the wall thickness of the heat insulating wall provided between the chamber 106 and the machine room 107.
  • the intrusion heat can be reduced to prevent the temperature rise on the surface of the storage chamber, the cold air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.
  • the wall thickness of the heat insulating partition wall 121 is not necessarily constant with respect to the depth direction of the storage chamber 106. That is, the same effect can be obtained even when the wall thickness of the heat insulating partition wall 121 is made thicker than, for example, the dimension a shown in FIG. Obtainable.
  • the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
  • FIG. 10 is a plan sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention.
  • FIG. 11 is an enlarged cross-sectional view of a heat insulating door side part of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention.
  • the dimension d is the insulation wall thickness dimension of the side insulation wall 134 of the storage chamber 106.
  • a metal receiving member 132 is provided on the front surface of the side heat insulating wall 134 so as to extend outside the storage chamber, and a door gasket 122 is provided at the end of the inner surface of the outer box 102.
  • the metal receiving member 132 is formed integrally with the outer box 102 and prevents the cold air from leaking to the outside by bringing the door gasket 122 into close contact.
  • the metal receiving member 132 is embedded in the side wall heat insulating wall 134 of the folded flange portion.
  • the dimension d1 is a width dimension from the side surface of the outer box 102 to the end of the folded funnel of the metal receiving member 132
  • the dimension d2 is a width dimension from the end of the folded funger of the metal receiving member 132 to the storage chamber 106, that is, the heat insulation distance. .
  • the d1 dimension is fixed.
  • the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm
  • the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm
  • c dimension which is the wall thickness of the bottom heat insulating wall 133 is 71 mm
  • d dimension which is the wall thickness of the side heat insulating wall 134 is 65 mm
  • d1 dimension is 20 mm
  • d2 dimension is 45 mm
  • the wall thickness of the side heat insulating wall 134 set only by the temperature difference between the inside and outside of the storage chamber has a smaller d2 dimension, that is, a smaller heat insulating distance and a very large amount of intrusion heat.
  • FIG. 12 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (the value obtained by dividing the average value of b dimension, c dimension, and d dimension by a dimension) in Embodiment 4 of the present invention. It is a thing.
  • the region I indicates a region where a dimension ⁇ b dimension, a dimension ⁇ c dimension, and a dimension ⁇ d dimension.
  • the heat insulation wall thickness ratio when the heat insulation wall thickness ratio is increased, the heat penetration amount decreases, but increases again with the lowest point being a certain value as a boundary.
  • the volumetric efficiency indicating the volume ratio of the storage space to the external shape is 30% to 70%, the heat insulation wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are properly maintained.
  • a ratio exists. At that time, a dimension ⁇ b dimension, a dimension ⁇ c dimension, and a dimension ⁇ d dimension are established.
  • the dimension b which is the wall thickness of the heat insulating partition wall 121, is larger than the dimension a, which is the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine room 107, and the storage chamber. Insulation provided between the storage chamber 106 and the machine room 107, and the c dimension, which is the wall thickness of the bottom heat insulation wall 133, is larger than the dimension a, which is the wall thickness of the insulation wall provided between the machine room 107 and the machine room 107.
  • the dimension d which is the wall thickness of the side heat insulating wall 134 is made larger than the dimension a which is the wall thickness.
  • the intrusion heat can be reduced to prevent the temperature rise on the surface of the storage chamber, the cold air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.
  • the wall thickness of the side heat insulating wall 134 is not necessarily constant with respect to the depth direction of the storage chamber 106. That is, the same effect can be obtained even if the wall thickness of the side heat insulating wall 134 is made larger only in the vicinity of contact with the metal receiving member 132 in the vicinity of the opening, for example, the dimension a shown in FIG.
  • the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
  • the refrigerator of the present invention is useful for household or commercial refrigerators or vegetable storages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

A refrigerator is provided with a heat insulation box, a heat insulation door which opens and closes the front face of the opening of the heat insulation box, a storage compartment which is provided with the heat insulation box and the heat insulation door, a heat insulation partition wall which partitions the storage compartment into compartments, and a machine compartment which contains a compressor and is provided below the heat insulation box. The thickness of the heat insulation partition wall is set to be greater than the thickness of the heat insulation wall provided between the storage compartment and the machine compartment, and this provides an overall reduction in the entry of heat through the heat insulation wall and in the entry of heat from the opening. As a result, the cooling efficiency is improved to reduce the consumption of electricity by the refrigerator.

Description

冷蔵庫refrigerator
 本発明は省エネ効果の高い冷蔵庫に関する。 The present invention relates to a refrigerator with high energy saving effect.
 冷蔵庫の消費電力量は一般家庭における電気機器の中でも上位を占めていることは良く知られている。これは、冷蔵庫が他の電気機器と異なり、通常、24時間連続的に通電されているからである。よって、一般家庭における省電力化(省エネルギー化)のためには、冷蔵庫の省電力化が求められている。 It is well known that the power consumption of refrigerators occupies the top rank among electric devices in general households. This is because the refrigerator is normally energized continuously for 24 hours unlike other electric devices. Therefore, in order to save power (energy saving) in ordinary households, it is required to save power in the refrigerator.
 冷蔵庫において電力を大きく消費する要因の一つとして、キャビネットの断熱壁を介して外気の熱が侵入(以後、侵入熱)することにより庫内の温度が上昇し、圧縮機の運転が長時間となる、または高い周波数で駆動することが考えられる。したがって、キャビネットの断熱性能が高いほど、外気からの侵入熱が小さくなって庫内の温度上昇が抑えられ、圧縮機の運転時間を短く、または、圧縮機を低い周波数で駆動できるため、省電力化を図ることができる。 One of the factors that greatly consumes power in the refrigerator is that the temperature inside the cabinet rises due to the intrusion of heat from the outside air through the heat insulating wall of the cabinet (hereinafter referred to as intrusion heat), and the compressor is operated for a long time. It is conceivable to drive at a high frequency. Therefore, the higher the heat insulation performance of the cabinet, the smaller the intrusion heat from the outside air, so that the temperature rise in the cabinet can be suppressed, the compressor operation time can be shortened, or the compressor can be driven at a low frequency. Can be achieved.
 一般に、キャビネットは、内箱と外箱との間にウレタンフォームなどの断熱材を発泡充填させた構成となっている。単純に断熱材の厚み(断熱壁厚)が大きいほど断熱性能が高くなり、侵入熱を低減するためには断熱壁厚を大きくすることは周知である。特に、キャビネット周囲の温度と貯蔵室内の温度との差が大きい部分ほど、断熱壁厚を大きくすれば侵入熱の低減効果が大きくなり、省電力化を図ることができる。 Generally, a cabinet has a structure in which a heat insulating material such as urethane foam is foam-filled between an inner box and an outer box. It is well known that the heat insulating performance increases as the thickness of the heat insulating material (heat insulating wall thickness) simply increases, and the heat insulating wall thickness is increased in order to reduce intrusion heat. In particular, the greater the difference between the temperature around the cabinet and the temperature in the storage room, the greater the heat insulation wall thickness, the greater the effect of reducing intrusion heat, and the power can be saved.
 一方、一般住宅におけるキッチン自体の広さや厨房機器の大きさがある程度規格化されているため、冷蔵庫を設置する据付けスペースの大きさもある程度限定されている。 On the other hand, since the size of the kitchen itself and the size of kitchen equipment in ordinary houses are standardized to some extent, the size of the installation space for installing the refrigerator is also limited to some extent.
 さらに、近年の食変化による冷蔵・冷凍食品の増加や、働く主婦の増加等により、一般の家庭用冷蔵庫の収納容量も大型化する傾向にある。 Furthermore, the storage capacity of general household refrigerators tends to increase due to an increase in refrigerated / frozen foods due to recent food changes and an increase in working housewives.
 そのため、単純に省電力化するために、断熱壁厚を大きくすることはお客様のニーズに反しており、冷蔵庫の外形寸法は大きくせず、なおかつ、収納容量は確保した上で省電力化を図ることが必要である。 Therefore, to simply save power, increasing the insulation wall thickness is against the customer's needs, and does not increase the external dimensions of the refrigerator. It is necessary.
 図13は、従来の冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。なお、断熱扉は省略している。 FIG. 13 is a longitudinal sectional view of a basic structure of a storage room adjacent to a machine room of a conventional refrigerator. Insulating doors are omitted.
 図13に示すように、断熱仕切壁1によって断熱箱体2は複数の貯蔵室に区画され、それぞれの貯蔵室内には食品を収納するための収納ケース3が設けられている。 As shown in FIG. 13, the heat insulating box 2 is partitioned into a plurality of storage rooms by the heat insulating partition wall 1, and a storage case 3 for storing food is provided in each storage room.
 また、断熱箱体2の下部の背面には圧縮機4などの機器を配置するための機械室5が構成されており、圧縮機4などは運転により発熱するため、機械室5内は断熱箱体2の外部の他の部分よりも高温となる。したがって、貯蔵室内との温度差が大きくなる機械室5を覆う断熱壁厚6の断熱壁厚は最も大きく設定されている。一方、隣接する貯蔵室間の温度差は、断熱箱体2の外部との温度差と比べると小さくなるため、断熱仕切壁1の断熱壁厚は最も小さく設定されている。 In addition, a machine room 5 for arranging devices such as the compressor 4 is configured on the back surface of the lower part of the heat insulation box 2, and the compressor 4 and the like generate heat during operation. It becomes hotter than other parts outside the body 2. Therefore, the heat insulation wall thickness 6 of the heat insulation wall thickness 6 covering the machine room 5 where the temperature difference from the storage room becomes large is set to be the largest. On the other hand, since the temperature difference between the adjacent storage chambers becomes smaller than the temperature difference from the outside of the heat insulation box 2, the heat insulation wall thickness of the heat insulation partition wall 1 is set to be the smallest.
 一般的には、上述のように、冷蔵庫の外形寸法と収納容積の保持を前提として、外部と貯蔵室との温度差によって断熱箱体の断熱壁厚を分布させ、効率よく侵入熱を低減して省電力化を図っている(例えば、特許文献1参照)。 In general, as described above, on the premise of maintaining the external dimensions and storage volume of the refrigerator, the heat insulation wall thickness of the heat insulation box is distributed by the temperature difference between the outside and the storage room, and the intrusion heat is efficiently reduced. Thus, power saving is achieved (see, for example, Patent Document 1).
 しかしながら、一般的には、隣接する貯蔵室間を断熱する断熱仕切壁と貯蔵室の側面断熱壁および底面断熱壁とで形成される前面開口部と断熱扉との間には、冷気が外部に漏れるのを防止するために扉ガスケットが設けられている。これら開口部を形成する断熱仕切壁の前面には、扉ガスケットを密着させるための金属受け部材が貯蔵室内外を渡るように構成されているため、金属受け部材の熱伝導により外気の熱が貯蔵室内に直接的に侵入する。このことから、断熱仕切壁の壁厚が小さいと、高温の金属受け部材の近傍まで貯蔵室内を循環する冷気の主流が達するため金属受け部材と冷気の熱伝達率が大きくなり、その結果、侵入熱が大きくなり、電力を大きく消費する。 However, in general, cold air is exposed between the front opening formed by the heat insulating partition wall that insulates between adjacent storage chambers, the side heat insulating wall and the bottom heat insulating wall of the storage chamber, and the heat insulating door. A door gasket is provided to prevent leakage. Since the metal receiving member for tightly attaching the door gasket crosses the outside of the storage chamber on the front surface of the heat insulating partition wall forming these openings, the heat of the outside air is stored by the heat conduction of the metal receiving member. Enter the room directly. Therefore, if the wall thickness of the heat insulating partition wall is small, the heat transfer coefficient between the metal receiving member and the cold air increases because the main flow of the cold air circulating in the storage chamber reaches the vicinity of the high temperature metal receiving member. Heat increases and consumes a lot of power.
 したがって、冷蔵庫の外形寸法と収納容積の保持を前提とし、断熱壁を介しての熱侵入のみ、すなわち、外気との温度差のみではなく、開口部からの侵入熱も考慮し、総合的に省電力化を図れるように断熱壁厚を分布させる必要がある。 Therefore, on the premise of maintaining the external dimensions and storage volume of the refrigerator, not only the heat intrusion through the heat insulating wall, that is, not only the temperature difference from the outside air, but also the intrusion heat from the opening is considered and comprehensively saved. It is necessary to distribute the insulation wall thickness so that power can be achieved.
特開2006-200774号公報JP 2006-200774 A
 本発明の冷蔵庫は、断熱箱体と、断熱箱体の開口部前面を開閉する断熱扉と、断熱箱体と断熱扉とを有する貯蔵室と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する断熱箱体の下部に設けられた機械室とを備える。そして、断熱仕切壁の壁厚を、貯蔵室と機械室との間に設けられた断熱壁の壁厚より大きくする。これにより、冷蔵庫の外形寸法と収納容積の保持を前提とし、外気からの侵入熱を低減して、冷却効率を向上させ、省電力化した冷蔵庫を提供する。 The refrigerator of the present invention includes a heat insulation box, a heat insulation door that opens and closes the front surface of the opening of the heat insulation box, a storage room having a heat insulation box and a heat insulation door, and a heat insulation partition that partitions the storage room into a plurality of storage rooms. A wall and a machine room provided at a lower portion of the heat insulating box for storing the compressor; And the wall thickness of a heat insulation partition wall is made larger than the wall thickness of the heat insulation wall provided between the store room and the machine room. Thus, on the premise of maintaining the external dimensions and the storage volume of the refrigerator, the intrusion heat from the outside air is reduced, the cooling efficiency is improved, and the power-saving refrigerator is provided.
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。FIG. 2 is a vertical cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の断熱扉上部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the upper part of the heat insulating door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention. 図4は、一般的な侵入熱量と断熱壁厚の関係図である。FIG. 4 is a diagram showing the relationship between the general amount of intrusion heat and the heat insulation wall thickness. 図5は、本発明の実施の形態1における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比の関係図である。FIG. 5 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の断熱扉上部拡大断面図である。FIG. 6 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator in the second embodiment of the present invention. 図7は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。FIG. 7 is a longitudinal cross-sectional view of the basic structure of a storage room adjacent to the machine room of the refrigerator in Embodiment 3 of the present invention. 図8は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図である。FIG. 8 is an enlarged cross-sectional view of the lower part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention. 図9は、本発明の実施の形態3における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比の関係図である。FIG. 9 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図である。FIG. 10 is a plan sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. 図11は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図である。FIG. 11 is an enlarged cross-sectional view of a heat insulating door side part of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. 図12は、本発明の実施の形態4における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比の関係図である。FIG. 12 is a diagram showing the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio according to Embodiment 4 of the present invention. 図13は、従来の冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。FIG. 13 is a longitudinal sectional view of a basic structure of a storage room adjacent to a machine room of a conventional refrigerator.
 以下、本実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, the present embodiment will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional example or the previously described embodiment, and the detailed description thereof will be omitted. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
 図1に示すように、冷蔵庫100は、断熱箱体101と、断熱扉117、118、119と、貯蔵室104、105、106と、断熱仕切壁120、121と、圧縮機108を収納する機械室107とを備える。 As shown in FIG. 1, the refrigerator 100 is a machine that houses a heat insulating box body 101, heat insulating doors 117, 118, 119, storage chambers 104, 105, 106, heat insulating partition walls 120, 121, and a compressor 108. Chamber 107.
 断熱箱体101には、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103とが備えられている。そして断熱箱体101の内部には、例えば硬質発泡ウレタンなどの発泡断熱材が充填されており、周囲と断熱されている。さらに、複数の貯蔵室104、105、106は断熱仕切壁120、121で区画されている。各貯蔵室の前面開口部は、冷蔵庫本体に回転自在に支えられた断熱扉117、118、119によって、閉塞されている。例えば、貯蔵室104、105、106をそれぞれ冷蔵室、野菜室、冷凍室と仮定した場合、冷蔵室104は冷蔵保存のために凍らない温度を下限に通常1℃~5℃とする。野菜室105は冷蔵室と同等もしくは若干高い温度設定の2℃~7℃とする。冷凍室106は冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。また、機械室107は、断熱箱体101の最下部の貯蔵室106の背面領域に形成され、圧縮機108、水分除去を行うドライヤ(図示せず)等の冷凍サイクルを構成する構成部品を収納する。 The heat insulating box 101 is provided with an outer box 102 mainly using a steel plate and an inner box 103 molded with a resin such as ABS. And the inside of the heat insulation box 101 is filled with foam heat insulating materials, such as hard foaming urethane, for example, and is thermally insulated with the circumference | surroundings. Further, the plurality of storage chambers 104, 105, 106 are partitioned by heat insulating partition walls 120, 121. The front opening of each storage chamber is closed by heat insulating doors 117, 118, and 119 that are rotatably supported by the refrigerator body. For example, assuming that the storage rooms 104, 105, and 106 are a refrigerated room, a vegetable room, and a freezer room, respectively, the temperature at which the refrigerated room 104 does not freeze for refrigerated storage is normally set to 1 ° C. to 5 ° C. The vegetable room 105 has a temperature setting of 2 ° C. to 7 ° C., which is the same as or slightly higher than that of the refrigerator room. The freezer compartment 106 is set in a freezing temperature zone and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature. The machine room 107 is formed in the back area of the lowermost storage room 106 of the heat insulation box 101 and houses components constituting the refrigeration cycle such as the compressor 108 and a dryer (not shown) for removing moisture. To do.
 図2は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。 FIG. 2 is a longitudinal sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention.
 図2に示すように、貯蔵室106の背面には冷気を生成する冷却室109が設けられている。貯蔵室106と冷却室109の間には、奥面仕切壁110が構成されている。奥面仕切壁110は断熱性を有し、貯蔵室106と冷却室109を断熱する。冷却室109内には、冷却器111が配設されている。そして、冷却器111の上部の空間には強制対流方式により冷却器111で冷却した冷気を、例えば図1に示される貯蔵室104、105、106に送風するための冷却ファン112が備えられている。冷却器111の下部の空間には、冷却時に冷却器111やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ113が備えられている。ラジアントヒータ113の下部には除霜時に生じる除霜水を受けとめ、庫外に排水させるためのドレンパン114が貫通路115に構成され、貫通路115の下流側の庫外には、蒸発皿116が構成されている。 As shown in FIG. 2, a cooling chamber 109 that generates cold air is provided on the back surface of the storage chamber 106. A back partition wall 110 is formed between the storage chamber 106 and the cooling chamber 109. The rear partition wall 110 has heat insulation properties, and insulates the storage chamber 106 and the cooling chamber 109. A cooler 111 is disposed in the cooling chamber 109. In the space above the cooler 111, a cooling fan 112 is provided for blowing the cool air cooled by the cooler 111 by the forced convection method, for example, to the storage chambers 104, 105, and 106 shown in FIG. . The space below the cooler 111 is provided with a radiant heater 113 made of glass tube for defrosting the frost and ice adhering to the cooler 111 and its periphery during cooling. A drain pan 114 for receiving defrost water generated at the time of defrosting and draining it outside the warehouse is formed in the through passage 115 at the lower part of the radiant heater 113, and an evaporating dish 116 is provided outside the warehouse on the downstream side of the through passage 115. It is configured.
 奥面仕切壁110には、冷気吐出口124と冷気吸込口125が備えられている。冷却器111で生成された冷気は、冷却ファン112によって冷気吐出口124から貯蔵室106へと供給される。冷気吸込口125は、冷気吐出口124の下方に備えられており、貯蔵室106内を循環した冷気は、冷気吸込口125から冷却器111へ戻される。 The rear partition wall 110 is provided with a cold air outlet 124 and a cold air inlet 125. The cool air generated by the cooler 111 is supplied from the cool air discharge port 124 to the storage chamber 106 by the cooling fan 112. The cold air inlet 125 is provided below the cold air outlet 124, and the cold air circulated in the storage chamber 106 is returned to the cooler 111 from the cold air inlet 125.
 また、貯蔵室106内には、収納ケースが備えられている。この収納ケースは、例えばレールのような引き出し機構に保持されて引き出されるとともに、食品類を貯蔵する。本実施の形態では、収納ケースは貯蔵室106内に3つ備えられている。具体的には、上段の収納ケース126、中段の収納ケース127、下段の収納ケース128である。 In addition, a storage case is provided in the storage chamber 106. The storage case is held and pulled out by a drawer mechanism such as a rail, and stores foods. In the present embodiment, three storage cases are provided in the storage chamber 106. Specifically, the upper storage case 126, the middle storage case 127, and the lower storage case 128.
 なお、a寸法は貯蔵室106と機械室107の間に設けられた断熱壁の壁厚の寸法である。また、a寸法は、機械室107を覆う断熱壁の内で最大となる部分の寸法である。また、a寸法は、貯蔵室106と機械室107とが前後方向に対面する断熱壁の壁厚の寸法である。また、a寸法は、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚の寸法である。また、a寸法は、貯蔵室106と機械室107とが対面する断熱壁の壁厚の寸法である。b寸法は断熱仕切壁121の壁厚の寸法である。b寸法についての詳細な説明は図3を用いて行う。 The dimension a is the dimension of the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine chamber 107. The dimension a is the dimension of the largest portion of the heat insulating wall that covers the machine room 107. The dimension a is the dimension of the wall thickness of the heat insulating wall where the storage chamber 106 and the machine chamber 107 face each other in the front-rear direction. The dimension a is the dimension of the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage chamber 106 and the machine room 107. The dimension a is the dimension of the wall thickness of the heat insulating wall where the storage chamber 106 and the machine chamber 107 face each other. The dimension b is the dimension of the wall thickness of the heat insulating partition wall 121. A detailed description of the dimension b will be given with reference to FIG.
 図3は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の断熱扉上部拡大断面図である。 FIG. 3 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the refrigerator machine room in Embodiment 1 of the present invention.
 図3に示すように、断熱扉119の内面の端部には全周にわたり扉ガスケット122が設けられている(貯蔵室104、貯蔵室105においても同様)。そして、外周が樹脂部で構成された断熱仕切壁121の前面には、貯蔵室106の内外に渡るようにコ型の金属受け部材123が備えられ、金属受け部材123は扉ガスケット122と密着させることで、冷気が外部に漏れるのを防止する。金属受け部材123は水平部と垂直部とを有するコ型(ギリシャ文字のΠ型)とすることにより、水平部が断熱材121の前面部で適切に支持されるとともに、垂直部が扉ガスケット122との密着状態を保持する。これにより、貯蔵室105や貯蔵室106への熱侵入を抑制する。 As shown in FIG. 3, a door gasket 122 is provided on the inner edge of the heat insulating door 119 over the entire circumference (the same applies to the storage chamber 104 and the storage chamber 105). A U-shaped metal receiving member 123 is provided on the front surface of the heat insulating partition wall 121 whose outer periphery is formed of a resin portion so as to extend inside and outside the storage chamber 106, and the metal receiving member 123 is in close contact with the door gasket 122. This prevents the cold air from leaking outside. The metal receiving member 123 is a U-shaped (Greek-shaped saddle shape) having a horizontal portion and a vertical portion, so that the horizontal portion is appropriately supported by the front portion of the heat insulating material 121 and the vertical portion is the door gasket 122. To maintain a close contact state. Thereby, the heat intrusion to the storage chamber 105 or the storage chamber 106 is suppressed.
 また、金属受け部材123と貯蔵室106との間に熱交換抑制部を設けることによりさらに熱侵入を抑制することができる。 Moreover, heat penetration can be further suppressed by providing a heat exchange suppressing portion between the metal receiving member 123 and the storage chamber 106.
 具体的には、断熱部材130が金属受け部材123の直下に設けられている。そして、金属受け部材123の水平部が断熱部材130の上部に位置するようにし、断熱仕切壁121の前面部と断熱材130とで挟み込まれた状態としている。これにより、金属受け部材123の水平部からの放熱を適切に抑えることができる。なお、この断熱部材130は、断熱仕切壁121の外周を構成している樹脂部で保持されている。 Specifically, the heat insulating member 130 is provided directly below the metal receiving member 123. The horizontal portion of the metal receiving member 123 is positioned above the heat insulating member 130 and is sandwiched between the front surface portion of the heat insulating partition wall 121 and the heat insulating material 130. Thereby, the heat dissipation from the horizontal part of the metal receiving member 123 can be suppressed appropriately. The heat insulating member 130 is held by a resin portion that forms the outer periphery of the heat insulating partition wall 121.
 さらに、金属受け部材123には貯蔵室106の外側面に結露することを防止するために、加熱部としての放熱パイプ131が金属受け部材123の貯蔵室内側面に密着するように備えられている。この放熱パイプ131は冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部材123を加熱している。 Furthermore, the metal receiving member 123 is provided with a heat radiating pipe 131 as a heating unit so as to be in close contact with the side surface of the metal receiving member 123 in order to prevent condensation on the outer side surface of the storage chamber 106. The heat radiating pipe 131 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and the metal receiving member 123 is heated by the heat.
 次に、b寸法について説明する。上記図2を用いて説明したように、b寸法は断熱仕切壁121の壁厚の寸法である。そして、b1寸法は金属受け部材123と金属受け部材123の保持部を含む高さ寸法、b2寸法は断熱部材130とその保持部を含む高さ寸法である。なお、b1寸法は固定である。 Next, the b dimension will be described. As described above with reference to FIG. 2, the dimension b is the dimension of the wall thickness of the heat insulating partition wall 121. The b1 dimension is a height dimension including the metal receiving member 123 and the holding part of the metal receiving member 123, and the b2 dimension is a height dimension including the heat insulating member 130 and the holding part. The b1 dimension is fixed.
 本実施の形態では、例えば図2に示されるa寸法よりb寸法(=b1+b2)を大きくしている。具体的には、本実施の形態では、貯蔵室106と機械室107の間の断熱壁の壁厚であるa寸法は60mm、断熱仕切壁121の壁厚であるb寸法は70mm(b1寸法は49mm、b2寸法は21mm)である。 In the present embodiment, for example, the b dimension (= b1 + b2) is made larger than the a dimension shown in FIG. Specifically, in the present embodiment, the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm, and the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm (the dimension b1 is 49 mm, b2 dimension is 21 mm).
 ここで、扉ガスケット122と断熱部材130との位置関係について詳細に説明する。具体的には、扉ガスケット122は断熱部材130の下面(図3のC位置)より上方に配置されている。これにより、冷凍室106内の冷気は扉ガスケット122の方向へ流れにくくなり、庫内外に渡る部材である扉ガスケット122への冷気の流れを低減することができ、より熱交換を抑制することができる。 Here, the positional relationship between the door gasket 122 and the heat insulating member 130 will be described in detail. Specifically, the door gasket 122 is disposed above the lower surface of the heat insulating member 130 (C position in FIG. 3). Thereby, the cold air in the freezer compartment 106 is less likely to flow in the direction of the door gasket 122, the flow of cold air to the door gasket 122, which is a member that crosses the inside and outside of the warehouse, can be reduced, and heat exchange is further suppressed. it can.
 さらに、金属受け部材123と冷気とが熱交換することで金属受け部材123が冷却され、従来以上の内外の急激な温度差による金属受け部材123の庫外と接する面の結露を防止することができる。 Furthermore, heat exchange between the metal receiving member 123 and cold air cools the metal receiving member 123, and prevents condensation on the surface of the metal receiving member 123 in contact with the outside due to a rapid temperature difference between inside and outside. it can.
 次に、金属受け部材123と断熱部材130との位置関係について説明する。 Next, the positional relationship between the metal receiving member 123 and the heat insulating member 130 will be described.
 放熱パイプ131によって加熱される金属受け部材123は下部フランジ123aを有する。具体的には、下部フランジ123aは断熱部材130で覆われていればよく、下部フランジ123aの長さ(図3の寸法A)と断熱部材130の横方向の長さ(寸法B)との長さ関係は、A<Bである。これにより、高温となる下部フランジ123aが断熱部材130で覆われ、冷気と接する面の温度上昇を防止することができ、熱交換を抑制することができる。以上の構成により、冷気の加温が抑制でき、冷却効率を向上させ、その結果、消費電力量を低減することができる。 The metal receiving member 123 heated by the heat radiating pipe 131 has a lower flange 123a. Specifically, the lower flange 123a only needs to be covered with the heat insulating member 130, and the length between the length of the lower flange 123a (dimension A in FIG. 3) and the lateral length of the heat insulating member 130 (dimension B). The relationship is A <B. Thereby, the lower flange 123a which becomes high temperature is covered with the heat insulating member 130, the temperature rise of the surface in contact with the cold air can be prevented, and heat exchange can be suppressed. With the above configuration, it is possible to suppress the warming of the cold air, improve the cooling efficiency, and as a result, reduce the power consumption.
 以上のように構成された冷蔵庫について、以下その動作、作用について図2を用いて説明する。 The operation and action of the refrigerator configured as described above will be described below with reference to FIG.
 まず、貯蔵室106内の冷気の流れについて説明する。冷却器111により冷却された冷気は、モータの回転に伴い回転する冷却ファン112により強制的に吐出口124から貯蔵室106内の上段、中段、下段へとそれぞれ矢印Aのように吹き出される。吹き出された冷気は、収納ケース126、127、128に吹きつけて収納されている食品類を冷却する。 First, the flow of cold air in the storage chamber 106 will be described. The cool air cooled by the cooler 111 is forcibly blown from the discharge port 124 to the upper, middle, and lower stages in the storage chamber 106 as indicated by arrows A by the cooling fan 112 that rotates as the motor rotates. The blown-out cool air blows on the storage cases 126, 127, and 128 to cool the food stored.
 次に、食品類を冷却した冷気は、矢印Bのように、上段では収納ケース126と断熱仕切壁121との間、中段では収納ケース126と収納ケース127の間、下段では収納ケース127と収納ケース128の間をそれぞれ通る。各収納ケース126、127、128から出てきた冷気は、各収納ケース126、127、128と貯蔵室106内の内壁面の間で合流する。合流した冷気は、矢印Cのように収納ケース128と内箱103の底壁との空隙を通って矢印Dのように吸込口125より吸い込まれ、冷却器111に戻る。この時、圧縮機108は内部で昇圧され高温になる冷媒からの熱伝導やモータ損失、機械的損失等で表面が高温になり、その影響で機械室107の温度は周囲の外気に比べて平均で10℃程度高くなる。 Next, as shown by arrow B, the cold air that has cooled the food is stored between the storage case 126 and the heat insulating partition wall 121 in the upper stage, between the storage case 126 and the storage case 127 in the middle stage, and stored in the storage case 127 in the lower stage. Each case 128 passes through. The cool air that has come out of each storage case 126, 127, 128 joins between each storage case 126, 127, 128 and the inner wall surface in the storage chamber 106. The merged cold air passes through the gap between the storage case 128 and the bottom wall of the inner box 103 as indicated by the arrow C, and is sucked from the suction port 125 as indicated by the arrow D, and returns to the cooler 111. At this time, the surface of the compressor 108 becomes hot due to heat conduction from the refrigerant that is increased in pressure and heat becomes high, motor loss, mechanical loss, etc., and as a result, the temperature of the machine room 107 is an average compared to the ambient outside air. Increases by about 10 ° C.
 上記のように、冷気は貯蔵室106内を循環する際に、貯蔵室内表面と熱交換を行うことで加温される。よって、侵入熱を低減して貯蔵室内表面の温度上昇を防止すれば省電力化を図ることができる。 As described above, when the cold air circulates in the storage chamber 106, it is heated by exchanging heat with the surface of the storage chamber. Therefore, power can be saved by reducing the intrusion heat and preventing the temperature rise on the surface of the storage chamber.
 次に、侵入熱について述べる。 Next, I will describe the intrusion heat.
 一般に、侵入熱Q(W)は次式で表される。 Generally, intrusion heat Q (W) is expressed by the following equation.
 Q=K*A*ΔT
 K=1/(1/αo+L/λ+1/αi)
 ここで、Kは熱通過率(W/mK)、Aは熱通過面積(m)、ΔTは貯蔵室内外温度差(K)、αoは貯蔵室外の対流熱伝達率(W/mK)、αiは貯蔵室内の対流熱伝達率(W/mK)、Lは断熱距離(m)、λは断熱部の熱伝導率(W/mK)である。この式から分かるように、断熱距離Lを大きくすることで侵入熱Qを低減できることが分かる。
Q = K * A * ΔT
K = 1 / (1 / αo + L / λ + 1 / αi)
Here, K is the heat transfer rate (W / m 2 K), A is the heat transfer area (m 2 ), ΔT is the temperature difference (K) outside the storage chamber, and αo is the convective heat transfer rate (W / m) outside the storage chamber. 2 K), αi is the convective heat transfer coefficient (W / m 2 K) in the storage chamber, L is the heat insulation distance (m), and λ is the heat conductivity (W / mK) of the heat insulation part. As can be seen from this equation, it is understood that the intrusion heat Q can be reduced by increasing the heat insulation distance L.
 特に、開口部から侵入する熱は、金属受け部材123の熱伝導により外気が貯蔵室106内へ侵入することによるものである。しかし、金属受け部材123が貯蔵室106内に渡る部分まで外気とほぼ同等温度となるため、断熱距離Lすなわち図3のb2寸法の寄与度が非常に高いことが分かる(この時、αoの項は無視)。従来のように、断熱部材130が無く、b2寸法が断熱仕切壁121の外周を構成している樹脂部品の板厚のみの場合では、非常に侵入熱量が多いことが分かる。 Particularly, the heat that enters from the opening is due to the outside air entering the storage chamber 106 due to the heat conduction of the metal receiving member 123. However, since the temperature of the metal receiving member 123 reaches almost the same as that of the outside air up to the part extending into the storage chamber 106, it can be seen that the contribution of the heat insulation distance L, that is, the dimension b2 in FIG. Is ignored). It can be seen that there is a large amount of intrusion heat when there is no heat insulating member 130 and the b2 dimension is only the thickness of the resin component constituting the outer periphery of the heat insulating partition wall 121 as in the prior art.
 次に、侵入熱量と断熱壁厚の関係について以下に説明する。 Next, the relationship between the intrusion heat quantity and the heat insulation wall thickness will be described below.
 図4は、一般的な侵入熱量と断熱壁厚の関係図である。図5は、本発明の実施の形態1における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法をa寸法で除した値)の関係図である。なお、領域Iはa寸法<b寸法となる領域を示している。 FIG. 4 is a diagram showing the relationship between a general amount of intrusion heat and a heat insulation wall thickness. FIG. 5 is a relationship diagram between the amount of heat entering the refrigerator storage room and the heat insulation wall thickness ratio (value obtained by dividing the b dimension by the a dimension) according to Embodiment 1 of the present invention. The region I indicates a region where a dimension <b dimension.
 図5に示すように、b寸法(b2寸法)を大きくする、すなわち、断熱仕切壁121の断熱壁厚(m)を大きくすると侵入熱量(W)が低下していくが、ある値である最下点を境に再び増加している。これは、外形に対する収納空間の体積割合を示す容積効率が30%~70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持することが前提であるため、一方の断熱壁厚を大きくするともう一方の断熱壁厚が小さくなるからである。つまり、図4に示すように、ある断熱壁厚比の値を超えるとb2寸法を大きくして低減できる開口部からの侵入熱量ΔQ2とa寸法を小さくして増加する断熱壁を介しての侵入熱量ΔQ1との関係がΔQ1>ΔQ2となるからである。以上より、冷蔵庫の外形寸法と収納容積を保持する前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在する。そして、その時、a寸法<b寸法が成り立つ。 As shown in FIG. 5, when the b dimension (b2 dimension) is increased, that is, when the heat insulation wall thickness (m) of the heat insulation partition wall 121 is increased, the intrusion heat quantity (W) decreases, but it is a certain value. It has increased again from the bottom point. This is based on the premise that the external dimensions and storage volume of the refrigerator are appropriately maintained when the volume efficiency indicating the volume ratio of the storage space to the external shape is 30% to 70%. This is because when the thickness is increased, the thickness of the other heat insulating wall is decreased. That is, as shown in FIG. 4, when the heat insulation wall thickness ratio exceeds a certain value, the intrusion heat ΔQ2 from the opening that can be reduced by increasing the b2 dimension and the penetration through the heat insulating wall that increases by decreasing the a dimension. This is because the relationship with the heat quantity ΔQ1 is ΔQ1> ΔQ2. From the above, there is a heat insulation wall thickness ratio that minimizes the amount of intrusion heat under the preconditions of maintaining the external dimensions and storage volume of the refrigerator. At that time, a dimension <b dimension is established.
 したがって、本実施の形態のように、貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より断熱仕切壁121の壁厚であるb寸法を大きくすることで、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。 Therefore, as in this embodiment, by increasing the dimension b, which is the wall thickness of the heat insulating partition wall 121, from the dimension a, which is the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine room 107, It is possible to comprehensively reduce the intrusion heat through the heat insulating wall and the intrusion heat from the opening.
 また、侵入熱を低減して貯蔵室内の表面の温度上昇を防止できるので、冷気が低い温度のまま循環する。これにより貯蔵室106内全体の温度分布を均一に保つことができる。 Also, since the intrusion heat can be reduced to prevent the temperature rise in the surface of the storage room, the cool air circulates at a low temperature. As a result, the temperature distribution in the entire storage chamber 106 can be kept uniform.
 また、断熱仕切壁121の壁厚は、貯蔵室106の奥行き方向に対して必ずしも一定である必要はない。すなわち、断熱仕切壁121の壁厚を開口部近傍である金属受け部材123と当接する近傍のみa寸法より厚くし、その他の部分は薄くする構成としても同様の効果を得ることができる。 Further, the wall thickness of the heat insulating partition wall 121 is not necessarily constant with respect to the depth direction of the storage chamber 106. In other words, the same effect can be obtained even when the wall thickness of the heat insulating partition wall 121 is made thicker than the dimension a only in the vicinity of the metal receiving member 123 in the vicinity of the opening, and the other parts are made thinner.
 なお、本実施の形態で示した断熱壁厚の寸法は一例であり、本発明はこの寸法に限られるものではない。 In addition, the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
 (実施の形態2)
 図6は、本発明の実施の形態2における冷蔵庫の構成を示す機械室と隣接する貯蔵室の断熱扉上部拡大断面図である。図6について、実施の形態1と異なる点は、仕切壁122の貯蔵室106と接する面に凸部150が備えられ、凸部150と貯蔵室106の上段の収納ケース126とを当接させている点である。
(Embodiment 2)
FIG. 6 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the machine room showing the configuration of the refrigerator in the second embodiment of the present invention. 6 differs from Embodiment 1 in that a convex portion 150 is provided on the surface of the partition wall 122 in contact with the storage chamber 106, and the convex portion 150 and the upper storage case 126 are brought into contact with each other. It is a point.
 以上のように構成された冷蔵庫について、以下その動作・作用を説明する。なお、実施の形態1と同様である動作・作用についての説明は省略する。 About the refrigerator comprised as mentioned above, the operation | movement / effect | action is demonstrated below. In addition, description about the operation | movement and effect | action similar to Embodiment 1 is abbreviate | omitted.
 例えば図2に示される吐出口124から冷凍室106内に吹き出された冷気が循環する際、仕切壁122の冷凍室106と接する壁面を凸形状150にして収納ケース126と当接させることで、放熱パイプ131によって加温された金属受け部材123側への冷気の流れを遮蔽する。これにより、部品の追加によるコストアップがなく、また組立工数も増加することなく、金属受け部材123と冷気の熱交換を抑制することができ、冷却効率を向上させ、その結果消費電力量を低減することができる。 For example, when the cold air blown into the freezing chamber 106 from the discharge port 124 shown in FIG. 2 circulates, the wall surface of the partition wall 122 that contacts the freezing chamber 106 is made convex 150 and brought into contact with the storage case 126. The flow of cold air toward the metal receiving member 123 heated by the heat radiating pipe 131 is shielded. As a result, heat exchange between the metal receiving member 123 and the cold air can be suppressed without increasing the cost due to the addition of parts and without increasing the number of assembly steps, thereby improving the cooling efficiency and consequently reducing the power consumption. can do.
 また、例えば、経年の使用による収納ケース126の変形などによって仕切壁122の冷凍室106と接する壁面の凸形状150との当接が解消され、金属受け部材123側へ冷気が漏れる場合がある。このような場合でも、金属受け部材123の直下に断熱部材130を設けていることにより、放熱パイプ131から冷気と接する面への熱移動が低減され、冷気と接する面の温度上昇を防止し、熱交換を抑制する。 Further, for example, due to deformation of the storage case 126 due to use over time, the contact of the partition wall 122 with the convex shape 150 of the wall surface in contact with the freezer compartment 106 may be eliminated, and cold air may leak to the metal receiving member 123 side. Even in such a case, by providing the heat insulating member 130 directly below the metal receiving member 123, the heat transfer from the heat radiating pipe 131 to the surface in contact with the cold air is reduced, and the temperature rise of the surface in contact with the cold air is prevented. Suppresses heat exchange.
 また、冷気の加温を抑制することで、冷気が低い温度のまま循環するため冷凍室106内全体の温度分布を均一に保つことができる。 Moreover, since the cold air circulates at a low temperature by suppressing the warming of the cold air, the temperature distribution throughout the freezer compartment 106 can be kept uniform.
 さらに、金属受け部材123と冷気が熱交換することで金属受け部材123が冷却され、内外の従来以上の急激な温度差による金属受け部材123の庫外と接する面の結露を防止する。 Further, the metal receiving member 123 is cooled by heat exchange between the metal receiving member 123 and cold air, and condensation on the surface of the metal receiving member 123 in contact with the outside due to a rapid temperature difference between the inside and outside is prevented.
 以上のように、本実施の形態においては、熱交換抑制部は、仕切壁の下面に凸部を設け、凸部と収納ケースとを当接させた構造である。これにより、仕切壁に設けた凸部と収納ケースとでシールされ、加熱された金属受け部材側への冷気の流れが少なくなり、簡易な構成で、冷気の加温が抑制でき、冷却効率を向上させ、消費電力量を低減した冷蔵庫を提供できる。また、金属受け部材の直下に断熱部材を設けることで、例えば金属受け部材側へ冷気が漏れても、放熱パイプから冷気と接する面への熱移動が、熱伝導率の低い断熱部材を介するため低減され、冷気と接する面の温度上昇を防止し、熱交換を抑制する。これにより、冷気の加温がより抑制でき、冷却効率を向上させ、その結果、消費電力量をより低減することができる。 As described above, in the present embodiment, the heat exchange suppressing portion has a structure in which a convex portion is provided on the lower surface of the partition wall and the convex portion and the storage case are brought into contact with each other. As a result, the convex portion provided on the partition wall and the storage case are sealed, and the flow of cold air to the heated metal receiving member side is reduced, and with a simple configuration, the warming of the cold air can be suppressed and the cooling efficiency can be improved. A refrigerator with improved power consumption can be provided. Also, by providing a heat insulating member directly below the metal receiving member, for example, even if cold air leaks to the metal receiving member side, heat transfer from the heat radiating pipe to the surface in contact with the cold air passes through the heat insulating member having low thermal conductivity. Reduced, prevents temperature rise on the surface in contact with cold air, and suppresses heat exchange. Thereby, warming of cold air can be suppressed more, cooling efficiency can be improved, and as a result, power consumption can be reduced more.
 なお、本実施の形態では、金属受け部材123の直下に断熱部材130を設けたが、断熱部材130を設けなくてもよい。 In this embodiment, the heat insulating member 130 is provided directly below the metal receiving member 123, but the heat insulating member 130 may not be provided.
 なお、本実施の形態では、凸形状150は、仕切壁122と一体構成としたが、別体構成としてもよい。 In the present embodiment, the convex shape 150 is configured integrally with the partition wall 122, but may be configured separately.
 (実施の形態3)
 図7は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。図8は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図である。なお、実施の形態1と同様の構成をなすものについては同じ符号を付して説明し、詳細な説明を省略する。
(Embodiment 3)
FIG. 7 is a longitudinal cross-sectional view of the basic structure of a storage room adjacent to the machine room of the refrigerator in Embodiment 3 of the present invention. FIG. 8 is an enlarged cross-sectional view of the lower part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention. In addition, about the thing which makes the structure similar to Embodiment 1, it attaches | subjects and demonstrates the same code | symbol, and abbreviate | omits detailed description.
 図7に示すように、c寸法は貯蔵室106の底面断熱壁133の断熱壁厚の寸法である。そして、図8に示すように、底面断熱壁133の前面に貯蔵室内外に渡るように金属受け部材131が設けられ、断熱扉119の内面の端部には扉ガスケット122が設けられている。金属受け部材131は扉ガスケット122と密着させることで冷気が外部に漏れるのを防止する。 As shown in FIG. 7, the dimension c is the dimension of the insulation wall thickness of the bottom insulation wall 133 of the storage chamber 106. As shown in FIG. 8, a metal receiving member 131 is provided on the front surface of the bottom heat insulating wall 133 so as to extend outside the storage chamber, and a door gasket 122 is provided at an end of the inner surface of the heat insulating door 119. The metal receiving member 131 is in close contact with the door gasket 122 to prevent cold air from leaking to the outside.
 また、金属受け部材131の折り返しフランジ部は底面断熱壁133の内部に埋設されている。 Further, the folded flange portion of the metal receiving member 131 is embedded in the bottom heat insulating wall 133.
 ここで、c1寸法は外箱102の底面から金属受け部材131の折り返し先端までの高さ寸法、c2寸法は金属受け部材131の折り返しフランジ部先端から貯蔵室106までの高さ寸法、すなわち断熱距離である。なお、c1寸法は固定である。 Here, the c1 dimension is the height dimension from the bottom surface of the outer box 102 to the folded tip of the metal receiving member 131, and the c2 dimension is the height dimension from the folded flange end of the metal receiving member 131 to the storage chamber 106, that is, the heat insulation distance. It is. The c1 dimension is fixed.
 本実施の形態では、例えば図2に示されるa寸法よりb寸法(=b1+b2)を大きく、かつ、c寸法(=c1+c2)を大きくしている。具体的には、本実施の形態では、貯蔵室106と機械室107の間の断熱壁の壁厚であるa寸法は60mm、断熱仕切壁121の壁厚であるb寸法は70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の壁厚であるc寸法は71mm(c1寸法は41mm、c2寸法は30mm)である。 In the present embodiment, for example, the b dimension (= b1 + b2) is larger than the a dimension shown in FIG. 2, and the c dimension (= c1 + c2) is larger. Specifically, in the present embodiment, the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm, and the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm (the dimension b1 is 49 mm, b2 dimension is 21 mm), and c dimension which is the wall thickness of the bottom heat insulating wall 133 is 71 mm (c1 dimension is 41 mm, c2 dimension is 30 mm).
 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1と同様である動作、作用についての説明は省略する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement similar to Embodiment 1 and an effect | action is abbreviate | omitted.
 金属受け部材131の熱伝導により外気が貯蔵室106内へ侵入するが、金属受け部材131の折り返しフランジ先端まで外気とほぼ同等温度となるため、断熱距離、すなわち、図8のc2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた底面断熱壁133の壁厚では、c2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。 Although the outside air penetrates into the storage chamber 106 due to the heat conduction of the metal receiving member 131, the temperature is almost equal to that of the outside air up to the end of the folded flange of the metal receiving member 131. Therefore, the contribution of the heat insulation distance, that is, the dimension c2 in FIG. Is very high. It can be seen that the c2 dimension is small in the wall thickness of the bottom heat insulating wall 133 that is set only by the temperature difference between the outside and the inside of the storage chamber as in the prior art, that is, the heat insulating distance is small, and the amount of intrusion heat is very large.
 図9は、本発明の実施の形態3における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法とc寸法の平均値をa寸法で除した値)の関係図である。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法となる領域を示している。 FIG. 9 is a relationship diagram of the amount of heat entering the refrigerator storage room and the heat insulation wall thickness ratio (the value obtained by dividing the average value of the b dimension and the c dimension by the a dimension) in the third embodiment of the present invention. Region I indicates a region where a dimension <b dimension and a dimension <c dimension.
 図9に示すように、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値である最下点を境に再び増加している。つまり、外形に対する収納空間の体積割合を示す容積効率が30%~70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持する前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在する。そして、その時、a寸法<b寸法、かつa寸法<c寸法が成り立つ。 As shown in FIG. 9, when the heat insulation wall thickness ratio is increased, the amount of heat penetration decreases, but increases again with the lowest point being a certain value as a boundary. In other words, when the volumetric efficiency indicating the volume ratio of the storage space to the external shape is 30% to 70%, the heat insulation wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are properly maintained. A ratio exists. At that time, a dimension <b dimension and a dimension <c dimension are established.
 したがって、本実施の形態のように、貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より断熱仕切壁121の壁厚であるb寸法を大きく、かつ、貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より底面断熱壁133の壁厚であるc寸法を大きくする。これにより、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。 Therefore, as in this embodiment, the dimension b, which is the wall thickness of the heat insulating partition wall 121, is larger than the dimension a, which is the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine room 107, and is stored. The dimension c, which is the wall thickness of the bottom heat insulating wall 133, is made larger than the dimension a, which is the wall thickness of the heat insulating wall provided between the chamber 106 and the machine room 107. Thereby, the penetration | invasion heat through a heat insulation wall and the penetration | invasion heat from an opening part can be reduced comprehensively.
 また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。 Also, since the intrusion heat can be reduced to prevent the temperature rise on the surface of the storage chamber, the cold air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.
 また、断熱仕切壁121の壁厚は、貯蔵室106の奥行き方向に対して必ずしも一定である必要はない。すなわち、断熱仕切壁121の壁厚を開口部近傍である金属受け部材123と当接する近傍のみ、例えば図2に示されるa寸法より厚くし、その他の部分は薄くする構成としても同様の効果を得ることができる。 Further, the wall thickness of the heat insulating partition wall 121 is not necessarily constant with respect to the depth direction of the storage chamber 106. That is, the same effect can be obtained even when the wall thickness of the heat insulating partition wall 121 is made thicker than, for example, the dimension a shown in FIG. Obtainable.
 なお、本実施の形態で示した断熱壁厚の寸法は一例であり、本発明はこの寸法に限られるものではない。 In addition, the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
 (実施の形態4)
 図10は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図である。図11は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図である。なお、実施の形態1と同様の構成をなすものについては同じ符号を付して説明し、詳細な説明を省略する。
(Embodiment 4)
FIG. 10 is a plan sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. FIG. 11 is an enlarged cross-sectional view of a heat insulating door side part of a storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. In addition, about the thing which makes the structure similar to Embodiment 1, it attaches | subjects and demonstrates the same code | symbol, and abbreviate | omits detailed description.
 図10に示すように、d寸法は貯蔵室106の側面断熱壁134の断熱壁厚寸法である。そして、図11に示すように、側面断熱壁134の前面に貯蔵室内外に渡るように金属受け部材132が設けられ、外箱102の内面の端部には扉ガスケット122が設けられている。金属受け部材132は外箱102と一体で構成され、扉ガスケット122とを密着させることで冷気が外部に漏れるのを防止する。 As shown in FIG. 10, the dimension d is the insulation wall thickness dimension of the side insulation wall 134 of the storage chamber 106. As shown in FIG. 11, a metal receiving member 132 is provided on the front surface of the side heat insulating wall 134 so as to extend outside the storage chamber, and a door gasket 122 is provided at the end of the inner surface of the outer box 102. The metal receiving member 132 is formed integrally with the outer box 102 and prevents the cold air from leaking to the outside by bringing the door gasket 122 into close contact.
 また、金属受け部材132の折り返しフランジ部側面断熱壁134の内部に埋設されている。 Further, the metal receiving member 132 is embedded in the side wall heat insulating wall 134 of the folded flange portion.
 ここで、d1寸法は外箱102の側面から金属受け部材132の折り返しフンラジ先端までの幅寸法、d2寸法は金属受け部材132の折り返しフンラジ先端から貯蔵室106までの幅寸法、すなわち断熱距離である。なお、d1寸法は固定である。 Here, the dimension d1 is a width dimension from the side surface of the outer box 102 to the end of the folded funnel of the metal receiving member 132, and the dimension d2 is a width dimension from the end of the folded funger of the metal receiving member 132 to the storage chamber 106, that is, the heat insulation distance. . The d1 dimension is fixed.
 本実施の形態では、例えば図2に示されるa寸法よりb寸法(=b1+b2)を大きく、かつ例えば図2に示されるa寸法よりc寸法(=c1+c2)を大きく、かつ例えば図2に示されるa寸法より側面断熱壁134の断熱壁厚寸法d(=d1+d2)を大きくしている。具体的には、本実施の形態では、貯蔵室106と機械室107の間の断熱壁の壁厚であるa寸法は60mm、断熱仕切壁121の壁厚であるb寸法は70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の壁厚であるc寸法は71mm(c1寸法は41mm、c2寸法は30mm)、側面断熱壁134の壁厚であるd寸法は65mm(d1寸法は20mm、d2寸法は45mm)である。 In the present embodiment, for example, the dimension b (= b1 + b2) is larger than the dimension a shown in FIG. 2, and the dimension c (= c1 + c2) is larger than the dimension a shown in FIG. 2, for example, as shown in FIG. The heat insulation wall thickness dimension d (= d1 + d2) of the side heat insulation wall 134 is made larger than the dimension a. Specifically, in the present embodiment, the dimension a which is the wall thickness of the heat insulating wall between the storage chamber 106 and the machine room 107 is 60 mm, and the dimension b which is the wall thickness of the heat insulating partition wall 121 is 70 mm (the dimension b1 is 49 mm, b2 dimension is 21 mm), c dimension which is the wall thickness of the bottom heat insulating wall 133 is 71 mm (c1 dimension is 41 mm, c2 dimension is 30 mm), d dimension which is the wall thickness of the side heat insulating wall 134 is 65 mm (d1 dimension is 20 mm, d2 dimension is 45 mm).
 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1または2と同様である動作、作用についての説明は省略する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Note that description of operations and actions similar to those in Embodiment 1 or 2 is omitted.
 金属受け部材132の熱伝導により外気が貯蔵室106内へ侵入するが、金属受け部材132の折り返しフランジ先端まで外気とほぼ同等温度となるため、断熱距離、すなわち、図11のd2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた側面断熱壁134の壁厚では、d2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。 Although the outside air enters into the storage chamber 106 due to the heat conduction of the metal receiving member 132, the temperature is almost equal to that of the outside air up to the end of the folded flange of the metal receiving member 132. Therefore, the contribution of the heat insulation distance, that is, the d2 dimension in FIG. Is very high. It can be seen that, as in the prior art, the wall thickness of the side heat insulating wall 134 set only by the temperature difference between the inside and outside of the storage chamber has a smaller d2 dimension, that is, a smaller heat insulating distance and a very large amount of intrusion heat.
 図12は、本発明の実施の形態4における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法、c寸法、d寸法の平均値をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法となる領域を示している。 FIG. 12 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (the value obtained by dividing the average value of b dimension, c dimension, and d dimension by a dimension) in Embodiment 4 of the present invention. It is a thing. The region I indicates a region where a dimension <b dimension, a dimension <c dimension, and a dimension <d dimension.
 図12に示すように、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値である最下点を境に再び増加している。つまり、外形に対する収納空間の体積割合を示す容積効率が30%~70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在する。そして、その時、a寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法が成り立つ。 As shown in FIG. 12, when the heat insulation wall thickness ratio is increased, the heat penetration amount decreases, but increases again with the lowest point being a certain value as a boundary. In other words, when the volumetric efficiency indicating the volume ratio of the storage space to the external shape is 30% to 70%, the heat insulation wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are properly maintained. A ratio exists. At that time, a dimension <b dimension, a dimension <c dimension, and a dimension <d dimension are established.
 したがって、本実施の形態のように、貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より断熱仕切壁121の壁厚であるb寸法を大きく、かつ貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より底面断熱壁133の壁厚であるc寸法を大きく、かつ貯蔵室106と機械室107の間に設けられた断熱壁の壁厚であるa寸法より側面断熱壁134の壁厚であるd寸法を大きくする。これにより、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。 Therefore, as in the present embodiment, the dimension b, which is the wall thickness of the heat insulating partition wall 121, is larger than the dimension a, which is the wall thickness of the heat insulating wall provided between the storage chamber 106 and the machine room 107, and the storage chamber. Insulation provided between the storage chamber 106 and the machine room 107, and the c dimension, which is the wall thickness of the bottom heat insulation wall 133, is larger than the dimension a, which is the wall thickness of the insulation wall provided between the machine room 107 and the machine room 107. The dimension d which is the wall thickness of the side heat insulating wall 134 is made larger than the dimension a which is the wall thickness. Thereby, the penetration | invasion heat through a heat insulation wall and the penetration | invasion heat from an opening part can be reduced comprehensively.
 また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。 Also, since the intrusion heat can be reduced to prevent the temperature rise on the surface of the storage chamber, the cold air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.
 また、側面断熱壁134の壁厚は、貯蔵室106の奥行き方向に対して必ずしも一定である必要はない。すなわち、側面断熱壁134の壁厚を開口部近傍である金属受け部材132と当接する近傍のみ、例えば図2に示されるa寸法より大きくしても、同様の効果を得ることができる。 Also, the wall thickness of the side heat insulating wall 134 is not necessarily constant with respect to the depth direction of the storage chamber 106. That is, the same effect can be obtained even if the wall thickness of the side heat insulating wall 134 is made larger only in the vicinity of contact with the metal receiving member 132 in the vicinity of the opening, for example, the dimension a shown in FIG.
 なお、本実施の形態で示した断熱壁厚の寸法は一例であり、本発明はこの寸法に限られるものではない。 In addition, the dimension of the heat insulation wall thickness shown by this Embodiment is an example, and this invention is not restricted to this dimension.
 本発明の冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して有用である。 The refrigerator of the present invention is useful for household or commercial refrigerators or vegetable storages.
100  冷蔵庫
101  断熱箱体
102  外箱
103  内箱
104  貯蔵室(冷蔵室)
105  貯蔵室(野菜室)
106  貯蔵室(冷凍室)
107  機械室
108  圧縮機
109  冷却室
110  奥面仕切壁
111  冷却器
112  冷却ファン
113  ラジアントヒーター
114  ドレンパン
115  貫通路
116  蒸発皿
117,118,119  断熱扉
120,121  断熱仕切壁
122  扉ガスケット
123,132  金属受け部材
124  冷気吐出口
125  冷気吸込口
126,127,128  収納ケース
130  断熱部材
131  放熱パイプ
133  底面断熱壁
134  側面断熱壁
150  凸部
100 refrigerator 101 heat insulation box 102 outer box 103 inner box 104 storage room (refrigeration room)
105 Storage room (vegetable room)
106 Storage room (freezer room)
107 Machine room 108 Compressor 109 Cooling room 110 Back surface partition wall 111 Cooler 112 Cooling fan 113 Radiant heater 114 Drain pan 115 Passage path 116 Evaporating tray 117, 118, 119 Thermal insulation door 120, 121 Thermal insulation partition wall 122 Door gasket 123, 132 Metal receiving member 124 Cold air outlet 125 Cold air inlet 126, 127, 128 Storage case 130 Heat insulating member 131 Heat radiating pipe 133 Bottom heat insulating wall 134 Side heat insulating wall 150 Convex portion

Claims (13)

  1. 断熱箱体と、
    前記断熱箱体の開口部前面を開閉する断熱扉と、
    前記断熱箱体と前記断熱扉とを有する貯蔵室と、
    前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、
    圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、
    前記断熱仕切壁の壁厚を、前記貯蔵室と前記機械室の間に設けられた断熱壁の壁厚より大きくした冷蔵庫。
    An insulated box,
    A heat insulating door for opening and closing the front surface of the opening of the heat insulating box;
    A storage room having the heat insulation box and the heat insulation door;
    A heat insulating partition wall that divides the storage chamber into a plurality of storage chambers;
    A machine room provided in a lower part of the heat insulating box for storing the compressor,
    The refrigerator which made the wall thickness of the said heat insulation partition wall larger than the wall thickness of the heat insulation wall provided between the said store room and the said machine room.
  2. 前記貯蔵室と前記機械室の間に設けられた断熱壁の壁厚は、
    前記機械室を覆う断熱壁の内で最大となる部分である請求項1記載の冷蔵庫。
    The wall thickness of the heat insulating wall provided between the storage room and the machine room is:
    The refrigerator according to claim 1, wherein the refrigerator is the largest portion in the heat insulating wall covering the machine room.
  3. 前記貯蔵室と前記機械室の間に設けられた断熱壁は、
    前記機械室の前後方向に対面する断熱壁である請求項1記載の冷蔵庫。
    The heat insulating wall provided between the storage room and the machine room is
    The refrigerator according to claim 1, wherein the refrigerator is a heat insulating wall facing in the front-rear direction of the machine room.
  4. 前記貯蔵室と前記機械室の間に設けられた断熱壁は、
    前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁である請求項1記載の冷蔵庫。
    The heat insulating wall provided between the storage room and the machine room is
    The refrigerator according to claim 1, wherein the refrigerator is a heat insulating wall that does not have a through passage in a heat insulating wall that covers the machine room.
  5. 前記貯蔵室と前記機械室の間に設けられた断熱壁は、
    前記機械室の前記貯蔵室内側と対面する断熱壁である請求項1記載の冷蔵庫。
    The heat insulating wall provided between the storage room and the machine room is
    The refrigerator according to claim 1, wherein the refrigerator is a heat insulating wall facing the storage room side of the machine room.
  6. 前記貯蔵室を形成する底面断熱壁の壁厚を、
    前記貯蔵室と前記機械室の間に設けられた断熱壁の壁厚より大きくした
    請求項1~5のいずれか一項に記載の冷蔵庫。
    The wall thickness of the bottom heat insulating wall forming the storage chamber,
    The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is larger than a wall thickness of a heat insulating wall provided between the storage room and the machine room.
  7. 前記貯蔵室を形成する側面断熱壁の壁厚を、
    前記貯蔵室と前記機械室の間に設けられた断熱壁の壁厚より大きくした
    請求項1~5のいずれか一項に記載の冷蔵庫。
    The wall thickness of the side heat insulating wall forming the storage room,
    The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is larger than a wall thickness of a heat insulating wall provided between the storage room and the machine room.
  8. 前記断熱仕切壁の前面に設けられた金属受け部材と、
    前記金属受け部材の前記貯蔵室内側面に密着するように配置された加熱部と、をさらに備え、
    前記金属受け部材と前記貯蔵室の間に、前記貯蔵室内の冷気と前記金属受け部材との熱交換を抑制する熱交換抑制部を設けた
    請求項1記載の冷蔵庫。
    A metal receiving member provided in front of the heat insulating partition wall;
    A heating unit arranged so as to be in close contact with the side surface of the storage chamber of the metal receiving member,
    The refrigerator according to claim 1, further comprising a heat exchange suppression unit that suppresses heat exchange between the cold air in the storage chamber and the metal receiving member between the metal receiving member and the storage chamber.
  9. 前記貯蔵室は、冷凍室である請求項1~8記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 8, wherein the storage room is a freezing room.
  10. 前記貯蔵室内に引き出し可能な収納ケースを備えた請求項1~8記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 8, further comprising a storage case that can be pulled out into the storage chamber.
  11. 前記断熱仕切壁の壁厚を前記金属受け部材と当接する近傍のみ前記貯蔵室と前記機械室の間に設けられた断熱壁の壁厚より厚くし、その他の部分は前記壁厚より薄くする請求項8記載の冷蔵庫。 The wall thickness of the heat insulating partition wall is made thicker than the wall thickness of the heat insulating wall provided between the storage chamber and the machine room only in the vicinity of contact with the metal receiving member, and other portions are made thinner than the wall thickness. Item 9. The refrigerator according to Item 8.
  12. 前記熱交換抑制部は、前記金属受け部材と前記貯蔵室の間に、断熱部材を設けることにより構成される請求項8記載の冷蔵庫。 The refrigerator according to claim 8, wherein the heat exchange suppression unit is configured by providing a heat insulating member between the metal receiving member and the storage chamber.
  13. 前記熱交換抑制部は、前記断熱仕切壁の下面に凸部を設け、前記凸部と前記収納ケースとを当接させた請求項8記載の冷蔵庫。 The refrigerator according to claim 8, wherein the heat exchange suppression unit is provided with a convex portion on a lower surface of the heat insulating partition wall, and the convex portion and the storage case are brought into contact with each other.
PCT/JP2010/005728 2009-09-24 2010-09-22 Refrigerator WO2011036870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112012006383-9A BR112012006383B1 (en) 2009-09-24 2010-09-22 cooler
CN201080042520.9A CN102510986B (en) 2009-09-24 2010-09-22 Refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-218450 2009-09-24
JP2009218450A JP5434431B2 (en) 2009-09-24 2009-09-24 refrigerator
JP2009-287128 2009-12-18
JP2009287128 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011036870A1 true WO2011036870A1 (en) 2011-03-31

Family

ID=43795638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005728 WO2011036870A1 (en) 2009-09-24 2010-09-22 Refrigerator

Country Status (3)

Country Link
CN (1) CN102510986B (en)
BR (1) BR112012006383B1 (en)
WO (1) WO2011036870A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112682980A (en) * 2019-10-18 2021-04-20 杭州三花研究院有限公司 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247632A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Refrigerator
JP2000329454A (en) * 1999-05-20 2000-11-30 Matsushita Refrig Co Ltd Heat insulation box and manufacture of heat insulation box
JP2001280834A (en) * 2000-03-30 2001-10-10 Toshiba Corp Partition structure of refrigerator
JP2002098473A (en) * 2001-07-26 2002-04-05 Mitsubishi Electric Corp Method for manufacturing inner box of refrigerator
JP2003314951A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Refrigerator
JP2005315547A (en) * 2004-04-30 2005-11-10 Toshiba Corp Refrigerator
JP2008002694A (en) * 2006-06-20 2008-01-10 Toshiba Corp Refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247632A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Refrigerator
JP2000329454A (en) * 1999-05-20 2000-11-30 Matsushita Refrig Co Ltd Heat insulation box and manufacture of heat insulation box
JP2001280834A (en) * 2000-03-30 2001-10-10 Toshiba Corp Partition structure of refrigerator
JP2002098473A (en) * 2001-07-26 2002-04-05 Mitsubishi Electric Corp Method for manufacturing inner box of refrigerator
JP2003314951A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Refrigerator
JP2005315547A (en) * 2004-04-30 2005-11-10 Toshiba Corp Refrigerator
JP2008002694A (en) * 2006-06-20 2008-01-10 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
BR112012006383A2 (en) 2017-05-23
BR112012006383B1 (en) 2020-10-27
CN102510986B (en) 2015-06-24
CN102510986A (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US9052127B2 (en) Refrigerator having auxiliary cooling device
JP5957684B2 (en) refrigerator
US10731913B2 (en) Refrigerator having very low temperature freezer compartment
JP6405523B2 (en) refrigerator
JP5870235B2 (en) refrigerator
JP2010038528A (en) Refrigerator
JP5229147B2 (en) refrigerator
WO2014045576A1 (en) Refrigerator
WO2013084460A1 (en) Refrigerator
JP2007064597A (en) Refrigerator
CN107270613B (en) refrigerator with a door
WO2015029410A1 (en) Refrigerator
WO2011036870A1 (en) Refrigerator
JP5434431B2 (en) refrigerator
JP2007064598A (en) Refrigerator
JP5510077B2 (en) refrigerator
JP5849179B2 (en) refrigerator
JP5401866B2 (en) refrigerator
JP5909623B2 (en) refrigerator
WO2012169573A1 (en) Refrigerator
CN102692111B (en) Freezer
JP6035506B2 (en) refrigerator
JP2013185731A (en) Refrigerator
JP2012202603A (en) Refrigerator
JP2013119952A (en) Refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042520.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2621/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818549

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012006383

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012006383

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120321